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Abstract. Planar functions over finite fields give rise to finite projective planes and other
combinatorial objects. They were originally defined only in odd characteristic, but recently
Zhou introduced a definition in even characteristic which yields similar applications. In this
paper we show that certain functions over F2r are planar, which proves a conjecture of Schmidt
and Zhou. The key to our proof is a new result about the Fq3 -rational points on the curve
xq−1 +yq−1 = zq−1.
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1. Introduction

Let q = pr where p is prime and r is a positive integer. If p is odd then a planar
function on Fq is a function F : Fq → Fq such that, for every d ∈ F

∗
q, the function

c �→F(c+d)−F(c) is a bijection on Fq. Planar functions have been used to construct
finite projective planes [4], relative difference sets [5], error-correcting codes [1], and
S-boxes in block ciphers with optimal resistance to differential cryptanalysis [7].

If p = 2 then there are no functions F : Fq → Fq satisfying the defining prop-
erty of a planar function, since 0 and d have the same image as one another un-
der the map c �→ F(c + d)− F(c). Recently, Zhou [10] introduced a characteris-
tic 2 analogue of planar functions, which have the same types of applications as do
odd-characteristic planar functions. These will be the focus of the present paper. If
p = 2, we say that a function F : Fq → Fq is planar if, for every d ∈ F

∗
q, the function

c �→ F(c+d)+F(c)+dc is a bijection on Fq. Schmidt and Zhou [8,10] showed that
any function satisfying this definition can be used to produce a relative difference set
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with parameters (q, q, q, 1), a finite projective plane, and certain codes with unusual
properties. In what follows, whenever we refer to a planar function in characteristic
2, we mean a function satisfying Zhou’s definition.

In the recent paper [8], Schmidt and Zhou studied planar functions in characteris-
tic 2 which have the form c �→ act , where a ∈ F

∗
q. They exhibited two classes of such

planar monomials on Fq where q = 2r:

• t = 2k for any k ≥ 0, any r, and any a ∈ F
∗
q,

• t = 2k + 1 where r = 2k and a = b2 + b for any b ∈ F2k \F2.

They also conjectured [8, Conj. 7] that, when r = 6k and t = 4k + 16k, there exists
a ∈ F

∗
q such that c �→ act is planar on F2r . We will prove this conjecture in the

following more precise form:

Theorem 1.1. For any positive integer k, write Q = 4k and q = Q3. If a ∈ F
∗
q is a

(Q−1)-th power but not a 3(Q−1)-th power, then the function c �→ acQ2+Q is planar
on Fq.

Our proof relies on the following result of independent interest:

Theorem 1.2. If Q > 1 is a power of 2, and u, v ∈ F
∗
Q3 satisfy uQ−1 + vQ−1 = 1, then

uv is a cube in FQ3 .

We note that, in subsequent work, Voloch and the second author [9] have proved
an analogous result for odd prime powers.

We conclude this introduction with some general remarks about planar monomi-
als in characteristic 2. Since c �→ act is planar on Fq if and only if c �→ act+q−1 is
planar, we will restrict to planar monomials of degree less than q. All known planar
monomials over F2r of degree between 2 and 2r −1 have degree of the form 2i + 2 j.
In light of this, we divide the classification of planar monomials in characteristic 2
into two parts:

• monomials of degree 2i + 2 j, and
• monomials of other degrees.

We checked via computer that, for r ≤ 14, every planar monomial over F2r of de-
gree between 2 and 2r −1 has degree 2i + 2 j. We suspect that all planar monomials
over F2r of degree 2i + 2 j with 0 ≤ i < j < r are displayed in Theorem 1.1 and
Proposition 3.2, but we cannot prove this. We will present results in this direction in
Section 3, after proving our main results in the next section.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Our proof relies on Theorem 1.2, which we
prove first.

Proof of Theorem 1.2. If Q = 2r where r is odd, then Q3 −1 ≡ 1 (mod 3), so every
element of FQ3 is a cube (since the map c �→ c3 is a homomorphism from F

∗
Q3 to itself

which has trivial kernel). Thus the result holds in this case, so for the rest of this
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proof we will assume that Q is a power of 4. Let ω be a fixed primitive cube root of
unity in FQ.

Pick u, v ∈ F
∗
Q3 such that uQ−1 + vQ−1 = 1. Write U := uQ−1 and V := vQ−1, so

that U +V = 1 and both U and V have order dividing Q2 +Q+1. We must show that
uv is a cube, or equivalently that UV is a 3(Q−1)-th power in F

∗
Q3 .

We first dispense with the case that U is in FQ. If U ∈ FQ then V = U + 1 is also
in FQ, so both U and V have order dividing Q−1. Thus the orders of U and V divide
Q2 + Q + 1− (Q− 1)(Q + 2)= 3, so U and V are cube roots of unity whose sum is
1. It follows that U and V are distinct primitive cube roots of unity, so their product
is 1, which is indeed a 3(Q−1)-th power.

Henceforth, we assume that neither U nor V is in FQ. Let F(x) be the minimal

polynomial of U over FQ, so F(x) = (x + U)
(
x+UQ

)(
x + UQ2)

. Then F(0) =

UQ2+Q+1 = 1. Since F(x + 1) is a monic irreducible polynomial in FQ[x] which has
V as a root, it must be the minimal polynomial of V over FQ. Its constant term F(1)

equals V Q2+Q+1 = 1. Therefore, F(x)+ 1 is a monic degree-3 polynomial in FQ[x]
whose roots include 0 and 1, so F(x)+ 1 = x(x+ 1)(x+ b) for some b ∈ FQ.

Next we determine the minimal polynomial of UV over FQ. Note that UV =
U2 +U . Since U has degree 3 over FQ, we must have U2 +U �∈ FQ, so that U2 +U
also has degree 3 over FQ. Thus, the minimal polynomial of UV over FQ is the unique
monic degree-3 polynomial in FQ[x] which has UV as a root. This polynomial is
G(x) := x3 +(b2 + b)x2 + x+ 1, since

G
(
U2 +U

)
=

(
U2 +U

)3
+

(
b2 + b

)(
U2 +U

)2
+U2 +U + 1

= U6 +U5 +U4 (b2 + b + 1
)
+U3 +U2 (b2 + b + 1

)
+U + 1

= (U(U + 1)(U + b)+ 1) · (U3 + bU2 +(b + 1)U + 1
)

= F(U) · (U3 + bU2 +(b + 1)U + 1
)

= 0.

Since G(x) is the minimal polynomial of UV over FQ, in particular it is irre-
ducible. Thus, G(1) �= 0, so b /∈ {ω , ω2}. We will write down the minimal polyno-
mials for all of the cube roots of UV . We first give three factorizations which might
involve polynomials over an extension of FQ:

G
(
x3) = ∏

e3=b2+b+1

(
x3 + ex2 + 1

)

= ∏
e3=b+ω

(
x3 + e2x2 + ex+ 1

)

= ∏
e3=b+ω2

(
x3 + e2x2 + ex+ 1

)
.

We leave the easy verification of these factorizations to the reader. First suppose
that one of these three factorizations only involves polynomials in FQ[x]. Since the
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cubes of the roots of G
(
x3) have degree 3 over FQ, it follows that the degree-3 poly-

nomials in this factorization are irreducible, so that any root d of any of these degree-3
polynomials must satisfy dQ2+Q+1 = 1, and hence must be a (Q−1)-th power in F

∗
Q3 .

Since G(UV ) = 0, this implies that UV is a 3(Q−1)-th power, as desired.

It remains to show that one of the three factorizations above only involves polyno-
mials in FQ[x]. Equivalently, we must show that one of b+ω , b+ω 2, and b2 +b+1
is a cube in F

∗
Q. If this did not happen then, since b2 + b + 1 = (b + ω)

(
b + ω2), the

only possibility is that b+ω and b+ω2 are in the same coset in F
∗
Q/

(
F
∗
Q
)3

. But then
(
b + ω2

)
/(b+ω) would be in

(
F
∗
Q

)3
, so we could write

(
b + ω2

)
/(b+ω)= e3 with

e ∈ F
∗
Q. Now one can easily verify that d :=

(
b2 + b + 1

)
e2 +(b+ω)2e+b2 +b is a

root of G(x) in FQ, which is impossible.

Next we prove a lemma expressing the planarity condition for monomials in a
convenient form.

Lemma 2.1. Pick any positive integer t and any a ∈ F
∗
q, where q > 1 is a power of 2.

Then c �→ act is a planar function on Fq if and only if, for each b ∈ F
∗
q, the function

c �→ (c+ 1)t + ct + ca−1bt−2 is bijective on Fq.

Proof. Planarity asserts that, for each d ∈ F
∗
q, the function F : c �→ a(c+d)t +act +dc

is bijective on Fq. Equivalently, �1 ◦ f ◦ �2 is bijective, where �1 : c �→ c/(ad t) and
�2 : c �→ dc. Since �1 ◦ f ◦ �2 : c �→ (c+ 1)t + ct + c/

(
adt−2), putting b = 1/d yields

the result.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let k be a positive integer, and write Q = 4k and q = Q3. Let
a ∈ F

∗
q be a (Q−1)-th power which is not a 3(Q−1)-th power.

We first show that no d, e ∈ F
∗
q satisfy dQ2−1 + dQ−1 = a−1e3Q−3. For, suppose

d, e ∈ F
∗
q satisfy this equation. Since a is a (Q− 1)-th power, also dQ2−1 + dQ−1 is

a (Q− 1)-th power in F
∗
q. But dQ2−1 + dQ−1 = dQ−1(dQ−1 + 1)Q, so we must have

dQ−1 +1 = uQ−1 for some u ∈ F
∗
q. Now Theorem 1.2 implies that du is a cube in F

∗
q,

so dQ−1uQ2−Q = (du)Q−1(u(Q−1)/3)3Q−3
is a 3(Q−1)-th power; but this expression

equals a−1e3Q−3, which contradicts our hypothesis that a is not a 3(Q−1)-th power.

Thus, for each e∈F
∗
q, the polynomial xQ2−1 +xQ−1 +a−1e3Q−3 has no roots in F

∗
q.

Since the function c �→ cQ2
+ cQ + ca−1e3Q−3 is a homomorphism from the additive

group of Fq to itself, and the kernel of this homomorphism is trivial, the function

is a bijection on Fq. Since (c + 1)Q2+Q + cQ2+Q = cQ2
+ cQ + 1, this implies that

c �→ (c+ 1)Q2+Q + cQ2+Q + ca−1e3Q−3 is a bijection on Fq. For any b ∈ F
∗
q, put e =

b(Q+2)/3, so that e3Q−3 = bQ2+Q−2. We have shown that c �→ (c+ 1)Q2+Q + cQ2+Q +

ca−1bQ2+Q−2 is a bijection on Fq, which by Lemma 2.1 implies that c �→ acQ2+Q is
planar on Fq.
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3. Planar Monomials of Degree 2i + 2 j

We conclude this paper with some general remarks about planar polynomials in char-
acteristic 2, and in particular about planar monomials of degree 2i + 2 j. Here we
say that F(x) ∈ Fq[x] is planar if the function c �→ F(c) is a planar function on Fq.
Since every function Fq → Fq is represented by a polynomial, in particular every pla-
nar function is represented by a planar polynomial. Moreover, if F, G ∈ Fq[x] satisfy
F(x) ≡ G(x) (mod xq − x) then F(x) is planar if and only if G(x) is planar. Thus, in
order to classify planar polynomials, it suffices to classify their residues mod (xq − x),
or equivalently, to classify planar polynomials of degree less than q.

If p is any (odd or even) prime other than 3, then (for every r) all known planar
polynomials over Fpr of degree less than pr have the property that the degree of every
term is the sum of at most two powers of p. The prime p = 3 must be excluded, due
to examples from [3]. Planar polynomials in which every term has degree the sum
of at most two powers of p are especially interesting, since a classification of such
polynomials would be equivalent to a classification of finite commutative semifields
[2]. To date, there is no p for which there is even a conjectured classification of such
planar polynomials. However, if we restrict to monomials then the situation becomes
more tractable. It is easy to see that a monomial of degree pi is planar over Fpr if and
only if p = 2. Further, it is well-known (and easy to prove) that, for any odd prime p
and any 0 ≤ i ≤ j < r, a monomial over Fpr of degree pi + p j is planar if and only if
r/gcd(r, j− i) is odd. Our Theorem 1.1 shows that the analogous assertion for p = 2
is not true, and the complexity of our proof suggests that a classification of planar
monomials over F2r of degree 2i +2 j will likely be difficult to obtain. Here we make
some remarks about this classification.

We first reformulate the planarity condition for these monomials:

Lemma 3.1. Fix 0 ≤ i < j < r and a ∈ F
∗
2r , and put q = 2r and G(x) := x2i−1 +x2 j−1.

The monomial ax2i+2 j
is planar on Fq if and only if the sets G

(
F
∗
q
)

and a−1 (
F
∗
q
)t−2

are disjoint.

Proof. Write q = 2r and t = 2i + 2 j. By Lemma 2.1, planarity asserts that, for each
b ∈ F

∗
q, the polynomial F(x) := (x + 1)t + xt + xa−1bt−2 induces a bijection on Fq.

Equivalently, F(x)+ 1 induces a bijection on Fq, and we compute

F(x)+ 1 = x2i
+ x2 j

+ xa−1bt−2.

Since this polynomial induces a homomorphism from the additive group of Fq to
itself, it induces a bijection if and only if it has no nonzero roots in Fq. Since F(x)+
1 = x

(
G(x)+ a−1bt−2

)
, the result follows.

Next we determine all planar monomials of degree 1 + 2 j:

Proposition 3.2. Pick 0 < j < r and a ∈ F
∗
2r , and let T (x) := x2 j−1

+ x2 j−2
+ · · ·+ x.

Then ax1+2 j
is planar on F2r if and only if j = r/2 and T

(
a2 j+1) = 0.

Proof. Let q = 2r and J = gcd( j, r). By Lemma 3.1, ax1+2 j
is planar on Fq if and

only if there do not exist u, v ∈ F
∗
q such that

1 + u2 j−1 = a−1v2 j−1.
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Since the set of
(
2 j −1

)
-th powers in F

∗
q is the same as the set of gcd

(
2 j −1, 2r −1

)
-

th powers, i.e., the
(
2J −1

)
-th powers, planarity asserts that the equation 1+U 2J−1 =

a−1V 2J−1 has no solutions with U, V ∈ F
∗
q. Note that the equation z2J−1 + x2J−1 =

a−1y2J−1 defines a nonsingular curve C in P
2 of genus g :=

(
2J −2

)(
2J −3

)
/2.

Planarity asserts that C has no Fq-rational points with nonzero coordinates.
First suppose J ≤ r/4. Then Weil’s bound implies that the number of Fq-rational

points on C is at least

q + 1−2g
√

q = q + 1− (
2J −2

)(
2J −3

)√
q

≥ q + 1− (
q1/4 −2

)(
q1/4 −3

)√
q

= 1 +
(
5q1/4 −6

)√
q.

At most 3(2J −1) of these points have a coordinate being zero. Since

1 +
(
5q1/4 −6

)√
q > 3

√
q > 3

(
2J −1

)
,

there is a point in C(Fq) with nonzero coordinates, so ax1+2 j
is not planar on Fq.

Since J is a proper divisor of r, the remaining cases are J = r/2 and J = r/3. If
J = r/2 then j = r/2, and by [6, Thm. 1], there is a point in C(Fq) with nonzero coor-

dinates if and only if the canonical additive character χ on F2J satisfies χ
(
a2J+1) �= 1,

or equivalently T
(
a2J+1) �= 0. If J = r/3 then, by [6, Thm. 2], the curve C has an

Fq-rational point with nonzero coordinates.

Remark 3.3. If j = r/2 then the condition T
(
a2 j+1) = 0 can be reformulated as

asserting that a2 j+1 = b2 + b for some b ∈ F2 j . The number of elements a ∈ F
∗
2r

which satisfy this condition is
(
2 j−1−1

)(
2 j +1

)
. Among these are precisely 2 j−1−1

elements of F
∗
2 j , namely, the elements of the form b2 + b with b ∈ F2 j \F2. Planarity

of ax1+2 j
for these latter a’s was shown in [8, Thm. 6].

Since the (t − 2)-th powers in F
∗
q are precisely the gcd(t − 2, q− 1)-th powers,

Lemma 3.1 implies that ax2i+2 j
cannot be planar on Fq if gcd

(
2i +2 j −2, q−1

)
= 1.

This is a special case of [8, Prop. 9]. It follows that there are no planar monomials
over F2r of degree 2 + 2 j if 1 < j < r. But we have not gotten much further in
determining which monomials of degree 2i + 2 j are planar. In particular, we do not
know whether there are any other planar monomials over FQ3 of degree Q + Q2,
besides the ones described in Theorem 1.1. However, we did verify via computer
that the planar monomials in Theorem 1.1 and Proposition 3.2 are the only planar
monomials over F2r of degree 2i + 2 j with 0 ≤ i < j < r ≤ 50.
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