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1. Introduction

An independent dominating set in a graph is a set that is both dominating and inde-
pendent. Equivalently, an independent dominating set is a maximal independent set.
Independent dominating sets have been studied extensively in the literature; see for
example, the books [16, 17]. In this paper, we consider the independent domination
number of regular graphs.

Let G = (V, E) be a graph. A dominating set of G is a set S of vertices of G such
that every vertex in V \ S is adjacent to a vertex in S. The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set. An independent
dominating set of G is a set that is both dominating and independent in G. The
independent domination number of G, denoted by i(G), is the minimum cardinality
of an independent dominating set. The independence number of G, denoted by α(G),
is the maximum cardinality of an independent set in G. In particular,

γ(G) ≤ i(G) ≤ α(G).

∗ Research supported in part by the South African National Research Foundation.
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An independent dominating set of G of cardinality i(G) is called an i(G)-set. The con-
cept of independent domination originated in chessboard problems, and elementary
properties were provided by Berge [2], while the parameter was defined by Cockayne
and Hedetniemi [5, 6].

For notation and graph theory terminology we in general follow [17]. Specifically,
let G be a graph with vertex set V , order |V | and edge set E . Let v be a vertex in V .
The open neighborhood of v is N(v) = {u ∈ V : uv ∈ E}. For a set S ⊆ V , its open
neighborhood is the set N(S) = ∪v∈SN(v). A vertex of degree 0 is called an isolated
vertex. For a set S ⊆V , the subgraph induced by S is denoted by G[S].

Favaron [9] and Gimbel and Vestergaard [10] proved that i(G) ≤ n+2−2
√

n for
a graph G with n vertices and no isolates, and this is sharp. However, this bound is
not obtainable for regular graphs, as noted, for example, in [21].

Theorem 1.1. If G is a regular graph on n vertices with no isolated vertex, then
i(G) ≤ α(G) ≤ n/2.

It is not hard to show that equality is only obtainable for graphs with every compo-
nent a balanced complete bipartite graph. (This bound is improved upon in Section 4.)

We shall proceed as follows. We focus on 3-regular graphs in Section 2, and
on r-regular graphs for fixed r in Section 3. Thereafter, in Section 4 we consider
regular graphs of large degree, and in Section 5 we consider bounds involving the
independent domination numbers of a regular graph and its complement.

2. Upper Bounds for Cubic Graphs

The question of best possible bounds for cubic graphs remains unresolved. Lam,
Shiu, and Sun [19] provided a proof of the following theorem:

Theorem 2.1. ([19]) For a connected cubic graph G on n vertices, i(G) ≤ 2n/5
except for K(3, 3).

Equality in Theorem 2.1 holds for the prism C5 ×K2. We believe that the graphs
K(3, 3) and C5 ×K2 are the only exception for an upper bound of 3n/8.

Conjecture 2.2. For a connected cubic graph G on n vertices, i(G)≤ 3n/8 except for
K(3, 3) and C5 ×K2.

This result would be best possible, as there are two infinite family of cubic graphs
with independent domination number three-eighths their order, as we now show. One
of these families was also observed in [8].

2.1. The Families Gcubic and Hcubic

The two infinite families Gcubic and Hcubic of connected cubic graphs can be con-
structed as follows.

For k ≥ 1, define graph Gk as described below. Consider two copies of the path
P4k with respective vertex sequences a1b1c1d1 · · ·akbkckdk and w1x1y1z1 · · ·wkxkykzk.
For each 1 ≤ i ≤ k, join ai to wi, bi to xi, ci to zi, and di to yi. To complete Gk join a1
to dk and w1 to zk. Let Gcubic = {Gk : k ≥ 1}.
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For k ≥ 1, define Hk as follows. Consider a copy of the cycle C3k with vertex
sequence a1b1c1 · · ·akbkcka1. For each 1 ≤ i ≤ k, add the vertices

{
wi, xi, yi, z1

i , z2
i
}

,
and join ai to wi, bi to xi, and ci to yi. To complete the construction of Hk, for
each 1 ≤ i ≤ k and j ∈ {1, 2}, join z j

i to each of the vertices wi, xi, and yi. Let
Hcubic = {Hk : k ≥ 1}.

Graphs in the families Gcubic and Hcubic are illustrated in Figure 1.

𝐺𝑘 𝐻𝑘

Figure 1: Graphs Gk and Hk of order n with i(Gk) = i(Hk) = 3n/8.

The following result was stated in [8]. It follows from the fact that if X is any inde-
pendent dominating set in Hk ∈Hcubic, then X must intersect

{
ai, bi, ci, wi, xi, yi, z1

i ,

z2
i
}

in at least three vertices.

Proposition 2.3. If Hk ∈Hcubic has order n, then i(Hk) = 3n/8.

Proposition 2.4. If Gk ∈ Gcubic has order n, then i(Gk) = 3n/8.

Proof. Let G = Gk with n = 8k. Let Vi = {ai, bi, ci, di, wi, xi, yi, zi} for i ∈ [k] =
{1, 2, . . . , k}. The set S =

⋃k
i=1 {bi, di, zi} is an independent dominating set of G, and

so i(G) ≤ |S| = 3k = 3n/8.
Let X be an i(G)-set, and for i ∈ [k], let Xi = Vi ∩ X . In order to dominate

{bi, ci, xi, yi}, we note that |Xi| ≥ 2. Suppose that |X | < 3n/8. Then |Xi| = 2 for
some i ∈ [k]. Let IX = {1 ≤ i ≤ k : |Xi| = 2}. Assume that among all i(G)-sets, X
has been chosen such that |IX | is minimum. Renaming vertices of G, if necessary, we
may assume that |Xk| = 2. We proceed further with the following claim.

Claim 2.5. If {di, zi} ⊆ Xi for some i ∈ [k], then |Xi| = 3 or |Xi| = 4. Further, if
|Xi| = 3, then either ai or wi is not dominated by Xi.

Proof. If {ai, wi} ∩ Xi 
= /0, then either ai ∈ Xi, in which case xi ∈ Xi in order to
dominate xi, or wi ∈ Xi, in which case bi ∈ Xi in order to dominate bi. In both cases,
|Xi| = 4. On the other hand, if {ai, wi}∩Xi = /0, then either bi ∈ Xi, in which case wi
is not dominated by Xi, or ci ∈ Xi, in which case ai is not dominated by Xi.
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We now consider G[Vk]. By our earlier assumption, |Xk|= 2. In order to dominate
{bk, ck, xk, yk}, we may assume, by symmetry, that Xk = {bk, yk} or Xk = {bk, zk} or
Xk = {bk, dk} or Xk = {ck, yk}. In all four cases, the vertex wk is not dominated by
Xk. Further, Xk contains at most one of dk and zk, and so {dk, zk} 
⊆ Xk. In order to
dominate the vertex wk, we have that zk−1 ∈ Xk−1, where addition is taken modulo k.
But then dk−1 ∈ Xk−1 in order to dominate dk. Thus, {dk−1, zk−1} ⊆ Xk−1. By the
claim, either |Xk−1| = 3 or |Xk−1| = 4.

Suppose |Xk−1| = 3. Then by the claim, either ak−1 or wk−1 is not dominated
by Xk−1. This implies that {dk−2, zk−2} ⊆ Xk−2. By the claim, either |Xk−2| = 3 or
|Xk−2| = 4. If |Xk−2| = 3, then {dk−3, zk−3} ⊆ Xk−3 and |Xk−3| = 3 or |Xk−3| = 4.

Continuing this process, we note that since X is an independent dominating set in
G and since {dk, zk} 
⊆ Xk, there is a smallest integer j such that

{
dk− j, zk− j

}⊆ Xk− j,
|Xk− j| = 4 and 1 ≤ j ≤ k− 1. Thus either

{
ak− j, xk− j

} ⊆ Xk− j or
{

bk− j, wk− j
} ⊆

Xk− j. If ak− j ∈ Xk− j, let vk− j = ak− j; otherwise, let vk− j = wk− j.
We now define the set X ′ as follows. Let X ′

k− j =
{

ck− j, vk− j, yk− j
}

. Let X ′
k =

Xk ∪{wk}. If j ≥ 2, then for k− j < i < k, let X ′
i = {ci, wi, xi}. If j ≤ k−2, then for

1 ≤ i < k− j, let X ′
i = Xi. Then, |X ′

k| = |Xk|+ 1 = 3,
∣∣X ′

k− j

∣∣ =
∣∣Xk− j

∣∣− 1 = 3, and
|X ′

i | = |Xi| for all i /∈ {k, k− j}, and so |X ′| = |X | but |IX ′ | = |IX |−1. Let

X ′ =
k⋃

i=1

X ′
i .

Since the set X is an independent dominating set, by construction so too is the
set X ′. Thus, X ′ is an i(G)-set with |IX ′ | < |IX |, contradicting our choice of the set X .
Consequently, i(G) = 3n/8.

Perhaps it is even true that i(G) ≤ 3n/8 for n > 10, with equality if and only if
G ∈ Gcubic ∪Hcubic. We remark that computer search has confirmed that this is true
when n ≤ 20.

2.2. Cubic Graphs of Higher Girth

Verstraete [23] conjectured the following result.

Conjecture 2.6. ([23]) If G is a cubic graph on n vertices of girth at least 6, then
i(G) ≤ n/3.

Duckworth and Wormald [8] constructed an infinite family of graphs of girth 5
with independent domination number one-third their order. They also showed that

Theorem 2.7. ([8]) If G is a connected cubic graph on n vertices of girth at least 5,
then i(G) ≤ 3n/8 + O(1).

We remark that the girth-six requirement in the above conjecture is essential, since
the Generalized Petersen graph P14 shown in Figure 2 of order n = 14 has independent
domination number i(P14) = 5 > n/3. It seems that perhaps the graph P14 is the only
exception when relaxing the girth condition from six to five.

We pose the following conjecture.
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Figure 2: The Generalized Petersen Graph P14.

Conjecture 2.8. If G 
= K(3, 3) is a connected bipartite cubic graph on n vertices,
then i(G) ≤ 4n/11.

We remark that by computer search we have confirmed that Conjecture 2.8 is true
when n ≤ 26. If Conjecture 2.8 is true, then the bound is achieved by the bipartite
cubic graph G of order n = 22 with i(G) = 8 shown in Figure 3.

Figure 3: A bipartite cubic graph G with i(G) = 4n/11.

2.3. i Versus γ in Cubic Graphs

In 1991, Barefoot, Harary, and Jones [1] gave a class of 2-connected cubic graphs
for which the difference between i and γ is unbounded and conjectured that for any
3-connected cubic graph the difference is at most 1. Their conjecture was disproved
in multiple papers, including [7, 18, 24, 25], who showed collectively that there are
cubic graphs that are 3-connected with γ and i arbitrarily far apart.

We show now that our family Gcubic provides a simple example of a family of
3-connected cubic graphs with γ and i arbitrarily far apart. Indeed, i(G4) = 12 and
γ(G4) = 10, making it the smallest 3-connected cubic graph known with i− γ > 1. In
order to prove this fact, we establish the domination number of these graphs.

Proposition 2.9. If G ∈ Gcubic ∪Hcubic has order n, then γ(G) = �5n/16�.

Proof. Let G ∈ Gcubic have order n = 8k. If k = 1, then it is easy to show (and well
known that) γ(G) = 3 = �5n/16�. So we may assume that k ≥ 2.
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Let

Dk =

�k/2�⋃

i=1

{a2i−1, d2i−1, y2i−1, x2i, z2i} .

If k is even, let D = Dk, while if k ≥ 3 is odd, let D = Dk ∪{ak, dk, yk}. We note that
if k is even, then |D| = 5n/16, while if k is odd, then |D| = 5n/16 + 1/2. Since D is
a dominating set of G, γ(G) ≤ |D| = �5n/16�. Hence it suffices for us to show that
γ(G) ≥ �5n/16�.

Let [k] = {1, . . . , k} and for i ∈ [k], let Vi = {ai, bi, ci, di, wi, xi, yi, zi}. Let X be a
dominating set of G. For i ∈ [k], let Xi = X ∩Vi. In order to dominate {bi, ci, xi, yi},
it must be that |Xi| ≥ 2 for all i ∈ [k]. Let IX = {i ∈ [k] : |Xi| = |Xi+1| = 2}, where
addition is taken modulo k, and assume that among all minimum dominating sets, X
has been chosen such that |IX | is minimized.

Suppose that IX 
= /0. Renaming indices, if necessary, we may assume for nota-
tional convenience that i = 1. Thus, |X1|= |X2|= 2. By enumerating all possibilities,
it follows that X1 ∈ {{b1, y1}, {c1, x1}, {c1, y1}} and that X2 = {b2, x2}. In order to
dominate {d2, z2}, we note that {a3, w3} ⊆ X3. Further in order to dominate {c3, y3},
we see that |X3| ≥ 3. Suppose that |X3| ≥ 4. Let X ′

3 = {b3, d3, z3}, X ′
2 = {c2, w2, z2},

and let X ′
i = Xi for i ∈ [k]\{2, 3}. Further let X ′ = ∪i∈[k]X ′

i . Then, X ′ is a minimum
dominating set with |IX ′ |< |IX |, a contradiction. Hence, |X3|= 3. Thus, either d3 ∈X3
or z3 ∈ X3 in order to dominate {c3, y3}. By symmetry, we may assume that z3 ∈ X3.
Then, a4 ∈ X4. In order to dominate the set {c4, x4, y4}, it follows that |X4| ≥ 3.
Let X ′

3 = {x3, z3}, X ′
2 = {a2, d2, y2}, and let X ′

i = Xi for i ∈ [k] \ {2, 3}. Further let
X ′ = ∪i∈[k]X ′

i . Then, X ′ is a minimum dominating set with
∣∣IX ′

∣∣ < |IX |, once again a
contradiction. It follows that IX = /0, implying that |Xi ∪Xi+1| ≥ 5 for all i ∈ [k]. This
in turn implies that γ(G) ≥ �5n/16�. Consequently, γ(G) = �5n/16�.

The proof for Hk is similar but easier and we omit it.

As an immediate consequence of Propositions 2.4 and 2.9, we have that if G ∈
Gcubic has order n, then i(G)− γ(G) = n/16�. This suggests the following question.

Question 2.10. If G is a 3-connected cubic graph on n ≥ 12 vertices, then is it true
that i(G)− γ(G) ≤ n/16�?

We have no idea what the maximum difference is when one considers only con-
nected cubic graphs.

The ratio of the independence number and the domination number in a cubic
graph cannot be too large, as is evident from the following result.

Theorem 2.11. If G is a connected cubic graph, then i(G)/γ(G)≤ 3/2, with equality
if and only if G = K(3, 3).

Proof. Let G = (V, E). Among all minimum dominating sets, let D be such that G[D]
has the fewest edges. We show that each vertex v of D has at least two neighbors
outside D. By the minimality of D, the vertex v has at least one neighbor outside D.
Suppose that v has exactly one neighbor v′ outside D. Then (D \ {v})∪ {v′} is a
minimum dominating set that induces a subgraph with fewer edges than G[D], a con-
tradiction. Hence, v has at least two neighbors outside D. In particular, G[D] has
maximum degree at most 1.
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Let D1 be a maximum independent set in G[D] and let D2 = D\D1. Then, |D1| ≥
|D|/2. Let P1 be the set of vertices not dominated by D1 in G. We have P1 ∩D = /0
and each vertex in P1 is adjacent to some vertex of D2. Because each vertex of D2 has
two neighbors outside D, we have |P1| ≤ 2|D2|. Let S1 be a maximum independent
set in G[P1]. Then, |S1| ≤ |P1| and D1 ∪ S1 is an independent dominating set of G.
Hence,

i(G) ≤ |D1|+ |S1| ≤ |D1|+(2|D|−2|D1|) = 2|D|− |D1| ≤ 3|D|/2. (2.1)

This establishes the desired upper bound, since γ(G) = |D|.
Suppose i(G)/γ(G) = 3/2. Then we must have equality throughout the Inequality

Chain (2.1). This implies that D1 ∪S1 is an i(G)-set, |S1| = |P1| = 2|D2|, and |D1| =
|D2|= |D|/2. Therefore, P1 = S1, N(D2) = D1∪P1, G[D] = kK2 for some integer k ≥
1, and N(D2) is an i(G)-set. An identical argument shows that N(D1) = D2 ∪ (V \
(N(D2)) is an i(G)-set. Hence, G is bipartite (with partite sets N(D1) and N(D2))
of order 6k, and i(G) = |D1|+ |P1| = 3k. By the discussion after Theorem 1.1, this
implies that G = K(3, 3).

We pose the following question.

Question 2.12. If G 
= K(3,3) is a connected cubic graph, then is it true that i(G)/γ(G)
≤ 4/3?

3. Regular Graphs of Fixed Regularity

Let cr denote the supremum value of i(G)/n taken over all connected r-regular graph
of order n except K(r, r). By Theorem 1.1, it follows that cr ≤ 1/2. It is easy to show
that c2 = 3/7. We saw above that c3 = 2/5.

In general, this value is nondecreasing in the sense that ct ≥ cr if r is a factor
of t. To see this, we need the following construction. If k is a positive integer, then
the expansion of a graph G, denoted by exp(G, k), is that graph obtained from G by
duplicating each vertex v of G k−1 times to form an independent set Iv of size k. It
is immediate that if G is regular then so is any expansion of G. It is also not hard to
show (and probably known) that

Proposition 3.1. i(exp(G, k)) = k · i(G).

As a consequence we obtain

Lemma 3.2. For all positive integers r and s, crs ≥ cr.

Proof. The expansion of the graphs G that give the value for cr have the same ratio of
i/n.

It follows that cr ≥ 3/7 for all even r, attained by the expansions of the 7-cycle.
But it is unclear what happens in general. We pose the following questions.

Question 3.3. Is it true that cr tends to 1/2 as r → ∞?

We pose the following questions for 4-regular graphs.
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Question 3.4. Is c4 = 3/7? That is, if G 
= K(4, 4) is a connected 4-regular graph,
then is it true that i(G) ≤ 3n/7?

Harutyunyan, Horn, and Verstraete [12] studied independent dominating sets in
graphs of girth at least five, and proved the following result.

Theorem 3.5. ([12]) There is a constant c > 0 such that for every r-regular graph G
on n vertices of girth at least five, i(G)≤ n(logr+c)/r (where log denotes the natural
logarithm).

3.1. i Versus γ in r-Regular Graphs

Seifter [22] considered the difference between the domination and independent domi-
nation numbers of r-regular graphs of connectivity exactly k for all r ≥ 4. He showed
that the difference can be arbitrarily large for all r ≥ 4 and 1 ≤ k ≤ r, except when
r = 4 and k ∈ {1, 3}. We resolve these two exceptions here.

Lemma 3.6. There exist 4-regular graphs G of connectivity 1 and connectivity 3 such
that i(G)− γ(G) is arbitrarily large.

Proof. We start by noting that the 4-regular expansion of the cycle Cm has γ ≤m/2+1
and i = 2�m/3�. Our goal is to adapt this construction to have the desired connectiv-
ity.

For the case of connectivity 1, start with the 2-expansion of a long path. Let A be
the four vertices that have degree 2. Then for each a ∈ A, introduce a copy Fa of the
graph K4,4 − e, and join a to the two degree-3 vertices in Fa.

For the case of connectivity 3, start with the 2-expansion of a long path. Let
a1, a2, a3, a4 be the four vertices that have degree 2, say, with a1 and a2 having com-
mon neighbors. Then add a new vertex b adjacent to all of a1, a2, a3, a4, and add
edges a1a2 and a3a4.

In each case the construction produces a 4-regular graph of the desired connectiv-
ity, and by making the initial path sufficiently long, the difference i− γ can be made
arbitrarily large.

Question 3.7. If G 
= K(4, 4) is a connected 4-regular graph, then is it true that
i(G)/γ(G) ≤ 3/2?

If Question 3.7 is true, then the bound is achieved, for example, by the 4-regular
expansions of the 7- and 8-cycles, which both have domination number 4 and inde-
pendent domination number 6.

4. Regular Graphs of Large Degree

In this section we consider the best possible upper bound on i as a function of the order
and degree. This bound is hard to pin down, since it is not a continuous function.

Haviland [13, 14] provided an upper bound with n/4 ≤ r ≤ n/2. We remark that(
3−√

5
)
/2 ≈ 0.3820.
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Theorem 4.1. ([13,14]) If G is an r-regular graph on n vertices with n/4 ≤ r ≤ n/2,
then

i(G) ≤
{

n−√
nr, if n/4 ≤ r ≤ (

3−√
5
)
n/2,

r, if
(
3−√

5
)
n/2 ≤ r ≤ n/2.

We will improve on this for r ≥ 2n/5. We will need two previous results. First,
we need the lemma of Haviland [13] used in the above proof:

Lemma 4.2. ([13]) Let G be a graph of order n and minimum degree δ , and let I be
an independent dominating set of G. If no vertex of V \ I is joined to all of I, then
i(G) ≤ n−

√
nδ .

Second, we need the following lemma based on an idea in [20]. (It can be ex-
tracted from the proof of Lemma 2 in that paper, but since we consider a slightly
more general version, we supply the proof.)

Lemma 4.3. Let G be an r-regular graph on n vertices, and I1, I2, and I3 be three
independent sets of order t such that I1 ∩ I2 
= /0 and I2 ∩ I3 
= /0. If t > (2/3)(n− r),
then I1 ∩ I3 
= /0.

Proof. Since I1 ∩ I2 
= /0, we may choose a vertex w ∈ I1 ∩ I2. This implies that
|I1 ∪ I2| ≤ n− r, and so |I1 ∩ I2| ≥ 2t − (n− r). We can obtain the same bound for
|I2 ∩ I3|. Now, suppose that I1 ∩ I3 = /0. Then

|I2| ≥ |I1 ∩ I2|+ |I2 ∩ I3|
≥ 2(2t − (n− r))

= t + 3t −2(n− r)

> t,

a contradiction.

The following result establishes an upper bound for graphs whose complement is
connected.

Lemma 4.4. If G is an r-regular graph on n vertices with r ≥ n/4, and G is con-
nected, then

i(G) ≤ (2/3)(n− r).

Proof. Assume i(G) > (2/3)(n− r). Since any independent set of order 2 (an edge in
the complement) can be extended to an independent set of order i(G), the connectivity
of G implies that for any two independent sets I and I ′ of order i(G) we can construct
a sequence of independent sets I = I1, I2, . . . , Ik = I′ so that for each i, Ii ∩ Ii+1 
= /0
and |Ii| = i(G). Applying Lemma 4.3, this implies that any two independent sets of
order i(G) intersect. In particular, given any i(G)-set I, there cannot be a vertex v that
is adjacent to all of I

(
since v also lies in some independent set of order i(G)

)
. Thus

the bound of Lemma 4.2 applies, but n−√
nr ≤ (2/3)(n− r) in this range.
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If G is r-regular with r < n/2, then its complement is always connected. Thus we
obtain:

Theorem 4.5. If G is an r-regular graph on n vertices with 2n/5 ≤ r < n/2, then

i(G) ≤ (2/3)(n− r).

We note that Theorem 4.5 (as well as Theorem 4.1) is sharp when r = 2n/5,
as given by the expansion of the 5-cycle, but an accurate determination of the best
bounds in the remaining region is still open. One construction is to take the com-
plement of suitable powers of a cycle. Let Gn,a be the complement of Ca

n with
a < n/4. (For example, G5,1 is C5.) This graph has independent domination number
i = a+1 (achieved by a+1 consecutive vertices on the cycle) and is regular of degree
r = n−2a−1, so that i ≈ (1/2)(n− r).

If we consider r > n/2, then upper bounds for this case were determined by
Favaron [9].

Theorem 4.6. ([9]) If G is an r-regular graph on n vertices with r ≥ n/2, then i(G)
≤ n− r with equality attained only by complete multipartite graphs with partite sets
all of the same order.

Since the first case where we have equality when r > n/2 is r = 2n/3, there is the
question of what happens before then. We have a partial answer:

Theorem 4.7. If G is an r-regular graph with r > n/2, then

i(G) ≤
{

2(n− r)/3, if r ≤ 4n/7,

r/2, if r ≥ 4n/7.

Proof. Note that at r = 4n/7 the two bounds coincide. We have already shown that if
G is connected, then i(G) ≤ 2(n− r)/3. So it remains to consider the case when G is
disconnected. If G has three or more components, then the smallest component has
order at most r/2, and any maximal clique in that forms an independent dominating
set in G. If G has two components, then let H be the larger. Since H has at least n/2
vertices and degree at most (n− 3)/2, it follows that H is not complete, and so by
Theorem 1.1 any maximal clique has order at most half the order of H, which is at
most r. That maximal clique forms an independent dominating set in G.

This bound is sharp at r = 4n/7: Consider the two 4-regular graphs of order 7 and
expansions thereof. It is also sharp at r = 2n/3 by the expansions of the triangle. For
r > 2n/3, the previous upper bound of n− r is better.

5. Nordhaus-Gaddum Bounds

5.1. The Sum i(G)+ i
(
G

)
For general graphs, the upper bound on the sum is easy: i(G)+ i

(
G

)≤ n+1,
(
which

follows from the bound i(G)≤ n−Δ(G)
)
. However, this is only achievable if isolated

or dominating vertices are allowed, for instance, if G = Kn. If such vertices are not
allowed, the optimal upper bound is the result from [11]:
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Proposition 5.1. ([11]) For a graph G without isolated or dominating vertices,

i(G)+ i
(
G

) ≤ n + 4− ⌊
2
√

n
⌋
,

and this is sharp.

The extremal graphs for the above result are not regular. We conjecture that

Conjecture 5.2. For a regular graph G that is neither complete nor empty,

i(G)+ i
(
G

) ≤ n/2 + 2.

If true, the bound in the conjecture is sharp. Consider, for example, a balanced
complete bipartite graph, or in general, a regular graph where each component is a
balanced complete bipartite graph. Haviland [15] showed that the bound holds if the
degree of regularity is at most n/4.

Theorem 5.3. ([15]) If G is an r-regular graph on n vertices with r < n/2, then

i(G)+ i
(
G

) ≤
{

n/2 + 2, if 1 ≤ r ≤ n/4,

n + 2r−2
√

nr + 2, otherwise.

The best upper bound we can prove is

Theorem 5.4. For a regular graph G that is neither complete nor empty,

i(G)+ i
(
G

) ≤ 5n/9 + 2.

This bound is a direct consequence of Theorem 5.3 and the following result.

Theorem 5.5. If G is an r-regular graph on n vertices with r < n/2, then

i(G)+ i
(
G

) ≤ n− r + 2.

Proof. For ease of notation, let s = i(G) and t = i
(
G

)
. Choose a maximal clique T

with t vertices, and a maximal independent set S with s vertices. Let S ′ ⊂ S be a set of
s−1 vertices such that S ′∩T = /0. Let w ∈ S ′ be a vertex that minimizes the quantity
|N(w)∩T |, and set Tw = N(w)∩T . Note that since T is maximal, |Tw|< t. Further, if
N(w)∩T = /0, then s+ t +r ≤ n, and the result follows; so we may assume otherwise.

We can then use this information to determine two inequalities.

• Consider a vertex v ∈ T \Tw that maximizes the quantity |N(v)∩S ′|. Then the set
{w, v} can be extended to an independent set S ′′ of cardinality s that overlaps S ′
in at most s−1−|N(v)∩S ′| vertices. In addition, w is not adjacent to any vertex
in T \Tw. Therefore,

n− r = 1 + degG(w) ≥ ∣∣S ′∪S ′′∣∣+ |T \Tw|

≥ 2s−1−
(

s−1− max
v∈T\Tw

∣∣N(v)∩S ′∣∣)+ t −|Tw|

= s+ t −|Tw|+ max
v∈T\Tw

∣∣N(v)∩S ′∣∣ . (5.1)
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• Since i
(
G

)
= t, we can expand the clique {w}∪Tw to a clique T ′ of order t, that

overlaps T in exactly Tw vertices. Now, consider a vertex v ∈ Tw that maximizes
the quantity |N(v)∩S ′|. This vertex is adjacent to every vertex in both T and T ′,
along with its neighbors in S ′, so that

r ≥ 2(t −1)−|Tw|+ max
v∈Tw

∣∣N(v)∩S ′∣∣ . (5.2)

If we multiply inequality (5.1) by |T \Tw| and inequality (5.2) by |Tw| and add the
resultant expressions, we get

(n− r)(t −|Tw|)+ r|Tw| ≥ (t −|Tw|)(s+ t)+ 2(t−1)|Tw|− t|Tw|+ e
(
S ′, T

)
,

where e(S ′, T ) denotes the number of edges from S ′ to T . Since e(S ′, T ) ≥
(s−1)|Tw| by the choice of w, this simplifies to

st + t2 ≤ nt − rt − (n−2r)|Tw|+ 3|Tw|,
which implies

s+ t < n− r + 3,

since n−2r > 0. This completes the proof.

5.2. The Product i(G) · i(G
)

Several articles, including [3] and [4], considered the product i(G) · i (G
)

for gen-
eral graphs. In the latter, Cockayne et al. determined that the maximum value of
the product is asymptotically n2/16. The asymptotic bound was made precise by the
following result from [11]:

Proposition 5.6. ([11]) Define b(n)= (n+4)/4�(n+6)/4�. Then, for all graphs G
of order n,

i(G) · i(G
) ≤

⎧⎪⎨
⎪⎩

n, if n ≤ 7,

b(n)+ 1, if n = x2 for x odd, or n = x2 −1 for x even,

b(n), otherwise,

and this is best possible for all n.

We do not believe that this bound is even approximately achievable for regular
graphs, but are unable to improve on it. Haviland [15] showed that one can improve
on the upper bound if one restricts to regular graphs of small degree. We conclude by
showing that there are graphs where the product of the two parameters is quadratic in
the order, thus answering a question from [15].

Let x be a positive integer. Let c = 9x and a = 18x−3. Take two disjoint cliques
A1 and A2 of size a and an independent set C of size c. Arrange the vertices of C into
9 cells arranged in a 3× 3 grid, with each cell containing x vertices. Divide A1 into
three groups of equal size, and join each group to the vertices of a different pair of
rows in C. Similarly divide A2 into three equal groups, and join each group to two
columns of C. Then the graph Gx is regular of degree 24x−4 and order 45x−3.
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Lemma 5.7. We have i(Gx) = 2 + x and i
(
Gx

)
= 12x−1. Thus ii/n2 ≈ 1/168 3

4 .

Proof. For an independent dominating set of Gx, start with one vertex from each of A1
and A2, and this leaves x independent vertices undominated in C. For an independent
dominating set of Gx, start with one vertex in C, and then one can take vertices from
only one of A1 or A2.

More generally, one can adjust the construction so that the vertices of C are ar-
ranged in a y× y grid and the vertices of A1 and A2 are divided into y groups each
adjacent to z rows or z columns of C. Some calculus shows that best ratio is attained
at z/y ≈ 0.6331, where the ratio ii/n2 would be approximately 1/163.5. Since this is
a modest improvement on the above, and it is unclear how close one can get to this
ratio in an actual graph, we do not pursue the details.
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