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Abstract. We investigate the structure of the Minkowski sum of standard simplices in R
r.

In particular, we investigate the one-dimensional structure, the vertices, their degrees and the
edges in the Minkowski sum polytope.
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1. Introduction and Definitions

Let [r] = {1, 2, . . . , r}. The standard simplex ∆[r] of dimension r−1 is given by

∆[r] = {(x1, . . . , xr) ∈ R
r : xi ≥ 0 for all i, x1 + · · ·+ xr = 1}.

Each subset F ⊆ [r] yields a face ∆F of ∆[r] given by

∆F = {(x1, . . . , xr) ∈ ∆[r] : xi = 0 for i �∈ F}.

Clearly, ∆F itself is a simplex embedded in R
r. If F is a family of subsets of [r], then

we can form the Minkowski sum of simplices

PF = ∑
F∈F

∆F =

{
∑

F∈F
xF : xF ∈ ∆F for each F ∈ F

}
.

If |F | = 2 for all F ∈ F , then the polytope PF is called a graphical zonotope. The
edge graphs of graphical zonotopes were studied by West et al. [5, 13], but several
questions about them have gone unanswered. For example, it is not known if the set
of integers that are the degrees of the vertices of a fixed graphical zonotope must be a
set of consecutive integers. Minkowski sums of simplices have recently been studied
by Feichtner and Sturmfels [4], and by Postnikov [11]. These later papers focus
on the case when the collection F is a building set, i.e., F contains all singletons,
and has the property that, for any F1, F2 ∈ F , F1 ∩F2 �= /0 implies that F1 ∪F2 ∈ F .
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It turns out, see Proposition 5.5, that this property implies that the polytope PF is
simple. Applications of Minkowski sums of simplices appear in the paper of Morton
et al. [10]. Minkowski sums of simplices have also appeared in the work of Conca [2]
and of Herzog and Hibi [7], under the name transversal polymatroids.

In the remainder of this introductory section, we list some elementary properties
of Minkowski sums of simplices, some of which have been noted in the papers [4]
and [11]. We will denote by ∆F the simplicial complex with facets max(F ).

Proposition 1.1. If
⋃

F∈F = [r] and the simplicial complex ∆F is connected, then
the dimension of PF is r−1.

Proof. Every point x ∈ PF satisfies ∑i∈[r] xi = |F |. Suppose c ∈ R
r and there is a

partition [r] = I ∪ J of [r] into nonempty subsets, so that ci < c j for all i ∈ I, j ∈
J. Because ∆F is connected, there are i ∈ I, j ∈ J, G ∈ F such that

{
ei, e j

}
⊆ G.

For each F ∈ F \G, pick an xF ∈ ∆F . The points z =
(
∑F∈F \G xF

)
+ ei and w =(

∑F∈F \G xF
)
+ e j are in PF but cT z < cT w. Thus ∑i∈[r] xi = |F | is the only linear

equation satisfied by all points of PF .

In what follows, it will be useful to define PF for F = /0 and r > 0 to be 0 ∈ R
r.

The next proposition follows directly from the definition of PF .

Proposition 1.2. Suppose that F = F1 ∪F2 and there is a partition [r] = I ∪ J into
subsets, so that F ⊆ I for all F ∈ F1 and F ⊆ J for all F ∈ F2. Then PF is the
Cartesian product PF1 ×PF2.

Corollary 1.3. The dimension of the polytope PF is given by dim(PF ) = n−c where

n =

∣∣∣∣∣
⋃

F∈F
F

∣∣∣∣∣ ∈ [r]

and c is the number of connected components of ∆F .

From a more graph theoretic point of view we can also consider the following:
Let ∆1(F ) be the one-dimensional skeleton of ∆F .

Corollary 1.4. The dimension of the polytope PF is given by the number of edges in
a spanning forest of ∆1(F ).

A face of PF is a subset of PF on which a linear function is maximized. A vector
c = (c1, . . . , cr) ∈ R

r defines a partition C = (C1, C2, . . . , Cs) of [r] into nonempty
subsets, so that ci1 = ci2 when i1 and i2 are in the same part of the partition, and
ci1 < ci2 whenever i1 ∈C�1 , i2 ∈C�2 , �1 < �2.

Proposition 1.5. The face that maximizes cT x is the Minkowski sum of the simplices
in the family

F C := {F ∩C� : F ∈ F , � = 1, . . . , s, F ∩C� �= /0, F ∩Cm = /0 for m > �} .

Proof. An often cited fact about Minkowski sums is that if the face on which cT x is
maximized over P is G and the face on which cT x is maximized over Q is H, then
the face on which cT x is maximized over the Minkowski sum P + Q is G + H. The
subset of ∆F over which cT x is maximized is clearly conv({ei : i ∈ F ∩C�}), where �
is max

{
j : C j ∩F �= /0

}
. The proposition follows from this fact.
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By Corollary 1.3 and Proposition 1.5, the dimension of the face is determined by
the number of connected components of the simplicial complex ∆F C . If the face on
which cT x is maximized is a facet, then ∆F C has one more connected component than
∆F and can be obtained from ∆F by splitting one of the components of ∆F in two.
The coefficients of the vector c corresponding to C can be assumed to be 0 and 1.
Therefore, all facets of PF are of the form ∑i∈D xi = t for some subset D of [r] and
integer t.

On the other hand, if the face maximizing cT x is an edge, then ∆F C has exactly
one component of size two, say {i, j}, and otherwise all isolated elements. The
corresponding face of PF is an edge parallel to ei − e j. Vertices of PF are points
that maximize linear functions cT x in which all components of c are distinct. If
c1 < c2 < · · · < cr then component vi of the vertex that maximizes cT x equals the
number of sets F for which i is the largest element. From this we see as well that
the vertices of PF have integer coordinates (which, in itself is clear, since it is a
Minkowski sum of lattice polytopes).

2. Minkowski Sum of a Fixed Number of Simplices

Suppose that F consists of k subsets F1, F2, . . . , Fk of [r]. We will for the most part
write F = (F1, F2, . . . , Fk) as an ordered k-tuple, since a lot will depend on the actual
listing/order of the sets F1, . . . , Fk, although the combinatorics will not be effected by
a different ordering of them. For each i ∈ [r], define NF (i) = { j ∈ [k] : i ∈ Fj}. Let A
be a subset of [r] so that NF (i1) = NF (i2) whenever i1 and i2 are in A. We would like
to show how the combinatorial type of PF can be inferred from that of PF ′ , where F ′

is obtained from F by replacing each appearance of A in a set F by the one-element
set m = max(A). Afterward, we will restrict our attention to families in which all of
the NF (i) are distinct.

Proposition 2.1. Suppose that F = F1 ∪F2, F1 ∩F2 = /0, and there is an m ∈ [r] so
that Fi ∩Fj ⊆ {m} whenever Fi ∈ F1, Fj ∈ F2. Define F ′

1 = {(Fi\{m})∪{r + 1} : m
∈ Fi ∈ F1}∪ {Fi ∈ F1 : m /∈ Fi}. Then PF has the same combinatorial type as the
Cartesian product PF ′

1
×PF2 .

Proof. Let [r+1] = A∪B be a partition of [r+1] for which Fi ⊆ A for all Fi ∈ F ′
1 and

Fi ⊆ B for all Fi ∈ F2. The linear transformation f : R
r+1 → R

r given by f (x)i = xi
if i �= m, and f (x)m = xm + xr+1 sends the affine space

{
x ∈ R

r+1 : ∑i∈A xi = |F ′
1 | ,

∑i∈B xi = |F2|} onto
{

x ∈ R
r : ∑i∈[r] xi = |F |

}
. In particular, this means that PF is an

affine image of PF ′
1∪F2

= PF ′
1
×PF2 .

Example 2.2. Let F = {{1, 2}, {2, 3}}, F1 = {{1, 2}}, F2 = {{2, 3}}. Then F ′
1 =

{{1, 4}} and PF ′
1∪F2

= PF ′
1
×PF2 is the square conv({(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0,

1), (0, 0, 1, 1)}) which gets mapped to the rhombus PF = conv({(1, 1, 0,), (1, 0, 1),
(0, 2, 0), (0, 1, 1)}). We will subsequently refer to this rhombus as P(2).

Now let A be a subset of [r] so that NF (i1) = NF (i2) whenever i1 and i2 are in A.
For each F ∈F define F ′ = (F\A)∪{r+1} if A⊆F ∈F and F ′ = F if A∩F = /0. Let
F ′ = {F ′ : F ∈ F }. Consider the function gA : R

r+1 → R
r given by gA(x)i = xr+1xi

if i ∈ A, gA(x)i = xi if i ∈ [r]\A.
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Proposition 2.3. The function gA maps P{A}×PF ′ onto PF . The restriction of gA to{
x ∈ P{A}×PF ′ : xr+1 �= 0

}
is one-to-one.

Proof. Let x ∈ P{A}× PF ′ . Then there exist xA ∈ ∆A and xF ′ ∈ ∆F ′ for each F ′ ∈

F ′ so that x = xA + ∑F ′∈F ′ xF ′ . Then gA(x) =
(
∑F ′∈F ′ (xF ′)

)
r+1 xA + ∑F ′∈F ′ (xF ′−

(xF ′)r+1 er+1
)

= ∑F ′∈F ′

[
(xF ′)r+1 xA + xF ′ − (xF ′)r+1 er+1

]
= ∑F∈F xF , where each

xF ∈ ∆F . To show surjectivity, let x = ∑F∈F xF , where each xF ∈ ∆F . For each
F ∈ F , define xF ′ = xF −∑i∈A (xF)i ei + (∑i∈A (xF)i)er+1. If ∑i∈A xi > 0, then let
(xA)i = (∑i∈A xi)

−1 xi for all i ∈ A. If ∑i∈A xi = 0, let xA be an arbitrary element of ∆A.
Then xF = gA

(
xA + ∑F ′∈F ′ xF ′

)
. If gA(x) = gA(y) for x, y ∈ {x ∈ P{A}×PF ′ : xr+1 �=

0} then immediately xi = yi for i /∈ A∪{r+1}. The requirement ∑i∈A xi = ∑i∈A yi = 1
implies xr+1 = yr+1, and hence xi = yi for i ∈ A.

Let c ∈ R
r+1 be a nonnegative vector. Let CA =

{
i : ci ≥ c j for all j ∈ A

}
⊆ A.

Define a vector c ′ ∈ R
r by c′i = ci if i /∈ A, c′i = cr+1 if i ∈CA, and c′i = 0 otherwise.

Proposition 2.4. If Q is the face of P{A}×PF ′ that maximizes cT x, then gA(Q) is the
face of PF that maximizes c ′T x.

Proof. Suppose that x ∈ P{A}×PF ′ . Then c ′T gA(x) = ∑i∈CA
cr+1xr+1xi + ∑i/∈A cixi ≤

cr+1xr+1 + ∑i∈[r]\A cixi = cT x− cA, with equality holding for x ∈ Q.

Proposition 2.5. If |NF (i)| > 0 for all i ∈ A, then the dimension of P{A}×PF ′ equals
the dimension of PF . If |NF (i)|= 0 for all i ∈ A, then the dimension of PF ′ equals the
dimension of PF .

Proof. It is clear that in both cases, the simplicial complexes ∆F and ∆F ′ have the
same number of components.

Let PF ′′ be the face of PF where xi = 0 for all i ∈ A. Propositions 2.1 – 2.6
imply that the combinatorial type of PF is that of ∆A ×PF ′ , except that

(
if PF ′′ is

nonempty
)

the face ∆A ×PF ′′ is collapsed to a copy of PF ′′ . In the case that |A| = 2,
PF is a wedge (see [8]) over PF ′ with foot PF ′′ . When |A|> 2, we can obtain PF from
PF ′ by iterating the wedge construction, adding one element of A at a time.

Proposition 2.6. For every vertex x of PF \PF ′′ there is a unique i ∈ A with xi > 0.
There are two kinds of edges of PF .

(1) conv
({

v, v + k (ei − e j)
})

, where i, j ∈ A, k is a positive integer and v is a vertex
of PF \PF ′′ .

(2) conv
({

v, v+ k (ei − e j)
})

, where k is a positive integer and v is a vertex of PF for
which there exists (u, w) ∈ ∆A ×PF ′ so that v = gA(u, w) and conv({w, w+ k(ei
−e j)

})
is an edge of PF ′ .

Proof. Every vertex x of PF is the image under gA of a vertex (u, w) of ∆A ×PF ′ .
A vertex u of ∆A has a unique nonzero coordinate. If wr+1 > 0 then gA(u, w) is in
PF \PF ′′ . Every edge of PF is the image under gA of a pair (e, w) where e is an edge
of ∆A and w is a vertex of PF ′ , or a pair (u, f ), where u is a vertex of ∆A and f is an
edge of PF ′ . Every edge of ∆A is conv

({
ei, e j

})
for i, j ∈ A.
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(0,0,1,1)
(2,0,0,0)

(0,2,0,0)

(0,0,2,0)

(0,0,0,2)

Figure 1: A sum of two triangles

Example 2.7. Consider the family F = ({1, 2, 3}, {1, 2, 4}) of subsets of [4]. Then
NF (i) = {1, 2} for all i in A = {1, 2}. The polytope PF is drawn in Figure 1. The
polytope PF ′ is the rhombus that is the top face of the drawing. PF ′′ is the vertex
(0, 0, 1, 1).

In applying Proposition 2.1, we consider first the case in which F consists of two
sets, F and F ′. In the special case where each of the sets F \F ′, F ∩F ′, and F ′ \F has
exactly one element, say 1, 2, and 3, respectively, then F = {1, 2} and F ′ = {2, 3},
we have the rhombus P(2) of Example 2.2.

We now argue that the generic Minkowski sum of two simplices roughly has the
structure of such a rhombus if each of F \F ′, F ∩F ′, and F ′ \F is nonempty.

By assigning the 1st, 2nd, and 3rd coordinate axis of R
3 to these parts respectively,

we can assign vertices of PF = ∆F + ∆F ′ to the vertices of the rhombus of Example
2.2 the following way: A vertex ei + e j of PF is of type (1, 1, 0) if i ∈ F \F ′ and
j ∈F∩F ′, of type (0, 2, 0) if i, j ∈F∩F ′, of type (0, 1, 1) if i∈F∩F ′ and j ∈F ′\F ,
and of type (1, 0, 1) if i ∈ F \F ′ and j ∈ F ′ \F . The following corollary describes
the structure of a Minkowski sum of two standard simplices to be roughly that of the
rhombus mentioned above.

Corollary 2.8. If F, F ⊆ [r] then the edges, or one-dimensional faces, of P = ∆F +∆F ′

are of the following types:

(1) Internal edges, where both the endpoints are of the same type X ∈ {(1, 1, 0),
(0, 2, 0), (0, 1, 1), (1, 0, 1)}.

(2) Edges joining vertices of types X and Y , where X and Y are adjacent in P(2).
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Proof. Each of the sets F \F ′, F ∩F ′, and F ′ \F can play the role of the set A in
Proposition 2.6. The two kinds of edges correspond to the two kinds of edges in the
proposition.

Theorem 2.9. Let F, F ′ ⊆ [r] and let u be a vertex of the polytope PF .

(1) If u is of type (1, 1, 0), (0, 2, 0), or (0, 1, 1), then deg(u) = |F ∪F ′|−1.
(2) If u is of type (1, 0, 1), then deg(u) = |F |+ |F ′|−2.

Proof. If u is of type (0, 2, 0), say u = 2ei, then u is adjacent to all |F ∩F ′| − 1
other vertices of type (0, 2, 0), and all type (1, 1, 0) and (0, 1, 1) vertices of the form
ei + e j, where j ∈ (F \F ′)∪ (F ′ \F). If u is of type (1, 1, 0), say u = ei + e j, with
i ∈ F \F ′ and j ∈ F ∩F ′, then u is adjacent to two kinds of type (1, 1, 0) vertices:
|F ∩F ′|− 1 vertices ei + ek with k ∈ (F ∩F ′) \ { j} and |F \F ′|− 1 vertices ek + e j
with k ∈ F \ (F ′ ∩{i}). Also, u is adjacent to |F ′ \F| type (1, 0, 1) vertices ei + ek
with k ∈ F ′ \F , and finally u is adjacent to the vertex 2e j. If u is of type (1, 0, 1),
say, u = ei + e j with i ∈ F \F ′ and j ∈ F ′ \F , then u is adjacent to |(F \F ′)∪ (F \
F ′)| − 2 vertices of type (1, 0, 1) obtained by replacing either ei or e j by an ek for
k ∈ (F \F ′)∪(F \F ′), and u is adjacent to |F ∩F ′| vertices of each type (1, 1, 0) and
(0, 1, 1), obtained by replacing ei or e j by an ek for k ∈ F ∩F ′.

Corollary 2.10. Let F, F ′ ⊆ [r] and P = ∆F + ∆F ′ .

(1) The number of vertices of P is |F| · |F ′|− |F ∩F ′|(|F ∩F ′|−1).
(2) The number of edges of P is given by

1
2

[
|F \F ′| · |F ′ \F|(|F |+ |F ′|−2)

+|F ∩F ′|(|F ∪F ′|−1)(|F \F ′|+ |F ′ \F|+ 1)
]
.

Proof. The number of vertices of degree |F |+ |F ′| − 2 in P is |F \ F ′| · |F ′ \ F |.
By Theorem 2.9 the remaining vertices of P all have degree |F ∪F ′|− 1. The total
number of edges is one half of the sum of the vertex degrees.

Assuming that F ∪F ′ = [r], then the maximum value of |F |+ |F ′|−2 (provided
F \F ′ and F ′ \F are nonempty) is 2r− 4, which occurs when F = [r− 1] and F ′ =
[r] \ {1}. Considering the distribution of the two possible degrees of P = ∆F + ∆F ′ ,
we have the following proposition:

Proposition 2.11. Let r ∈N be fixed. If F, F ′ ⊆ [r] and P = ∆F +∆F ′ are of dimension
r−1, then the average degree deg(P) satisfies

r−1 ≤ deg(P) <
10
9

(r−1).

Moreover, the lower bound is attained if and only if P is simple, that is if (i) F ⊆ F ′,
(ii) F ′ ⊆ F or (iii) |F ∩F ′| = 1. Also, deg(P)/(r−1) can become arbitrarily close to
10/9 for large r.
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Proof. We introduce the variables x, y, and z by x = |F \F ′|, y = |F ′ \F|, and z =
|F ∩F ′|. Here we have the boundary condition x, y ≥ 0 and x+ y+ z = r, and since P
is assumed to have dimension r−1 we have z ≥ 1 or 0 ≤ x+ y ≤ r−1. By Corollary
2.10 we obtain that

deg(P)

= 2
|E(∆1(F ))|

|V(∆1(F ))|

=
|F \F ′| · |F ′ \F|(|F |+ |F ′|−2)+ |F∩F ′|(|F ∪F ′|−1)(|F \F ′|+|F ′ \F|+ 1)

|F | · |F ′|− |F ∩F ′|(|F ∩F ′|−1)

=
xy(2r−2− x− y)+ (r−1)(r− x− y)(x + y+1)

(r− y)(r− x)− (r− x− y)(r− x− y−1)
.

As a function of x and y we note that deg(P) = deg(x, y) is symmetric, has the value
of r−1 on the boundary of the triangle bounded by x = 0, y = 0, and x+y = r−1. By
Theorem 2.9 the value deg(x, y) is strictly larger than r − 1 inside the triangle. The
maximum value degmax(r) of deg(x, y) occurs when x = y = (r−1)/3, and we have
(10r−13)/9 < degmax(r) < 10(r−1)/9, but degmax(r)− (10r−13)/9 tends to zero
when r tends to infinity.

Remark 2.12. For any ε > 0 there is an r0 such that for any r ≥ r0 we have

r−1 ≤ deg(P) <
10r−13

9
+ ε.

The f-polynomial fP(q) of a d-dimensional polytope P is ∑d
i=0 fiqi, where fi is

the number of i-dimensional faces of P. It is easy to see that fP×Q(q) = fP(q) fQ(q).
Postnikov [11] gave an elegant formula for fPF (q) in the case that F is a building set.
If we assume that A, F ′, and F ′′ are as in the discussion preceding Proposition 2.6,
the f -polynomial can be decomposed as follows:

Proposition 2.13. fPF (q) = f∆A(q) fPF ′ (q)− f∆A(q) fPF ′′ (q)+ fPF ′′ (q).

In Example 2.7, fPF (q) = 7 + 11q + 6q2 + q3 = (2 + q)
(
4 + 4q + q2) − (2 +

q)(1)+ 1.
If PF is the sum of two simplices ∆F and ∆F ′ , then Proposition 2.1 shows that

PF has the same combinatorial type as ∆F ×∆F′ when |F ∩F ′| is 0 or 1. This allows
us to describe the f -polynomials of sums of two simplices quite easily, using the
proposition with A = F ∩F ′.

Corollary 2.14. If F = {F, F ′}, where F ∩F ′ = {1, 2, . . . , m}, then

fPF (q) = f∆F∩F ′ (q) f∆(F\F′)∪m×∆(F′\F)∪m
(q)− f∆F∩F′

(q) f∆(F\F′)×∆(F ′\F)
(q)

+ f∆(F\F ′)×∆(F′\F)
(q).

We will now generalize the results that we obtained for the sum of two simplices
to larger sums.
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Definition 2.15. For k ∈ N, let H (k) be the family of k subsets of
[
2k −1

]
so that

for i = 1, 2, . . . , 2k − 1, NH (k)(i) is the ith (in lexicographic order) nonempty subset
of [k]. Then P(k) := PH (k) is called the kth master polytope.

Remark 2.16. There is no direct benefit to our choice of the lexicographic ordering on
the subsets [k] since any ordering of the subsets of [k] will work just as well. Although
Definition 2.15 of the master polytope does depend on the ordering of the subsets
of [k], any different ordering will clearly yield an equivalent polytope to the master
polytope, obtained by a permutation of the coordinates. Hence, we will henceforth
not distinguish between P(k), as defined in Definition 2.15, and any other polytope
obtained in the same way with a different ordering of the subsets of [k].

Regarding the lexicographical ordering itself, it here denotes the order induced
by the binary k-tuples corresponding to the subsets of [k]. For example, if k = 2
the lexicographic ordering of the nonempty subsets of {1, 2} is {1, 2} > {1} > {2},
since the lexicographic order of the corresponding binary tuples is given by (1, 1) >
(1, 0) > (0, 1). Hence, we have H (2) = ({1, 2}, {1, 3}) so that NH (2)(1) = {1, 2},
NH (2)(2) = {1}, and NH (2)(3) = {2}.

Definition 2.17. Let F = (F1, . . . , Fk) and u be a point in PF . Then hF (u) is the point
v in P(k) for which, for i = 1, 2, . . . , 2k −1, we set

vi =

{
∑ j : NF ( j)=NH (k)(i) u j, if there is a j with NF ( j) = NH (k)(i),

0, otherwise.

Theorem 2.18. For F = (F1, . . . , Fk), the point u ∈ PF is a vertex of PF if and only
if the following conditions are met:

(1) Each instance of uiαuiβ > 0, NF (iα) = NF
(
iβ

)
implies that iα = iβ.

(2) hF (u) is a vertex of the polytope P(k).

Proof. For a point u of PF , we first note that if NF (iα) = NF
(
iβ

)
and iα �= iβ, then

u is a convex combination of v and w in PF given by viα = uiα + uiα , viβ = 0, vi = ui
otherwise, wiβ = uiα + uiβ, wiα = 0, wi = ui otherwise. Hence, the first condition is
necessary for u to be a vertex of PF .

Let u be a point of PF that satisfies the first condition. In this case the cardinality
|{i∈ [r] : ui > 0}| is at most 2k−1. Also, if u = ui1 + · · ·+uim where m∈

[
2k −1

]
and

each ui� = ai�ei� where ai� > 0, then hF (u) has the form hF (u) = ai1ei′1
+ · · ·+aimei′m ,

where i′� is the position in the lexicographic order of the subset NF (i�) ⊆
[
2k −1

]
.

If cT x is a linear function on PF that is maximized at u, then we define the linear
function c ′ by c ′ := ci1xi1 + · · ·+ cimxim . It is clear that c ′ is also maximized over PF
at u. This implies that the linear function ci1 xi′1

+ · · ·+ cimxi′m over P(k) is maximized
at hF (u).

Assume that hF (u) is a vertex of P(k). Since hF (u) is an extreme point of P(k),
there is a functional ci1xi′1

+ · · ·+ cimxi′m on P(k) that is maximized at hF (u). In
this case the corresponding functional ci1xi1 + · · ·+ cimxim on PF is maximized at u,
showing that u is a vertex of PF .
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Let X1, . . . , Xh be the vertices of the polytope P(k). Similar to the case when k = 2
in Corollary 2.8 we have the following theorem:

Theorem 2.19. If F = (F1, . . . , Fk), then the edges of PF are of the following types:

(1) Internal edges, where both the endpoints are of type Xi for some i ∈ {1, . . . , m}.

(2) Edges joining vertices of types Xi and X j, where Xi and X j are adjacent in P(k).

Proof. We can partition [r] into
⋃

A�, where A� =
{

j ∈ [r] : NF ( j) = NH (k)(�)
}

. Then

PF is the image of the Cartesian product ∏A�⊆[r] ∆A�
×P(k) under the composition

of all of the maps gA�
, possibly followed by reordering the columns. An edge of the

product corresponds to the product of an edge of one of the factors and vertices from
the other factors, as in Proposition 2.6.

Theorems 2.18 and 2.19 both reduce the structure of PF ⊆ R
r to considerations

of the master polytope P(k) ⊆ R
2k−1.

We conclude this section by investigating the polytope P(3). Let

H := ({1, 2, 4, 5}, {1, 2, 3, 6}, {1, 3, 4, 7}).

Here we have that NH (1) = {1, 2, 3}, NH (2) = {1, 2}, NH (3) = {2, 3}, NH (4) =
{1, 3}, NH (5) = {1}, NH (6) = {2}, and NH (7) = {3}, so all of the nonempty
subsets of [3] are represented and hence P(3) = PH . (Note! Although H (3) =
({1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7}), and P(3)= PH (3) by Definition 2.15, the poly-
tope PH is equivalent to PH (3) as remarked earlier.) The case of k = |F |= 3 is the first

interesting case for the mere reason that the polytope P(3) does not have 2k(k−1) = 64
vertices, as was the case for k = 2, where the rhombus P(2) has precisely 2k(k−1) = 4
vertices.

Example 2.20. The point A = (0, 1, 1, 1, 0, 0, 0) in P(3) is not a vertex, because
A = (B +C + D)/3, where B = (0, 2, 1, 0, 0, 0, 0), C = (0, 0, 2, 1, 0, 0, 0), and D =
(0, 1, 0, 2, 0, 0, 0) and all the points B, C and D are points in the polytope P(3).

Observation 2.21. The polytope P(3) has 41 vertices in R
7 given by the column

vectors (without the last entry) in the following 7× 10, 7× 21, and 7× 10 matrices.
The last entry in each column is the degree of the vertex.

3 1 1 0 0 1 0 0 0 0
0 0 2 2 1 0 1 2 0 0
0 2 0 1 2 0 0 0 2 1
0 0 0 0 0 2 2 1 1 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 6 6 6 6
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2 1 1 0 0 0 0 2 1 1 0 0 0 0 2 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 2
0 0 0 1 0 1 2 0 1 0 1 0 1 0 0 0 1 1 0 1 0
0 1 0 0 1 1 0 0 0 0 0 1 1 2 0 1 0 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
6 6 6 6 8 6 8 6 6 6 8 6 6 8 6 6 6 6 6 8 8

1 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1
0 0 0 1 1 1 1 1 1 1
7 8 8 7 8 8 7 8 8 9

These computations were verified using the computer program POLYMAKE [6].
Using POLYMAKE, we determined that the polytope P(4) had vertices of all degrees
in the set {14, 15, . . . , 28} except for {16, 23, 26, 27}.

3. Function Representation of Integer Points of PF

The purpose of this section is to prove Theorem 3.5, a technical result that is useful
for enumerating the vertices of PF . We have not found this specific result in the
literature, but Proposition 3.4 is due to Edmonds [3] (see [7, Proposition 1.4]). In
order to keep the presentation self-contained, we provide a detailed proof.

As in the previous section, we assume that F = (F1, . . . , Fk), an ordered collec-
tion of k subsets of [r]. A function f : [k] → [r] that satisfies f (i) ∈ Fi for each i
will be called a representation function or a rep-function for short. For any function
(and hence for a rep-function) f : [k] → [r] we define u( f ) := e f (1) + · · ·+ e f (k). The
following proposition is important and easily verified.

Proposition 3.1. For functions f , g : [k] → [r], we have

(1) u( f )+ u(g) = u(min{ f , g})+ u(max{ f , g}).
(2) If f �= g and u( f ) = u(g), then u( f ) �= u(min{ f , g}).

If u( f )= u(g), then we get by Proposition 3.1 that u( f ) = u(g)= (u(min{ f , g})+
u(max{ f , g}))/2. Hence, if an integer point u ∈ PF can be represented by two dis-
tinct functions f and g, then it is not a vertex of PF . The interesting part is the
converse, which we will prove in the rest of this section. First we prove the following
two lemmas:

Lemma 3.2. If v is an integer point in PF that is not a vertex of PF , and an edge of
the inclusion-minimal face of PF containing v is parallel to ei1 −ei2 , then PF contains
the points v + ei1 − ei2 and v− ei1 + ei2 .
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Proof. If v is on a facet of PF given by ∑i∈T xi = t for some T ⊂ [r] and integer t, then
this equation is satisfied by all points in the inclusion-minimal face of PF containing
v, which means that i1 and i2 are either both in or both outside of T . Thus v+ei1 −ei2
and v− ei1 + ei2 will satisfy any linear equations that v satisfies. Furthermore, any
inequality ∑i∈T xi ≤ t that v satisfies strictly will also be satisfied by v+ ei1 − ei2 and
v− ei1 + ei2 , because only one component is increased by 1 and one component is
decreased by 1.

Lemma 3.3. If f and g are rep-functions and u(g) = u( f )+ tei1 − tei2 for i1 �= i2 in
[r], then there exist rep-functions f1, f2, . . . ft−1 so that u( f )+ lei1 − lei2 = u( fl) for
l = 1, 2, . . . , t −1.

Proof. Define GF to be the bipartite graph with vertex set
{

w j : j ∈ [k]
}
∪{vi : i∈ [r]}

and edges
{
(w j, vi)

}
for all (i, j) with i∈ Fj. For any rep-function h, let Mh be the set

of edges (w j, vi) for which h( j) = i. For every i ∈ [r]\{i1, i2}, the number of edges
of Mg meeting vi equals the number of edges of M f meeting vi. For every j ∈ [k], w j
is met by exactly one edge from each of M f and Mg. On the other hand, vi1 is adjacent
to t more edges of Mg than M f , and vi2 is adjacent to t more edges of M f than Mg.
Therefore, there exists a path P from vi2 to vi1 that alternates between edges of M f
and Mg. Let M1 be the set of edges obtained from M f by replacing the edges of M f
in the path by the edges of Mg in the path. Then, for j = 1, 2, . . . , k, define f1( j) = i,
where (w j, vi) is an edge of M1. Then u( f1) = u( f )+ ei1 − ei2 . We can continue this
way to get u( f2) , . . . , u( ft−1).

Proposition 3.4. Every integer point v in PF is u( f ) for some rep-function f .

Proof. The proof is by induction on the dimension of the inclusion-minimal face of
PF containing v. From the first section, we know that the statement is true if v is a ver-
tex. Suppose v is not a vertex. Suppose that there is an edge of the inclusion-minimal
face of PF containing v that is parallel to ei1 − ei2 . Then Lemma 3.2 allows us to
build a segment parallel to ei1 −ei2 , containing v in its interior, and with endpoints on
faces of PF that are of lower dimension than the one containing v. By induction, the
endpoints of the interval are u( f ) and u(g) for some rep-functions f and g. Lemma
3.3 then gives us a rep-function for v.

Theorem 3.5. An integer point v in PF is a vertex of PF if and only if there is a
unique rep-function f so that u( f ) = v.

Proof. Let v be an integer point in PF that is not a vertex of PF . By Lemma 3.2
there are i1 and i2 in [r] so that PF contains the points v− ei1 + ei2 and v− ei1 + ei2 .
Let f and g be the rep-functions guaranteed by Proposition 3.4 for v− ei1 + ei2 and
v− ei1 + ei2 , respectively. Let GF , M f , and Mg be as in the proof of Lemma 3.3.
Then there are two edges of M f adjacent to vi2 that are not in Mg. Therefore, we can
use these edges as initial edges in two different paths from vi2 to vi1 that alternate
between edges of M f and Mg. Swapping edges of M f for edges of Mg along each of
these alternating paths leads to two different rep-functions for v.

The number of rep-functions for a given F is easy to count; it is ΠF∈F |F|. By
listing the rep-functions and the corresponding integer points u( f ), and striking out
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those u( f ) that appear more than once, one can list the vertices of PF . This was done
by Sturmfels [1] for the polytopes P(k) in the special cases of k = 3, 4, 5. He then
conjectured that P(3) had 41 vertices (consistent with Observation 2.21), P(4) had
1015 vertices, and P(5) had 59072 vertices.

4. Max-Degree As a Function of r and k

In this section we determine the function d : N → N given by

d(r) = max
F

{degmax (PF )} ,

where the maximum is taken over all multi-subsets (F1, . . . , Fk) of P([r]), where k ∈N

can be any integer but r is fixed. Moreover, for each fixed k ∈ N we determine the
function dk : N → N defined by

dk(r) = max
|F |≤k

{degmax (PF )} ,

where the maximum here is taken over all multi-subsets (F1, . . . , Fk) of P([r]) where
both k and r are fixed. Clearly d(r) = maxk∈N {dk(r)}.

We start with the following lower bound for dk(r) and d(r).

Lemma 4.1. For k, r ∈ N, we have dk(r) ≥ k(r− k), and therefore, d(r) ≥
⌊
r2/4

⌋
.

Proof. Let k ∈ [r] and let for each i ∈ [k], Fi = {i, k + 1, k + 2, . . . , r}. Let v = e1 +
e2 + · · ·+ek. Let 1 ≤ i2 ≤ k and k+1≤ i1 ≤ r and c ∈R

r satisfy ci = 2 if i ∈ [k]\{i2},
ci1 = ci2 = 1, and ci = 0. Then cT x is maximized over PF on the line segment from
v to v +(ei1 − ei2), so v and v +(ei1 − ei2) are vertices of PF and the line segment
joining them is an edge. Therefore, dk(r) ≥ k(r − k), so we have, in particular, that
d(r) ≥ �r/2�
r/2�=

⌊
r2/4

⌋
.

Another polytope that has vertices of degree
⌊
r2/4

⌋
is the graphical zonotope for

the complete bipartite graph with �r/2� vertices on one side of the bipartition and

r/2� vertices on the other side. West [13] proved that the graphical zonotope for the
complete bipartite graph has vertices of degree � for all r− 1 ≤ � ≤

⌊
r2/4

⌋
. On the

other hand, every vertex of the polytope of Lemma 4.1 other than v has degree r−1.
For a fixed vertex u, each edge of P incident to u can be identified with a multiple

of a difference ei − e j of some pair of unit vectors, where i, j ∈ [r] are distinct. Since
the collection

{
α(ei − e j) : α ∈ N

}
is a set of parallel vectors, at most one multiple

of ei − e j can possibly correspond to an edge incident to u. From this alone we see
that the maximum number of edges incident to u is at most

(r
2

)
. However, more can

be said:
For a vertex u of P, let �G(u) be the directed graph with the vertex set V

(
�G(u)

)
=

[r] where a directed edge (i, j) is present if and only if u+α(ei − e j) is a neighbor of
u in P for some α ∈ N.

Proposition 4.2. For r ∈N and F = (F1, . . . , Fk)⊆P([r]), the digraph �G(u) is acyclic
and its underlying graph G(u) is simple and triangle-free.
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Proof. Assume there is a cycle (i1, i2, . . . , ih) in �G(u). Then u, v1, . . . , vh are all
vertices of P, where v� = u + α�

(
ei� − ei�+1

) (
here we compute cyclically, so eih+1 =

ei1
)
. This is however impossible since

h

∑
�=1

1
α�

(v�−u) = 0,

which means that there is no hyperplane containing u alone and having all the v�’s
strictly on one side of it. In particular, for h = 2, there are no directed 2-cycles and
hence the underlying graph G(u) is simple. Also for h = 3, there are no directed
triangles in �G(u) either.

Assume now that G(u) has a triangle, which then does not correspond to a directed
triangle in �G(u), say, v = u + α(ei − e j), v′ = u + β(e j − el), and v′′ = u + γ(ei − el).
In this case we have

v′′−u =
γ
α

(v−u)+
γ
β

(
v′−u

)
,

which means that the vector v′′− u is in the cone spanned by v− u and v′− u. This
contradicts the fact that uv′′ is an edge of P. Hence, the underlying graph G(u) of
�G(u) has no triangles.

Theorem 4.3. For r ∈ N, we have d(r) ≤
⌊
r2/4

⌋
.

Proof. The maximum degree of a vertex u of P is by Proposition 4.2 the maximum
number of edges the simple triangle free graph G(u) can have. By a theorem of
Mantel [9] (a special case of Turán’s Theorem [12]), the maximum number of edges
of a simple triangle-free graph on r vertices is

⌊
r2/4

⌋
, hence the theorem holds.

By Lemma 4.1 and Theorem 4.3 we have the following corollary:

Corollary 4.4. For r ∈ N, we have d(r) =
⌊
r2/4

⌋
.

We now turn our attention to the computation of dk(r). Note that the Minkowski
sum PF provided in the proof of Lemma 4.1 that attains the overall maximum degree
d(r) has k = |F | = �r/2�. Therefore, when computing dk(r) we can assume 1 ≤ k ≤
r/2.

First we need a variation of the theorem by Mantel [9].

Theorem 4.5. Let n ∈ N and 1 ≤ k ≤ n/2. If G is a triangle free simple graph
on n vertices with a vertex cover of cardinality at most k, then |E(G)| ≤ k(n− k).
Moreover, if |E(G)| = k(n− k), then G is a complete bipartite graph with parts of
cardinalities k and n− k.

Proof. For n ∈ {1, 2} the theorem is trivial. We proceed by induction and assume that
G is a triangle free simple graph on n > 2 vertices with a vertex cover of cardinality
at most k, and that |E(G)| is the maximum number of edges for such graphs. Let
uv ∈ E(G) be an edge and since either u or v is in the vertex cover U of size k, we
assume that u ∈ U . Since G is triangle-free, the set of neighbors N(u) and N(v) are
disjoint. Let G ′ = G−{u, v} be the simple graph obtained from G by removing the
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vertices u and v from G. By the disjointness of N(u) and N(v) we have |E(G)| =
|E(G ′)|+ d(u)+ d(v)−1.

Assume first that v ∈U . In this case G ′ has a vertex cover of cardinality at most
k−2, and by the induction hypothesis we have |E(G)|= |E(G ′)|+d(u)+d(v)−1≤
(k−2)[(n−2)− (k−2)]+ n−1 < k(n− k).

Now assume that v �∈ U . In this case G ′ has a vertex cover of cardinality at most
k − 1, and by the induction hypothesis we have |E(G)| = |E(G ′)|+ d(u) + d(v)−
1 ≤ (k− 1)[(n− 2)− (k− 1)]+ n− 1 = k(n− k). Also by the induction hypothesis,
|E(G)| = k(n− k) can hold if and only if G ′ is a complete bipartite graph with parts
of cardinalities k−1 and n− k−1, and d(u)+ d(v) = n

(
i.e., N(u)∪N(v) = V (G)

)
,

which means that |E(G)| = k(n− k) can hold if and only if N(v) = U and N(u) =
V (G)\U , that is, G is a complete bipartite graph with parts of sizes k and n− k. This
completes the proof.

From Theorem 4.5 we obtain the following corollary:

Corollary 4.6. For r ∈ N and k ∈ {1, . . . , �r/2�}, we have dk(r) = k(r− k).

Proof. Consider a vertex u of PF . Then u can be represented uniquely as u = ei1 +
· · ·+ eik with i j ∈ Fj for j = 1, . . . , k (note that some indices might coincide). As
noted before, a neighbor v of u in P must have the form v = u + α(ei − e j) for some

α ∈ N, and i ∈ [r] and j ∈ {i1, . . . , ik}. Since each directed edge (i, j) ∈ V
(
�G(u)

)
has its head in {i1, . . . , ik}, of cardinality at most k, the underlying graph G(u) has
a vertex cover of size at most k. Hence by Theorem 4.5 G(u) has at most k(r − k)
edges.

In the proof of Lemma 4.1, an example of PF with |F | ≤ k and a vertex of degree
k(r− k) was given. This completes the argument.

5. Simple Vertices

A simple vertex of a polytope is a vertex that is adjacent to exactly d other vertices
of the polytope, where d is the dimension of the polytope. If F is a collection of
distinct two-element sets, i.e., PF is a graphical zonotope, then it is known from
Shannon’s theorem (see [14, p. 208]) that PF has at least 2|F | simple vertices. The
family F = ({1, 2}, {1, 3}, {1, 2, 3}), for which PF is a pentagon, shows that this
zonotopal theorem does not hold for more general Minkowski sums of simplices.

West [13] points out that simple vertices for graphical zonotopes can be obtained
from depth first searches (DFS) on the graph. We will generalize this to set systems
other than graphs and show that there are at least d +1 simple vertices, where d is the
dimension of the polytope.

Let J ⊆ [r]. In what follows F \ J will denote the subcollection of F consisting
of those sets whose intersection with J is empty.

Definition 5.1. If F consists of a single set F, then for every j ∈ F, the vertex e j
of PF will be called a DFS vertex with root j. In general, if F is connected, then a
vertex v of PF is called a DFS vertex with root j if

(1) v j = |NF ( j)| > 0
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(2) If F \{ j} is nonempty and is the union of connected components F1 ∪F2 ∪·· ·∪
Ft , then v = v je j + w1 + w2 + · · ·+ wt , where, for all k ∈ [t], wk is a DFS vertex
of PFk with root jk so that { jk, j} ⊆ F for some F ∈ F .

Example 5.2. Let F = ({1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 3, 4, 5}). The point v =
(0, 1, 0, 1, 2) is a DFS vertex with root 5, because v = 2e5 + w, where w is a DFS
vertex of F \ {5} with root 4. Note that F \ {5} is the set system of Example 2.20.
On the other hand, v′ = (0, 0, 1, 1, 2) is not a DFS vertex. The root for v′ would have
to be 5. Then the root of w′ = v′ − 2e5 would have to be 3 or 4, but {3, 4} is not
contained in any set of F \{5}. This implies that w′ cannot be decomposed further.

Note that conditions 1 and 2 of the definition of DFS vertex and the connectivity
of F imply that the root is unique, since if a DFS vertex had two roots, say, i and j,
then both vi = |NF (i)| and v j = |NF ( j)|, which is impossible. We state this formally:

Proposition 5.3. The root of a DFS vertex is unique.

For a DFS vertex v of a connected family F , we define the directed graph �Γ(v)
with vertex set [r] recursively as follows: If F consists of a single set F , and v = e j

for some j ∈ F , then �Γ(v) contains edges from j to all the other elements of F .
Otherwise, if j is the root of v, �Γ(v) contains edges from j to each of the roots of
the DFS vertices of the connected components of F \ { j}. The digraph �Γ(v) also
contains edges from j to every i for which NF (i) ⊆ NF ( j). After this definition has
been applied recursively, we see that every vertex other than j is the head of exactly
one directed edge of �Γ(v) and that �Γ(v) is a tree. If |F | = 2 for every F ∈ F , then
�Γ(v) is a depth-first search tree, hence the name DFS vertex.

Proposition 5.4. If v is a DFS vertex, then �Γ(v) is �G(v), the digraph of Proposition
4.2, with all directed edges reversed.

Since �Γ(v) is a tree with at most r−1 edges, Proposition 5.4 implies that a DFS
vertex is a simple vertex.

Proof of Proposition 5.4. Suppose (k, l) is an edge in �Γ(v). Let a = (a1, a2, . . . , ar)
be a permutation of [r] that is an extension of the partial order defined by �Γ(v), that
is, if there is a directed path in �Γ(v) from s to t, then as > at . Then it is clear that
aT x is maximized over PF at v. We can assume that the permutation a has been
chosen so that ak = al +1. There is a subcollection G of F consisting of the sets that
contain only elements of [r] that can be reached from k by a directed path of�Γ(v). Let
m =

∣∣NG (k)∩NG (l)
∣∣, and consider the point w = v + m(el − ek). Let a′ be obtained

from a by interchanging ak and al . Then a′T x is maximized over PF at w, so w is a
vertex of PF . Furthermore, if we let a′′ = 1

2 (a+a′), then the line segment from v to w
is the subset of PF on which a′′T x is maximized over PF , so (l, k) is an edge of �G(v).

To show that the reversed edges of �G(v) are contained in�Γ(v), suppose that (l, k)
is an edge of �G(v). Then vk > 0, so k is one of the vertices that is a tail of an edge
of �Γ(v). If there is a directed path (k = i1, i2, . . . , it = l) with t > 2 in �Γ(v), then the
vector el −ek = (ei2 − ei1)+(ei3 − ei2)+ · · ·+

(
eit − eit−1

)
is in the cone generated by

ei2 − ei1 , ei3 − ei2 , . . . , eit − eit−1 . Because these latter vectors correspond to edges of
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PF leaving v, the vector el − ek is not parallel to an edge of PF leaving v, so (l, k) is
not an edge of �G(v). If there is a directed path (l = i1, i2, . . . , it = k) in�Γ(v), then the
reversed path appears in �G(v) which together with the edge (l, k) makes a directed
cycle. If k and l are not contained in a directed path of �Γ(v), let J be the set of
elements of [r] from which there are directed paths in �Γ(v) to both k and l. Then k
and l are in different components of F \J, so there is no edge in PF \J in the direction

el − ek. Therefore, the only way for (l, k) to be an edge of �G(v) is for (k, l) to be an
edge of�Γ(v).

Proposition 5.5. If F is a building set, i.e., has the property that F1 ∩F2 �= /0 implies
F1 ∪F2 ∈ F for all F1, F2 ∈ F , then every vertex of PF is a DFS vertex.

Proof. Assume that F is connected. Suppose v is a vertex of PF that maximizes cT x.
Let cm := max{ci : i ∈ [r], |NF (i)| > 0}. Then vm = |NF (m)| and we can write v =
vmem + w1 + w2 + · · ·+ wt , where, for all k ∈ [t], wk is a vertex of PFk . By induction,
we can assume that each wk is a DFS vertex of PFk , because each Fk is a building set.
The final condition, that {mk, m} ⊆ F for some F ∈ F , for the root mk of each DFS
vertex wk, follows from connectivity and the building set property of F .

Proposition 5.6. If F is connected and
⋃

F∈F = [r], then each j ∈ [r] is a root of
some DFS vertex of PF .

Proof. By Definition 5.1 it is clear that we can for each j ∈ [r] recursively obtain at
least one DFS vertex v of PF with root j.

By Propositions 5.3, 5.4, and 5.6 we have the following corollary:

Corollary 5.7. If F is connected, and
⋃

F∈F = [r], then PF has at least r simple
vertices.

By Corollary 1.3 we therefore have our main conclusion of this section.

Corollary 5.8. If PF has dimension d, then PF has at least d + 1 simple vertices.

Proof. Suppose that F is the disconnected union of components F1 and F2, and that
the dimension of PF1 is d1 and the dimension of PF2 is d2. If v1 is a simple vertex
of PF1 and v2 is a simple vertex of PF2 , then v1 + v2 is a simple vertex of PF . The
dimension of PF is d1 + d2 and (d1 + 1)(d2 + 1)≥ d1 + d2 + 1.
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