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Abstract. We solve three enumerative problems concerning the families of planar maps. More
precisely, we establish algebraic equations for the generating function of loopless triangulations
in which all vertices have degree at least d, for a certain value d chosen in {3, 4, 5}.

The originality of the problem lies in the fact that degree restrictions are placed both on
vertices and faces. Our proofs first follow Tutte’s classical approach: We decompose maps by
deleting the root-edge and translate the decomposition into an equation satisfied by the generating
function of the maps under consideration. Then we proceed to solve the equation obtained using
a recent technique that extends the so-called quadratic method.
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1. Introduction

The enumeration of planar maps (or maps for short) has received a lot of attention in
the combinatorists community for nearly fifty years. This field of research, launched by
Tutte, was originally motivated by the four-color conjecture. Tutte and his students con-
sidered a large number of map families corresponding to various constraints on face- or
vertex-degrees. These seminal works, based on elementary decomposition techniques
allied to a generating function approach, gave rise to many explicit results [20, 27–30].
Fifteen years later, some physicists became interested in the subject and developed their
own tools [3,11,26] based on matrix integrals (see [34] for an introduction). Their tech-
niques proved very powerful for map enumeration [7, 12]. More recently, a bijective
approach based on conjugacy classes of trees emerged providing new insights on the
subject [5, 6, 22, 25].

However, when one considers a map family defined by both face- and vertex-
constraints, each of the above mentioned methods seems relatively ineffective and very
few enumerative results are known. There are two major exceptions. First, and most
importantly for this paper, the enumeration of loopless triangulations (faces have de-
gree 3) in which all vertices have degree at least 3 and of 3-connected triangulations in
which all vertices have degree at least 4 were performed by Gao and Wormald using
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a compositional approach [17]. More recently, the enumeration of all bipartite maps
(faces have an even degree) according to the degree distribution of the vertices was ac-
complished using conjugacy classes of trees [6, 24]. This result includes as a special
case the enumeration of bipartite cubic maps (vertices have degree 3) performed by
Tutte via a generating function approach [29, 31].

In this paper, we consider loopless triangulations in which all vertices have degree
at least d, for a certain value d chosen in {3, 4, 5}. We establish algebraic equations for
the generating function of each of these families. We also give the asymptotic behavior
of the number of maps in each family. It is well-known that there is no triangulation
in which all vertices have degree at least 6 (we shall prove this fact in Section 2).
Hence, we have settled the problem of counting triangulations with ‘high’ vertex degree
entirely.

As mentioned above, the loopless triangulations in which all vertices have degree at
least 3 have already been enumerated by Gao and Wormald [17]. Our proof differs from
theirs. Let us also mention that several families of triangulations defined by connec-
tivity constraints have been enumerated, for instance: the general triangulations [16],
the loopless triangulations (i.e., non-separable triangulations) [20, 22], the 3-connected
triangulations (i.e., triangulations without multiple edges) [23, 27], the 4-connected tri-
angulations [9] and the 5-connected triangulations [18]. Observe that the vertices of
k-connected triangulations have degree at least k (except for the degenerated case of
the triangle K3). However, there is no equivalence between connectivity constraints and
vertex-degree constraints. In the present paper, we shall focus on loopless triangula-
tions but our approach can also be adapted to some other families of triangulations, in
particular to general triangulations as well as 3-connected ones.

Our proofs first follow Tutte’s classical approach, which consists in translating the
decomposition obtained by deletion of the root-edge into a functional equation satisfied
by the generating function. It is not clear at first sight why this approach should work
here. As a matter of fact, finding a functional equation for triangulations with vertex
degree at least 5 turns out to be rather complicated. But it eventually works if some
of the constraints are relaxed at this stage of the solution. Our decomposition scheme
requires to consider the set of near-triangulations and to take into account, beside the
size of the map, the degree of its root-face. Consequently, in order to write a functional
equation, we need to consider a bivariate generating function. We end up with an equa-
tion for the (bivariate) generating function in which the variable counting the degree
of the root-face cannot be trivially eliminated. We then use a recent generalization of
the quadratic method to get rid of the extra variable and compute an algebraic equation
characterizing the univariate generating function (see [10] and [19, Section 2.9] for the
quadratic method and [4] for its generalization).

This paper is organized as follows. In Section 2, we recall some definitions on pla-
nar maps and introduce the main notations. In Section 3, we recall the classic decom-
position scheme due to Tutte (by deletion of the root-edge). We illustrate this scheme
on the set of unconstrained non-separable near-triangulations. In Section 4, we apply
the same decomposition scheme to the sets of near-triangulations in which any internal
vertex has degree at least 3, 4, 5. We obtain functional equation in which the variable
x counting the degree of the root-face can not be trivially eliminated. In Section 5, we
use techniques generalizing the quadratic method in order to get rid of the variable x.
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We obtain algebraic equations for triangulations in which any vertex not incident to the
root-edge has degree at least 3, 4, 5. In Section 6, we give algebraic equations for trian-
gulations in which any vertex has degree at least 3, 4. Lastly, in Section 7 we study the
asymptotic behavior of the number of maps in each family.

2. Preliminaries and Notations on Maps

We begin with some vocabulary on maps. A map is a proper embedding of a connected
graph into the two-dimensional sphere, considered up to continuous deformations. A
map is rooted if one of its edges is distinguished as the root-edge and attributed an
orientation. Unless otherwise specified, all maps under consideration in this paper are
rooted. The face at the right of the root-edge is called the root-face and the other faces
are said to be internal. Similarly, the vertices incident to the root-face are said to be
external and the others are said to be internal. Graphically, the root-face is usually rep-
resented as the infinite face when the map is projected on the plane (see Figure 1). The
endpoints of the root-edge are distinguished as its origin and end according to the orien-
tation of the root-edge. A map is a triangulation (near-triangulation, respectively) if all
its faces (all its internal faces, respectively) have degree 3. For instance, the map of Fig-
ure 1 is a near-triangulation with root-face of degree 4. Lastly, a map is non-separable
if it is loopless and 2-connected (the deletion of a vertex does not disconnect the map).
For instance, the map in Figure 1 is non-separable. Observe that for a triangulation it is
equivalent to be loopless or non-separable but this is not true for near-triangulations.

Figure 1: A non-separable near-triangulation.

In what follows, we enumerate 3 families of rooted non-separable triangulations.
We recall some basic facts about these maps.

• By definition, a non-separable triangulation has no loop. Therefore, the faces of
non-separable triangulations are always homeomorphic to a triangle: They have
three distinct vertices and three distinct edges.

• Consider a triangulation with f faces, e edges, and v vertices. Given the incidence
relation between edges and faces, we have 2e = 3 f . Hence, the number of edges of
a triangulation is a multiple of 3. Moreover, given the Euler relation (v−e+ f = 2),
we see that a triangulation with 3n edges has 2n faces and n+2 vertices.

• Observe that a non-separable map (not reduced to an edge) cannot have a vertex
of degree one. Let us now prove, as promised, that any triangulation has a vertex
of degree less than 6. Moreover, we prove that this vertex can be chosen not to
be incident to the root-edge. Indeed, if all vertices not incident to the root-edge
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have degree at least 6 the incidence relation between vertices and edges gives 2e ≥
6(v− 2) + 4. This contradicts the fact that triangulations with e = 3n edges have
v = n + 2 vertices. This property shows that, if one considers the sets of non-
separable triangulations with vertex degree at least d, the only interesting values of
d are d = 2 (which corresponds to unconstrained non-separable triangulations) and
d = 3, 4, 5.

Let S be the set of non-separable rooted near-triangulations. By convention, we
exclude the map reduced to a vertex from S. Thus, the smallest map in S is the map
reduced to a straight edge (see Figure 2). This map is called the link-map and is denoted
L. The vertices of other maps in S have degree at least 2. We consider three sub-families
T, U, V of S. The set T (U and V, respectively) is the subset of non-separable near-
triangulations in which any internal vertex has degree at least 3 (4 and 5, respectively).
For each of the families W = S, T, U, V, we consider the bivariate generating function
W(x, z), where z counts the size (the number of edges) and x the degree of the root-
face minus 2. That is to say, W(x) ≡ W(x, z) = ∑n,d an,dxdzn where an,d is the number
of maps in W with size n and root-face of degree d + 2. For instance, the link-map
L, which is the smallest map in all our families, has contribution z to the generating
function. Therefore, W(x) = z+o(z). Since the degree of the root-face is bounded by
two times the number of edges, the generating function W(x, z) is a power series in
the main variable z with polynomial coefficients in the secondary variable x. For each
family W = S, T, U, V, we will characterize the generating function W(x) as the unique
power series solution of a functional equation (see Equation 3.1 and Propositions 4.1,
4.2, and 4.3).

Figure 2: The link-map L.

We also consider the set F of non-separable rooted triangulations and three of its
subsets G, H, K. The set G (H and K, respectively) is the subset of non-separable
triangulations in which any vertex not incident to the root-edge has degree at least 3
(4 and 5, respectively). As observed above, the number of edges of a triangulation
is always a multiple of 3. To each of the families L = F, G, H, K, we associate the
univariate generating function L(t) = ∑n antn where an is the number of maps in L
with 3n edges (2n faces and n+2 vertices). For each family we will give an algebraic
equation satisfied by L(t) (see Equation 3.3 and Theorems 5.1, 5.2, and 5.3).

There is a simple connection between the generating functions F(t)
(

G(t), H(t),
and K(t), respectively

)

and S(x)
(

T(x), U(x), and V(x), respectively
)

. Consider a non-
separable near-triangulation distinct from L rooted on a digon (i.e., the root-face has
degree 2). Deleting the external edge that is not the root-edge produces a non-separable
triangulation (see Figure 3). This classical mapping (see e.g., [15, 32]) establishes a
one-to-one correspondence between the set of triangulations F (G, H, and K, respec-
tively) and the set of near-triangulations in S−{L}

(

T−{L}, U−{L}, and V−{L},
respectively

)

rooted on a digon.
For W ∈ {S, T, U, V}, the power series W(0) ≡ W(0, z) is the generating function

of near-triangulations in W rooted on a digon. Given that the link-map has contribution



On Triangulations with High Vertex Degree 21

α

Figure 3: Near-triangulations rooted on a digon and triangulations.

z, we have
S(0) = z+ zF

(

z3) , T(0) = z+ zG
(

z3) ,

U(0) = z+ zH
(

z3) , V(0) = z+ zK
(

z3) .
(2.1)

3. The Decomposition Scheme

In the following, we adopt Tutte’s classical approach for enumerating maps. That is,
we decompose maps by deleting their root-edge and translate this combinatorial de-
composition into an equation satisfied by the corresponding generating function. In this
section we illustrate this approach on unconstrained non-separable triangulations (this
was first done in [20]). We give all the details on this simple case in order to prepare
the reader to the more complicated cases of constrained non-separable triangulations
treated in the next section.

We recall that S denotes the set of non-separable near-triangulations and S(x) =
S(x, z) the corresponding generation function. As observed before, the link-map L
has contribution z to the generating function S(x). We decompose the other maps by
deleting the root-edge. Let M be a non-separable triangulation distinct from L. Since
M is non-separable, the root-edge of M is not an isthmus. Therefore, the face at the
left of the root-edge is internal, hence has degree 3. Since M has no loop, the three
vertices incident to this face are distinct. We denote by v the vertex not incident to the
root-edge. When analyzing what can happen to M when deleting its root-edge, one is
led to distinguish two cases (see Figure 4).

��������������������������������������������������������������

+S = + v

v

Figure 4: Decomposition of non-separable near-triangulations.

Either the vertex v is incident to the root-face, in which case the map obtained by
deletion of the root-edge is separable (see Figure 5). Or v is not incident to the root-face
and the map obtained by deletion of the root-edge is a non-separable near-triangulation
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(see Figure 6). In the first case, the map obtained is in correspondence with an ordered
pair of non-separable near-triangulations. This correspondence is bijective, that is, any
ordered pair is the image of exactly one near-triangulation. In the second case, the
degree of the root-face is increased by one. Hence the root-face of the near-triangulation
obtained has degree at least 3. Here again, any near-triangulation in which the root-face
has degree at least 3 is the image of exactly one near-triangulation.

v

Figure 5: Case 1. The vertex v is incident to the root-face.

v

Figure 6: Case 2. The vertex v is not incident to the root-face.

We want to translate this analysis into a functional equation. Observe that the degree
of the root-face appears in this analysis. This is why we are forced to introduce the
variable x counting this parameter in our generating function S(x, z). For this reason,
following Zeilberger’s terminology [33], the secondary variable x is said to be catalytic:
We need it to write the functional equation, but we shall try to get rid of it later.

In our case, the decomposition easily translates into the following equation (details
will be given in Section 4):

S(x, z) = z+ xzS(x, z)2 +
z
x

(S(x, z)−S(0, z)) . (3.1)

The first summand of the right-hand side accounts for the link map, the second sum-
mand corresponds to the case in which the vertex v is incident to the root-face, and the
third summand corresponds to the case in which v is not incident to the root-face.

It is an easy exercise to check that this equation defines the series S(x, z) uniquely as
a power series in z with polynomial coefficients in x. By techniques presented in Section
5, we can derive from Equation 3.1 a polynomial equation satisfied by the series S(0, z)
where the extra variable x does not appear anymore. This equation reads

S(0, z) = z−27z4 +36z3
S(0, z)−8z2

S(0, z)2 −16z4
S(0, z)3. (3.2)

Given that S(0, z) = z+ zF(z3), we deduce the algebraic equation

F(t) = t(1−16t)− t(48t−20)F(t)−8t(6t +1)F(t)2−16t2
F(t)3, (3.3)
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characterizing F(t) (the generating function of non-separable triangulations) uniquely
as a power series in t. From this equation one can derive the asymptotic behavior of the
coefficients of F(t), that is, the number of non-separable triangulations of a given size
(see Section 7).

4. Functional Equations

In this section, we apply the decomposition scheme presented in Section 3 to the fam-
ilies T, U, V of non-separable near-triangulations in which all internal vertices have
degree at least 3, 4, 5. We obtain functional equations satisfied by the corresponding
generating functions T(x), U(x), V(x).

Note that, when one deletes the root-edge of a map, the degree of its endpoints is
lowered by one. Given the decomposition scheme, this remark explains why we are led
to consider the near-triangulations where only internal vertices have a degree constraint.
However, we need to control the degree of the origin of the root-edge since it may come
from an internal vertex (see Figure 6). This leads to the following notations. Let W be
one of the sets S, T, U, V. We define Wk as the set of maps in W such that the root-
face has degree at least 3 and the origin of the root-edge has degree k. We also define
W∞ as the set of (separable) maps obtained by gluing the root-edge’s end of a map in
W with the root-edge’s origin of a map in W. The root-edge of the map obtained is
chosen to be the root-edge of the second map. Generic elements of the sets Wk and
W∞ are shown in Figure 7. We also write W≥k , W∞ ∪

⋃

j≥k
W j. The notation W≥k,

which at first sight might seem awkward, allows to unify the two possible cases of our
decomposition scheme (Figures 5 and 6). It shall simplify our arguments and equations
(see for instance, Equations 4.1–4.4) which will prove a valuable property.

k ∞

Figure 7: Generic elements of the sets Wk and W∞.

The symbols Wk(x, z), W∞(x, z), and W≥k(x, z) denote the bivariate generating
functions of the sets Wk, W∞, and W≥k, respectively. In these series, as in W(x, z), the
contribution of a map with n edges and root-face degree d +2 is xdzn.

We are now ready to apply the decomposition scheme to the triangulations in T, U,
V. Consider a near-triangulation M distinct from L in W = S, T, U, V. As observed
before, the face at the left of the root-edge is an internal face incident to three distinct
vertices. We denote by v the vertex not incident to the root-edge. If v is external, the
deletion of the root-edge produces a map in W∞ (see Figure 8). If v is internal and M
is in S (T, U, and V, respectively) then v has degree at least 2 (3, 4, and 5, respectively)
and the map obtained by deleting the root-edge is in

⋃

k≥2 Sk
(

⋃

k≥3 Tk,
⋃

k≥4 Uk, and
⋃

k≥5 Vk, respectively
)

. Therefore, the deletion of the root-edge induces a mapping
from S−{L}

(

T−{L}, U−{L}, and V−{L}, respectively
)

to S≥2
(

T≥3, U≥4, and
V≥5, respectively

)

.
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v

Figure 8: Mapping induced by deletion of the root-edge: The vertex v can be a separat-
ing point in which case the map is in W∞.

This mapping is clearly bijective. Moreover, the map obtained after deleting the
root-edge has size lowered by one and root-face degree increased by one. This analysis
translates into the following equations:

S(x) = z+
z
x
S≥2(x), (4.1)

T(x) = z+
z
x
T≥3(x), (4.2)

U(x) = z+
z
x
U≥4(x), (4.3)

V(x) = z+
z
x
V≥5(x). (4.4)

In view of Equation (4.1), we will obtain a non-trivial equation for S(x) if we can
express S≥2(x) in terms of S(x). Similarly, we will obtain a non-trivial equation for
T(x) if we can express T≥2(x) and T2(x) in terms of T(x). Similar statements hold for
U(x) and V(x). Thus, our first task will be to evaluate W≥2(x) for W in {S, T, U, V}.

By definition, W∞ is in bijection with W2, which translates into the functional equa-
tion

W∞(x) = x2
W(x)2.

Observe that
⋃

k≥2 Wk is the set of maps in W for which the root-face has degree at
least 3, that is, all maps except those rooted on a digon. Since W(0) is the generating
function of maps in W rooted on a digon, we have

∑
k≥2

Wk(x) = W(x)−W(0).

Given that W≥2 = W∞ ∪⋃k≥2 Wk, we obtain, for W in {S, T, U, V},

W≥2(x) = x2
W(x)2 +(W(x)−W(0)) , for W in {S, T, U, V}. (4.5)

Equations 4.1 and 4.5 already prove Equation 3.1 announced in Section 3:

S(x) = z+ xzS(x)2 + z
(

S(x)−S(0)

x

)

.

In order to go further, we need to express T2(x), U2(x), U3(x), V2(x), V3(x),
and V4(x) (see Equations 4.2–4.4). We begin with an expression of W2(x) for W in
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{S, T, U, V}. Observe that for W = {S, T, U, V}, the set W2 is in bijection with W by
the mapping illustrated in Figure 9. Consequently we can write

W2(x) = xz2
W(x), for W in {S, T, U, V}. (4.6)

Figure 9: A bijection between W2 and W.

This suffices to obtain an equation for the set T:

T(x) = z+
z
x
T≥3(x) (by 4.2)

= z+
z
x

(T≥2(x)−T2(x))

= z+
z
x

(

x2
T(x)2 +(T(x)−T(0))− xz2

T(x)
)

. (by 4.5 and 4.6)

Proposition 4.1. The generating function T(x) of non-separable near-triangulations in
which all internal vertices have degree at least 3 satisfies:

T(x) = z+ xzT(x)2 + z
(

T(x)−T(0)

x

)

− z3
T(x). (4.7)

In order to find an equation concerning the sets U and V, we now need to express
U3(x) and V3(x) in terms of U(x) and V(x), respectively. Let W be U or V and M be a
map in W3. By definition, the root-face of M has degree at least 3 and its root-edge’s
origin u has degree 3. We denote by a and b the vertices preceding and following u on
the root-face (see Figure 10). Since the map M is non-separable, the vertices a, b, and
u are distinct. Let v be the third vertex adjacent to u. Since M cannot have loops, the
vertex v is distinct from a, b, and u.

Suppose that M is in U3 (V3, respectively) and consider the operation of deleting
u and the three adjacent edges. If the vertex v is internal it has degree d ≥ 4 (d ≥ 5,
respectively) and the map obtained is in Ud−1 (Vd−1, respectively). If it is external,
the map obtained is in U∞ (V∞, respectively). Thus, the map obtained is in U≥3 (V≥4,
respectively). This correspondence is clearly bijective. It gives

U3(x) = z3
U≥3(x) = z3(U≥2(x)−U2(x)), (4.8)

V3(x) = z3
V≥4(x) = z3(V≥2(x)−V2(x)−V3(x)). (4.9)
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v

a bu

Figure 10: A bijection between U3 and U≥3
(

V3 and V≥4, respectively
)

.

We are now ready to establish the functional equation concerning U:

U(x) = z+
z
x
U≥4(x) (by 4.3)

= z+
z
x

(U≥2(x)−U2(x)−U3(x))

= z+
z(1− z3)

x
(U≥2(x)−U2(x)) (by 4.8)

= z+
z(1− z3)

x

(

x2
U(x)2 +(U(x)−U(0))− xz2

U(x)
)

. (by 4.5 and 4.6)

Proposition 4.2. The generating function U(x) of non-separable near-triangulations
in which all internal vertices have degree at least 4 satisfies:

U(x) = z+ xz
(

1− z3)
U(x)2 + z

(

1− z3)
(

U(x)−U(0)

x

)

− z3 (1− z3)
U(x). (4.10)

We proceed to find an equation concerning the set V. This will require significantly
more work than the previous cases. We write

V(x) = z+
z
x
V≥4(x) = z+

z
x

(V≥2(x)−V2(x)−V3(x)−V4(x)) (4.11)

and we want to express V≥2(x), V2(x), V3(x), and V4(x) in terms of V(x). We already
have such expressions for V≥2(x) and V2(x) (by Equations 4.5 and 4.6). Moreover,
Equation 4.9 can be rewritten as

V3(x) =
z3

1+ z3 (V≥2(x)−V2(x)) . (4.12)

It remains to express V4(x) in terms of V(x). Unfortunately, this requires some
efforts and some extra notations. We define Vk, l as the set of maps in V such that the
root-face has degree at least 4, the root-edge’s origin has degree k and the root-edge’s
end has degree l (see Figure 11). The set Vk,∞ is the set of maps obtained by gluing the
root-edge’s end of a map in Vk with the root-edge’s origin of a map in V. The root-edge
of the new map obtained is the root-edge of the map in Vk. The set V∞,k is the set of
maps obtained by gluing the root-edge’s end of a map in V with the root-edge’s origin
of map in V for which the root-face has degree at least 3 and the root-edge’s end has



On Triangulations with High Vertex Degree 27

k ∞ ∞k l k∞ ∞

Figure 11: The sets Vk, l , V∞,k, Vk,∞, and V∞,∞.

degree k. The root-edge of the new map obtained is the root-edge of the second map.
The set V∞,∞ is obtained by gluing 3 maps of V as indicated in Figure 11.

We also write Vk,≥l ,
⋃

i≥l
Vk, i ∪Vk,∞ and

V≥k,≥l ,
⋃

i≥k, j≥l

Vi, j ∪
⋃

i≥k

Vi,∞ ∪
⋃

j≥l

V∞, j ∪V∞,∞.

As before, if W is any of these sets, the symbol W denotes the corresponding generating
function, where the contribution of a map of size n and root-face degree d +2 is xdzn.

Moreover, we consider the subset D of V composed of maps for which the root-face
is a digon. The set of maps in D for which the root-vertex has degree k will be denoted
by Dk. We write D≥k =

⋃

j≥k D j. Lastly, if E is one of the set D, Dk, or D≥k, the symbol
E denotes the corresponding (univariate) generating function, where the contribution of
a map of size n is zn. As observed before, D = V(0).

We can now embark on the decomposition of V4. We consider a map M in V4 with
root-vertex v. By definition, v has degree 4. Let e1, e2, e3, e4 be the edges incident
to v in counterclockwise order starting from the root-edge e1. We denote by vi (i =
1, . . . , 4) the endpoint of ei distinct from v. Since M is non-separable and its root-face
has degree at least 3, the vertices v1 and v4 are distinct. Moreover, since M has no loop
we have v1 6= v2, v2 6= v3, and v3 6= v4. Therefore, only three configurations are possible:
Either v1 = v3, the two other vertices being distinct, or symmetrically, v2 = v4, the other
vertices being distinct, or v1, v2, v3, v4 are all distinct. The three cases are illustrated in
Figure 12.

v2 v3

v2 = v4v1 = v3vv4 v v1 v4 v v1

v2v3

Figure 12: Three configurations for a map in V4.

In the case v1 = v3, the map can be decomposed into an ordered pair of maps in
V×D≥4 (see Figure 13). This decomposition is clearly bijective. The symmetric case
v2 = v4 admits a similar treatment. In the last case (v1, v2, v3, v4 are all distinct) the map
obtained from M by deleting e1, e2, e3, e4 is in V≥4,≥4 (see Figure 14). Note that this
case contains several subcases depending on whether v2 and v3 are separating points or
not. But again the correspondence is clearly bijective.
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Figure 13: A bijection between maps of the first type in V4 and V×D≥4.

v2v3

Figure 14: A bijection between maps of the third type in V4 and V≥4,≥4.

This correspondence gives

V4(x) = 2xz4
V(x)D≥4 +

z4

x
V≥4,≥4(x). (4.13)

It remains to express the generating functions D≥4 and V≥4,≥4(x) in terms of V(x).
We start with D≥4.

We have D≥4 = D−D1 −D2−D3. We know that D = V(0). Moreover, the set D1
only contains the link-map and D2 is empty. Hence D1 = z and D2 = 0. Lastly, the set
D3 is in correspondence with D≥4 by the bijection represented in Figure 15. This gives
D3 = z3D≥4.

3 ≥ 4

Figure 15: A bijection between D3 and D≥4.

Putting these results together and solving for D≥4, we get

D≥4 =
V(0)− z

1+ z3 . (4.14)

We now want to express the generating function V≥4,≥4(x). We first divide our
problem as follows

(

the equation uses the trivial bijections between the sets Vα,β and
Vβ,α

)

:

V≥4,≥4(x) = V≥2,≥2(x)−V2,2(x)−2V2,≥3(x)−V3,3(x)−2V3,≥4(x) . (4.15)

We now treat separately the different summands in the right-hand-side of this equation.
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• V≥2,≥2: It follows easily from the definitions that:

V≥2,≥2(x) = ∑
k≥2, l≥2

Vk, l(x)+2 ∑
k≥2

V∞,k(x)+V∞,∞(x).

– The set
⋃

k≥2, l≥2 Vk, l is the set of maps in V for which the root-face has degree
at least 4. Thus,

∑
k≥2, l≥2

Vk, l(x) = V(x)−V(0)− x[x]V(x),

where [x]V(x) is the coefficient of x in V(x).
– By definition, the set

⋃

k≥2 V∞,k is in bijection with V×⋃k≥2 Vk. Moreover,
the set

⋃

k≥2 Vk is the set of maps in V for which the root-face has degree at
least 3. This gives

∑
k≥2

V∞,k(x) = x2
V(x)(V(x)−V(0)) .

– By definition, the set V∞,∞ is in bijection with V3, which gives

V∞,∞(x) = x4
V(x)3.

Summing these contributions we get

V≥2,≥2(x) = V(x)−V(0)−x[x]V(x)+2x2
V(x)(V(x)−V(0))+x4

V(x)3. (4.16)

• V2,2: The set V2,2 is empty (the face at the left of the root-edge would be of degree
at least 4), hence

V2,2(x) = 0. (4.17)

• V2,≥3: The set V2,≥3 is in bijection with V≥2 by the mapping illustrated in Figure
16. This gives V2,≥3(x) = xz2V≥2(x). From this, using Equation 4.5, we obtain

V2,≥3(x) = xz2 (
V(x)−V(0)+ x2

V(x)2) . (4.18)

2 ≥ 3 ≥ 2

Figure 16: A bijection between V2,≥3 and V≥2.
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• V3,3: We consider a map M in V3,3. We denote by v1 the root-edge’s origin, v2
the root-edge’s end, v0 the vertex preceding v1 on the root-face and v3 the vertex
following v2 (see Figure 17). Since M is non-separable and its root-face has degree
at least 4, the vertices vi (i = 1, . . . , 4) are all distinct. The third vertex v adjacent
to v1 is also the third vertex adjacent to v2 (or the face at the left of the root-edge
would not be a triangle). Since M has no loop, v is distinct from vi, i = 1, . . . , 4.
From these considerations, it is easily seen that the set V3,3 is in bijection with the
set V≥3 by the mapping illustrated in Figure 17. (Note that this correspondence
includes two subcases depending on v becoming a separating point or not.) We
obtain

V3,3(x) = xz5
V≥3(x) = xz5 (V≥2(x)−V2(x)) .

From this, using Equations 4.5 and 4.6, we get

V3,3(x) = xz5 (
V(x)−V(0)+ x2

V(x)2 − xz2
V(x)

)

. (4.19)

v0 v1 v2 v3

v

Figure 17: A bijection between V3,3 and V≥3.

• V3,≥4: Let M be a map in V3,≥4. We denote by v1 the root-edge’s origin, v2 the root-
edge’s end, v0 the vertex preceding v1 on the root-face and v3 the vertex following
v2 (see Figure 18). Since M is non-separable and its root-face has degree at least
4, the vertices vi (i = 1, . . . , 4) are all distinct. Let v be the third vertex adjacent
to v1. Two cases can occur: Either v = v3 in which case the map decomposes
into an ordered pair of maps in V×D≥3, or v is distinct from vi (i = 1, . . . , 4) in
which case the map is in correspondence with a map in V≥4,≥3 (this includes two
subcases depending on v becoming a separating point or not). In both cases the
correspondence is clearly bijective. This gives

V3,≥4(x) = x2z3
V(x)D≥3 + z3

V≥4,≥3(x).

Given that D≥3 = D−D1−D2 = V(0)− z, we obtain

V3,≥4(x) = x2z3
V(x)(V(0)− z)+ z3 (V≥4,≥4(x)+V3,≥4(x)) ,

and solving for V3,≥4(x) we get

V3,≥4(x) =
z3

1− z3

(

x2
V(x)(V(0)− z)+V≥4,≥4(x)

)

. (4.20)
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v0 ≥ 43v = v3v0 3 ≥ 4 v3

v

v2v1v1 v2

Figure 18: Two configurations for a map in V3,≥4.

We report Equations 4.16–4.20 in Equation 4.15 and solve for V≥4,≥4. We get

V≥4,≥4(x) =
1− z3

1+ z3

(

V(x)−V(0)− x[x]V(x)+2x2
V(x)(V(x)−V(0))

+ x4
V(x)3 − xz5 (

V(x)−V(0)+ x2
V(x)2 − xz2

V(x)
)

−2xz2 (
V(x)−V(0)+ x2

V(x)2)−2
x2z3

1− z3V(x)(V(0)− z)
)

. (4.21)

Now, using Equations 4.5, 4.6, 4.12, 4.13, 4.14, and 4.21 we can replace V≥2, V2,
V3, and V4 by their expressions in Equation 4.11. This establishes the following propo-
sition.

Proposition 4.3. The generating function V(x) = V(x, z) of non-separable near-
triangulations in which all internal vertices have degree at least 5 satisfies:

V(x) =z+
1

1+ z3

(

xzV(x)2 + z
V(x)−V0

x
− z3

V(x)
)

− z5(1− z3)

1+ z3

(

V(x)−V0− xV1

x2 − z2 (2+ z3) V(x)−V0

x
−2V(x)(V0 − z)

+ x2
V(x)3 − xz2 (2+ z3)

V(x)2 +2V(x)(V(x)−V0)+ z7
V(x)

)

, (4.22)

where V0 = V(0) and V1 = [x]V(x) is the coefficient of x in V(x).

5. Algebraic Equations for Triangulations with High Degree

In the previous section, we have exhibited functional equations concerning the families
of near-triangulations T, U, V. By definition, the generating functions T(t), U(t), V(t)
are power series in the main variable z with polynomial coefficients in the secondary
variable x. We now solve these equations and establish algebraic equations for the
families of triangulations F, G, H in which vertices not incident to the root-edge have
degree at least 3, 4, 5, respectively. As observed in Section 2, the generating functions
F(t), G(t), H(t) are closely related to the series T(0), U(0), V(0) (see Equation 2.1).
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Let us look at Equations 4.7, 4.10, and 4.22 satisfied by the series T(x), U(x), and
V(x), respectively. We begin with Equation 4.7. This equation is (after multiplication
by x) a polynomial equation in the main unknown series T(x), the secondary unknown
T(0) and the variables x, z. It is easily seen that this equation allows us to compute the
coefficients of T(x)

(

hence those of T(0)
)

iteratively. Moreover, we see by induction
that the coefficients of this power series are polynomials in the secondary variable x.
The same property holds for Equation 4.10 (4.22, respectively): It defines the series
U(0) (V(0), respectively) uniquely as a power series in z with polynomial coefficients
in x.

In some sense, Equations 4.7, 4.10, and 4.22 answer our enumeration problems.
However, we want to solve these equations, that is, to derive from them some equations
for the series T(0), U(0), and V(0). Certain techniques for performing such manipu-
lations appear in the combinatorics literature. In the cases of Equations 4.7 and 4.10
which are quadratic in the main unknown series T(x) and U(x) we can routinely ap-
ply the so-called quadratic method [19, Section 2.9]. This method allows one to solve
polynomial equations which are quadratic in the bivariate unknown series and have one
unknown univariate series. This method also applies to Equation 3.2 concerning S(x)
and allows to prove Equation 3.3. However, Equation 4.22 concerning V(x) is cubic
in this series and involves two unknown univariate series

(

V(0) and [x]V(x)
)

. Very
recently, Bousquet-Mélou and Jehanne proposed a general method to solve polynomial
equations of any degree in the bivariate unknown series and involving any number of
unknown univariate series [4]. We present their formalism.

Let us begin with Equation 4.7 concerning T(0). We define the polynomial

P(T, T0, X , Z) = XZ +X2ZT 2 +ZT −ZT0−XZ3T −XT.

Equation 4.7 can be written as

P(T(x), T(0), x, z) = 0. (5.1)

Let us consider the equation P ′
1(T(x), T(0), x, z) = 0 , where P ′

1 denotes the derivative
of P with respect to its first variable. This equation can be written as

2x2zT(x)+ z− xz3− x = 0.

This equation is not satisfied for a generic x. However, considered as an equation in x,
it is straightforward to see that it admits a unique power series solution X(z).

Taking the derivative of Equation 5.1 with respect to x one obtains

∂T(x)
∂x

·P ′
1(T(x), T(0), x, z)+P ′

3(T(x), T(0), x, z) = 0,

where P ′
3 denotes the derivative of P with respect to its third variable. Substituting the

series X(z) for x in that equation, we see that the series X(z) is also a solution of the
equation P ′

3(T(x), T(0), x, z) = 0. Hence, we have a system of three equations

P(T(X(z)), T(0), X(z), z) = 0,

P ′
1(T(X(z)), T(0), X(z), z) = 0,
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P ′
3(T(X(z)), T(0), X(z), z) = 0,

for the three unknown series T(X(z)), T(0), and X(z). This polynomial system can be
solved by elimination techniques using either resultant calculations or Gröbner bases.
Performing these eliminations one obtains an algebraic equation for T(0):

T(0) = z−24z4 +3z7 + z10 +
(

32z3 +30z6−4z9− z12
)

T(0)

−8z2 (1+ z3)2
T(0)2 −16z4

T(0)3.

Using the fact that T(0) = z+ zG(z3) we get the following theorem.

Theorem 5.1. Let G be the set of non-separable triangulations in which any vertex not
incident to the root-edge has degree at least 3, and let G(t) be its generating function.
The series G(t) is uniquely defined as a power series in t by the algebraic equation:

16t2
G(t)3 +8t

(

t2 +8t +1
)

G(t)2

+
(

t4 +20t3 +50t2−16t +1
)

G(t)+ t2(t2 +11t−1
)

= 0.
(5.2)

Similar manipulations lead to a cubic equation for the set H.

Theorem 5.2. Let H be the set of non-separable triangulations in which any vertex not
incident to the root-edge has degree at least 4, and let H(t) be its generating function.
The series H(t) is uniquely defined as a power series in t by the algebraic equation:

16t2(t −1)4
H(t)3 +

(

t8 +12t7−14t6−84t5

+207t4−192t3 +86t2−16t +1
)

H(t)

+8t(t −1)2 (t4 +4t3−13t2 +8t +1
)

H(t)2

+ t4(t −1)
(

t3 +5t2−8t +1
)

= 0. (5.3)

For Equation 4.22 concerning V(0) the method is almost identical. We see that there
is a polynomial Q(V, V0, V1, x, z) such that Equation 4.22 can be written as Q(V(x),
V(0), [x]V(x), x, z) = 0. But we can show that there are exactly two series X1(z), X2(z)
such that Q′

1(V(X(z)), V(0), [x]V(x), X(z), z) = 0. Thus, we obtain a system of 6 equa-
tions

Q(V(Xi(z)), V(0), [x]V(x), Xi(z), z) = 0

Q′
1 (V(Xi(z)), V(0), [x]V(x), Xi(z), z) = 0

Q′
3 (V(Xi(z)), V(0), [x]V(x), Xi(z), z) = 0

for the 6 unknown series V(X1(z)), V(X2(z)), X1(z), X2(z), V(0), and [x]V(x). This
system can be solved via elimination techniques though the calculations involved are
heavy. We obtain the following theorem.
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Theorem 5.3. Let K be the set of non-separable triangulations in which any vertex not
incident to the root-edge has degree at least 5, and let K(t) be its generating function.
The series K(t) is uniquely defined as a power series in t by the algebraic equation:

6

∑
i=0

Pi(t)K(t)i, (5.4)

where the polynomials Pi(t)(i = 0, . . . , 6) are given in Section 9.1.

6. Constraining the Vertices Incident to the Root-Edge

So far, we have established algebraic equations for the generating functions G(t), H(t),
K(t) of triangulations in which any vertex not incident to the root-edge has degree
at least 3, 4, 5. The following theorems provide equations concerning the generating
functions G∗(t), H∗(t) of triangulations in which any vertex has degree at least 3, 4.

Theorem 6.1. Let G∗ be the set of non-separable triangulations in which any vertex
has degree at least 3 and let G∗(t) be its generating function. The series G∗ is related
to the series G of Theorem 5.1 by

G
∗(t) = (1−2t)G(t). (6.1)

Theorem 6.2. Let H∗ be the set of non-separable triangulations in which any vertex
has degree at least 4 and let H∗(t) be its generating function. The series H∗ is related
to the series H of Theorem 5.2 by

H
∗(t) =

1−5t +5t2−3t3

1− t
H(t). (6.2)

Let us make a few comments before proving these two theorems. First, observe
that we can deduce from Theorems 5.1 and 6.1 (5.2 and 6.2, respectively) an algebraic
equation for the generating function G

∗ (H∗, respectively) of triangulations in which
any vertex has degree at least 3 (4, respectively). The algebraic equation obtained for
G∗ coincides with the result of Gao and Wormald [17, Theorem 2]. From the algebraic
equations we can routinely compute the first coefficients of our series:

G
∗(t) = t2 +3t3 +19t4 +128t5 +909t6 +6737t7 +51683t8 +407802t9 +o

(

t9) ,

H
∗(t) = t4 +3t5 +12t6 +59t7 +325t8 +1875t9 +11029t10 +65607t11 +o

(

t11) .

Recall that the coefficient of tn in the series G∗(t), H∗(t) is the number of triangulations
with 3n edges (2n triangles, n+2 vertices) satisfying the required degree constraint. In
the expansion of G

∗(t), the smallest non-zero coefficient t2 corresponds to the tetrahe-
dron. In the expansion of H∗(t), the smallest non-zero coefficient t4 corresponds to the
octahedron (see Figure 19).

We were unable to find an equation that would permit to count non-separable trian-
gulations in which any vertex has degree at least 5. However, we can use the algebraic
equation 5.4 to compute the first coefficients of the series K(t):

K(t) = t10 +8t11 +45t12 +209t13 +890t14 +3600t15 +14115t16 +54306t17 +o
(

t18) .
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Figure 19: The platonic solids: tetrahedron, octahedron, icosahedron.

The first non-zero coefficient t10 corresponds to the icosahedron (see Figure 19).
In order to prove Theorems 6.1 and 6.2 we need some new notations. The set Gi, j,k

(

Hi, j,k, respectively
)

is the set of triangulations such that the root-edge’s origin has
degree i, the root-edge’s end has degree j, the third vertex of the root-face has degree
k and all internal vertices have degree at least 3 (4, respectively). For L = G, H we
define L≥i, j,k =

⋃

l≥i Ll, j,k and with similar notation, L≥i,≥ j,k etc. If L is any of these
sets, then L(t) is the corresponding generating function, where a map with 3n edges has
contribution tn.

Proof of Theorem 6.1. By definition, G = G≥2,≥2,≥3 and G∗ = G≥3,≥3,≥3. Hence,

G
∗(t) = G(t)−G2,2,≥3(t)−2G2,≥3,≥3(t). (6.3)

• The set G2,2,≥3 is empty, hence G2,2,≥3(t) = 0.
• The set G2,≥3,≥3 is in bijection with G≥1,≥1,≥3 = G by the mapping represented in

Figure 20. This gives G2,≥3,≥3(t) = tG(t).

Plugging these results in 6.3 proves the theorem.

2 ≥ 3

≥ 3

≥ 1

≥ 1

Figure 20: A bijection between G2,≥3,≥3 and G
(

H2,≥3,≥3 and H, respectively
)

.

Proof of Theorem 6.2. By definition, H∗ = H≥4,≥4,≥4. Hence,

H
∗(t) = H≥3,≥3,≥4(t)−H3,3,≥4(t)−2H3,≥4,≥4(t). (6.4)

Recall that H = H≥1,≥1,≥4 = H≥2,≥2,≥4.

• Clearly, H≥3,≥3,≥4(t) = H≥2,≥2,≥4(t)−H2,2,≥4(t)−2H2,≥3,≥3(t).
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• The set H2,2,≥4(t) is empty, hence H2,2,≥4(t) = 0.
• The set H2,≥3,≥3 is in bijection with H≥1,≥1,≥4 = H by the mapping represented in

Figure 20, hence H2,≥3,≥3(t) = tH(t). This gives

H≥3,≥3,≥4(t) = (1−2t)H(t). (6.5)

• The set H3,3,≥4 is in bijection with H≥1,≥1,≥4 = H by the mapping represented in
Figure 21. This gives

H3,3,≥4(t) = t2
H(t). (6.6)

≥ 4

≥ 4

≥ 1

≥ 1

33

Figure 21: A bijection between H3,3,≥4 and H.

• For any integer k greater than 2, the set H≥k,≥k,3 is in bijection with the set
H≥k−1,≥k−1,≥3 by the mapping represented in Figure 22. This gives

H≥k,≥k,3(t) = tH≥k−1,≥k−1,≥3(t), for all k ≥ 2. (6.7)

3

≥ k ≥ k ≥ k−1

≥ 3

≥ k−1

Figure 22: A bijection between H≥k,≥k,3 and H≥k−1,≥k−1,≥3.

Using Equation 6.7 for k = 4 and then for k = 3 (and trivial symmetry properties),
we get

H3,≥4,≥4(t) = H≥4,≥4,3(t) = tH≥3,≥3,≥3(t)

= tH≥3,≥3,≥4(t)+ tH≥3,≥3,3(t)

= tH≥3,≥3,≥4(t)+ t2
H≥2,≥2,≥3(t).

– By Equation 6.5, we have H≥3,≥3,≥4(t) = (1−2t)H(t).
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– Using Equation 6.7 for k = 2 gives

H≥2,≥2,≥3(t) = H≥2,≥2,≥4(t)+H≥2,≥2,3(t) = H(t)+ tH≥1,≥1,≥3(t).

Given that H≥1,≥1,≥3 = H≥2,≥2,≥3, we get H≥2,≥2,≥3(t) = 1
1−t H(t).

Thus, we obtain

H3,≥4,≥4(t) =
t
(

1−2t +2t2)

1− t
H(t). (6.8)

Plugging Equations 6.5, 6.6, and 6.8 in Equation 6.4 proves the theorem.

7. Asymptotics

In Section 5, we established algebraic equations for the generating functions L = F,
G, H, K of non-separable triangulations in which any vertex not incident to the root-
edge has degree at least d = 2, 3, 4, 5 (Equations 3.3, 5.2, 5.3, and 5.4). We will now
derive the asymptotic form of the number ln = fn, gn, hn, kn of maps with 3n edges in
each family by analyzing the singularities of the generating function L = F, G, H, K (ln
is the coefficient of tn in L). The principle of this method is a general correspondence
between the expansion of a generating function at its dominant singularities and the
asymptotic form of its coefficients [13, 14].

Lemma 7.1. Each of the generating functions L = F, G, H, K has a unique dominant
singularity ρL > 0 and a singular expansion with singular exponent 3

2 at ρL, in the sense
that

L(t) = αL +βL

(

1− t
ρL

)

+ γL

(

1− t
ρL

)3/2

+O

(

(

1− t
ρL

)2
)

, (7.1)

with γL 6= 0. The dominant singularities of the series F and G are respectively ρF = 2
27

and ρG = 3
√

3−5
2 . The dominant singularities ρH and ρK of the series H and K are

defined by algebraic equations given in Section 9.2.

Proof. (sketch) The (systematic) method we follow is described in [14, Chapter VII.4]).
Calculations were performed using the Maple package gfun [21].

Let us denote generically by ρL the radius of convergence of the series L and by
Q(L, t) the algebraic equation satisfied by L (Equations 3.3, 5.2, 5.3, and 5.4). It is
known that the singular points of the series L are among the roots of the polynomial
R(t) = D(t)∆(t) where D(t) is the dominant coefficient of Q(y, t) and ∆(t) is the dis-
criminant of Q(y, t) considered as a polynomial in y. Moreover, since the series L has
non-negative coefficients, we know (by Pringsheim’s Theorem) that the point t = ρL is
singular. In our cases, the smallest positive root of R(t) is found to be indeed a singular
point of the series L. (This requires to solve some connection problems that we do not
detail.) Moreover, no other root of R(t) has the same modulus. This proves that the
series L has a unique dominant singularity.

The second step is to expand the series L near its singularity ρL. This calculation
can be performed using Newton’s polygon method (see [14, Chapter VII.4]) which is
implemented in the algeqtoseries Maple command [21].
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From Lemma 7.1, we can deduce the asymptotic form of the number ln = fn, gn, hn,
kn of non-separable triangulations of size n in each family.

Theorem 7.2. The number ln = fn, gn, hn, kn of non-separable triangulations of size
n (3n edges) in which any vertex not incident to the root-edge has degree at least d =
2, 3, 4, 5 has asymptotic form

ln ∼ λLn−5/2
(

1
ρL

)n

.

The growth constants ρF , ρG, ρH , and ρK are given in Lemma 7.1. Numerically,

1
ρF

= 13.5,
1

ρG
≈ 10.20,

1
ρH

≈ 7.03,
1

ρK
≈ 4.06.

Remark 7.3. The subexponential factor n−5/2 is typical of planar maps families
(

see
for instance [2] where 15 classical families of maps are listed all displaying this subex-
ponential factor n−5/2).

Remark 7.4. Using Theorems 6.1 and 6.2, it is easily seen that the series L
∗ = G

∗, H
∗

has dominant singularity ρL = ρG, ρH with singular exponent 3
2 at ρL:

L(t) = α∗
L +β∗

L

(

1− t
ρL

)

+ γ∗L

(

1− t
ρL

)3/2

+O

(

(

1− t
ρL

)2
)

.

Therefore, we obtain the asymptotic form

l∗n ∼ λ∗
Ln−5/2

(

1
ρL

)n

,

for the number l∗n = g∗n, h∗n of non-separable triangulations of size n with vertex degree
at least d = 3, 4. Hence, the numbers l∗n and ln are equivalent up to a (known) constant
multiplicative factor λ∗L

λL
:

λ∗
G

λG
=

γ∗G
γG

= 1−2ρG = 6−3
√

3,

λ∗
H

λH
=

γ∗H
γH

=
1−5ρH +5ρH

2 −3ρH
3

1−ρH
.

We do not have such precise information about the asymptotic form of the number
k∗n of non-separable triangulations of size n (3n edges) with vertex degree at least 5.
However, we do know that k∗n = Θ(kn) = Θ

(

n−5/2ρK
−n
)

. Indeed, we clearly have
k∗n ≤ kn and, in addition, k∗n ≥ kn−9 ∼ρK

9kn. The latter inequality is proved by observing
that the operation of replacing the root-face of a triangulation by an icosahedron is an
injection from the set of triangulations of size n in which any vertex not incident to the
root-edge has degree 5 to the set of triangulations of size n+9 in which any vertex has
degree at least 5.
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8. Concluding Remarks

We have established algebraic equations for the generating functions of loopless tri-
angulations (i.e., non-separable triangulations) in which any vertex not incident to the
root-edge has degree at least d = 3, 4, 5. We have also established algebraic equations
for loopless triangulations in which any vertex has degree at least d = 3, 4. However,
have not found a similar result for d = 5. The algebraic equations we have obtained
can be converted into differential equations (using for instance the algeqtodiffeq Maple
command available in the gfun package [21]) from which one can compute the coeffi-
cients of the series in a linear number of operations. Moreover, the asymptotic form of
their coefficients can also be found routinely from the algebraic equations.

The approach we have adopted is based on a classic decomposition scheme allied
with a generating function approach. Alternatively, it is possible to obtain some of our
results by a compositional approach. This is precisely the method followed by Gao and
Wormald to obtain the algebraic equation concerning loopless triangulations in which
any vertex has degree at least 3 ([17]). This substitution approach can also be extended
to obtain the algebraic equation concerning loopless triangulations in which any vertex
has degree at least 4. However, we do not see how to apply this method to loopless
triangulations in which vertices not incident to the root-edge have degree at least 5.

Recently, Poulalhon and Schaeffer gave a bijective proof based on the conjugacy
classes of tree for the number of loopless triangulations ([22]). However, it is dubious
that this approach should apply for the families H, K of loopless triangulations in which
vertices have degree at least d = 4, 5. Indeed, for a large number of families of maps L,
the generating function L(t) is Lagrangean, that is, there exists a series X(t) and two
rational functions Ψ,Φ satisfying

L(t) = Ψ(X(t)) and X(t) = tΦ(X(t))

(see for instance, [2] where 15 classical families are listed together with a Lagrangean
parametrization). Often, a parametrization can be found such that the series X(t) looks
like the generating function of a family of trees (i.e., Φ(x) is a series with non-negative
coefficients) suggesting that a bijective approach exists based on the enumeration of
certain trees [6–8]. However, it is known that an algebraic series is Lagrangean if and
only if the genus of the algebraic equation is 0 ([1, Chapter 15]). In our case, the
algebraic equations defining the series F, G, H, and K have respective genus 0, 0, 2,
and 25. (The genus can be computed using the Maple command genus.) Thus, whereas
the series F, G are Lagrangean (with a parametrization given in Section 9.3), the series
H, K are not.

Lastly, we claim some generality to our approach. Here, we have focused on loop-
less triangulations, but it is possible to practice the same kind of manipulations for gen-
eral triangulations and for 3-connected ones. The method should also apply to some
other families of maps, like quadrangulations. Thus, a whole new class of map families
is expected to have algebraic generating functions.
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9. Appendix

9.1. Coefficients of the Algebraic Equation 5.4

The coefficients Pi(t)(i = 0, . . . , 6) in the algebraic Equation 5.4 are:

P0(t) =t10(−1+82552t11−163081t12 +277796t13−308156t14−443851t16

+ t34 +13t +32t31 +454t5−2434t6−5762t8 +4373t7

−53961t10 +23037t9 +354387t15+163964t20−28454t21

−38408t22 +36713t23−11737t24 + t33 +2t32−278t25

+242t28−1678t27 +2714t26 +36t29−64t30−70t2 +180t3

−195t4−273662t19 +122688t18 +262614t17),

P1(t) =
(

1−594873t11+1078572t12−1457943t13 +1921912t14

+1327736t16+1462t38−3168t37−611t39 +25956t35

−56515t34−3826t36−21t−467567t31−4545t5 +3916t6

+60304t8−13364t7 +275068t10−142715t9−2t42 +9t43

+ t44−2338117t15−4673450t20+5167054t21−1145738t22

−2425736t23+2298353t24+66635t33 +90827t32 +559893t25

−874518t28+2995671t27−3225500t26−526335t29 +763474t30

+68t41 +75t40 +193t2−988t3 +2913t4 +1719643t19

−945302t18+541155t17),

P2(t) =t
(

8+2011979t11−1422607t12 +2174211t13−4910332t14

−9095603t16−814t38 +688t37 +306t39−16997t35

+43703t34 +1292t36−4t +370239t31−3000t5 +20421t6

−268574t8 +72382t7−1309172t10 +527412t9 +8t42

+5383141t15+31153077t20−16211612t21−2143067t22

+7886923t23−2902691t24−50536t33−26161t32

−4609909t25+156674t28−3199107t27+6488106t26

+970079t29−902321t30 +12t41 +4t40−556t2 +3851t3
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−8840t4−18494688t19−9439987t18+17752182t17),

P3(t) =t2(16+1278321t11−2978655t12+1697247t13+5975715t14

+54631824t16+166t38−90t37−32t39 +3984t35−13104t34

−868t36−192t−105251t31 +17247t5−36981t6 +521925t8

−74982t7 +835782t10−1142394t9−29427957t15−39935486t20

+7773505t21+6824437t22−5541795t23−1619262t24+18648t33

+4941t32 +5146785t25 +349680t28 +880004t27−3411645t26

−600239t29+358687t30 +16t40 +1046t2−2554t3−397t4

+60017232t19−26467945t18−34977363t17),

P4(t) =9t5(t −1)2(8+722739t11−1888278t12+1483343t13 +679876t14

+1099122t16−84t−20t31 +9250t5−17908t6 +144652t8−22565t7

+87721t10−234335t9−1820089t15−5409t20−64607t21 +41918t22

−12628t23−1362t24 +8t32 +6200t25−189t28 +1127t27−3809t26

−103t29 +84t30 +368t2−583t3−2069t4

+110521t19−69119t18−243772t17),

P5(t) =81t8(t −1)4(1+25926t11−14080t12 +2973t13

−369t14 +348t16−9t +2118t5−2936t6 +23913t8−4134t7

−6330t10−25946t9−970t15 +12t20−22t21 +12t22−3t23

+ t24 +30t2−15t3−747t4 +42t19−219t18 +405t17),

P6(t) =59049t15(t +1)(t −1)9.

9.2. Algebraic Equations for the Dominant Singularity of the Series H(t) and K(t)

The dominant singularity ρH (ρK , respectively) of the generating function H(t) (K(t),
respectively) is the smallest positive root of the polynomial rH(t) (rK(t), respectively)
where rH(t) = 2−17t +22t2−10t3 +2t4, and

rK(t) =256−5504t+51744t2−265664t3 +755040t4

−1069751t5 +1411392t6−9094370t7 +30208920t8
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−14854607t9−106655904t10+169679596t11

+1693392t12+58535932t13−263701752t14−751005332t15

+2215033200t16−2276240390t17+2301677920t18

−1558097344t19−2448410184t20+6223947236t21

−7440131352t22+6100648148t23+1602052848t24

−9604816702t25+6144202392t26+996698032t27

+551560496t28−3299013583t29−728097928t30

+4881643814t31−3845803168t32+494467523t33

+1677669800t34−1787552140t35+825330824t36

+1529759t37−340280968t38+301075034t39

−121555768t40−1710967t41 +37850432t42

−27659392t43+9430688t44−152352t45

−1901664t46+1245152t47−400416t48

+47744t49 +30720t50−22528t51

+7680t52−1792t53 +256t54.

9.3. Lagrangean Parametrization for the Series F(t), G(t), and G∗(t)

The series F(t) has the following Lagrangean parametrization:

F(t) =
X(1+X)

2
,

where
X ≡ X(t) = 2t(1+X(t))3.

The series G(t) and G∗(t) have the following Lagrangean parametrization:

G(t) = 2tY(1+Y)
(

1−Y−Y
2) ,

G
∗(t) = 4t2(1+Y)

(

1−Y−Y
2)(1+3Y+6Y

2+2Y
3) ,

where
Y ≡ Y(t) = 2t(1+Y(t))

(

1+4Y(t)+2Y(t)2) .
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