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Abstract. We consider generalizations of the classical Polya urn problem: Given finitely many
bins each containing one ball, suppose that additional balls arrive one at a time. For each new ball,
with probability p, create a new bin and place the ball in that bin; with probability 1− p, place
the ball in an existing bin, such that the probability that the ball is placed in a bin is proportional
to mγ, where m is the number of balls in that bin. For p = 0, the number of bins is fixed and finite,
and the behavior of the process depends on whether γ is greater than, equal to, or less than 1.
We survey the known results and give new proofs for all three cases. We then consider the case
p > 0. When γ = 1, this is equivalent to the so-called preferential attachment scheme which leads
to power law distribution for bin sizes. When γ > 1, we prove that a single bin dominates, i.e., as
the number of balls goes to infinity, the probability that any new ball either goes into that bin or
creates a new bin converges to 1. When p > 0 and γ < 1, we show that under the assumption that
certain limits exist, the fraction of bins having m balls shrinks exponentially as a function of m.
We then discuss further generalizations and pose several open problems.
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1. Introduction

We consider the following process involving balls and bins:

For fixed parameters, γ ∈ R, 0 ≤ p < 1 and a positive integer k > 1, begin
with k bins, each containing one ball and then introduce balls one at a time.
For each new ball, with probability p, create a new bin and place the ball in
that bin; with probability 1− p, place the ball in an existing bin, such that
the probability that the ball is placed in a bin is proportional to mγ, where
m is the number of balls in that bin.

A well-known result of this type is Polya’s urn problem (see [8]), which is just the
above process in the case of p = 0 and γ = 1. For general γ, if p is 0, then we never
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create new bins, and we refer to the process as a finite Polya process with exponent
γ. If p �= 0, then we refer to it as an infinite Polya process with exponent γ. If γ > 1,
the process is often considered as having positive feedback by economists modeling
the tendency toward monopoly [2, 3, 12]. Similarly, for γ < 1, the process is regarded
as having negative feedback in various situations concerning decreasing advantage in
competition [12].

Many results in the literature on the finite Polya process (except for the classical
Polya’s urn problem) are either non-rigorous or folklore. Recently, Drinea et al. [7]
analyzed the process for two bins with feedback. Spencer and Wormald [13] examined
the case of many bins. The behavior of the finite Polya process can be broken into three
cases depending on the value of γ. For γ < 1, the bins all grow at roughly the same rate.
For γ > 1, one bin dominates, i.e., the probability that any new ball goes into that bin
goes to 1. For γ = 1, the fraction of balls going into each bin converges, though the
limit is uniformly distributed in a certain simplex. For completeness, we will give new
short proofs for all three cases in Section 2.

The infinite Polya process is motivated by a variation of a web tree-graph model
proposed by Drinea et al. [6] and by Kaprivsky and Redner [9]. The preferential at-
tachment scheme (see Barabási et al. [1, 4]) was further generalized so that the prob-
ability of a new node linking to an existing node with in-degree m is proportional to
mγ for some γ. This web tree-graph model is essentially equivalent to the infinite Polya
process with p = 1/2 and exponent γ. In this paper, we examine the infinite Polya
process for all ranges of γ and p. In Section 3, we prove that for γ > 1, a single bin
dominates, i.e., as the number of balls goes to infinity, the probability that any new ball
either goes into that bin or creates a new bin goes to 1. In addition, for any integer
m satisfying m < (m− 1)γ, only finitely many bins ever reach size m; whereas, for m
satisfying m > (m− 1)γ, the expected number of bins of size m at time t is of order
tm−(m−1)γ. In Section 4, we consider the infinite Polya process with exponent γ ≤ 1.
For γ = 1, the process generates a power law distribution so that the fraction of bins
having m balls is asymptotic to cm−β, where β = 1+1/(1− p) and c is a constant. For
γ < 1, we conjecture but do not prove that the limit of the fraction of bins having m
balls exists. Under certain assumptions concerning the convergence of these limits, we
derive that the fraction of bins having m balls shrinks exponentially as a function of m.
In the last section, we summarize the current state of the affair and mention a number
of open problems.

2. Finite Case

In this section, we consider the finite Polya process. Throughout this paper, we measure
time t by the total number of balls in bins.

Theorem 2.1. Consider a finite Polya process with exponent γ = 1 and k bins, and let
xt

i denote the fraction of balls in the ith bin at time t. Then almost surely (a.s.) for each
i, the limit Xi = limt→∞ xt

i exists. Furthermore these limits are distributed uniformly on
the simplex {(X1, . . . ,Xk) : Xi > 0, X1 + · · ·+ Xk = 1}.

Proof. Given n objects labeled 1, . . . ,n, we view a permutation π ∈ Sn as a listing
of the objects in the order π(1), . . . ,π(n). If starting with a permutation π ∈ Sn and
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removing the object labeled n leaves us with the permutation ρ ∈ Sn−1, then we say that
π contains ρ. Let P denote the set of infinite sequences (π1, π2, . . . ) such that πi ∈ Si

and πi+1 contains πi, for each i. Let the uniform probability measure on P refer to
the measure for which each of the i! choices for πi is equally likely. We can sample
uniformly from P as follows: begin with π1 (i.e., the object labeled 1), and proceed
recursively; having placed the first i objects, place the object labeled i+ 1 in any of its
i+ 1 possible positions with equal probability.

An element of Sn represents a configuration of n+1 balls in k bins as follows: view
the objects labeled 1, . . . ,(k−1) as division points, which subdivide the list of objects
into k sublists; view each sublist as a bin, and assume that each bin initially contains
one ball; view each of the objects k, . . . ,n in any sublist as an additional ball placed
in that bin. If we sample uniformly from P as described above, and let the resulting
permutation represent a configuration of balls and bins, then each time we place a ball,
the probability that it goes into any bin is proportional to the number of balls currently
in that bin. Therefore, this is equivalent to the finite Polya process.

An alternative way to sample uniformly from P is to select an i.i.d. sequence of
numbers (yi) uniformly from the interval [0, 1], and to define πn to be the permutation
of 1, . . . ,n produced by sorting according to the values yi. The numbers y1, . . . ,yk−1

subdivide the interval into k subintervals, which represent the k bins. If we denote the
lengths of these subintervals by X1, . . . ,Xk, then the Xi are distributed as in the statement
of the theorem. The fraction of balls that will go into the ith bin is the fraction of y’s in
the ith subinterval, which converges to Xi.

As a consequence, we can immediately compute the distribution of X1, and hence
any Xi. Let f denote the density function for X1, and define v(x) to be the volume of the
(k−2)-dimensional simplex {(X2, . . . ,Xk) : Xi > 0, X2 + · · ·+ Xk = 1− x}. Then

f (x) =
v(x)

∫ 1
0 v(y)dy

=
(1− x)k−2

∫ 1
0 (1− y)k−2 dy

= (k−1)(1− x)k−2.

The probability that the interval X1 has length at least x/k (i.e., the first bin has at least
x times the average number of balls) is

∫ 1

x/k
f (y)dy = (1− x/k)k−1,

which is approximately e−x when k is much larger than x.

Lemma 2.2. Consider two finite Polya processes, both with k bins, and with exponents
γ and 1 respectively, where γ > 1. Let nt

i denote the total number of balls in the i largest
bins at time t for the first process, and define mt

i similarly for the second process. Then
it is possible to couple the two processes so that nt

i ≥ mt
i for all i and t.

Proof. We couple the two processes as follows: Let pt
i (resp. qt

i) denote the probability
that a ball goes into any of the i largest bins for the first (resp. second) process. (In case
there is a tie for the ith largest bin, arbitrarily call one of the tied bins the ith largest.)
To place a ball at time t for the two processes, we select a random number y uniformly
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from [0, 1] and for the first (resp. second) process, we place a ball in the ith largest bin
for the smallest i such that y < pt

i (resp. y < qt
i).

We now show that with this coupling the first process always has at least as many
total balls in the i largest bins, for all i. Initially, the processes have the same number of
balls, so we proceed by induction. Suppose it is true for all i at time t. We will prove
it for an arbitrary i at time t + 1. For the first process at time t, denote the bin sizes
b1, . . . ,bk from largest to smallest. For the second process, denote them c1, . . . ,ck. If
b1 + · · ·+ bi is strictly greater than c1 + · · ·+ ci, then we are done, so suppose these are
equal. Then we have

pt
i =

∑i
j=1 bγ

j

∑k
j=1 bγ

j

≥ ∑i
j=1 bγ

j

∑i
j=1 bγ

j + ∑k
j=i+1 b jb

γ−1
i

= 1− ∑k
j=i+1 b jb

γ−1
i

∑i
j=1 bγ

j + ∑k
j=i+1 b jb

γ−1
i

≥ 1− ∑k
j=i+1 b jb

γ−1
i

∑i
j=1 b jb

γ−1
i + ∑k

j=i+1 b jb
γ−1
i

= 1− ∑k
j=i+1 b j

∑k
j=1 b j

= 1− ∑k
j=i+1 c j

∑k
j=1 c j

= qt
i.

Thus pt
i ≥ qt

i, which means that if we place a ball in one of the i largest bins for the
second process, then we will also do so for the first process. This would complete
the induction, except for the case of ties: suppose there is a tie for the ith largest bin,
i.e., ci = ci+1 = · · · = c j. This is relevant because adding a ball to any of these bins
will make it the ith largest, thereby adding one to the size of the i largest bins. Since
b1 + · · ·+ bi = c1 + · · ·+ ci, and b1 + · · ·+ bi−1 ≥ c1 + · · ·+ ci−1, we have bi ≤ ci. But
we also have b1 + · · ·+b j ≥ c1 + · · ·+c j, so bi = · · ·= b j = ci = · · ·= c j. Then if either
process gets a ball in one of its j largest bins, it will increase by 1 the total size of its i
largest bins. We can then prove the induction step for i by instead proving the induction
step for j. But since c j �= c j+1, we can ignore the situation where there are ties.

Lemma 2.3. Consider two finite Polya processes, both with k bins, and with exponents
γ and 1 respectively, where γ < 1. Let nt

i denote the total number of balls in the i largest
bins at time t for the first process, and define mt

i similarly for the second process. Then
it is possible to couple the two processes so that nt

i ≤ mt
i for all i and t.

Proof. The proof is exactly the same as the previous lemma, except the inequalities are
reversed.

Lemma 2.4. Given a finite or infinite Polya process with exponent γ and an arbitrary
finite initial configuration (i.e., finitely many balls arranged in finitely many bins), sup-
pose we restrict attention to any particular subset of the bins and ignore any balls that
are placed in the other bins. Then the process behaves exactly like a finite Polya process
with exponent γ on this subset of bins, though the process may terminate after finitely
many balls.
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Proof. If we condition on a ball being placed in this subset of bins, then the probability
that it is placed in each bin of the subset is still proportional to mγ, where m is the
number of balls in that bin.

Lemma 2.5. Consider a finite Polya process with exponent γ > 1 and only two bins. Let
xt

i denote the fraction of balls in the ith bin at time t. Then a.s. the limit Xi = limt→∞ xt
i

exists for each i; one of these limits is 1 and the other is 0.

Proof. Compare this process to a second two-bin finite process with exponent 1. By
Theorem 2.1, for the second process, xt

i converges for each i, and with probability 1, the
limits are not equal. Thus for any ε1 > 0, there is some α > 1 such that with probability
at least 1− ε1, the larger bin is eventually always greater than α times as large as the
smaller bin. Then by Lemma 2.2, for the first process, with probability at least 1− ε1

the larger bin is eventually always at least α times as large as the smaller bin. Then for
each subsequent ball, the probability that it goes into the larger bin is at least αγ times
that for the other bin. The larger bin is therefore eventually always at least αγ−ε2 times
as large as the other bin, for any ε2 > 0. Repeating this argument, with probability at
least 1− ε1, the ratio of the larger bin size to the smaller goes to infinity.

Lemma 2.6. Consider a finite Polya process with exponent γ < 1 and only two bins. Let
xt

i denote the fraction of balls in the ith bin at time t. Then a.s. the limit Xi = limt→∞ xt
i

exists for each i, and both limits are 1/2.

Proof. If γ < 0, then each ball is more likely to go in the smaller bin (until it catches up),
so the smaller bin is eventually always at least 1−ε2 times as large as the larger bin, for
any ε2. Assume then that γ ≥ 0. Compare this process to a second two-bin finite process
with exponent 1. By Theorem 2.1, for the second process, xt

i converges for each i, and
with probability 1, neither limit is 0. Thus for any ε1 > 0, there is some α > 0 such that
with probability at least 1−ε1, the smaller bin is eventually always greater than α times
as large as the larger bin. Then by Lemma 2.3, for the first process, with probability at
least 1− ε1 the smaller bin is eventually always at least α times as large as the larger.
Then for each subsequent ball, the probability that it is placed in the smaller bin is at
least αγ times that for the larger bin, and the smaller bin is therefore eventually always
at least αγ+ε2 times as large as the larger bin, for any ε2 > 0. Repeating this argument,
with probability at least 1− ε1, the ratio of the smaller bin size to the larger converges
to 1.

Theorem 2.7. Consider a finite k-bin Polya process with exponent γ, and let xt
i denote

the fraction of balls in bin i at time t. Then a.s. the limit Xi = limt→∞ xt
i exists for each

i. If γ > 1, then Xi = 1 for one bin, and Xi = 0 for the other bins. If γ < 1, then Xi = 1
k

for all bins.

Proof. Consider first the case γ > 1. Lemmas 2.4 and 2.5 imply that of any two bins, at
least one must have the property that the probability that the t th ball is placed in that bin
converges to 0 as t goes to infinity. Thus Xi exists and is 0 for all but one bin. Then Xi

exists and is 1 for the remaining bin.
Now suppose γ < 1. Combining Lemmas 2.4 and 2.6, since some bin must grow

arbitrarily large, they all must, and the ratios of their sizes must all converge to 1.
Therefore all of the Xi exist, and they are all 1

k .
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3. Infinite Case with Positive Feedback

In this section, we consider infinite Polya processes with exponent γ > 1. Again, we
measure time t by the total number of balls in bins. Let maxt denote the maximum
number of balls in any bin at time t.

Lemma 3.1. For any infinite Polya process with γ > 1, a.s. limt→∞ maxt = ∞.

Proof. At time t, there are at most t bins, and the largest bin is at least as likely as any
other bin to get the next ball, so the largest bin gets another ball with probability at least
1−p

t . Since ∑∞
t=1

1−p
t = ∞, the result follows.

Lemma 3.2. Given an infinite Polya process with exponent γ > 1, fix any ε > 0. For suf-
ficiently large t, the largest bin gets the (t +1)st ball with probability at least (1−ε)maxt

t .

Proof. Select δ > 0 such that 1−p
1−p(1−δ)2 > 1− ε. Each ball creates a new bin with

probability p, so 1/t times the number of bins at time t converges to p, and the average
bin size converges to 1/p. If we select N > 1

pδ , then eventually the fraction of bins that
have size less than N is at least (1− δ). Thus eventually the fraction of balls in bins of
size less than N is at least (1− δ)p. Now select M such that Mγ−1 > Nγ−1/δ. Denote
the bin sizes at some time t by b1, . . . ,bk, and suppose that the bins of size less than N
are b1, . . . ,b j. By the previous lemma, if t is sufficiently large, then the largest bin has
size greater than M, and the probability that the largest bin gets the (t + 1)st ball is:

(1− p)maxγ
t

∑k
i=1 bγ

i

≥ (1− p)maxt maxγ−1
t

∑ j
i=1 biNγ−1 + ∑k

i= j+1 bi maxγ−1
t

≥ (1− p)maxt

∑ j
i=1 biδ+ ∑k

i= j+1 bi

≥ (1− p)maxt

(1− δ)pδt +(1− (1− δ)p)t

=
maxt

t
· 1− p

1− p(1− δ)2

>
(1− ε)maxt

t
.

Lemma 3.3. Suppose we independently place t balls in bins such that each ball has
probability at least m/t of landing in the first bin. Then the probability that the first bin

receives fewer than m− c balls is less than me−c2/(2m).

Proof. It will suffice to prove this assuming that each ball has probability exactly m/t.
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Let pk denote the probability that the first bin receives exactly k balls. Then

pm−c−1 <
pm−c−1

pm
=

( t
m−c−1

)(
m
t

)m−c−1 ( t−m
t

)t−m+c+1

( t
m

)(
m
t

)m ( t−m
t

)t−m

=
c+1

∏
i=1

(m− i+ 1)(t−m)
(t −m+ i)m

≤
c+1

∏
i=1

(m− i+ 1)
m

≤
c

∏
i=1

e−i/m ≤ e−c2/(2m).

Then ∑m−c−1
i=0 pi < mpm−c−1 < me−c2/(2m).

Lemma 3.4. Given an infinite Polya process with exponent γ > 1, for any ε > 0, a.s.
we eventually have maxt > t1−ε.

Proof. Select three numbers δ1, δ2, δ3 > 0 sufficiently small that they satisfy the fol-
lowing two conditions: (1−δ2)(1−δ3)

(1+δ1) > 1 − ε/2 and 1 + δ1(1− ε/2) > (1 + δ1)(1−ε).

Let ρ denote the quantity (1−δ2)δ1
(1+δ1) . Combining the two conditions above, we have:

1 +(1− δ3)ρ > (1 + δ1)(1−ε).
Let ti denote the first time for which the largest bin contains i balls. We consider the

interval of time from ti to (1 + δ1)ti, which we refer to as the ith time interval. We will
show that during the ith time interval, the largest bin is likely to grow by more than a
factor of (1 + δ1)(1−ε).

During the ith time interval, time is never more than (1 + δ1)ti, and the size of the
largest bin is never less than i, so Lemma 3.2 implies that if ti is sufficiently large, then
each ball during this time interval goes into the largest bin with probability greater than
(1−δ2)i
(1+δ1)ti

. Then the expected number of balls that go into the largest bin during this time

interval is at least (1−δ2)δ1i
(1+δ1) = ρi, so by Lemma 3.3, the probability that the largest bin

receives fewer than (1− δ3)ρi balls is at most ρie−(δ3ρi)2/(2ρi) = ρie−δ2
3ρi/2. The sum

from i equals zero to infinity of this expression is finite, so there can be at most finitely
many i for which the largest bin fails to receive (1− δ3)ρi balls during the ith time
interval. Then eventually, whenever time grows by a factor of 1 + δ1, the largest bin
grows by a factor of 1 +(1− δ3)ρ > (1 + δ1)(1−ε), and so eventually maxt > t1−ε.

Theorem 3.5. Given an infinite Polya process with exponent γ > 1, a.s. there is one
bin such that the probability that a ball is either placed in that bin or creates a new bin
converges to 1. Also, for any k ∈ Z+ such that k < (k−1)γ, only finitely many bins ever
reach size k.

Proof. Fix any k ∈ Z+ such that k < (k−1)γ, and select ε > 0 such that k < (k−1)γ(1−
ε). To simplify notation, we define γ ′ = γ(1− ε). By Lemma 3.4, eventually (for large
time t) the largest bin has size at least t1−ε. Suppose this is true for all times t > N. Then
the probability that a ball goes into any particular bin of size i at time t > N is bounded
by iγ

t(1−ε)γ = iγ

tγ ′ . Now suppose a bin is created at time t1 > N. The probability that it then

receives balls at times t2 < · · · < tk (but at no other times before tk) is at most ∏k−1
i=1

iγ

tγ ′
i+1

.

We can now sum this over values of t2, . . . ,tk to get a bound on the probability that this



148 F. Chung, S. Handjani, and D. Jungreis

bin ever receives k balls:

∑
{(t2,...,tk) : t1<···<tk}

k−1

∏
i=1

iγ

tγ ′
i+1

< (k−1)!γ
∫ ∞

t1
. . .

∫ ∞

tk−1

(t2 · · · tk)−γ ′ dtk · · ·dt2

=
(k−1)!γ

(γ ′ −1)(2γ ′ −2) . . .((k−1)γ ′ − (k−1))
t−(k−1)γ ′+(k−1)
1

=
(k−1)!γ−1

(γ ′ −1)k−1 t−(k−1)γ ′+(k−1)
1 .

If we then integrate this expression from N to ∞, we get a bound on the expected number
of bins that are created after time N and receive at least k balls:

(k−1)!γ−1

(γ ′ −1)k−1((k−1)γ ′ − k)
N−(k−1)γ ′+k.

This expected value is finite, so only finitely many bins can ever receive k balls.
By Lemma 3.4, for large t, the largest bin has at least t1−ε balls; and since there are

at most t bins, the probability that a ball goes into an existing bin of size less than k at
time t is less than

tkγ

t(1−ε)γ ,

which converges to 0 as t gets large. Thus the probability that if a ball is placed in
an existing bin, then it is placed in one of the finitely many bins with at least k balls
converges to 1. Combining Lemma 2.4 and Theorem 2.7, the fraction of balls that are
placed in all but one of these bins converges to 0, and so the probability that the t th ball
is placed in all but one of these bins converges to 0. Thus the probability that the t th ball
either is placed in the remaining bin or creates a new bin converges to 1.

Corollary 3.6. Given an infinite Polya process with exponent γ > 1, for any k ∈ Z such
that k > (k− 1)γ, the expected number of bins of size k at time t is of order tk−(k−1)γ

(i.e., is eventually bounded above and below by expressions of the form αtk−(k−1)γ).

Proof. If the bin sizes at some time t are b1, . . . ,bm, then ∑m
i=1 bγ

i ≤ tγ. Also by Theo-
rem 3.5, for any ε > 0, if t is large enough, then the size of the largest bin is at least
(1− p−ε)t, where 1− p is the probability that a ball is placed in an existing bin. There-
fore, ∑m

i=1 bγ
i ≥ (1− p− ε)γtγ. Thus for large t, the probability that a ball goes into any

particular bin of size i is between (1−p)iγ
tγ and (1−p)iγ

(1−p−ε)γtγ ; in other words, the probability

is within a constant factor of t−γ.
Now suppose a bin is created at some time t1 where t1 is sufficiently large that

the above bounds hold. The probability that the bin receives additional balls at times
t2 < t3 < · · ·< tk but at no other times is within a constant factor of ∏k−1

i=1
iγ

tγ
i+1

. (Note that

the requirement that the bin does not receive a ball at any other time only introduces a
constant factor, since t−γ is summable.) Summing over values for t2, . . . ,tk, we get:

∑
{(t2,...,tk) : t1<···<tk<t}

k−1

∏
i=1

iγ

tγ
i+1

,
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which for large t1 is approximately equal to

(k−1)!γ
∫ t

t1
· · ·
∫ t

tk−1

(t2 . . .tk)−γ dtk · · ·dt2.

At each time t1, a new bin is created with probability 1− p, so we can now sum over
large t1 < t to see that the expected number of bins of size k at time t is (up to a constant
factor) t−(k−1)γ+k.

4. Infinite Case with γ ≤ 1

We now consider the case p > 0 and γ ≤ 1. Let fi,t denote the fraction of bins at time
t that contain exactly i balls. It seems clear that limt→∞ fi,t exists for each i; however,
we do not know how to prove this (except in the case γ = 1 where it is straightforward
to induct on i). Since we cannot prove the limits exist, in this section we simply derive
the behavior of the process under the following assumptions:

Assumptions (∗):

(1) For each i, there exists fi ∈ R+ such that a.s. limt→∞ fi,t exists and is equal to fi.
(2) A.s., limt→∞ ∑∞

j=1 f j,t jγ exists, is finite, and is equal to ∑∞
j=1 f j jγ.

We remark that Assumption (2) of (∗) does not hold for the case of γ > 1. In fact,
by Theorem 3.5, when γ > 1, limt→∞ ∑∞

j=1 f j,t jγ = ∞; whereas f j = 0 for j > 1, and
f1 = 1, so ∑∞

j=1 f j jγ = 1.

Theorem 4.1. For an infinite Polya process with exponent γ ≤ 1, suppose Assumptions
(∗) hold. Then there exists a constant K > 0 (depending on p and γ) such that for i ≥ 2,
a.s.

fi =
(

(i−1)γ

K + iγ

)

fi−1. (4.1)

Proof. Let pi,t denote the probability that the ball at time t is placed in a bin of size i,
with the convention that p0,t = p. Then for i > 0,

pi,t =
(1− p) fi,t iγ

∑∞
j=1 f j,t jγ .

Let Ei,t denote the expected change in the number of bins of size i at time t, so Ei,t =
pi−1,t − pi,t . By our assumptions, pi,t has a limit as t goes to infinity, so Ei,t also does.
Call these limits pi and Ei. The Ei must be in the same proportion as the fi, that is,
Ei
fi

= E j
f j

, or else the fractions of bins of sizes i and j would eventually change. Defining

C to be the constant value of Ei
fi

, we get

C fi = Ei = pi−1 − pi =
(1− p)( fi−1(i−1)γ− fiiγ)

∑∞
j=1 f j jγ ,

for i ≥ 2. Defining a new constant K = C ∑∞
j=1 f j jγ/(1− p), we get the desired expres-

sion.
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In the next theorem, we use the recurrence (4.1) to estimate the values fi for large i,
assuming that (∗) holds. We use the notation fi ∝ g(i) to mean that fi = c(1+o(1))g(i)
for some constant c.

Theorem 4.2. For an infinite Polya process with exponent γ ≤ 1, suppose that the as-
sumptions (∗) hold. Then the limit fi of the fraction of bins with i balls a.s. satisfies the
following:

fi ∝






i−(1+1/(1−p)), if γ = 1,

i−γe−Ki1−γ/(1−γ), if 0 < γ < 1,

(K + 1)−i, if γ = 0,

O
(

((i−1)!)γ

Ki

)
, if γ < 0.

Proof. Define Ei, Ei,t , pi, pi,t , C, and K as in the previous proof. We first show that
∑∞

i=1 fi = 1. At any time t, the sum over all i of the fraction of bins that have size i must
be 1, so ∑∞

i=1 fi,t = 1. It clearly follows that ∑∞
i=1 fi ≤ 1, so suppose that ∑∞

i=1 fi < 1− 1
n

for some n ∈ Z+. Then for sufficiently large t, ∑4n/p
i=1 fi,t < 1− 1

2n , which means that

∑∞
i=4n/p fi,t > 1

2n , and so the average bin size at time t is ∑∞
i=1 fi,t i > 4n

p
1
2n = 2

p . But this

contradicts the fact that the average bin size converges to 1
p , so we must have ∑∞

i=1 fi = 1.
We next show that ∑∞

i=1 Ei = p. At any time t, the expected change in the number of
bins of size ≤ n is ∑n

i=1 Ei,t = p− pn,t, so ∑n
i=1 Ei = p− pn. Since ∑∞

n=1 pn is bounded,
limn→∞ pn = 0, so ∑∞

i=1 Ei = limn→∞ p− pn = p.
Thus C = Ei

fi
= p, for all γ ≤ 1, so K = p

1−p ∑∞
i=1 fiiγ.

Now consider the case γ = 1, where we can evaluate the constant K explicitly. The
average bin size converges to ∑∞

i=1 fii = 1
p (using Assumption (2) of (∗)), so K = 1

1−p .
We now use Theorem 4.1 to compute the limiting behavior of fi as i gets large:

fi ∝
i

∏
j=2

j−1
j + 1/(1− p)

∝
Γ(i)

Γ(i+ 1 + 1/(1− p))
∝ i−(1+ 1

1−p ),

where Γ is the well-known Gamma function. Thus, the bin sizes in this case obey a
power-law distribution with power law exponent 1 + 1/(1− p).

We next use Theorem 4.1 to approximate the asymptotic behavior of fi when γ < 1,
though we cannot evaluate K explicitly. If 0 < γ < 1, then for large i,

fi ∝
i

∏
j=2

( j−1)γ

K + jγ ∝ i−γ
i

∏
j=1

jγ

K + jγ

= i−γ
i

∏
j=1

1

1 + K
jγ

∝ i−γe−∑i
j=1 K/ jγ

∝ i−γe−Ki1−γ/(1−γ).

If γ = 0, then fi ∝ (K + 1)−i. Finally, if γ < 0, then

fi ∝
i

∏
j=2

( j−1)γ

K + jγ = O

(
i

∏
j=2

( j−1)γ

K

)

= O

(
((i−1)!)γ

Ki

)

.



Generalizations of Polya’s urn Problem 151

5. Summary, Problems and Remarks

In Table 1 we summarize all the cases of the finite/infinite Polya process with posi-
tive/negative feedback. Many problems remain unresolved, several of which we men-
tion here:

Table 1: The distribution of bin sizes. Here fi is the limit of the fraction of bins with i
balls and K = p

1−p ∑∞
i=1 fi iγ.

Finite Polya process Infinite Polya process
p = 0 0 < p < 1

γ > 1 one bin dominates one bin dominates

power law
γ = 1 Polya’s urn problem distribution fi ∝ i−(1+1/(1−p))

0 < γ < 1 exponentially fi ∝ i−γe−Ki1−γ/(1−γ)

γ = 0 all bins grow at the same decreasing fi ∝ (K + 1)−i

γ < 0 rate asymptotically assuming (∗) fi = O
(
(i−1)!γ/Ki

)

Problem 5.1. Prove assumptions (∗). For the infinite Polya process with exponent γ < 1,
it would be of interest to prove the assumptions (∗); in particular, is it true that the limit
of

∞

∑
i=1

fi,t i
γ

exists and is finite? Recall that fi,t denotes the fraction of bins with i balls at time t.
We note that for the case of γ = 1, this sum is just the average bin size, and so the limit
exists and is 1

p .

Problem 5.2 (The rate of convergence). In preceding sections, we discussed the limit
and convergence of the fi,t ’s. A natural problem is to analyze how fast convergence
occurs. In the case of positive feedback, empirical results indicate that one bin very
quickly becomes dominant. It would be desirable to provide estimates for the rate
of convergence. Also, how does the rate of convergence vary if we alter the initial
distribution of balls in bins?

Problem 5.3 (Web models). In [7], Drinea et al. give an excellent exposition on the mo-
tivation of the problems of balls and bins with feedback and their relations to dynamic
web-graph models. Many proposed web-graph models can be viewed as balls-and-bins
problems with linear feedback (γ = 1) in the sense that a new page with one out-edge
links to an existing page with probability proportional to its indegree. In [6], variations
of web-graph models are introduced so that a new page with one out-edge links to an
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existing page with probability proportional to its indegree to the power γ. Although
such generalizations can not generate power law distributions (except for the case of
γ = 1), is it possible that some areas of the Web may be similar to this more general
model? What are the structural properties of such web graph models?

Problem 5.4 (Random walks with feedback). A random walk on a graph can be viewed
as a collection of balls-and-bins problems, one at each vertex: bins represent edges
incident to a given vertex u, and balls in a bin represent instances when the random
walk leaves u via that edge. If for some u, all the transition probabilities pu,v are equal,
then the resulting balls-and-bins problem is our finite Polya process with exponent 0.
However, the transition probabilities pu,v can instead depend on the number of times
the random walk has traversed each edge leaving u. For example, for a given exponent
γ, define puv to be proportional to g(u, v)γ where g(u, v) is one plus the number of times
that the edge uv has been traversed. The finite Polya process with k bins corresponds to
the case of a random walk on a graph with one vertex and k loops. The case γ = 1 is the
so-called reinforced random walk, and was first introduced by Diaconis [5]. There have
been a number of results on paths and trees for reinforced random walks. The reader is
referred to an excellent survey of Pemantle [10] and his result with Volkov [11] on the
convergence to five points on the infinite path. Numerous questions can be asked about
such random walks with feedback, although it seems that very little is known.
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