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Abstract. In his famous book “Combinatory Analysis” MacMahon introduced Partition Analysis
as a computational method for solving combinatorial problems in connection with systems of
linear diophantine inequalities and equations. By developing the Omega package we have shown
that Partition Analysis is ideally suited for being supplemented by computer algebra methods.
The object of this paper is to present a significant algorithmic improvement of this package. It
overcomes a problem related to the computational treatment of roots of unity. Moreover, this
new reduction strategy turns out to be superior to “The Method of Elliott” which is described
in MacMahon’s book. In order to make this article as self-contained as possible we give a brief
introduction to Partition Analysis together with a variety of illustrative examples. For instance,
the generating function of magic pentagrams is computed.

Keywords: partition analysis, magic squares, partial fraction decomposition, computer algebra

1. Introduction

The key ingredient of MacMahon’s Partition Analysis is the Omega operator Ω=.

Definition 1.1. The operator Ω= is given by

Ω
=

∞

∑
s1=−∞

· · ·
∞

∑
sr=−∞

As1,...,sr λ
s1
1 · · ·λsr

r :=
∞

∑
s1=0

· · ·
∞

∑
sr=0

As1,...,sr ,
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where the domain of the As1,...,sr is the field of rational functions over C in several
complex variables and the λi are restricted to a neighborhood of the circle |λi| = 1. In
addition, the As1,...,sr are required to be such that any of the 2r −1 sums

∞

∑
si1=−∞

· · ·
∞

∑
si j =−∞

As1,...,sr

is absolute convergent within the domain of the definition of As1,...,sr .

We emphasize that it is essential to treat everything analytically rather than formally
because the method relies on unique Laurent series representations of rational functions.

Another fundamental aspect of Partition Analysis is the use of elimination rules
which describe the action of the Omega operator on certain base cases. MacMahon
devoted more than eighty pages of his book to Partition Analysis. He starts out by
presenting a catalog [6, Vol. II, pp. 102–103] of twelve fundamental evaluations. Sub-
sequently he extends this table by new rules whenever he is enforced to do so. Once
found, most of these fundamental rules are easy to prove. This is illustrated by the
following example which is taken from MacMahon’s list.

Fact 1.2. For any integer s ≥ 0,

Ω
=

1

(1−λx)
(

1− y
λs

) =
1

(1− x)(1− xs y)
.

Remark 1.3. We want to note that in view of Definition 1.1 it is sufficient to choose
the parameters x and y from a small neighborhood of 0; in all other examples we make
similar choices without mentioning it explicitly.

Proof. By geometric series expansion the left hand side equals

Ω
=

∑
i, j≥0

λi−s jxiy j = Ω
=

∑
j,k≥0

λk xs j+ky j,

where the summation parameter i has been replaced by s j + k. But now Ω= sets λ to 1
which completes the proof.

We illustrate various aspects of MacMahon’s method by elementary examples cho-
sen in the spirit of MacMahon’s exposition [6, Vol. II, p. 102 ff.].

Problem 1.4. Find all nonnegative integer solutions a, b to the inequality 2a ≥ 3b.

First of all, using geometric series summation we translate the problem into a form
which MacMahon calls the crude generating function, namely

f (x, y) := ∑
a,b≥0

2a≥3b

xa yb = Ω
=

∑
a,b≥0

λ2a−3bxa yb = Ω
=

1

(1− xλ2)
(

1− y
λ3

) .

The next step is the elimination of λ. To this end we could apply the general rule
(2.4) which will be proved in the next section. However here, for illustrative reasons,
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we prefer to use partial fraction decomposition instead (assuming x and y to be positive
real numbers),

f (x, y) =
1
2

Ω
=

1

(1−√
xλ)

(

1− y
λ3

) +
1
2

Ω
=

1

(1+
√

xλ)
(

1− y
λ3

) . (1.1)

This decomposition allows us to apply Fact 1.2 to both parts and we obtain that

f (x, y) =
1
2

1

(1−√
x)(1−

√
x3y)

+
1
2

1

(1+
√

x)(1−
√

x3y)

=
1+ x2y

(1− x)(1− x3 y2)
.

By geometric series expansion this gives a parametrized representation of the solution
set to our problem; namely, from f (x, y) = ∑α,β≥0 xα+3βy2β(1 + x2y) we can deduce
that

{(a, b) ∈ N2 : 2a ≥ 3b}= {(m+n+ dn/2e,n) : (m, n) ∈ N2}.
Already this elementary example suggests the use of Partition Analysis not only

for problems related to a single linear diophantine inequality but also with respect to
systems of linear diophantine inequalities. A corresponding example will be given in
Section 3.2.

In addition, MacMahon’s method is not restricted to inequalities, it can be also
adapted to the case of linear diophantine equations. To this end, following MacMahon,
one needs to introduce a different Omega operator as follows.

Definition 1.5. The operator Ω= is given by

Ω
=

∞

∑
s1=−∞

· · ·
∞

∑
sr=−∞

As1,...,sr λ
s1
1 · · ·λsr

r := A0,...,0.

This means, all non-trivial power-products in the λ’s are killed by the Ω=-operator.
As already pointed out by MacMahon [6, Vol. 2, Section VIII, p. 104], this operator

is related to Ω= in various ways, for instance,

Ω
=

F(λ) = Ω
=

F(λ)+Ω
=

F(1/λ)−F(1).

However, for actual computations MacMahon used specific Ω= elimination rules;
we state one of those explicitly.

Fact 1.6. [6, Vol. 2, Section VIII, p. 105]

Ω
=

1

(1−λ2x)
(

1− y
λ
)(

1− z
λ
) =

1+ xyz
(1− xy2)(1− xz2)

.

Again we illustrate the method by an elementary example.

Problem 1.7. Find all nonnegative integer solutions a, b,c to the diophantine equation
2a = 3b+ c.
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Evidently this problem is equivalent to the previous one. Nevertheless, we find it
instructive to solve it via Ω= elimination.

As the first step, we again translate the problem into the corresponding crude gen-
erating function,

g(x, y, z) := ∑
a,b,c≥0

2a=3b+c

xa yb zc = Ω
=

∑
a,b,c≥0

λ2a−3b−cxa yb zc

= Ω
=

1

(1− xλ2)
(

1− y
λ3

)

(1− z
λ )

.

Remark 1.8. Note that f (x, y) = g(x, y, 1).

In order to eliminate λ we apply a reduction strategy which has been described by
MacMahon as The Method of Elliott; see [6, Vol. 2, Section VIII, pp. 111–114]. More
precisely, we make use of the following fact.

Fact 1.9 (Elliott Reduction). For positive integers j and k,

1
(1− xλ j)(1− yλ−k)

=
1

1− xyλ j−k

(

1
1− xλ j +

1
1− yλ−k −1

)

.

Applying Fact 1.9 to the first two denominator factors 1− xλ2 and 1− yλ−3 of the
crude generating function yields

g(x, y, z) = Ω
=

1
1− xy

λ

(

1
1− xλ2 +

1
1− y

λ3

−1

)

1
1− z

λ
.

This simplifies to

g(x, y, z) = Ω
=

1

(1− xλ2)
(

1− xy
λ
)(

1− z
λ
) ,

since both of the remaining Ω= expressions involve only negative powers of λ in the
denominator factors which Ω= trivially reduces to 1.

The final step is done by using Fact 1.6 which results in

g(x, y, z) =
1+ x2yz

(1− x3 y2)(1− xz2)
.

In Section 3.1 we describe how the solutions to 2a≥ 3b and 2a = 3b+c are obtained
in automatic fashion by using the Omega package.

More generally, MacMahon discusses the problem of evaluating the crude generat-
ing function of the form

Ω
=

1
(1− x1λ j1) · · · (1− xnλ jn)(1− y1λ−k1) · · · (1− ymλ−km)

,

where n and m are nonnegative and the ji and ki are positive integers. He describes
Elliott’s algorithm, i.e., the termination of this reduction when applied iteratively, as
follows [6, Vol. 2, Section VIII, p. 112]:
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“To reduce this expression [Elliott] makes use of the equation of [Fact
1.9], choosing j and k to be the greatest of the quantities ji, ki respectively.
The generating function is thus expressed as the sum of three fractions,
each with either ±1 for numerator. Each of the three fractions is on the
whole simpler than the original. The process is continued with each frac-
tion but it cannot be indefinitely applied. Eventually the original fraction
will be replaced by a sum of fractions each with either ±1 for numerator,
in none of which is there in the denominator both positive and negative
powers of λ. The factors of a denominator will either involve both factors
without λ and with positive powers of λ or both factors without λ and with
negative powers of λ. No single denominator will involve both positive and
negative powers of λ. Putting all factors, which involve positive or negative
powers of λ, equal to unity in these fractions gives the completion of the
operation Ω= [. . . ]”

MacMahon never mentioned explicitly that this reduction algorithm can be also
applied to the Ω= case. As an illustrative example we present an alternative evaluation
of the crude generating function associated to f (x, y) from the example above.

Example 1.10. Applying Fact 1.9 to

f (x, y) = Ω
=

1

(1− xλ2)
(

1− y
λ3

)

results in

f (x, y) = Ω
=

1
1− xy

λ

(

1
1− xλ2 +

1
1− y

λ3

−1

)

.

This simplifies to

f (x, y) = Ω
=

1

(1− xλ2)
(

1− xy
λ
) ,

since both of the remaining Ω= expressions involve only negative powers of λ in the
denominator factors which Ω= trivially reduces to 1. For further reduction we apply
Fact 1.9 again which gives

f (x, y) = Ω
=

1
1− x2yλ

(

1
1− xλ2 +

1
1− xy

λ
−1

)

.

This simplifies to

f (x, y) =
1

(1− x2y)(1− x)
+Ω

=

1

(1− x2yλ)
(

1− xy
λ
) − 1

1− x2y
.

Now we could apply again Fact 1.9 in order to arrive at the base cases discussed by
MacMahon. Alternatively, one can use Fact 1.2 with s = 1 to derive

f (x, y) =
1

(1− x2y)(1− x)
+

1
(1− x2y)(1− x3 y2)

− 1
1− x2y

=
1+ x2y

(1− x)(1− x3 y2)
,
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as computed above.

We have examined MacMahon’s use of Partition Analysis with the object of pro-
viding a proper algorithmic setting for the problems that he considers. As a result we
developed an algorithm [1] which avoids table look-up and improves significantly upon
Elliott reduction. The latter is achieved by using a variant of partial fraction decompo-
sition which splits the elimination problem into two parts instead of three as in Elliott
reduction. Nevertheless, this approach carried along two major shortcomings which
we succeeded to overcome by a new reduction strategy. The details of this new algo-
rithm are explained in Section 2. In Section 3 we illustrate the algorithm and the usage
of the corresponding computer algebra package by applications involving systems of
linear diophantine inequalities and equations. It is important to note that this package
replaces the package described in [1]. In Section 4 we comment on future developments
and possible extensions of MacMahon’s method.

2. The New Reduction Algorithm

As already discussed in [1], the problem of finding nonnegative integer solutions to
linear systems of diophantine inequalities and equations is equivalent to applying Ω=

or Ω= to expressions of the form

P(x1, . . . ,xn; λ1, . . . ,λr)

∏n
i=1(1− xiλ

v1(i)
1 · · ·λvr(i)

r )
,

where P is a Laurent polynomial in the n + r variables and the vh(i) are integers not
necessarily positive. Note that as long as the xi (which may be power products in other
variables) are restricted to a small neighborhood of 0, we are guaranteed that we have
avoided any singularities inside the annuli that provide the domain for the λi. This
problem amounts to the successive elimination of the variables λi.

Theoretically the order in which the variables λi are eliminated is irrelevant; how-
ever, in practice it turns out that certain orders are preferable with respect to perfor-
mance. But in order to limit technicalities we restrict ourselves to the description of the
new reduction step. To this end we assume that the λi to be eliminated is denoted in
short by λ.

Problem 2.1. We need an algorithm that evaluates the application of Ω= and Ω= to the
term

λa

(1− x1λ j1) · · · (1− xnλ jn)(1− y1λ−k1) · · · (1− ymλ−km)
, (2.1)

where n and m are nonnegative integers, the ji and ki are positive integers, and a is any
integer.

In the previous paper [1] we suggested the following way of solving the problem.
As a preprocessing step, factor the terms (1− xiλ ji) into linear factors with respect
to λ. Doing so, one ends up with an expression of form (2.1) where all ji are equal to 1.
With this condition satisfied apply partial fraction decomposition, as e.g. in (1.1) above,
to break the whole term additively into two parts of the same type again, but with n



MacMahon’s Partition Analysis VI: A New Reduction Algorithm 257

decreased by 1. Repeat this process (recursively) until the case n = 1 is reached and
evaluate the base case via an explicit formula.

This method comes along with two major shortcomings. The preprocessing might
not only produce many more denominator factors than the ones in the original term
(2.1), it might also introduce roots of unity, which slows down the computation enor-
mously. With our new approach we avoid both of these difficulties by utilizing a more
general partial fraction decomposition that no longer requires the λ to appear linearly
in the denominator of (2.1). Furthermore, in each step it can be applied to either the
factors with positive or negative exponents of λ, thus decreasing either n or m by 1 in all
steps. In other words we can choose our reduction strategy according to the minimum
of n and m.

Let us first look at the degenerate cases of (2.1) when m or n is 0. For this we define
variants of the homogeneous symmetric functions, denoted by hi(z1, . . . ,zn; ζ1, . . . ,ζn)
and given by

∞

∑
i=0

hi(z1, . . . ,zn; ζ1, . . . ,ζn)t
i =

1

(1− z1 tζ1) · · · (1− zn tζn)
.

Case mmm === 000. We immediately obtain

Ω
=

λa

(1− x1λ j1) · · · (1− xnλ jn)
= Ω

=

∞

∑
i=0

hi(x1, . . . ,xn; j1, . . . , jn)λa+i

=















1
(1− x1) · · · (1− xn)

, if a ≥ 0,

1
(1− x1) · · · (1− xn)

−
−a−1

∑
i=0

hi(x1, . . . ,xn; j1, . . . , jn), if a < 0,

and

Ω
=

λa

(1− x1λ j1) · · · (1− xnλ jn)
= Ω

=

∞

∑
i=0

hi(x1, . . . ,xn; j1, . . . , jn)λa+i

=







0, if a > 0,

h−a(x1, . . . ,xn; j1, . . . , jn), if a ≤ 0.

Case nnn === 000. Similarly as above we get

Ω
=

λa

(1− y1λ−k1) · · · (1− ymλ−km)
= Ω

=

∞

∑
i=0

hi(y1, . . . ,ym; k1, . . . ,km)λa−i

=











0, if a < 0,

a

∑
i=0

hi(y1, . . . ,ym; k1, . . . ,km), if a ≥ 0,
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and

Ω
=

λa

(1− y1λ−k1) · · · (1− ymλ−km)
= Ω

=

∞

∑
i=0

hi(y1, . . . ,ym; k1, . . . ,km)λa−i

=







0, if a < 0,

ha(y1, . . . ,ym; k1, . . . ,km), if a ≥ 0.

Next we investigate the base cases of our recurrence, i.e., the cases when m or n is
1.

Case mmm === 111. For sake of simplicity, let y := y1 and k := k1. If a ≤ −k, then we may
write a = −pk− s with p ≥ 1 and 0 ≤ s < k to obtain

λa

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)

= − y−pλ−s(1− ypλ−pk)− y−pλ−s

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)

= − y−pλ−s ∑p−1
h=0 yhλ−hk

(1− x1λ j1) · · · (1− xnλ jn)
+

y−pλ−s

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)
.

While the result of applying the Ω-operator to the first term can be computed by means
of the m = 0 case, for the second term we now have a > −k. We claim that in this case

Ω
=

λa

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)

=
1

(1− x1) · · · (1− xn)(1− y)
−

∑k−1
τ1,...,τn=0 ∏xτi

i y
⌊

∑ jiτi+a
k

⌋

+1

(1− xk
1y j1) · · · (1− xk

ny jn)(1− y)
, (2.2)

where in all sums and products without explicit bounds i runs from 1 to n. We want to
remark that after bringing the right-hand side over a common denominator it is easily
seen that the factor (1− y) divides the numerator.

Proof. First observe that

Ω
=

λa

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)

= Ω
=

∑
s1,...,sn≥0

∑
r≥0

∏xsi
i yrλa+∑ jisi−kr

= ∑
s1,...,sn≥0

∏xsi
i ∑

0≤r≤
⌊

∑ ji si+a
k

⌋

yr, (2.3)

where the last equality follows from the fact that

∑ jisi +a
k

≥ a
k

> −1.
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Next the right-hand side of (2.3) may be rewritten as

∑
s1,...,sn≥0

∏xsi
i





∑
r≥0

yr − ∑
r>

⌊

∑ jisi+a
k

⌋

yr







=
1

(1− x1) · · · (1− xn)(1− y)
− 1

(1− y) ∑
s1,...,sn≥0

∏xsi
i y

⌊

∑ jisi+a
k

⌋

+1.

After substituting kσi + τi (0 ≤ τi < k) for si this expression turns into

1
(1− x1) · · · (1− xn)(1− y)

− 1
(1− y) ∑

σ1,...,σn≥0

k−1

∑
τ1,...,τn=0

∏xkσi+τi
i y

⌊

∑ ji(kσi+τi)+a
k

⌋

+1

=
1

(1− x1) · · · (1− xn)(1− y)
−

∑k−1
τ1,...,τn=0 ∏xτi

i y
⌊

∑ jiτi+a
k

⌋

+1

(1− xk
1y j1) · · · (1− xk

ny jn)(1− y)
.

By similar reasoning we find that for a > −k

Ω
=

λa

(1− x1λ j1) · · · (1− xnλ jn)(1− yλ−k)
=

∗∑k−1
τ1,...,τn=0 ∏xτi

i y
∑ jiτi+a

k

(1− xk
1y j1) · · · (1− xk

ny jn)
,

where ∗∑ only sums those terms for which the exponent of y is an integer.

Case nnn === 111. Again, for sake of simplicity, let x := x1 and j := j1. If a ≥ j, then we may
write a = p j + r with p ≥ 1 and 0 ≤ r < j to obtain

λa

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)

= − x−pλr (1− xpλp j)− x−pλr

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)

= − x−pλr ∑p−1
h=0 xhλh j

(1− y1λ−k1) · · · (1− ymλ−km)
+

x−pλr

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)
.

Thus we may assume that a < j. We claim that in this case

Ω
=

λa

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)
=

∑ j−1
τ1,...,τm=0 ∏yτi

i x
⌈

∑kiτi−a
j

⌉

(1− x)(1− xk1y j
1) · · · (1− xkmy j

m)
, (2.4)

where in all sums and products without explicit bounds i runs from 1 to m.
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Proof. First observe that

Ω
=

λa

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)
= Ω

=
∑
r≥0

∑
s1,...,sm≥0

xr ∏ysi
i λa+ jr−∑kisi

= ∑
s1,...,sm≥0

∏ysi
i ∑

r≥
⌈

∑kisi−a
j

⌉

xr, (2.5)

where the last equality follows from the fact that

∑kisi −a
j

≥ −a
j

> −1.

Next the right-hand side of (2.5) may be rewritten as

1
(1− x) ∑

s1,...,sm≥0
∏ysi

i x
⌈

∑kisi−a
j

⌉

.

After substituting jσi + τi (0 ≤ τi < j) for si this expression turns into

1
(1− x) ∑

σ1,...,σm≥0

j−1

∑
τ1,...,τm=0

∏y jσi+τi
i x

⌈

∑ki( jσi+τi)−a
j

⌉

=
∑ j−1

τ1,...,τm=0 ∏yτi
i x

⌈

∑kiτi−a
j

⌉

(1− x)(1− xk1y j
1) · · · (1− xkmy j

m)
.

By similar reasoning we find that for a < j

Ω
=

λa

(1− xλ j)(1− y1λ−k1) · · · (1− ymλ−km)
=

∗∑ j−1
τ1,...,τm=0 ∏yτi

i x
∑kiτi−a

j

(1− xk1y j
1) · · · (1− xkmy j

m)
,

where ∗∑ only sums those terms for which the exponent of x is an integer.
Finally, the essential reduction step of our new algorithm is the following partial

fraction decomposition.

Theorem 2.2 (Generalized PFD). If j1 ≥ j2 ≥ 1 and gcd( j1, j2) = 1, then

1
(1− x1λ j1)(1− x2λ j2)

=
1

x j1
2 − x j2

1

(

α0 +α1λ+ · · ·+α j1−1λ j1−1

1− x1λ j1
+

β0 +β1λ+ · · ·+β j2−1λ j2−1

1− x2λ j2

)

,

(2.6)
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where

αi =







−x j2
1 xi/ j2

2 , if j2 | i or i = 0,

−x
rmd(( j−1

2 mod j1)i, j1)
2 x

rmd(( j−1
1 mod j2)i, j2)

1 , otherwise,
(2.7)

βi =







x j1
2 , if i = 0,

x
rmd(( j−1

2 mod j1)i, j1)
2 x

rmd(( j−1
1 mod j2)i, j2)

1 , otherwise,
(2.8)

and rmd(k, l) denotes the least nonnegative residue of k and l given by

rmd(k, l) := k− l

⌊

k
l

⌋

.

Before we prove the theorem a few remarks are appropriate. First of all, by replacing
λ by λ−1 we immediately get the corresponding relation for

1
(1− y1λ−k1)(1− y2λ−k2)

.

Furthermore, the assumption that j1 and j2 are relatively prime is not at all a restriction.
To see this, suppose that d := gcd( j1, j2) > 1. Then we can use Theorem 2.2 to find the
decomposition of

1

(1− x1λ j1/d)(1− x2λ j2/d)
.

Substituting λd for λ in the result gives the desired relation.
It might happen that (x j1

2 −x j2
1 ) vanishes. In this case we simply replace x1 or x2 by

a new variable and substitute back after the prefactor has been canceled from the result.
Finally, for computing ( j−1

1 mod j2) and ( j−1
2 mod j1) we may use the fact that

a−1 ≡ aφ(b)−1 (mod b), if gcd(a, b) = 1. Here φ denotes Euler’s totient function.

Proof of Theorem 2.2. First we note that (2.6) is completely equivalent to

x j1
2 − x j2

1 = (1− x2λ j2)(α0 +α1λ+ · · ·+α j1−1λ j1−1)

+(1− x1λ j1)(β0 +β1λ+ · · ·+β j2−1λ j2−1). (2.9)

All that is required is showing that both sides of (2.9) match up for each coefficient of
each power of λ. Hence we must show that the following j1 + j2 equations hold:

α0 +β0 = x j1
2 − x j2

1 , (2.10)

αh +βh = 0, 0 < h < j2, (2.11)

αh − x2 αh− j2 = 0, j2 ≤ h < j1, (2.12)

−x2 αh− j2 − x1 βh− j1 = 0, j1 ≤ h < j1 + j2. (2.13)



262 G.E. Andrews, P. Paule, and A. Riese

The top line of (2.7) and the top line of (2.8) for i = 0 together establish (2.10). Next
we note that (2.11) follows directly from the second lines of (2.7) and (2.8) with 0 <
i = h < j2.

From now on, for sake of brevity, we shall write j−1
1 for ( j−1

1 mod j2) and j−1
2 for

( j−1
2 mod j1). As for (2.12), we note that if j2 - h, then

αh− j2 = −x
rmd( j−1

2 (h− j2), j1)
2 x

rmd( j−1
1 (h− j2), j2)

1

= −x
rmd( j−1

2 h−1, j1)
2 x

rmd( j−1
1 h, j2)

1

= −x−1
2 x

rmd( j−1
2 h, j1)

2 x
rmd( j−1

1 h, j2)
1

= x−1
2 αh,

which is equivalent to (2.12) if j2 - h. If j2 | h, then

αh− j2 = −x j2
1 x(h− j2)/ j2

2 = x−1
2 αh,

so (2.12) is proved in full generality.

There are three cases for (2.13).

Case 1. h = j1.

− x2α j1− j2 − x1β0 = x2x
rmd( j−1

2 ( j1− j2), j1)
2 x

rmd( j−1
1 ( j1− j2), j2)

1 − x1x j1
2

= x2x j1−1
2 x1 − x1x j1

2

= 0.

Case 2. j1 < h < j1 + j2 and j2 | h.

− x2αh− j2 − x1βh− j1

= −x2(−x j2
1 xh/ j2−1

2 )− x1x
rmd( j−1

2 (h− j1), j1)
2 x

rmd( j−1
1 (h− j1), j2)

1

= x j2
1 xh/ j2

2 − x1xh/ j2
2 x j2−1

1 (note rmd(−1, j2) = j2 −1)

= 0.
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Case 3. j1 < h < j1 + j2 and j2 - h.

− x2αh− j2 − x1βh− j1 = x2x
rmd( j−1

2 (h− j2), j1)
2 x

rmd( j−1
1 (h− j2), j2)

1

−x1x
rmd( j−1

2 (h− j1), j1)
2 x

rmd( j−1
1 (h− j1), j2)

1

= x2x
rmd( j−1

2 h−1, j1)
2 x

rmd( j−1
1 h, j2)

1

−x1x
rmd( j−1

2 h, j1)
2 x

rmd( j−1
1 h−1), j2)

1

= x
rmd( j−1

2 h, j1)
2 x

rmd( j−1
1 h, j2)

1

−x
rmd( j−1

2 h, j1)
2 x

rmd( j−1
1 h, j2)

1

= 0.

Note that we used the fact that if a - b, then rmd(b−1, a) = rmd(b, a)−1.
Hence in all three cases, we see that (2.13) holds. Therefore Theorem 2.2 is proved.

3. Applications

The first subsection illustrates how the elementary problems from the introduction are
treated with the Omega package.

The Ω= application in Subsection 3.2 is motivated by J. Louck’s illuminating study
[5] of expansion formulae for powers of determinants. In this context magic squares
play a prominent rôle. In addition, Louck’s work gives rise to various questions about
possible new extensions of MacMahon’s method; for further details we refer to Section
4.

Finally an Ω= application is presented in Subsection 3.3. It concerns the computa-
tion of the generating function for magic pentagrams.

3.1. Introductory Examples

The package Omega2 is written in Mathematica and freely available via http://
www.risc.uni-linz.ac.at/research/combinat/risc/software/Omega/.

After loading the file Omega2.m by

In[1]:= <<Omega2.m

Out[1]= Axel Riese’s Omega implementation version 2.30 loaded

the diophantine inequality 2a ≥ 3b from Section 1 is solved as follows:

In[2]:= OSum[x^a y^b, {2a ≥ 3b}, λ]

Assuming a ≥ 0

Assuming b ≥ 0
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Out[2]=

Ω
=

λ1

1
(

1− y
λ3

1

)

(1− xλ2
1)

In[3]:= OR[%]

Eliminating λ1...

Out[3]=

1+ x2y
(1− x)(1− x3y2)

Similarly, the diophantine equation 2a = 3b+ c from Section 1 is solved automati-
cally by:

In[4]:= OEqSum[x^a y^b z^c, {2a == 3b+c}, λ]

Assuming a ≥ 0

Assuming b ≥ 0

Assuming c ≥ 0

Out[4]=

Ω
=

λ1

1
(

1− y
λ3

1

)(

1− z
λ1

)

(1− xλ2
1)

In[5]:= OEqR[%]

Eliminating λ1...

Out[5]=

1+ x2yz
(1− x3y2)(1− xz2)

3.2. Magic Squares

Let Z = (zi, j)1≤i, j≤n be an n×n matrix of commuting indeterminates, and let A = (ai, j)
be an n×n matrix of nonnegative integers. We will use the notation

ZA := ∏
i, j

z
ai, j
i, j .

Studying powers of 3×3 determinants, Louck [5, (3.3)] expressed the correspond-
ing expansion coefficients Ck(A), described in Section 4 below, as a multiple of a hy-
pergeometric 3F2 series. To this end he considered 3×3 matrices A = (ai, j)1≤i, j≤3 such
that a1,1 = a, a1,2 = c+e, a1,3 = b+d, a2,1 = c+d, a2,2 = b, a2,3 = a+e, a3,1 = b+e,
a3,2 = a+d, and a3,3 = c with integers a, b, c, d, e where a, b, c are nonnegative. Ad-
ditionally one imposes that all entries ai, j have to be nonnegative. This gives magic
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squares of order 3 since all rows and columns sum up to a+b+ c+d+ e. We call this
set A3(a+b+ c+d+ e).

In order to illustrate the algorithmic usage of the Ω= operator we compute the gen-
erating function

f (Z) := ∑
A∈A3(a+b+c+d+e)

ZA

of all the elements of A3(a + b + c + d + e). Note that by case distinction Partition
Analysis is also able to handle diophantine problems where some of the solutions are
supposed to be negative integers. In this particular example there are two such parame-
ters, namely d and e. Accordingly we have to consider four cases:

Case 1.

a+d ≥ 0, a+ e ≥ 0, b+d ≥ 0, b+ e ≥ 0, c+d ≥ 0, c+ e ≥ 0;

Case 2. d > 0 and

a−d ≥ 0, a+ e ≥ 0, b−d ≥ 0, b+ e ≥ 0, c−d ≥ 0, c+ e ≥ 0;

Case 3. e > 0 and

a+d ≥ 0, a− e ≥ 0, b+d ≥ 0, b− e ≥ 0, c+d ≥ 0, c− e ≥ 0;

Case 4. e,d > 0 and

a−d ≥ 0, a− e ≥ 0, b−d ≥ 0, b− e ≥ 0, c−d ≥ 0, c− e ≥ 0.

With the Omega package the corresponding generating functions are computed
within seconds.

Case 1.

In[6]:= f1 = OR[ OSum[z11^a z12^(c+e) z13^(b+d) z21^(c+d) z22^b *

z23^(a+e) z31^(b+e) z32^(a+d) z33^c,

{a+d ≥ 0, a+e ≥ 0, b+d ≥ 0, b+e ≥ 0,

c+d ≥ 0, c+e ≥ 0}, λ] ]

Out[6]=

1
(1− z13z22z31)(1− z12z23z31)(1− z13z21z32)(1− z11z23z32)(1− z12z21z33)

Case 2.

In[7]:= f2 = OR[ OSum[z11^a z12^(c+e) z13^(b-d) z21^(c-d) z22^b *

z23^(a+e) z31^(b+e) z32^(a-d) z33^c, {d > 0,

a-d ≥ 0, a+e ≥ 0, b-d ≥ 0, b+e ≥ 0,

c-d ≥ 0, c+e ≥ 0}, λ] ]

Out[7]=

z11z12z22z23z31z33/
(

(1− z13z22z31)(1− z12z23z31)(1− z11z23z32)

(1− z12z21z33)(1− z11z12z22z23z31z33)
)
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Case 3.

In[8]:= f3 = OR[ OSum[z11^a z12^(c-e) z13^(b+d) z21^(c+d) z22^b *

z23^(a-e) z31^(b-e) z32^(a+d) z33^c, {e > 0,

a+d ≥ 0, a-e ≥ 0, b+d ≥ 0, b-e ≥ 0,

c+d ≥ 0, c-e ≥ 0}, λ] ]

Out[8]=

z11z13z21z22z32z33/
(

(1− z13z22z31)(1− z13z21z32)(1− z11z23z32)

(1− z12z21z33)(1− z11z13z21z22z32z33)
)

Case 4.

In[9]:= f4 = OR[ OSum[z11^a z12^(c-e) z13^(b-d) z21^(c-d) z22^b *

z23^(a-e) z31^(b-e) z32^(a-d) z33^c, {d > 0,

e > 0, a-d ≥ 0, a-e ≥ 0, b-d ≥ 0,

b-e ≥ 0, c-d ≥ 0, c-e ≥ 0}, λ] ]

Out[9]=

z11z22z33(1− z11
2z12z13z21z22

2z23z31z32z33
2)/

(

(1− z13z22z31)(1− z11z23z32)(1− z12z21z33)(1− z11z22z33)

(1− z11z12z22z23z31z33)(1− z11z13z21z22z32z33)
)

Finally we obtain f (Z) by

In[10]:= Factor[f1+f2+f3+f4]

Out[10]=

−(−1+ z11z12z13z21z22z23z31z32z33)/
(

(−1+ z13z22z31)(−1+ z12z23z31)(−1+ z13z21z32)(−1+ z11z23z32)

(−1+ z12z21z33)(−1+ z11z22z33)
)

But this is the generating function for all magic squares of order 3; see, for instance,
[3]. In this article, following MacMahon an alternative approach to magic squares is
presented; namely, by using the Ω= operator. For illustrative purpose a new application
of this method is given in the next subsection.

3.3. Magic Pentagrams

In [4] M. Gardner discussed generalizations of magic squares to magic configurations
of star and polyhedral shape. For example, for the pentagram with vertex labels a1

to a10 he gave the special instance a1 = 12, a2 = 9, a3 = 6, a4 = 8, a5 = 10, a6 = 1,
a7 = 4, a8 = 2, a9 = 5, and a10 = 3; see Figure 1 below. Note that in this example all
line segments add up to 24; e.g., a1 +a6 +a10 +a4 = 12+1+3+8= 24.
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PSfrag replacements

a1

a2

a3a4

a5 a6 a7

a8

a9

a10

Figure 1: The magic pentagram.

With the Omega package the computation of the generating function of generalized
magic pentagrams is mere routine. More precisely, we compute the rational function
representation of

∑
k,a1,...,a10≥0

qa1+···+a10yk,

where the nonnegative integers ai satisfy the diophantine constraints

a1 +a6 +a10 +a4 = k, a1 +a7 +a8 +a3 = k, a5 +a6 +a7 +a2 = k,

a5 +a10 +a9 +a3 = k, a4 +a9 +a8 +a2 = k.

In[11]:= OEqR[ OEqSum[y^k Product[q^ai, {i,10}], {a1+a6+a10+a4 == k,

a1+a7+a8+a3 == k, a5+a6+a7+a2 == k,

a5+a10+a9+a3 == k, a4+a9+a8+a2 == k}, λ] ]

Out[11]=

1+16q5y2 +41q10y4 +16q15y6 +q20y8

(1−q5y2)6

In[12]:= Factor[%]

Out[12]=

(1+3q5y2 +q10y4)(1+13q5y2 +q10y4)

(−1+q5y2)6

In other words, from the generating function one extracts immediately that there are
no magic pentagrams with odd “magic constant” k. Moreover, the number of general-
ized magic pentagrams with “magic constant” k = 2 j is the coefficient of x j in

(1+3x+ x2)(1+13x+ x2)

(1− x)6 .
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4. New Aspects and Extensions of MacMahon’s Method

Let An(k) denote the set of all n×n matrices over nonnegative integers such that all row
and column sums are equal to k. Let Z = (zi, j)1≤i, j≤n be an n×n matrix of commuting
indeterminates. We define

an(Z; y) := ∑
k≥0,A∈An(k)

ZAyk

as the full generating function for magic squares of size n. As already mentioned above,
in [3] we computed with the Omega package that

a3(Z; y) = ∑
k≥0,A∈A3(k)

ZAyk

= (1− z1,1z1,2z1,3z2,1z2,2z2,3z3,1z3,2z3,3y3)

× 1
(1− z1,1z2,2z3,3y)(1− z1,1z2,3z3,2y)(1− z1,2z2,1z3,3y)

× 1
(1− z1,2z2,3z3,1y)(1− z1,3z2,1z3,2y)(1− z1,3z2,2z3,1y)

,

as already worked out by MacMahon. We call an(Z; y) the full generating function,
since from the corresponding rational expression it is possible to construct all magic
squares for given k. Namely, from the suitably truncated multivariate power series
expansion just take the coefficient of yk.

We also note that for n = 2 the full generating function is very simple; in this case
one has

a2(Z; y) = ∑
k≥0,A∈A2(k)

ZAyk =
1

(1− z1,1z2,2y)(1− z1,2z2,1y)
.

Remarkably for n = 4 the problem is still a computational challenge. Despite the
fact that a variation of the reduction algorithm presented in Section 2 enables to com-
pute a4(Z; y) as a sum of 256 multivariate rational functions, each of them of relatively
simple form, the simplification of these to a single quotient is a bottle-neck. So far this
task cannot be accomplished by the present computer algebra packages like Mathemat-
ica. The same observation applies when trying to compute the full generating func-
tion of magic pentagrams. In this case the simplification problem concerns to add 26
multivariate rational functions with nicely factored denominator and small numerator
polynomials.

We conclude with a few comments on the use of MacMahon’s method in connection
with J. Louck’s work [5].

Let k be a nonnegative integer, and let Z = (zi, j)1≤i, j≤n be as above. Louck’s article
is devoted to the study of properties of the expansion coefficients Ck(A) for the kth
power of the determinant detZ. Namely, it turns out [5, (2.2)] that

(detZ)k = ∑
A∈An(k)

Ck(A)ZA, (4.1)
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where the coefficient Ck(A) is a restricted sum over multinomial coefficients given by

Ck(A) = ∑∗

{kπ≥0:π∈Sn}
(−1)K k!

∏π∈Sn kπ!
with K = ∑

π∈Sn,π odd

kπ. (4.2)

The kπ are nonnegative integer summation variables indexed by permutations from the
symmetric group Sn. The star on the summation quantifier indicates that the summation
is a restricted one: the restriction is that the summation is over all nonnegative integers
kπ such that, for a given magic square A = (ai, j)∈ An(k), kπ must satisfy the n2 relations

∑
{π∈Sn :π(i)= j}

kπ = ai, j, 1 ≤ i, j ≤ n.

MacMahon’s operator method provides an elegant computational derivation of rep-
resentation (4.2). Namely, if Λ = (λi, j)1≤i, j≤n is the n× n matrix containing the λ-
variables the Ω= operator acts on, then (4.2) can be rewritten as

Ck(A) = Ω
=

∑
{kπ≥0:π∈Sn}

(−1)∑π odd kπ k!

∏π∈Sn kπ! ∏
1≤i, j≤n

λ
−ai, j+∑π∈Sn,π(i)= j kπ
i, j

= k!Ω
=

1
ΛA ∏

π∈Sn

∑
kπ≥0

(sign(π)λ1,π(1) · · ·λn,π(n))
kπ

kπ!

= k!Ω
=

1
ΛA e∑π∈Sn sign(π)λ1,π(1)···λn,π(n)

= k!Ω
=

edetΛ

ΛA .

The constant term representation obtained in the last line is no surprise. However,
this alternative representation of the restricted sum in (4.2) allows a compact proof of
Louck’s expansion formula. Before presenting this proof, we reformulate (4.1) accord-
ingly.

Fact 4.1. Let k be a nonnegative integer, and let Z = (zi, j)1≤i, j≤n be an n×n matrix of
commuting indeterminates. Then

(detZ)k = ∑
A∈An(k)

Ck(A)ZA with Ck(A) = k!Ω
=

edetΛ

ΛA ,

where Λ = (λi, j)1≤i, j≤n is the n×n matrix containing the λ-variables the Ω= operator
acts on.

Proof. For each power product ZA which arises in the expansion of (detZ)k we have
that A ∈ An(k). In particular, the total degree of ZA is k · n. Hence we obtain for its
coefficient,

Ck(A) = Ω
=

1
ΛA (detΛ)k

= k!Ω
=

1
ΛA ∑

j≥0

(detΛ) j

j!
= k!Ω

=

edetΛ

ΛA .
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As a by-product of Fact 4.1 we obtain a connection between the exponential gener-
ating function for powers of a determinant with the full generating function an(Z; y) for
magic squares:

Fact 4.2. For Z and Λ as in Fact 4.1 we have

eydetZ = Ω
=

edetΛan(Z
(λ); y),

where
Z(λ) =

(

z(λ)
i, j

)

1≤i, j≤n with z(λ)
i, j :=

zi, j

λi, j
, 1 ≤ i, j ≤ n.

Proof. The statement follows from Fact 4.1 by summing

yk (detZ)k

k!
= yk Ω

=
∑

A∈An(k)

edetΛ ZA

ΛA

for k ≥ 0.

Already these elementary Omega computations indicate that MacMahon’s method
might be useful for further explorations of this type. For instance, Louck [5] discusses
relations of the expansion coefficients Ck(A) to hypergeometric series, to Clebsch-
Gordan coefficients, to even powers of Vandermonde determinants, and to partitions.
However, one might need to extend MacMahon’s machinery by new elimination rules
such as

Ω
=

euλ

1− v/λ
= euv (u,v ∈ C).

Similar Omega elimination rules involving non-rational expressions have been already
applied successfully in [2].
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