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Abstract. We introduce the Banach spaces �pa,b and c0,a,b, of analytic
functions on the unit disc, having normalized Schauder bases consisting
of polynomials of the form fn(z) = (an + bnz)zn, n ≥ 0, where {fn} is
assumed to be equivalent to the standard basis in �p and c0, respectively.
We study the weighted backward shift operator Bw on these spaces, and
obtain necessary and sufficient conditions for Bw to be bounded, and
prove that, under some mild assumptions on {an} and {bn}, the operator
Bw is similar to a compact perturbation of a weighted backward shift on
the sequence spaces �p or c0. Further, we study the hypercyclicity, mixing,
and chaos of Bw, and establish the existence of hypercyclic subspaces for
Bw by computing its essential spectrum. Similar results are obtained for
a function of Bw on �pa,b and c0,a,b.
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1. Introduction

For a suitable sequence ν := (νn)∞
n=0 of complex numbers, the weighted spaces

�p
ν and c0,ν are defined to be the spaces of all analytic functions of the form

f(z) =
∑∞

n=0 λnzn such that
∑

n νn|λn|p < ∞ and limn |νnλn| = 0, respec-
tively. The weighted backward shift operator Bw on such a space is given by

Bw

( ∞∑

n=0

λnzn

)

=
∞∑

n=0

wn+1λn+1z
n.

The spaces �p
ν and c0,ν , and the operator Bw play central roles in operator

theory, particularly in linear dynamics. Motivated by this, we introduce �p
a,b

and c0,a,b, which are Banach spaces of analytic functions on the unit disc in
the complex plane, having normalized Schauder bases of the form

{
(an + bnz)zn : n ≥ 0

}
,

equivalent to the standard bases in �p(N) and c0(N), respectively. We primarily
study the dynamical properties (hypercyclicity, mixing, periodic vectors, and
chaos) of Bw on these spaces. The spaces �p

a,b and c0,a,b are of independent
and general interest as well because they are the “next best” Banach spaces,
compared to the weighted �p and c0 spaces. For a general theory of classical
weighted shifts, we refer to Shields [35]. In linear dynamics, shifts received a
major attention through Godefroy and Shapiro [21], Kitai [25] and Salas [34].
For an account on the fundamentals of linear dynamics, see the monographs
by Bayart and Matheron [4] and Grosse-Erdmann and Peris [24].

An operator T on a separable Banach space X is said to be hypercyclic
if there exists x ∈ X, known as a hypercyclic vector for T , such that the orbit
{x, Tx, T 2x, · · · } is dense in X. If a hypercyclic operator T on X has a dense
set of periodic vectors, then T is called chaotic. Recall that a vector y ∈ X
is periodic for T if its orbit under T is periodic, that is, T py = y for some
p. An operator T on X is said to be topologically transitive if, for two non-
empty open sets U1 and U2 of X, there exists a natural number k such that
T k(U1)∩U2 �= φ. The transitivity notion is equivalent to that of hypercyclicity,
assuming the separability of the underlying Banach space X. A strong form
of transitivity is the topological mixing: an operator T is topologically mixing
on X if, for any two non-empty open sets U1 and U2 of X, there exists N , a
natural number, such that Tn(U1)∩U2 �= φ for all n ≥ N . Mixing and chaos are
stronger than the hypercyclicity; however, they are not comparable in general.
Several familiar operators including weighted shifts on sequence spaces, and
composition operators and differential operators on analytic function spaces
exhibit the hypercyclic, mixing and chaotic properties. The study is intimately
related to classical areas such as complex function theory, dynamical systems,
and operator theory, cf. [4,24].
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We will make use of the following standard criteria in linear dynamics
for establishing the hypercyclic and chaotic properties of the backward shift.
Different versions of these criteria are available in the literature, cf. [4,24].

Theorem 1.1 (Gethner-Shapiro Criterion [19]). Let T be a bounded operator on
a separable Banach space X, and let X0 be a dense subset of X. If {nk} ⊆ N

is a strictly increasing sequence and S : X0 �→ X0 is a map such that, for each
x ∈ X0,

lim
k→∞

Tnkx = 0 = lim
k→∞

Snkx,

and

TSx = x,

then T is hypercyclic. Moreover, if nk = k for all k ≥ 1, then T is mixing on
X.

A similar criterion, known as the chaoticity criterion, has been used to
obtain chaotic operators in Banach spaces, cf. [10]. This criterion is very strong,
and it has several powerful implications in linear dynamics; see [4] and [24].

Theorem 1.2 (Chaoticity Criterion [10]). Let X be a separable Banach space,
X0 be a dense set in X, and let T be a bounded operator on X. If there exists
a map S : X0 → X0 such that

∑

n≥0

Tnx and
∑

n≥0

Snx,

are unconditionally convergent, and

TSx = x

for each x ∈ X0, then the operator T is chaotic and mixing on X.

Theorem 1.3 (Eigenvalue Criteria [4,24]). Let T be a bounded operator on a
separable complex Banach space X. Suppose that the subspaces

X0 = span{x ∈ X; Tx = λx, λ ∈ C, |λ| < 1},

X1 = span{x ∈ X; Tx = λx, λ ∈ C, |λ| > 1},

are dense in X.Then T is mixing, and in particular hypercyclic. In addition,
if the subspace

X2 = span{x ∈ X; Tx = eαπix, α ∈ Q},

is dense in X, then T is chaotic.

Rolewicz [33] showed that λB is hypercyclic on the sequence space �p,
where |λ| > 1, B is the unweighted backward shift and 1 ≤ p < ∞. Salas
[34] provided a complete characterization of the hypercyclicity of classical uni-
lateral and bilateral shifts. Hypercyclicity and chaos of weighted shifts on F -
sequence spaces were characterized by Grosse-Erdmann [23]. Also, see Costakis
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and Sambarino [14] for mixing shifts, and Bonet, Kalmes and Peris [9] for
dynamics of shifts on non-metrizable sequence spaces. It is well known that
the backward shift on the Bergman space of the unit disc is a mixing and
non-chaotic operator, cf. Gethner and Shapiro [19] and Grosse-Erdmann [23],
respectively. We also refer to Bonet [8], Beise and Müller [6], Beise, Meyrath
and Müller [7], Bourdon and Shapiro [11], and Müller and Maike [30] for the
dynamics related to the backward shift on analytic function spaces, (Bergman
spaces, mostly).

The paper is organized as follows. In Section 2, we introduce the analytic
function spaces �p

a,b and c0,a,b, and obtain necessary and sufficient conditions
for the weighted shift Bw to be bounded on these spaces. In Section 3, un-
der some mild conditions we show that the operator Bw on �p

a,b and c0,a,b

is similar to a compact perturbation of a classical weighted shift on �p and
c0, respectively. Using this result, we compute the essential spectrum of Bw,
which establishes the existence of hypercyclic subspaces for Bw. In Section 4,
we characterize the hypercyclicity, mixing, and chaos of Bw in �p

a,b and c0,a,b.
Further, the dynamical properties of functions of the weighted shift Bw are
also studied.

2. The Analytic Function Spaces �p
a,b and c0,a,b , and the

Co-ordinate Functionals

In this section, we introduce the spaces �p
a,b, 1 ≤ p < ∞ and c0,a,b, and pri-

marily, show that the co-ordinate functionals are bounded, and estimate useful
upper bounds for their norms. We need the concept of equivalent Schauder
bases in Banach spaces. Let X and Y be Banach spaces. Two Schauder bases,
{un}∞

n=0 of X and {vn}∞
n=0 of Y, are equivalent if the convergence of

∑∞
n=1 anun

is equivalent to that of
∑∞

n=1 anvn; see, for instance [26], page 5.
Let a = {an}∞

n=0 and b = {bn}∞
n=0 be two sequences of complex numbers,

where an �= 0 for all n. Let �p
a,b denote the space of all analytic functions on

the unit disc, having a normalized Schauder basis consisting of polynomials of
the form fn(z) = (an + bnz)zn, n ≥ 0, which is equivalent to the standard
basis in �p, 1 ≤ p < ∞, that is, f(z) =

∑∞
n=0 λnfn(z) ∈ �p

a,b, if and only if

‖f‖�pa,b
=

( ∞∑

n=0

|λn|p
) 1

p

.

For �2a,b, we assume something more, that is, {fn} to be an orthonormal basis.
Note that, for an = 1 and bn = 0 for all n ≥ 0, we get the standard �p,

1 ≤ p < ∞ space of all analytic functions on the unit disc. We can similarly
define the space c0,a,b which consists of analytic functions, for which {(an +
bnz)zn : n ≥ 0} forms a normalized Schauder basis, equivalent to the standard
basis in c0. Moreover, for f(z) =

∑
n λnfn(z) in c0,a,b, we have limn→∞ λn = 0.



Dynamics of Weighted Backward Shifts Page 5 of 29   242 

Define the norm in c0,a,b as

‖f‖c0,a,b
:= sup

n≥0
|λn|.

The Hilbert space case of �2a,b, was studied by Adams and McGuire, cf. [1] in the
context of tridiagonal kernels and commutants of the forward shift operator.
For �p

a,b, observe that {fn} is an unconditional basis. When bn = 0 for all n,
then �p

a,b and c0,a,b become the standard weighted �p and c0 spaces. Below,
we show that there is a natural open disc on which every function in �p

a,b is
analytic. The same also holds for c0,a,b. In the proof, we will also see that the
norm expansion f =

∑
n≥0 λnfn =

∑
n≥0 λn(anzn + bnzn+1) in �p

a,b and c0,a,b

imply that the series can be rearranged so that the Taylor series is absolutely
convergent to f(z) on the respective domains D1, D2 or D3.

Theorem 2.1. For given complex sequences, a = {an} and b = {bn}, set

D1 :=

{

z ∈ C :
∞∑

n=0

((|an| + |bn|)|z|n)q
< ∞

}

,

where 1
p + 1

q = 1,

D2 :=
{

z ∈ C : sup
n≥0

(|an| + |bn|)|z|n < ∞
}

,

and

D3 :=

{

z ∈ C :
∞∑

n=0

(|an| + |bn|)|z|n < ∞
}

.

If f =
∑∞

n=0 λnfn ∈ �p
a,b, 1 < p < ∞, then the series

∑∞
n=0 λn(an + bnz)zn

converges uniformly and absolutely on compact subsets of D1. Also, the evalu-
ation functional f �−→ f(λ), is bounded for each λ ∈ D1.
The same conclusions hold true with respect to the domains D2 and D3, re-
spectively, for the spaces �1a,b and c0,a,b.

Proof. We provide the proof for �p
a,b when 1 < p < ∞, and it is essentially

similar for �1a,b and c0,a,b.
Let f ∈ �p

a,b for 1 < p < ∞. Then f has a norm expansion f =
∑∞

n=0 λnfn

and ‖f‖p
�pa,b

=
∑

n≥0 |λn|p. Fix a closed ball K := |z| ≤ R that lies in D1. Note
that, we have

sup
z∈K

∞∑

n=0

((|an| + |bn|)|z|n)q
< ∞,
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where 1
p + 1

q = 1. Now, by using the Hölder’s inequality, we get
∞∑

n=0

|λn(an + bnz)zn| ≤ max{1, |z|}
∞∑

n=0

|λn|(|an| + |bn|)|z|n

≤ max{1, |z|}
( ∞∑

n=0

|λn|p
) 1

p
( ∞∑

n=0

((|an| + |bn|)|z|n)q

) 1
q

= C‖f‖�pa,b
< ∞,

where

C = max
z∈K

⎧
⎨

⎩
1, |z|,

( ∞∑

n=0

((|an| + |bn|)|z|n)q

) 1
q

⎫
⎬

⎭
.

Hence, the series
∑∞

n=0 λn(an + bnz)zn converges absolutely and uniformly on
compact subsets of D1. �

An important consequence of the above theorem is that on any closed disk
in Dj , j = 1, 2, 3, the series f =

∑∞
n=0 λnfn in �p

a,b and c0,a,b can be rearranged
as a power series so that Taylor series of f(z) about the origin, converges point-
wise to f(z), and hence, we have f(z) = λ0a0 +

∑∞
n=1(λnan + λn−1bn−1)zn

point-wise. Equivalently, the evaluation functionals are continuous.
We will always assume that D1 = D2 = D3 = D, where D is the open unit

disc in the complex plane.
The case of �2a,b is of special importance as it is a reproducing kernel

Hilbert space. Occasionally, we will infer the dynamics of a weighted shift Bw

from the general properties of the kernels of the reproducing kernel spaces on
which Bw is defined. We briefly recall the basics and essential properties of
analytic (scalar valued) reproducing kernel Hilbert spaces, and refer to Aron-
szajn [2] and Paulsen and Raghupati [32]. A function k : D × D → C is called
an analytic kernel (or a reproducing kernel) if z �→ k(z, ζ) is analytic for each
fixed ζ ∈ D and

n∑

i,j=1

αiαjk(ζi, ζj) ≥ 0,

for all choices of ζ1, . . . , ζn ∈ D, α1, . . . , αn ∈ C, and n ∈ N. For an analytic
kernel k(z, ζ) over D, there exists a unique Hilbert space H(k) of analytic
functions on D such that span {k(·, ζ) : ζ ∈ D} is dense in H(k) and

f(ζ) =
〈
f, k(., ζ)

〉
H(k)

, (2.1)

for all f ∈ H(k), ζ ∈ D. Here, the symbol k(·, ζ) denotes the function z �→
k(z, ζ) on D. Moreover, for α1, . . . , αn ∈ C and ζ1, . . . , ζn ∈ D,

‖
n∑

j=1

αjk(., ζj)‖2H(k) =
n∑

i,j=1

αiαjk(ζi, ζj),
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which can be seen from (2.1). The Hilbert space H(k) is called the analytic
reproducing kernel Hilbert space associated to the kernel k(z, ζ). From (2.1)
it follows that the evaluation functional evζ : H(k) → C is bounded for all
ζ ∈ D, where evζ(f) = f(ζ), f ∈ H(k). From (2.1), it also follows that k(z, ζ)
is co-analytic in ζ.

The following are noteworthy: (1) an analytic kernel k(z, ζ) is the kernel
for a Hilbert space H of analytic functions on D if and only if all the evaluation
functionals are bounded on H, the span {k(., ζ) : ζ ∈ D} is dense in H, and
f(ζ) =

〈
f, k(., ζ)

〉
H for all f ∈ H and ζ ∈ D. The kernel function has a formula,

namely k(z, ζ) =
∑

n≥0 en(z)en(ζ) for any orthonormal basis {en}n≥0 of the
space for which k(z, ζ) is the kernel, cf. [32].
(2) Several well known spaces have reproducing kernels. A standard example
for an analytic reproducing kernel space is the diagonal space H2(β): for a
given β = {βn}∞

n=0 of strictly positive reals, this space consists of analytic
functions f(z) =

∑
n≥0 λnzn on D such that ‖f‖2 :=

∑
n≥0 |λn|2/βn < ∞.

As
√

βnzn, n ≥ 0, forms an orthonormal basis for H2(β), its kernel is given
by

∑
n≥0 βnznζ

n
. The classical spaces of Hardy, Bergman, and Dirichlet over

the unit disc, are analytic reproducing kernel spaces, whose kernels can be
explicitly written using the aforementioned formula for k(z, ζ).

Kernels are useful in linear dynamics as well. It is known that, if k(z, ζ)
is an analytic scalar kernel, then the derivatives

∂nk(., 0)
∂ζ

n

can give information on the dynamics of the adjoint of the multiplication by the
independent variable on H(k), see [31]. We will use the following facts on the
co-ordinate functionals to derive the necessary parts in the characterization of
hypercyclicity, mixing and chaos of Bw on �p

a,b and c0,a,b. This result is known
for the case of reproducing kernel spaces, cf. [31].

Proposition 2.2. Let X be a Banach space of analytic functions on D, having
bounded evaluation functional evz, at every point z ∈ D. Then

dnevz

dzn
|z=0 ∈ X∗

with the action given by

dnevz

dzn
|z=0(f) = f (n)(0),

for all f ∈ X and n ≥ 0.

Proof. We have that evz(f) = f(z), where f ∈ X. Note that the X∗-valued
function

z �→ evz
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is point-wise analytic on D, and it is analytic in the norm of X∗ as the an-
alyticity in the strong operator topology and the same in the operator norm
topology are equivalent, cf. Chapter 5, Theorem 1.2, [36]. Thus, using the
closed graph theorem, it follows that

dnevz

dzn
|z=0 ∈ X∗

for n ≥ 0. The power series expansion (in the norm of X∗)

evz =
∑

n≥0

1
n!

zn dnevz

dzn
|z=0,

along with the observation

evz(f) = f(z) =
∑

n≥0

1
n!

znf (n)(0),

for all f ∈ X yields that
dnevz

dzn
|z=0(f) = f (n)(0),

which completes the proof. �

The above result in the case of a Hilbert space of analytic functions can
be stated in terms of the analytic kernel of the space, and its proof uses the
analyticity of k(z, ζ) in the variable z, and co-analyticity in ζ. Indeed, since
the map ζ �→ k(., ζ) is co-analytic, we have the power series of k(., ζ) in terms
of ζ. Now, proceed as in the proof of the previous proposition. Also, see [31]
and [15].

Proposition 2.3. If H(k) is an analytic reproducing kernel space over D, then

∂nk(., 0)
∂ζ

n ∈ H(k) and f (n)(0) =
〈
f,

∂nk(., 0)
∂ζ

n

〉
H(k)

,

for all n ≥ 0 and f ∈ H(k). Moreover,
∥
∥
∥
∥

∂nk(., 0)
∂ζ

n

∥
∥
∥
∥

H(k)

=
(

∂2nk

∂zn∂ζ
n (0, 0)

)1/2

.

We can now observe that the Hilbert space �2a,b is a reproducing kernel
Hilbert space, and {fn}∞

n=0 forms an orthonormal basis, where

fn(z) = (an + bnz)zn, n ≥ 0.

Since, k(z, ζ) =
∑

n≥0 fn(z)fn(ζ), we get the kernel of �2a,b as

k(z, ζ) = |a0|2 +
∑

n≥1

(|an|2 + |bn−1|2)znζ
n

+
∑

n≥0

anbnznζ
n+1

+
∑

n≥0

anbnzn+1ζ
n
, (2.2)
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for all z, ζ ∈ D. This is an example of an analytic tridiagonal kernel. The
space �2a,b is called a tridiagonal kernel space. For more on the terminology of
tridiagonal kernels, we refer to Adams and McGuire [1] wherein the authors
showed striking differences between the usual weighted forward shifts on �2

and the tridiagonal shifts in terms of their commutants.

Proposition 2.4. Let Ln denote the co-ordinate functional

f �→ f (n)(0)
n!

,

defined on �p
a,b or c0,a,b, where n ≥ 1. Then, the norm of the functional Ln

satisfies

‖Ln‖ ≤ (|an|q + |bn−1|q)1/q,

where 1 < p < ∞ and 1/p + 1/q = 1. For p = 1, we have ‖Ln‖ ≤ max
{|an|, |bn−1|}. Also, for the case of c0,a,b, ‖Ln‖ ≤ |an| + |bn−1|.
Proof. We provide the proof only for the case 1 < p < ∞. If f ∈ �p

a,b, then

f(z) =
∞∑

n=0

λnfn(z) =
∞∑

n=0

λn(an + bnz)zn,

and ‖f‖p
�pa,b

= (
∑

n≥0 |λn|p)1/p. Rearranging into a power series, we obtain

f(z) = λ0a0 +
∑

n≥1

(λnan + λn−1bn−1)zn,

and so,

Ln(f) = λnan + λn−1bn−1.

It follows, by Hölder inequality, that

|Ln(f)| ≤ ‖f‖�pa,b
(|an|q + |bn−1|q)1/q,

that is, ‖Ln‖ ≤ (|an|q + |bn−1|q)1/q. �

3. The Weighted Shift Bw : Boundedness, Compact
Perturbation and the Essential Spectrum

For a given sequence w := {wn}n≥0 of non-zero complex numbers, we define
the weighted backward shift Bw on �p

a,b and also on c0,a,b to be the operator

(Bwf)(z) =
∞∑

n=0

wn+1λn+1z
n, (3.1)

for f(z) =
∑∞

n=0 λnzn in �p
a,b or c0,a,b. We derive conditions for the shift

operator Bw to be bounded on these spaces. For this, we express a monomial zn

as an expansion in the basis {fn}; see (3.2) below. Such an expression will help
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us to find estimates of ‖zn‖�pa,b
in terms of {an} and {bn}, (Proposition 4.1).

Indeed, fix n ≥ 0, and write zn =
∑∞

j=0 αjfj for some αj ∈ C. Then zn =
α0a0 +

∑∞
j=1(αj−1bj−1 + αjaj)zj . Thus, comparing the coefficients, we have

α0 = α1 = ··· = αn−1 = 0, and αn = 1
an

. Since αn+k−1bn+k−1+αn+kan+k = 0,
it follows that

αn+k = −αn+k−1bn+k−1

an+k
,

and thus

αn+k =
(−1)k

an

bnbn+1 · · · bn+k−1

an+1an+2 · · · an+k
, (k ≥ 1).

This implies

zn =
1
an

∞∑

j=0

(−1)j

( ∏j−1
k=0 bn+k

∏j−1
k=0 an+k+1

)

fn+j , (n ≥ 0), (3.2)

where the term corresponding to j = 0 is 1. (Also, see [1], p. 727.) The above
expansion will be used repeatedly.

To obtain necessary and sufficient conditions for Bw to be bounded on
�p
a,b and c0,a,b, we compute the matrix of the operator Bw with respect to the

normalizes Schauder basis {fn}n≥0 and then, study the matrix operator on �p

and c0. See [1] for a similar study on tridiagonal shifts.

Proposition 3.1. The matrix representation of Bw with respect to the (ordered)
Schauder basis {fn}n≥0 is

[Bw] :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1b0
a0

w1a1
a0

0 0 0 · · ·
−w1b20

a0a1
c1

w2a2
a1

0 0
. . .

w1b20b1
a0a1a2

− c1b1
a2

c2
w3a3

a2
0

. . .

− w1b20b1b2
a0a1a2a3

c1b1b2
a2a3

− c2b2
a3

c3
w4a4

a3

. . .

w1b20b1b2b3
a0a1a2a3a4

− c1b1b2b3
a2a3a4

c2b2b3
a3a4

− c3b3
a4

. . . . . .
...

...
...

. . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.3)

Proof. Recall the Schauder basis fn(z) = (an+bnz)zn, n ≥ 0, in �p
a,b and c0,a,b.

Note that Bw(fn)(z) = wnanzn−1 + wn+1bnzn, n ≥ 1. For f0(z) = a0 + b0z,
using (3.2), we get

Bw(f0)(z) = w1b0 =
w1b0
a0

f0 − w1b
2
0

a0a1
f1 +

w1b
2
0b1

a0a1a2
f2 − w1b

2
0b1b2

a0a1a2a3
f3 + · · · .

For n ≥ 1, we have

Bw(fn)(z) = wnanzn−1 + wn+1bnzn

=
wnan

an−1
fn−1 + (

wn+1bn

an
− wnan

an−1

bn−1

an
)anzn.
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Setting

cn := wn+1
bn

an
− wn

bn−1

an−1
,

we immediately get Bw(fn)(z) = wnan

an−1
fn−1 + cnanzn, n ≥ 1. Applying (3.2),

it follows that

Bw(f1)(z) =
w1a1

a0
f0 + c1f1 − c1b1

a2
f2 +

c1b1b2
a2a3

f3 − · · · ,

Bw(f2)(z) =
w2a2

a1
f1 + c2f2 − c2b2

a3
f3 +

c2b2b3
a3a4

f4 − · · · ,

and so on. These expressions give rise to the matrix of Bw with respect to
{fn}∞

n=0, as in the proposition. �

Compare the above matrix for the unweighted shift, with that of a left inverse
of the multiplication operator

(
Sf

)
(z) = zf(z) defined on a tridiagonal space,

cf. Das and Sarkar [17], Proposition 3.1.
We now determine necessary and sufficient conditions under which the

above (formal) matrix defines a bounded operator on �p and c0,a,b. Equiva-
lently, this gives boundedness results for Bw acting on �p

a,b and c0,a,b.

Proposition 3.2. If Bw is bounded on �p
a,b and c0,a,b, then {wn+1an+1

an
}n≥1 and

{cn}n≥1 are bounded.

Proof. Let Bw be bounded on �p
a,b, 1 ≤ p < ∞. Then the matrix [Bw] induces

a bounded operator on �p. Let vn be the n-th column of [Bw]. Operating [Bw]
on the subset {en}n≥1 of the standard basis in �p, since [Bw](en) = vn, we get
that

sup
n

‖vn‖ < ∞.

On the other hand,

‖vn‖p
�p ≥ ∣

∣wnan

an−1

∣
∣p + |cn|p, n ≥ 1.

This implies the necessary conditions for �p
a,b, as in the proposition. The case

of c0,a,b is similar. �

The following theorem gives a (general) sufficient condition for Bw to be
bounded.

Theorem 3.3. If

sup
n≥1

{
|wn+1an+1

an
|, |cn|

}
< ∞, and

∞∑

n=1

max
{∣

∣
∣
∣
w1b

2
0b1 · · · bn−1

a0a1 · · · an

∣
∣
∣
∣ , sup

j≥1

∣
∣
∣
∣
cjbjbj+1 · · · bj+n−1

aj+1aj+2 · · · aj+n

∣
∣
∣
∣

}

< ∞,

then Bw is bounded on �p
a,b and c0,a,b, where 1 ≤ p < ∞.
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Proof. Recall the matrix representation of Bw. We can split this matrix as a
formal series of infinite matrices as follows:

[Bw] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w1a1
a0

0 0 · · ·
0 0 w2a2

a1
0

. . .

0 0 0 w3a3
a2

. . .

0 0 0 0
. . .

...
...

...
. . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1b0
a0

0 0 0 · · ·
0 c1 0 0

. . .

0 0 c2 0
. . .

0 0 0 c3
. . .

...
...

...
. . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · ·
−w1b20

a0a1
0 0

. . .

0 − c1b1
a2

0
. . .

0 0 − c2b2
a3

. . .
...

...
. . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ . . . ,

which is a (formal) series [Bα] + [D] +
∑∞

n=1[Fn]. Here, [Bα] is the matrix of
the standard weighted backward shift Bα(ei) �→ αiei−1 on �p, i ≥ 1, having
weights

αi = wi
ai

ai−1
, (i ≥ 1),

and [D] is the matrix of the diagonal operator

diag
(

w1b0
a0

, c1, c2, · · ·
)

on �p. The matrix [Fn] is obtained by deleting all the entries of [Bw], except
those at the n-th (lower) subdiagonal, where n ≥ 1. Observe that [Fn] is the
matrix of suitable powers of a weighted forward shift Fn for n ≥ 1.
It follows, respectively by the first two assumptions in the theorem, that the
weighted shift Bα and the diagonal operator D are bounded on �p. Since

‖Fn‖ = max
{∣

∣
∣
∣
w1b

2
0b1 · · · bn−1

a0a1 · · · an

∣
∣
∣
∣ , sup

j≥1

∣
∣
∣
∣
cjbjbj+1 · · · bj+n−1

aj+1aj+2 · · · aj+n

∣
∣
∣
∣

}

,

the third condition in the theorem gives that Fn is bounded, and
∑

n≥1 ‖Fn‖ <

∞, with respect to the operator norm. Hence, the shift Bw is bounded on �p
a,b.

This completes the proof of the theorem. �

Remark 3.4. We note that the unweighted backward shift B is a left-inverse
of the multiplication operator (Sf)(z) = zf(z) on �p

a,b. In the case of p = 2,
a closely related left inverse B1 of S was studied in [17], wherein the authors
obtained conditions for the boundedness of B1. The matrices of B and B1 are
almost the same, except the difference in the first columns. In the weighted
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case, the following assumptions for the boundedness are strong, compared to
those in the above theorem. Indeed, the conditions

sup
n≥1

|wn+1
an+1

an
| < ∞ and lim sup

n

∣
∣
∣
∣

bn

an+1

∣
∣
∣
∣ < 1 (3.4)

imply those in Theorem 3.3. To see this, writing

cn =
bn

an+1

wn+1an+1

an
− wnan

an−1

bn−1

an
, (n ≥ 1),

we can see that {cn} is bounded. Moreover, since lim supn

∣
∣
∣ bn
an+1

∣
∣
∣ < 1, there

exist r < 1 and N ∈ N such that
∣
∣
∣ bn
an+1

∣
∣
∣ < r, for n ≥ N . From this, the

remaining conditions in Theorem 3.3 follow.

Under some mild assumptions on {an} and {bn}, we prove that the shift
Bw acting on �p

a,b and c0,a,b are similar to the sum Bα + K on �p and c0,
respectively, for a suitable weighted backward shift on �p or c0, and a compact
operator K. Using this perturbation result, we compute the essential spectrum
of the shift Bw for the case 1 < p < ∞. These results are of independent
interest as well.

An operator T on a Banach space is called Fredholm if its kernel Ker T
and the quotient X/T (X) of the range of T , are of finite dimension. In case
X is reflexive, then T is Fredholm if and only if Ker T and Ker T ∗ are finite
dimensional. The essential spectrum σe(T ), of an operator T on a complex
Banach space X is the set of all λ ∈ C such that T − λI is not Fredholm, that
is,

σe(T ) = {λ ∈ C : dim Ker (T − λI) = ∞ or dim Ker (T ∗ − λI) = ∞},

where T ∗ is the adjoint of T , cf. Bayart and Matheron [4] and Douglas [18].
The essential spectrum plays a key role in the investigation of hypercyclic
subspaces; see the section 4.

In the proof of the following theorem, we use a well known fact: σe(T ) is
invariant under a compact perturbation, that is,

σe(T + K) = σe(T )

for every compact operator K.

Theorem 3.5. Assume that

sup
n

|wn+1
an+1

an
| < ∞, lim sup

n
| bn

an+1
| < 1, and lim

n

∣
∣
∣
∣wn+1

bn

an
− wn

bn−1

an−1

∣
∣
∣
∣ = 0.

Then the following hold.

(i) The operator Bw on �p
a,b (and c0,a,b) is similar to Bα + K for some

compact operator K and the weighted backward shift Bα on the sequence
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space �p (c0, respectively), where the weight sequence α = (αn) is given
by

αn = wn
an

an−1
, n ≥ 1.

(ii) On �p
a,b, 1 < p < ∞, the essential spectrum σe(Bw) is the annulus

sup
n≥1

(

inf
k≥1

∣
∣
∣
∣(wk+1wk+2 · · · wk+n)

ak+n

ak

∣
∣
∣
∣

)1/n

≤ |z|

≤ inf
n≥1

(

sup
k≥1

∣
∣
∣
∣(wk+1wk+2 · · · wk+n)

ak+n

ak

∣
∣
∣
∣

)1/n

.

Proof. The proof relies on the matrix representation of Bw with respect to the
basis fn(z) = (an + bnz)zn of �p

a,b. Consider the similarity map U : �p
a,b → �p

given by

U

( ∞∑

n=0

λnfn

)

=
∞∑

n=0

λnen,

that is, U(fn) = en for all n, where {en}n≥0 is the standard basis in �p. Now,
from the proof of Theorem 3.3 we recall that Bw on �p

a,b is similar via U to
the sum (in the operator norm)

Bα + D +
∞∑

m=1

Fm.

Here, Bα in the weighted backward shift on �p with weights

αn = wn
an

an−1
, n ≥ 1. (3.5)

Further, by the assumptions, the operators D and Fm are compact on �p

since the entries in the matrix of D and Fm converge to 0, m ≥ 1. Hence,
K := D+

∑∞
m=1 Fm is a compact operator on �p, and consequently, Bw acting

on �p
a,b is unitarily equivalent to Bα + K. This proves (i).
The invariance of the essential spectrum under compact perturbations

along with (i) yields that

σe(Bw) = σe(Bα + K) = σe(Bα).

Thus, it is enough to compute σe(Bα). We now recall the essential spectrum
of a weighted backward shift on �2 and refer to [4] and [35]: In general, for
a weighted shift Bα corresponding to α = {αn}∞

n=1 of non-zero weights, the
essential spectrum σe(Bα) is the annulus

sup
n≥1

(

inf
k≥1

n∏

i=1

|αk+i|
)1/n

≤ |z| ≤ inf
n≥1

(

sup
k≥1

n∏

i=1

|αk+i|
)1/n

.
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The same proof applies to the case of Bw on �p, 1 < p < ∞. In our setting,
Bα is the weighted shift with weights as in (3.5). Since

n∏

i=1

αk+i = (wk+1wk+2 · · · wk+n)
ak+n

ak

for all k, n ≥ 1, the result in (ii) follows. The proof is complete. �

4. Linear Dynamics of Bw

In this section, we characterize the hypercyclicity, mixing, and chaos of Bw

on �p
a,b and c0,a,b. The following estimates on the norms of monomials will be

used in the characterizations of the hypercyclicity properties of Bw.

Proposition 4.1. Assume that the conditions in Theorem 3.3 hold. Then, �p
a,b

contains all the polynomials densely, 1 ≤ p < ∞. Also,

‖zn‖�pa,b
=

1
|an|

⎛

⎝1 +
∞∑

j=1

∣
∣
∣
∣
bnbn+1 · · · bn+j−1

an+1an+2 · · · an+j

∣
∣
∣
∣

p
⎞

⎠

1/p

. (4.1)

In addition, if lim supn | bn
an+1

| < 1, then there is a constant M1 > 0 such that

‖zn‖�pa,b
≤ M1

|an| , n ≥ 0. (4.2)

Proof. Under the hypothesis, the operator Bw is bounded on �p
a,b. It follows

that w0b0 = Bw(a0 + b0z) and wnanzn−1 + wn+1bnzn = Bw(anzn + bnzn+1),
n ≥ 1, belong to �p

a,b. Choosing different values of n, we find that the polynomi-
als are contained in �p

a,b. Indeed, w1a1 + w2b1z ∈ �p
a,b and hence the monomial

z (and other powers zn, similarly) belongs to �p
a,b.

By the basis expansion in �p
a,b and the continuity of evaluation functionals,

we can find some {λj}∞
j=0 ∈ �p such that

zn =
∑

j≥0

λj(ajz
j + bjz

j+1),

for all z ∈ D. Equating the coefficients of like-powers, we have that λj = 0 for
j = 0, . . . , n − 1, and

λn =
1
an

, λn+1 = − bn

an+1
λn = − 1

an

bn

an+1
, λn+2 =

1
an

bn

an+1

bn+1

an+2
, (4.3)

and so on. Since ‖zn‖p
�pa,b

=
∑

j≥0 |λj |p, we have

‖zn‖p
�pa,b

=
1

|an|p +
∣
∣
∣
∣

1
an

bn

an+1

∣
∣
∣
∣

p

+
∣
∣
∣
∣

1
an

bn

an+1

bn+1

an+2

∣
∣
∣
∣

p

+ · · · , (4.4)

which gives the norm of zn.
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On the other hand, the strong assumption lim supn | bn
an+1

| < 1 implies
that there exist r < 1 and N ∈ N such that |bn/an+1| < r for all n ≥ N . Thus,
by the equation (4.4) we have

‖zn‖p
�pa,b

≤ 1
|an|p

⎛

⎝
∑

k≥0

rpk

⎞

⎠ ,

for every n ≥ N . The required result in the second part of the proposition
follows. �

The c0,a,b analogue of the above result is as follows, and its proof is
omitted.

Proposition 4.2. Assume that the conditions in Theorem 3.3 hold. Then

‖zn‖c0,a,b
= max

{
1

|an| ,
1

|an| sup
j≥1

∣
∣
∣
∣
bnbn+1 · · · bn+j−1

an+1an+2 · · · an+j

∣
∣
∣
∣

}

. (4.5)

In addition, if lim supn | bn
an+1

| < 1, then there is a constant M2 > 0 such that

‖zn‖c0,a,b
≤ M2

|an| , n ≥ 0. (4.6)

We need one more result which also shows the connections between dy-
namics of the backward shift operator and derivatives of the underlying kernel.

Proposition 4.3. Let the weighted backward shift Bw be a bounded operator on
a Banach space X of analytic functions on the unit disc D, such that X has
some functions not vanishing at the origin.
(i) For some bounded subset Y of X, if the orbit ∪n≥1B

n
w(Y ) is dense, then

sup
n≥0

|w1w2 · · · wn|
n!

∥
∥
∥
∥

dnevz

dzn
|z=0

∥
∥
∥
∥ = ∞.

In particular, this is true if Bw is hypercyclic.
(ii) If Bw is topologically mixing, then

lim
n→∞

|w1w2 · · · wn|
n!

∥
∥
∥
∥

dnevz

dzn
|z=0

∥
∥
∥
∥ = ∞.

Proof. (i) Suppose that

{(Bw)nf : n ≥ 1, f ∈ Y }
is dense in X. It follows from the continuity of the (non-zero) evaluation func-
tional ev0(g) = g(0), g ∈ X, that {(Bn

wf)(0) : n ≥ 1, f ∈ Y } is dense in C.
Now, from the expression

(Bn
wf)(0) = w1w2 · · · wn

f (n)(0)
n!

, n ≥ 1,
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we get that

sup
n≥1,f∈Y

|w1w2 · · · wn
f (n)(0)

n!
| = ∞. (4.7)

On the other hand, Proposition 2.2 shows that the co-ordinate functional de-
fined by

(dnevz

dzn
|z=0

)
(g) =

g(n)(0)
n!

, g ∈ X,

is bounded. Combining (4.7) with

∣
∣f (n)(0)

∣
∣ ≤

∥
∥
∥
∥

dnevz

dzn
|z=0

∥
∥
∥
∥ ‖f‖�pa,b

, n ≥ 1,

one gets (i) as Y is bounded.
To obtain (ii), we recall from Bonet [9] that if T is a mixing operator on

a Banach space X, then

lim
n→∞ ‖(T ∗)n(x∗)‖ = ∞,

for each non-zero bounded linear functional x∗ on X, i.e.

lim
n→∞ ‖x∗ ◦ Tn‖ = ∞.

From this, we find f ∈ X such that limn→∞ |x∗(Tnf)| = ∞. In our case,
T = Bw, and take x∗ = ev0, and we can see that (ii) holds, as in (i). �

Proposition 4.4. Let the weighted backward shift Bw be a bounded operator
on a (not necessarily tridiagonal) reproducing kernel space H(k) of analytic
functions on the unit disc D, such that H(k) has some functions not vanishing
at the origin.

(i) If Bw is hypercyclic, then

sup
n≥0

|w1w2 · · · wn|
n!

(
∂2nk

∂zn∂ζ
n (0, 0)

) 1
2

= ∞.

(ii) If Bw is topologically mixing, then

lim
n→∞

|w1w2 · · · wn|
n!

(
∂2nk

∂zn∂ζ
n (0, 0)

) 1
2

= ∞.

With the above two general propositions in hand, we can now state and
prove the main dynamical results of Bw, using the hypercyclicity and chaoticity
criteria.

Theorem 4.5. Assume that the conditions of Theorem 3.3 hold.
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(i) If

sup
n≥1

|w1w2 · · · wnan|
(
1 +

∑∞
j=1

∣
∣
∣

bnbn+1···bn+j−1
an+1an+2···an+j

∣
∣
∣
p)1/p

= ∞,

then Bw is hypercyclic on �p
a,b, 1 ≤ p < ∞.

(ii) If

sup
n≥1

|w1w2 · · · wnan|
max

{
1, supj≥1

∣
∣
∣

bnbn+1···bn+j−1
an+1an+2···an+j

∣
∣
∣
} = ∞,

then Bw is hypercyclic on c0,a,b.
(iii) If Bw is hypercyclic on �p

a,b or c0,a,b, then

sup
n≥1

|w1w2 · · · wn|(|an| + |bn−1|) = ∞.

(iv) Now, assume the stronger condition lim supn |bn/an+1| < 1. Then, Bw is
hypercyclic on �p

a,b and c0,a,b if and only if supn≥1 |w1w2 · · · wnan| = ∞.
This is further equivalent to the existence of a bounded set K such that
the orbit

∞⋃

n=0

Bn
w(K)

is dense.

Proof. To get (i), we recall and apply the Gethner-Shapiro criterion. Let X0

be the space of all polynomials. Then, X0 is dense in �p
a,b as it contains the

normalized Schauder basis {(an + bnz)zn : n ≥ 0}. Consider the forward
weighted shift S : X0 → X0 given by

S(zj) =
zj+1

wj+1
, n ≥ 0.

Trivially, BwSf = f , and (Bw)nf → 0, as n → ∞, for all f ∈ X0. It suffices to
show that, there exists a strictly increasing sequence {mk} of natural numbers
such that

Smk(zj) → 0,

as k → ∞, for every monomial zj . Note that

Sn(zj) =
1

wj+1wj+2 · · · wj+n
zj+n.

Combining the assumption in (i) of our theorem, with the first estimate
in Proposition 4.1, we get an increasing sequence {dk} such that Sdk(zn) → 0,
as k → ∞. Now, Lemma 4.2 of [24] completes the proof of (i).

The proof of (ii) runs verbatim.



Dynamics of Weighted Backward Shifts Page 19 of 29   242 

To obtain (iii), note by the previous proposition that if Bw is hypercyclic,
then

sup
n

|w1w2 · · · wn|
n!

∥
∥
∥
∥

dnevz

dzn
|z=0

∥
∥
∥
∥

�pa,b

= ∞.

Combining this with Proposition 2.4, it follows that

sup
n

|w1w2 · · · wn|(|an|q + |bn−1|q)1/q = ∞,

where q is the Hölder conjugate of p and 1 < p < ∞. Since any two norms
are equivalent on C

2, we obtain that supn |w1w2 · · · wn|(|an|+ |bn|) = ∞. This
completes the proof of (ii). (The case of p = 1 is similar.)

To see the part (iv), we proceed as in (i) and (ii) for the sufficiency and ne-
cessity, respectively, and along the way, use the second part in Proposition 2.4
and the condition lim supn |bn/an+1| < 1. Indeed, if K is a bounded set in �p,
1 ≤ p < ∞, such that

{Bn
wf : f ∈ K,n ≥ 1}

is dense, then

sup
{∣

∣
∣
∣w1w2 · · · wn

f (n)(0)
n!

∣
∣
∣
∣ : f ∈ K,n ≥ 1

}

= ∞.

Since K is bounded and

|f (n)(0)| ≤ ‖dnevz

dzn
|z=0‖ ≤ C(|an| + |bn−1),

we get supn |w1w2 · · · wn|(|an| + |bn−1|) = ∞. Using the boundedness of
{bn/an+1}, we see that the condition in (i) is satisfied, and hence, Bw is hy-
percyclic. �

Our next results are about the necessary and sufficient conditions for Bw

to become mixing.

Theorem 4.6. The following hold for the shift Bw on �p
a,b, 1 ≤ p < ∞, and

c0,a,b.
(1) If

lim
n→∞

|w1w2 · · · wnan|
(
1 +

∑∞
j=1

∣
∣
∣

bnbn+1···bn+j−1
an+1an+2···an+j

∣
∣
∣
p)1/p

= ∞,

then Bw is mixing on �p
a,b, 1 ≤ p < ∞.

(ii) If

lim
n→∞

|w1w2 · · · wnan|
max

{
1, supj≥1

∣
∣
∣

bnbn+1···bn+j−1
an+1an+2···an+j

∣
∣
∣
} = ∞,

then Bw is mixing on c0,a,b.
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(iii) If Bw is mixing on �p
a,b or c0,a,b, then

lim
n→∞ |w1w2 · · · wn|(|an| + |bn−1|) = ∞.

(iii) Assuming the stronger condition lim supn |bn/an+1| < 1, the operator Bw

is mixing if and only if limn→∞ |w1w2 · · · wnan| = ∞.

Proof. Proceed exactly as in the proof of the previous theorem by applying
the Gethner-Shapiro criterion with nk = k for k ≥ 1. �

Along the same lines, we obtain a characterization for Bw to be chaotic
using the chaoticity criterion. For an operator T defined on X, a vector x ∈ X
is called a weakly almost periodic vector if there exists an integer k ≥ 1 such
that T kn(x) converges to x weakly, as n → ∞.

Theorem 4.7. Consider the weighted shift Bw acting on the space �p
a,b, 1 ≤ p <

∞.
(i) Set

λn,0 = 1, and λn,j = (−1)j bnbn+1 · · · bn+j−1

an+1an+2 · · · an+j
, (n ≥ 0, j ≥ 1).

If
∞∑

n=1

∣
∣
∣
∣
λ1,n−1

w1a1
+ · · · +

λn,0

w1 · · · wnan

∣
∣
∣
∣

p

< ∞,

then Bw is chaotic on �p
a,b.

(ii) If supn

∣
∣wn+1

an+1
an

∣
∣ < ∞ and lim supn

∣
∣bn/an+1

∣
∣ < 1, then the following

are equivalent.

(i) Bw is chaotic on �p
a,b.

(ii) Bw has a non-trivial periodic vector.
(iii) Bw has a non-trivial almost periodic vector.
(iv) Bw has a non-trivial weakly almost periodic vector.
(v) The series

∞∑

n=1

1
|w1 · · · wnan|p

is convergent.

Proof. The arguments in (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial.
Suppose that the condition in (v) holds. We apply the chaoticity criterion

to show that Bw is chaotic on �p
a,b.

Let X0 be the space of all polynomials. Define S : X0 → X0 given by S(zn) =
1

wn+1
zn+1, n ≥ 0. Clearly, BwS = I on X0, and the series

∑∞
n=0(Bw)n(f)
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converges unconditionally for each f ∈ X0. It remains to show that the series∑∞
n=0 Sn(f) converges unconditionally, for each f ∈ X0. We prove that

∞∑

n=1

1
w1 · · · wn

zn

is unconditionally convergent in �p
a,b. Recalling the bases expansion from (3.2),

for a fixed n ≥ 0, we have

zn =
1
an

∞∑

j=0

λn,jfn+j . (4.8)

Also,

∞∑

n=1

1
w1 · · · wn

zn =
∞∑

n=1

1
w1 · · · wn

⎛

⎝ 1
an

∞∑

j=0

λn,jfn+j

⎞

⎠

=
∞∑

n=1

(
λ1,n−1

w1a1
+ · · · +

λn,0

w1 · · · wnan

)

fn.

As lim supn |bn/an+1| < 1, one gets N ∈ N and r < 1 such that |bn/an+1|
< r for all n ≥ N . Hence,

∣
∣
∣
∣
λ1,n−1

w1a1
+ · · · +

λn,0

w1 · · · wnan

∣
∣
∣
∣ ≤ rn−1

|w1a1| + · · · +
1

|w1 · · · wnan| ,

for all n ≥ N . The right hand side of the above inequality is the n-th term of
an �1-convolution of the �p element

{
1

w1 · · · wnan

}∞

n=1

,

and hence it is absolutely p-summable. Consequently, the series
∑

n≥N

(w1 · · · wn)−1zn is convergent. The unconditional convergence occurs because
{fn} is an unconditional basis. Hence, Bw satisfies the chaoticity criterion, and
(i) follows.

(iv) ⇒ (v): Let f(z) =
∑∞

n=0 λnfn(z) be a non-zero weakly almost pe-
riodic vector for Bw on �p

a,b, where fn(z) = anzn + bnzn+1, n ≥ 0, forms a
normalized Schauder basis for �p

a,b. We can certainly take λ0 �= 0. Then, for
some m ∈ N, we have Bkm

w (f) → f weakly, as k → ∞. It follows, using the
continuity of co-ordinate functionals, that

wkmwkm−1 · · · w1(λkm−1bkm−1 + λkmakm) → λ0a0, as k → ∞.

Since

1
|wkmwkm−1 · · · w1akm|p =

∣
∣
∣
∣
∣

λkm−1
bkm−1
akm

+ λkm

wkmwkm−1 · · · w1(λkm−1bkm−1 + λkmakm)

∣
∣
∣
∣
∣

p

.



  242 Page 22 of 29 B. K. Das and A. Mundayadan Results Math

Now
∑∞

k=1

∣
∣
∣λkm−1

bkm−1
akm

+ λkm

∣
∣
∣
p

< ∞, as {λk} ∈ �p and lim supk

∣
∣bk/ak+1

∣
∣ <

1, and also
1

|wkmwkm−1 · · · w1(λkm−1bkm−1 + λkmakm)|p → 1
|λ0a0|p ,

as k → ∞, where λ0a0 �= 0. Thus, we get
∞∑

k=1

1
|wkmwkm−1 · · · w1akm|p < ∞.

Again for j = 1, · · · ,m − 1, the weak convergence Bkm+j
w (f) → Bj

wf , where
k → ∞ implies that

wkm+jwkm+j−1 · · · w1(λkm+j−1bkm+j−1 + λkm+jakm+j) →
wjwj−1 · · · w1(λjaj + λj−1bj−1),

as k → ∞. Once again for {λk} ∈ �p and lim supk

∣
∣bk/ak+1

∣
∣ < 1, and also

wj · · · w1(λjaj + λj−1bj−1) �= 0, we get
∞∑

k=0

1
|wkm+jwkm+j−1 · · · w1akm+j |p < ∞.

Consequently, the series in (iii) is convergent. �

We now remark on the existence of hypercyclic subspaces for Bw in �p
a,b.

Recall that if the set HC(T ) of all hypercyclic vectors of an operator T on
a Banach space X contains a closed infinite dimensional subspace (excluding
the zero vector), then we say that T has a hypercyclic subspace. It is well
known that the essential spectrum of an operator T on a complex Banach
space completely characterizes the existence of hypercyclic subspaces, thanks
to an important result of González, León-Saavedra and Montes-Rodŕıguez [22]:
if T is a bounded operator satisfying the hypercyclicity criterion in a complex
Banach space, then T has a hypercyclic subspace if and only if

σe(T ) ∩ D �= φ. (4.9)

For details on the study of hypercyclic subspaces and related topics for various
classes of operators including the weighted backward shifts, we refer to [4], [27],
[28], and [29].

Corollary 4.8. Assume that

sup
n

|wn+1
an+1

an
| < ∞, lim sup

n
|bn/an+1| < 1, and lim

n
|wn+1

bn

an
− wn

bn−1

an−1
| = 0.

Then, Bw has hypercyclic subspaces in �p
a,b, 1 < p < ∞, if and only if

sup
n

|w1w2 · · · wnan| = ∞ and sup
n≥1

(

inf
k≥1

∣
∣
∣
∣(wk+1wk+2 · · · wk+n)

ak+n

ak

∣
∣
∣
∣

)1/n

≤ 1.
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Proof. The essential spectrum of Bw is an annulus, cf. Theorem 3.5, which
intersects the disc D if and only if the inner radius of the annulus is less or
equal to 1. The result follows at once in view of (4.9) and Theorem 3.5. �

We illustrate our results with a Hilbert function space H. See [1] for a
similar study about the the unweighted forward shift on a tridiagonal space
�2a,b. The space H, defined below, is closely related to the Bergman space A2

(the closure of the space of all complex polynomials in the Lebesgue space L2

of the open unit disc in C) such that the operator B on H is a Hilbert-Schmidt
perturbation of the backward shift on A2. Recall that, if f ∈ A2 has a power
series f(z) =

∑
n≥0 f̂(n)zn, then

‖f‖2 :=
1
π

∫∫

D

|f(z)|2dA(z) =
∑

n≥0

|f̂(n)|2
n + 1

,

where dA(z) is the area measure in D; see, for instance, [32]. Moreover,
√

n + 1zn,
n ≥ 0, forms an orthonormal basis in A2.

Let H be the Hilbert space, of all analytic functions on the disc, having
an orthonormal basis consisting of

fn(z) =
√

n + 1zn + zn+1, n ≥ 0.

Then, the evaluation functionals are bounded, and H is densely and continu-
ously included in the Bergman space A2. Indeed, if f ∈ H, then there exists
some {λn} ∈ �2 such that f(z) =

∑∞
n=0 λnfn(z) for all z ∈ D. Rearranging

the sum as a power series, we get

f(z) = λ0a0 +
∞∑

n=1

(
λn−1 + λn

√
n + 1

)
zn,

and so, for some constant M > 0 we have

‖f‖2A2 = |λ0|2 +
∞∑

n=1

∣
∣λn−1 + λn

√
n + 1

∣
∣2

n + 1
≤ M2

∑

n≥0

|λn|2 < ∞,

since {λn} ∈ �2. As ‖f‖A2 ≤ M‖f‖H, for all f ∈ H, the kernel space H is
continuously included in A2. Also, by the main results in the previous sections,
the shift B is a bounded operator on H, and it is a non-chaotic mixing operator
admitting hypercyclic subspaces, as is the case of B on A2. By Theorem 3.5,
it also follows that B on H is unitarily equivalent to a compact perturbation

of the Bergman backward shift Bw on �2 with weights wn =
√

n+1
n , n ≥ 1.

We now have a better understanding of B on H, as follows. Recall that an
operator T on a Hilbert space is a Hilbert-Schmidt operator if ‖T‖2HS :=∑

n ‖T (en)‖2 < ∞, for some (and hence for all) orthonormal basis {en} of H.

Proposition 4.9. Let H be the Hilbert space defined as above. Then the inclu-
sion from H into A2 is continuous and has dense range. Moreover, the shift B
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on H is mixing, but not chaotic, and unitarily equivalent to a Hilbert-Schmidt
perturbation of the Bergman backward shift.

Proof. Recalling from the proof of Theorem 3.3, we have that B on H is
(unitarily)

Bw + D +
∑

n≥1

Fn,

where Bw is the Bergman backward shift, D is the diagonal operator having
the diagonal ( b0

a0
, c1, c2, · · · ), and Fn is a power of a weighted forward shift. It

is now enough to show that D and each Fn are Hilbert-Schmidt, and
∑

n≥1 Fn

is convergent in ‖.‖HS . Since

cn =
1√

n + 1
− 1√

n
, n ≥ 1,

forms a square summable sequence, it follows that D is Hilbert-Schmidt, and
we get the same for each Fn. Since

‖Fn‖HS ≤ 1
n2

for large n, we immediately get that
∑

n≥1 Fn is absolutely convergent with
respect to the Hilbert-Schmidt norm ‖.‖HS , which completes the proof. �

4.1. Eigenvectors and Dynamics of ϕ(Bw )
For an analytic function ϕ(z), defined on a neighbourhood of the spectrum
σ(Bw), let ϕ(Bw) denote the operator on �p

a,b and c0,a,b, given by the usual
holomorphic functional calculus. In this subsection, we identify the eigenvec-
tors for ϕ(Bw) and apply the eigenvalue criteria to deduce the dynamics of
ϕ(Bw).

Let

hμ(z) := 1 +
∞∑

n=1

1
w1 · · · wn

μnzn, z ∈ D,

where μ ∈ C. Then, hμ is an eigenvector of Bw, corresponding to the eigenvalue
μ, provided hμ ∈ �p

a,b or c0,a,b. Now we will find the conditions under which
hμ belongs to �p

a,b or c0,a,b.

Proposition 4.10. The function hμ ∈ �p
a,b, 1 ≤ p < ∞, if and only if

∞∑

n=1

∣
∣
∣
∣
λ1,n−1μ

w1a1
+ · · · +

λn,0μ
n

w1 · · · wnan

∣
∣
∣
∣

p

< ∞,

where {λn,j} is as in Theorem 4.7. Also, hμ ∈ c0,a,b if and only if
∣
∣
∣
∣
λ1,n−1μ

w1a1
+ · · · +

λn,0μ
n

w1 · · · wnan

∣
∣
∣
∣ → 0,

as n → ∞.
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Proof. By (3.2) we have

∞∑

n=1

μn

w1 · · · wn
zn =

∞∑

n=1

μn

w1 · · · wn

⎛

⎝ 1
an

∞∑

j=0

λn,jfn+j

⎞

⎠

=
∞∑

n=1

(
λ1,n−1μ

w1a1
+ · · · +

λn,0μ
n

w1 · · · wnan

)

fn.

Here, λn,0 = 1, and

λn,j = (−1)j bnbn+1 · · · bn+j−1

an+1an+2 · · · an+j
, (n, j ≥ 1).

The given condition in the proposition now ensures that hμ ∈ �p
a,b. Similarly,

the result for c0,a,b follows. �

In the following, σp(Bw) denotes the point spectrum of Bw.

Theorem 4.11. Suppose that Bw is bounded on �p
a,b and c0,a,b, 1 ≤ p < ∞. If

ϕ(z) is a non-constant function, analytic on a neighborhood of the spectrum of
Bw and ϕ(U) ∩ T �= φ for some open ball U around 0 and U ⊆ σp(Bw), then
ϕ(Bw) is mixing and chaotic.

Proof. Note that Bw(hμ) = μhμ and hence

ϕ(Bw)hμ = ϕ(μ)hμ,

for all μ ∈ U . In view of Theorem 1.3, it suffices to show the subspaces X0,
X1 and X2 are dense in �p

a,b and c0,a,b, 1 ≤ p < ∞, where

X0 = span {hμ : μ ∈ U, |ϕ(μ)| < 1} ,

X1 = span {hμ : μ ∈ U, |ϕ(μ)| > 1} ,

and

X2 = span {hμ : μ ∈ U,ϕ(μ)n = 1, n ∈ N} .

We prove an auxiliary result that, for a set Γ having accumulation points in
ϕ(U),

span {hμ : ϕ(μ) ∈ Γ}
is dense in �p

a,b, 1 ≤ p < ∞, from which it follows that X0, X1 and X2 are
dense. Note that the set ϕ−1(Γ) := {μ ∈ U : ϕ(μ) ∈ Γ} has accumulation
points in U . So, if x∗ ∈ (�p

a,b)
∗, and

x∗(hμ) = x∗
(

1 +
∞∑

n=1

1
w1 · · · wn

μnzn

)

= 0,

for all μ ∈ ϕ−1(Γ), then

x∗(zn) = 0, ∀n ≥ 0.
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As the polynomials are dense in �p
a,b, 1 ≤ p < ∞, we conclude that x∗ = 0, the

zero functional.
The above auxiliary result along with the eigenvalue criteria yields that

ϕ(Bw) is mixing and chaotic. �

Example 4.12. Take a0 = b0 = 1, and an = n2 and bn = 1 for all n ≥ 1. Con-
sider the (unweighted) shift B on and �2a,b. Then, B is a bounded operator by
Theorem 3.3. Additionally, it fulfils the requirements of hypercyclicity, mixing,
and chaos in �2a,b. Now, for |μ| ≤ 1, we have

xn : =
∣
∣
∣
∣
μn

an
− μn−1

an−1

bn−1

an
+ · · · + μ(−1)n−1 1

a1

b1b2 · · · bn−1

a1a2 · · · an

∣
∣
∣
∣

=
∣
∣
∣
∣
μn

n2
− μn−1

(n − 1)2
1
n2

+ · · · + μ(−1)n−1 1
n!2

∣
∣
∣
∣ ≤ 1

n
.

In view of the above proposition, hμ is an eigenvector for Bw, corresponding
to the eigenvalue μ.

Remark 4.13. Godefroy and Shapiro [21] initially studied the dynamics of the
differentiation operator D(f) = f ′ acting on the space H(C) of all entire func-
tions. Indeed, they proved that any non-trivial operator T such that TD = DT
is chaotic. Note that D on H(C) is a weighted backward shift Bw with respect
to the basis {zn : n ≥ 0}, where wn = n, n ≥ 1. Motivated by these work, we
can understand the dynamics of D on �p

a,b and c0,a,b, which follow directly from
the previous sections by taking wn = n, n ≥ 1. In particular, the boundedness,
hypercyclicity and chaos of D on �p

a,b and c0,a,b follow from the results in the
sections 3 and 4. For some results on the dynamics of differentiation operators,
we refer to [8,12,13,20].

Remark 4.14. It is well known that if an operator T satisfies the chaoticity
criterion, then it is frequently hypercyclic, see [10]. (The notion of frequent
hypercyclicity was introduced by Bayart and Grivaux [3]). Hence, any of the
statements in Theorem 4.7 implies that Bw is frequently hypercyclic on �p

a,b.
It would be interesting to know if it is also necessary for Bw to be frequently
hypercyclic. For weighted backward shifts on �p, 1 ≤ p < ∞, it is well known
that the chaos and frequent hypercyclicity are equivalent, cf. [5], but not on
c0.
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