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Abstract. Let A denote the von Mangoldt function, and (n,q) be the
greatest common divisor of positive integers n and g. For any positive real
numbers x and y, we shall consider several asymptotic formulas for sums

of sums involving the von Mangoldt function; Sk(x,y) := Zn<y (Zq<z

k
S amgy @A (4)) for k=1,2.
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1. Introduction

For any integers n > 1, we define

A(n) = logp if n = p™ someprime p andsome m > 1,
o 0  otherwise,

which is the von Mangoldt function. Let s = o + it be the complex variable,
where o and ¢ are real, and let {(s) denote the Riemann zeta-function defined
by

Published online: 15 September 2024 T Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-024-02276-3&domain=pdf
http://orcid.org/0000-0002-7059-2190

247 Page 2 of 28 I. Kiuchi and W. Takeda Results Math

and (’(s) its first derivative. The Riemann zeta function can be analytically
continued to the whole plane. We define the following sum over the von Man-
goldt function

sn) =3 dA (%) : (1.1)
di(na)

where (n, ¢) denotes the greatest common divisor of integers n and ¢. This sum
is a special type of Anderson-Apostol sum defined by >, ,, ., f(d)g (¢/d) with
any arithmetical functions f and g (see [1,2]). We use the Dirichlet series

¢(s)

to deduce the Dirichlet series with the coefficients s,(n), namely

i AT(;L) =SB Ress 1) (1.2)

oo
5q(1) ¢'(s)
= —01-s(n) (1.3)
q; q° ¢(s)

for Re s > 1 with the divisor function o1_s(n) = >, d'=*. For any large
positive real numbers x and y, we let the double sums

k

Sk(x,y) := Z qu(n) (k=1,2). (1.4)

n<y \g<z

The double sum of the type (1.4) was first considered by Chan and Kum-
chev [3], who proved several interesting asymptotic formulas concerning the
Ramanujan sum c,(n), defined by cq(n) =>4, 4 1 (¢/d) with p being the
Mébius function, instead of s4(n). In 2015, Minamide, Tanigawa, and the first
author [7] were inspired by their work, and considered square-free numbers
instead of the Md6bius function in the Ramanujan sum, and derived the precise
asymptotic formulas. Robles and Roy [16] studied an analogue of the type (1.4)
concerning the generalized Ramanujan sums, known as the Cohen—Ramanujan
sums. Moreover, the first author considered some sums of the type (1.4) con-
cerning square-full numbers [8], cube-full numbers [10], the Liouville function
[11] and others (see [9,12,13,15]). This study aims to derive several asymptotic
formulas for (1.4) with &k =1 and 2.

1.1. Evaluation of Sy (x,y)

Following the same procedure as in [3] (see also [7,8,10,13,15,16]), we obtain
some interesting theorems for the double sum Si(z,y). First, the case k = 1
implies the following theorem, namely
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Theorem 1.5. Let the notation be as above. Let x and y be large real numbers

such that T logxr < y < lozgz. Then, we have
/ 2 3
Si(z,y) = yz(logz — 1) + (@) 210 <xy5 log z 4+ ylogz + z) . (L.6)
4¢(2) y
Remark 1.7. Substituting y = 2% and y = zlogz into (1.6), we obtain
Sy(x,2%) = mg(logaz -1+ ¢2) 22+ 0 (x% loga;)
1\Ly 4C(2) )
and
! 2 2
Sy (z,zlogx) = 2*logx(logz — 1) + ic((z))xz +0 (lol;g:c) , (1.8)
respectively.

If we could use an alternative method to investigate an asymptotic be-
havior for Si(z,y) under the condition y < xlogz, then we may use some
analytic method to study the asymptotic formulas for (1.4) for k = 1. We use
analytic properties between the Riemann zeta-function and the von Mangoldt
function to investigate the asymptotic behavior of sharp approximate formulas
for (1.4), and whose form yields an interesting formula. Before elucidating the
statement, let x(u) denote the Fourier integral given by

1 [~ ((—5—it)(§ +it) eitu
k(u) := — R g d
27 J_o C(5 +it) (3 +it)(§ +it)
with u := log £. It follows from (3.15) below that [s(u)| is given by the in-
equality

(1.9)

8 (3D (§+1>
@2mi (5 9
Here, the integral is a computable constant. We use a contour integral of

the generating Dirichlet series (the method in [9]) and some properties of the
Riemann zeta-function to obtain

k()| < (1.10)

Theorem 1.11. Let the notation be as above. Let x and y be large real numbers
such that 1 € y < % Then, we have

T

Si(z,y) =yx(logz — 1) + ié(é)) z? + 2 (Zj) ! k()

+ 0 (:cy% log* z + yx% log% z) , (1.12)
where k(u) denotes the Fourier integral given by (1.9).

For y = x, we have an interesting formula, namely
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Remark 1.13. We substitute y = x into (1.12), then we obtain

Sy (z,r) = z*logx + (2;((22)) + 1(0) — 1) 2240 (w% log% m) ,

where £(0) is a computable constant.

Remark 1.14. Furthermore, we substitute y = zlogz into (1.12) to deduce

¢'(2) o a? 1
Sy (z,x1 =221 logz — 1 1
1(z,zlogx) =z* log z(log = )+4<(2)x Jrlogixli og logz

+ 0 (:c% log% x) .

It follows from (1.8) and the above that

K <log 10;) ~0 ((1og:c)—%) .

1.2. Evaluation of Sz (x,y)

For the case k = 2, two different methods to handle function Ss(z,y) exist.
We use an elementary lattice point counting argument to obtain the formula
(1.16) below and use the generating Dirichlet series and the properties of the
Riemann zeta-function to prove (1.18) below, which we state as

Theorem 1.15. Let x and y denote large real numbers such that y > Iog—im
We have
1
Sa(z,y) = yz?log® x + O (yac2 log? z + :104) . (1.16)

- 3¢(2)

To establish the precise asymptotic formula of S (z,y), we let v denote
the Euler—Mascheroni constant, and -1, 72 denote the Stieltjes constants de-
fined by (5.5) below. Let ¢1, ..., ¢ denote the constants given by

o= (1715

o= 10058 2 (55)' - 5).
o = ﬁ <c0 —y+2n 2+ 27+ 20 —1) 2(22)) t2r -1 (CC((;)))Q>
v (0G5~ S350 ()
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and

6 = Y+ +2y—m =3 +3n+1),

5
¢(2)
where ¢ is given by
2+tico pr 1o _
L e,
2mi )5 oo s(2—9)

which is a computable constant. In the last section, the value of ¢ is evaluated

by
/ ’C’ 1—|—zy)’
14y dy

The integral on the right-hand side of the above is a computable constant. We
obtain

Co =

co £0.425---

Theorem 1.17. Let the notation be as above. Let x and y be large real numbers
such that zlog'® z < y < log . Then, we have

So(z,y) = yz?log® x + crya®log? & + coya® log x + (¢35 — cg)ya>

1
3¢(2)
+

1 21 33’32 21 25(:2_’_ 21 $2+E( )
yr-log — — C4yT 108 — T C5YL 108 — T, Y),
6¢(2) y y y
(1.18)

where the error term E(x,y) is estimated by

E(z,y) =0 <x5/3yL8 +ayL ((2) . + (52)1/2» (1.19)

with L = log(xy).
1.3. Open Problems

Here we list two open problems concerning some functions discussed above.

1. Investigate asymptotic formulas of the type (1.4) for a fixed integers
k> 3.
2. Investigate asymptotic formulas of

2| 3 s ()

n<y \¢<zd|(n,q)

k

for any arithmetic functions f with a fixed integers k > 1. For example,
we may consider the divisor function 7(:= 1%1), the sum-of-sum divisors
function o(:=1x*id), and the Euler totient function ¢(:= id * u) in place
of f, respectively.
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2. Proof of Theorem 1.5
2.1. Exponent Pair

To prove Theorem 1.5, we need the following Lemma. Let t(z) = x — [z] —
denote the first periodic Bernoulli function. Then, we have

Lemma 2.1. Let (k,\) be an exponent pair. If I is a subinterval in (N,2N],
we have

Sov () <y Ny
nel

In particular, if we take the exponent pair (K, \) = (%, %), we obtain

y 1 2 —1
Zl/)(n><<y3+]\7y . (2.2)
nel
Proof. This lemma is given by Lemma 2.1 in [3] (see also [4]). O

2.2. Proof of (1.6).
Using (1.1) and (1.4) with & = 1, we have

y)=D D sdm)=" > dA(k)

n<yq<z n<y dk<z
d|n

Changing the order of summation, we find that

my—yZA —deA ZdA ()

dk<z dk<z dk<z
= Sl,l(irvy) - 51’2($,y) - 51,3(95711/)» (23)

Consider S1,1(z,y). We use the identity }-,,, A(d) = logn and the summation
formula > __logn = xzlogz —x + O (log z) to obtain

n<x
Sia(z,y) = QZZA(k) = yZlogn
n<z kin n<x
=yzxlogx —yz + O (ylogz). (2.4)
We use (1.2) and the summation formula »_ % = logz + O(1) to deduce
1
Si2(z,y) = 3 ZA(k) Z d
k<z a<i
z? A(k) A(k)
—T e ot
k<z k<z
!
2
_ )x2+0(xlogx). (2.5)

4¢(2)
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Let Nj = Nj, = (%) 277, We use the theory of exponent pairs to obtain

S13(z,y) = ZA Z ()

k<z d<z
< ZA ZN bup Z¢( )
k<z del

where sup is over all subintervals I in (NN}, 2N;]. From (2.2) in Lemma 2.1, we
have

S13(z,y) < ZA i{N yl/?’—FN3 }

k<z j=0
=S am{(p)v (7))
k<z
<<Z$-xyl/3+z%

k<z k<z
< zyPlog x + 23y~ (2.6)

Substituting (2.4), (2.5), and (2.6) into (2.3), we obtain the assertion of The-
orem 1.5. 0

3. Proof of Theorem 1.11

3.1. Lemmas

To prove theorem 1.11, we utilize the following Lemmas.

Lemma 3.1. Suppose that the Dirichlet series a(s) :== > oo, %= absolutely con-

n=1 ns

verges for Re s > o4. If 09 > max(0,0,) and x > 0, T > 0, then

oo+iT s

’ 1 T
Z an =5 a(s)?ds + R,

TLSI O'o—’iT

where

go

. x (4x)
R Z |a,| min (1, Tlo = n|) +

5 <n<2zx
n#x

oo
la
>
n=1

and Z/ indicates that the last term is to be halved if x is an integer.

Proof. This is the famous Perron’s formula (see Theorem 5.2 and Corollary
5.3 in [14]). O
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Lemma 3.2. Fort >ty > 0 uniformly in o, we have

0 logt (0<0 < 3),
Cotity < 1 logt (350<1),
logt (1<o<2),
1 (0 >2),
(3.3)
and
tsG1 gt (0<o <1y,
(o +it) < 507 log?t (3 <0 <1),
log? t (1<o<?2),
1 (0 >2)
(3.4)
Furthermore, we have
1 < logt (1<0<2),
(o +it) 1 (022).
(3.5)

Proof. The formula (3.3) follows from Theorem I1.3.8 in Tenenbaum [17], and
Ivi¢ [6]. The formula (3.4) follows from Lemmas 2.3 and 2.4 in Téth and Zhai
[19]. The estimate (3.5) follows from Titchmarsh [18]. O

Lemma 3.6. Let Re z < 0, and let o,(n) denote the generalization of the
divisor function defined by o 5(n) =3, d®. Then, we have

3 0.0(n) = Doy(e) + Auy(a),

n<x
where E/ indicates that the last term is to be halved if x is an integer, and
Ap(z)=0 (x% log? x)

uniformly for b > 1 and D, (x) is given by the following:
(i) Ifb=1,2 and —53 < Re 2z <0, then

D, p(x) = ¢ —2)z +

1 2+1
1+bz<(z+b)x b, (3.7)

(ii) Ifb> 3 and —1 < Re z <0, then
D, p(x) = ¢(b(1 — 2))z.
Proof. The proof of this result is found in Theorem 1.4 in [16]. O
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3.2. Proof of (1.12).

We assume that 1 < y < 2™ for some constant M. Without loss of generality,
we can assume that x, y € Z + % Suppose that a > 1 + @ and T is a real
parameter at our disposal. We apply Lemma 3.1 with (1.3) to deduce

a+1T /8 5
D sq(n) = _gim' . als(n)i_((s)) —ds + By (w;n), (3.8)

where Fj(xz;n) is the error term given by

q<z

[e%

Ey(x;n) < oo(n Z A(g) min (1, T|qu|> + oo(n) (4? Z A(g)

(o3
5<q<2z q=1 q
qFT

1
< og(n)logz 1+% Z Z < op(n) (1+T10gx)logx

1<k<z

We substitute b = 1 and z = 1 — s into Lemma 3.6 and use the well-known

estimate ), ., 0o(n) < ylogy to deduce
1 a+iT C/(S) s
Si(z,y) = —— o1_s(n —
@) 210 J i <y 1-sl )C(S) s
0 [ (222 4 10g0) Y outo
T [ oo(n
n<y
log3
=K1+ Ky +0O (xy% log2y10g2T) +0 (myngx) +0 (ylog2x) ,
(3.9)
where
a+1T s
Yy e
Ky = ——2- =
1= o L s
and

S T ) .
T o C(s) (s—2)s
3.3. Calculation of K

Moving the line of integration to Re s = ¢ (:= %), we consider the following
rectangular contour formed by the line segments joining the points a — T,
a+iTl, c+iT, c—iT, and o — iT in the counter-clockwise sense.
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3s)
i
0
= L R(s)
—iT

We observe that s = 1 is a double pole of the integrand. Note that the
Laurent expansion of the first derivative of the Riemann zeta-function at its
pole s = 1 is given by

1
(-1
Thus, we obtain the main term from the sum of the residue coming from the
pole s = 1. Hence, using the Cauchy residue theorem, we have

a+1T c+iT
{ / / } ds + zy(logx —1). (3.10)
27T'L c+iT

The second term (the left vertical line segment) on the right-hand side of (3.10)
contributes the quantity

T it
Y T2
— + it | ——dt
2 J_ C (2 ) 5 Ly gt

N A A A L
<L yx? +yx? / L2 gt logzT < yxzlogzT (3.11)
2

((s) =~ +0(1).

1+t

using f; |¢" (5 +iv) |2 b <« log* T (see (172) in Hall [5]) and Cauchy-Schw-
arz’s inequality. We can estimate the contributions coming from the upper
horizontal line (the lower horizontal line is similar), noting that T = x'2. We
define function F(t) as

. 1 L o e , potit p
t) (= — it .
(t) QT[ ((o+it)—do
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Then, we set

dt.

1+10g7 potit
it d

A

Using Lemma 3.2, we obtaln
ez (T 2°
Q <</ / |§/(0+it)|7dtda
1 T

1 2 1+m X 7 1 1 2
< T3 log T/ T do < (:NTg + m) log=T.
3

3

Then, T* € [T, T] exists such that [F(7™*)] is minimum and
1
|F(T")| < T (l'%Té + x) log” T < 278

by setting T = x'2. Hence, using horizontal lines of height +7* to move the
line of integration in (3.10), we find that the total contribution of the horizontal
lines, in absolute value, is < yz~8. Collecting the error estimates (3.11) and
the above, we obtain the total contribution of all error terms, that is,

yx% 1og% r+yr < yx% log% T.

Hence, we have
Ky =zy(logz —1)+ O (yx% log% x) . (3.12)

3.4. Calculation of K,

We consider the rectangular contour formed by the line segments joining the
points o — T, av+147T, % +14T, % —¢T', and a— 4T in the clockwise sense, and we
observe that s = 2 is a simple pole of the integrand. We denote the integrals
over the horizontal line segments by K, ; and K5 3, and the integral over the
vertical line segment by K5 o, respectively. A simple pole exists at s = 2 of the
¢@ (2)°
4¢(2)

the functional equation of the Rlemann zeta-function

integral K> with the residue — using ¢(0) = —%. For K55, we use

C(s) = x(s)¢(1 =) with x(s) < (;l) t for |t| > Tp
(3.13)

and Lemma 3.2 to deduce

2 i oot (3)
Koz = o e ) o2

2mi
ol (5) [ )
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= 22 <”Z) : k() + O <x2 (5) ' kf?) , (3.14)

where the Fourier integral «(u) is given by

Loy i) (G it pitu
K(u) = 27 /_Oo C(% + it) (% Jrit)(% Jrit)dt

with u := log %. Because the absolute value of k(u) is
(

)] < 52 ‘C Ht)i(zt)ﬂt)l (ﬁit};(g if)it)’
B\A(Q) () oo b
. (;)Z 4(4)2((43))4(4)/0 t2—:(i)2dt
5¢(9¢'(2) [ L o0
< (;)z C(4)2((%2’))((4) (/0 12 +1(i)2dt+/1 t_4dt>
< 2y C(Z)ch))(/@ (5 +7) .

3
|C( )| < C(2 )) for o > 1, and |X( L) < (%)4 . Hence |k(u)] is a bound.

We define the function G(t) as

- o+t
/ ¢(2 —U—ZtC(J—l—it) (5) do
T or C(o + it) (0 — 2 +it)(o +it)

Then, we set

- o+it
/ CQ*O’*ZtC(U‘FZ‘t) (5) do| dt
C(o +it) (0 —2+it)(o +it) '

We use Lemma 3.2 and (3.13) to obtain

3 o T
) ey,

3 2
R < log T/ (
a 2

9 o T _ s _ .
—|—log3T/4 (3;> / [x(2—0c ztgg(o 1+Zt)|dtda

3

3

< |8

Y T

2

og®T % (a75\° og®T 1 (273\°
<28 T oy 2B ) do
T3 Ja y %75 Js Y
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3 1 5
gl 2 1+Té<x>2+T§(x>4 .
T vy y y
Hence, T* € [L,T] exists such that |G(T*)| is minimum and
1 log T o 3 2 (X i
G(T| < = - 1+T% () + T3 ()
Gy < L2 ( . .

1
1 [z\7 logx
< ) <) g715 < (E_lo
Yy Yy x

by setting T' = z'2. For a similar manner as in K7, we have the weak estimates,
that is, K2 1, K23 < 271, Collecting the error estimates (3.14) and the above,

we obtain the total contribution of all error terms, that is, < -1 Therefore,
we obtain

Ky = i;(é)) 2+ 2? (2) : k(u) + O (a:_%) (3.16)
with T = x12

3.5. Conclusion

Inserting (3.12) and (3.16) into (3.9), we obtain the formula (1.12), which
proves Theorem 1.11.

4. Proof of Theorem 1.15

From (1.1) and the identity (m,n)[m,n] = mn for any integers m and n, we
have
2

So(my)=> | D dAk) | = D diA(k) Y doA(ky) > 1
n<y | dk<z dik1<z doks<z <y
dfn di|n, dz2|n
-3 3 dldgA(k:l)A(kg)[dyd ]
dik1<z daoko<z [ 15 2}
=y > D (di,d2)A(k1)A(ks) + O (),
dlklgibkoQSZE
where

E:= Y > didyloghyloghk;

dik1<z doko<z

2 Z loglﬁ. 9 Z logkg

ki1<zx ko<x
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We use }_ ., ¢(d) = n, 34, Ald) =logn, and 3, logd = (logz — 1)z +
O(log x) to obtain

Z Z (dl,dz)A(kl)A(k2):Z¢(d) Z Z A(k1)A(k2)

dik1<z d2k2<w d<z lik1<z/dlsko<z/d
2 2
=Y o@ | Y AR =D 6@ | D D Ak
d<z mk<z/d d<z n<z/d k|n
¢ o(d
= 2*(logx — Z 2logx—1)z%l
d<z d<z
o(d
Z lgd—l—O zlog? xz +1og x> ¢(d)
d<z d<zx d<z
Using well-known formulas 3, _, 4:(:;) 4(2) logﬂc +0(1), >, <. ¢T(L?) logn =
2((2) log? z + O(1), and Y on<a ¢7(1721) log?n = 3<(2) log® 2 + O(1) we have
1
(dv,d2)A(k1)A(k *log®z + O (2% log® 7).
Z Z L 2 ( 2) 3<(2)(L‘ Og €z + (:L. Og x)

diki1<z doko<z

Hence, we have

Sa(z,y) =

1 27 3 4 27 .2
yxlog®x 4+ O (z* + yx*log” x) ,
3¢(2) ( )

which completes the proof of Theorem 1.15. O

5. Proof of Theorem 1.17

5.1. Lemmas

We need the following Lemmas to prove Theorem 1.17, namely

Lemma 5.1. Let G(s1, $2;y) be a sum function defined by

31782, 201 51 Ul—sz(n) (5-2)

n<y

and L =logy. Then, we have

1
317827 ZR S1,52;Y +O (yL6 (y 2+ T)) (53)

for Re s; >1/2 and |Im sj| <T (j=1,2), where

C(s1)¢(s2)C(s1 + 52 — 1)
C(s1+ s2)

Ri(s1,52;y) =y

)



On Sums of Sums Involving the Von Mangoldt Function Page 15 of 28 247

25, §(2 = 51)C(1 — 51 4 59)C(s2)
(2-s1)C2—s1+s2)
2-5, §(2 = 52)C(1 + 51 — 52)¢(s51)
(2—52)C(2+ 81 —82)
35,5, C(3 =51 —52)C(2 — 52)C(2 — 51)
(3— 51 —82)C(4— 51 —82)
Proof. The proof of this lemma follows from (4.12) in [3]. O

Ry(s1,82;9) =y

R3(s1,52;y) =y

Ry(s1,82;9) =y

To calculate Sz 1(x,y) (See (5.15) with j = 1 below), we use the Laurent
expansions of the Riemann zeta-function at s = 1, namely

C(s) = =+ nls = Db rals — P sls = P 4o, (54)

where v is the Euler-Mascheroni constant, and

—1)k Y logtm  log"t' N
= T i (Z o m 08 (k=1,2,..) (5.5
=1

are known as Stieltjes constants. Then, we have

C(5) = =y + o+ Pals = 1)+ s = 1P e (56)
S L @n - DR s - )

(5.7)

as s — 1. We need the following residues, namely
Lemma 5.8. Let the notation be as above. We have
C(s)¢'(s) z ((s+1)\a°
APy (l‘)ge‘ <<s+1>) 0
7 1 3 1 3 3{(2 9
=@ (5 e ) s
1 ¢(2) <<' 2 ? 3 <“
—— [ 2(1 - 3—2 3
( (1=7)+( W)C(Q) + RO
¢'(2)

2)

(@
I B 2 ¢'(2) '(2)
(@ (” POy e 3<<<2>) 3<c2)>

L3\ 100 @0,

@ ((2 ”) @ 2@ c<2>) ’ (5.9)
P 11 (@Y o

R G s 6@ T % <” ROPARG

. j) (S2) s g

@) 2C(2)+1—271>x10gx
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1 '(2) ¢'(2) B 2 d@de))
@ (( (@ > +(<2> =20 ~ <<2>>

1 C//(z) CW (2) - -
+<<2>< %@ 6 T 1) (5:10)
and
Res ¢(2—s)¢ (s)c (5) f;)SQ

:—fulog u+< )ulogQu—Q(*yQ—i—y—%—i—l)ulogu
+2(P+ 7+ 27— =3 +3n+1)u (5.11)
with u = 22 y.

Proof. Suppose that g(s) is regular in the neighborhood at s = 1, and f(s)
has only a triple pole at s = 1, then the Laurent expansion of f(s) implies

a n b n c
(s—1)3 (s=1)2 s-—1

f(.S) = + h<5)7

where h(s) is regular in the neighborhood of its pole, and a, b, ¢ are computable
constants. We use the residue calculation to deduce

Res/(s)g(s) = 5¢"(1) + b'(1) + cg(1).

To prove (5.9), we use (5.4) and (52.6) to obtain

() = =g + g e+ 7+ O s = 1)
as s — 1. We set g(s) i= iy (log 2 — S5 ) 2, then

g (1) :ﬁxlog% - % (1 + Qgg;) zlogx

o (8 () - 69) -
and
J"(1) :ﬁxlog?’x - % (1 + CC(%)) sloga
o)1)
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(@Y @) LR @),
(&) % o Y <(2>>

Hence, we have

¢(s)¢"(s) e (s+Dye 1, /
s 22 (log— ——0——2 | — =—=¢"(1) — 1).
Res C(s+1) %8 ((s+1)) s 29() 79 (1)
We use the same method as above to prove (5.10) and (5.11). O

5.2. Expressions of Sp ;(z,y) for j = 1,2,3,4

We assume that 1 < y < 2™ for some constant M. Without loss of generality,
we can assume that z, y € Z + % Suppose that T is a real parameter at
our disposal. Let a; = 1 + and as = 1+ %. Applying (3.8) with

2
log z
a=q; (j =1,2) we have

2

1 a1 +1T as+iT
Z sq(n) | = @mi)? /a /a F(s1, 82;n)dsadsy + Ea(x;n),

< 1—iT Joap—iT

(5.12)

where
('(51)¢" (52) z*17*2
C(51)C(s2) s152

a1+iT / s1
Es(x;n) := E1(x;n) (1/ ’ Jl,sl(n)C (s1) 2 dsy

F(Sla 52, TL) = 01-s (n)gl—sz (n)

and

270 J o, —iT C(s1) s1

1 as+iT ! s 1,52
+ — 0_1_32(”)4( 2)
270 J it ((s2) s2
z? 27 4
< ?ao(n) log™T.

dsy + Eq(x; n))

Summing (5.12) over n and using the inequality > _ 0¢(n)? <y log® y, we

n<y
obtain
So(,y) it /OQ—HT G(s1 SQ.y)C/(S1)C/(S2)x31+32 dsyds,
@102 Joy—ir Jair T C(s1)C(s2)  s182
22y L”
1
m( ) -

where G(s1,82;Y) := >, <, 015, (n)01-s,(n) and L = log(Tzy).
Now, we shall evaluate the integral of (5.13). Substituting (5.3) into
(5.13), we obtain

4
1
Sa(w,y) =) Saj(,y) + O <x2yL1° (T + y1/2>> : (5.14)
j=1
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[:[' ..... —_—
O 3
e 5 R(s)
_[T ..... I
FIGURE 1. T'(a, 8, T)
where
1 a1+1T ag+iT C/(S1)C'(82) (E81+52
S24(T0) = (2mi)? /aliT /ocgiT By(s1, 02:9) C(s1)C(s2) 5182 452091,

(5.15)

Note that we substitute T = x with a small positive constant ¢ into the error
term on the right-hand side of (5.14) to obtain

10

5.3. Evaluation of S2 1 (x,y).

Let a; =1+ é and ap =1+ %. From the definition of Ry (s1, s2,y), we
obtain

a1 +1T a2+1T (SQ)C(SI + 59 — 1) l‘sl+52

a1—iT Jag—iT C(s1 4+ s2) S152

dsadsy.
(5.17)

So1(x,y)

Let I'(«, 8,T) denote the following contour comprising the line segments
[ — 4T, B —iT), [ —iT, 8 +iT], and [8 + T, +4T] (Fig. 1).

In (5.17), we move the integration with respect to so to I'(aa, %—&— @7 7).
We denote the integrals over the horizontal line segments by J; ;1 and Ji 3, and
the integral over the vertical line segment by J; o, respectively. Then, using
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the weak estimate flT |¢'(ep +it)|dt < Tlog T and Lemma 3.2, we have

zyL (" (g + ity
Ji1,J )T -1
1,1, 41,3 < T /T 1+4] +10gT 0'2 +1 )C(Oél + 02
+Z(t1 + T))|I’02d0'2dt1
L* it1) >
< Ty / |C o1 + 1t | T§(1_02)£E02d02dt1
T J_p 1+4|t] 1y

log x

2 L6
< zT32//3 (171/2 +T’1/3).

For the integral along the vertical line, we have
Ji2 K ym3/2L

(¢ ar + )¢ (3 + ks +it2) Clan + ks — &+ il + 1))
// (1+|t1)(1+\t2|)

1 +logz+ t)l
C( logx )‘/ (T4 th( + |t — |)dtdu.

Now, we use Lemma 3.2 to obtain the estimate

dtidts

2T
< yacg/QL3 /
—2T

T ¢+ 2 4+ +it 1
/ 1< (5 log = )ldt<<T1/6L2 / +/ dt
—r L+ DA+t —u]) lt—ul>Lul  Je—ul<Llul) (L [EDA+ [t —ul)
TL/673
L ful

and use the Cauchy—-Schwarz inequality and the above to deduce

o1 ‘C ($+ - —|—zu)‘
g T
JI,Q < y$3/2T1/6L6/
—oT 1+ [ul

< ya®PTYO L, (5.18)

du

It remains to evaluate the residues of the poles of the integrand when
we move the line of integration to I'(as, % + @, T). A simple pole exists at
S9 = 2 — s1 with residue

()2 =51) o
((2)s1(2 = s1)
and a double pole at s = 1 with residue
~ ([¢s0))? gl _ C(s1)¢"(51) (10 z (s + 1)) g1+l
C(s1+1)s1 C(s1+1)s1 e ((s1+1)
= Hg(sl)x‘“H + H3(81)l‘51+1.

=: Hl(sl)xQ,
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The contributions to Sz 1(x,y) from these residues are

aq+iT y a1 +1iT xy aq+iT
Hl(Sl)d81+7 HQ( ) 81d81+7 H3(81)$31d81

2M0 Sy —iT T J oy —iT

%y
270 J o, —iT
=: Il —+ Ig + Ig, say.

For I, moving the line of integration to F(%7 a1,T), we have

22y 5/4+ico ) 0o 5 ‘
L =— Hl(Sl)d81+O 7y H, Ziltl dtq
T

2mi 5/4—ioco

2, 74
o o xyL
= G0 (i)

where the computable constant cg is given by

o im L /4+ioo </(31)C’(2 — S1)d81. (519)

2mi, 0o 51(2 — s1)

For Iy, we move the line of integration to I'(«;, %+ lo%gm, T). Using Lemma
3.2, the integrals over the horizontal lines are

a3/2yLP (x1/2+T1/3)
T

5 aq
< (Ey;—/ / T%(lfal)xoldal <
3+

1
log x

and that over the vertical line is

T 1L a2

14t

< xyL/ Mxl/zdtl < 3?yL?
v 1+t

using f;; <" (5 + w)| dv < log* T (see (172) in Hall [5]). Moving the path of

integration, a pole of order 4 exists at s; = 1. Hence, we use Cauchy’s theorem

and (5.10) to obtain

_ 1 @)\ 2 o
[2—77 2y log® x+2c(2)<1+c(2))xylog T
! /(2) L e o
() & o ”““) vioe

(@ @ @
S )
<<2 20(2)  oc(y) A0 ‘1)”
Lo (‘”}W (a2 + T1/3))

+O(z*/?yL"),

where y; and 7, are the Stieltjes constants.

( c
(@) (<o (@)@
(@) ( o) (&) rene ) ’
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Similarly to I2, we move the line of integration to I'(a, % + @,T) to
calculate I3. The integrals over the horizontal lines are

6 « 3/2 6
<l / L pieange g, < 8 /?yL (x1/2+T1/3)
T /i, T

2 T logx

and the integral over the vertical line is

+ it + it
< xyL4/ <G < 1)|x1/2dt1 < ¥yl
-7 14 |t1]

using f; |C (2 +iv) ¢ (3 + w)| <« log® T' (see (173) in Hall [5]). Further-
more, when moving the path of integration, a triple pole exists at s; = 1.
Hence, using Cauchy’s theorem and (5.9) we have

R S T 1 3 3¢ 2 . o
13724(2)xy10g 1:+<(2)<'y 3 2<()>:1:ylog;9:

(e €@ L (CON 3@ L
HGE) (2“ e 2)<<2>+3<4<2>> 2<<2>> ylog
(o _ e ¢'(2) (@ 2
HGe) (” 20 -0 <<<2>) (c(z))) /
L § B C//( ) C/// ) 2) C//<2 .

@ ((2 ”) © @ o <<2>) g
+O(x3/;yL6 (x1/2+T1/3)> +O(m3/2yL7),

where 7 is the Euler—-Mascheroni constant. Combining these results, we have

1 (2
So1(z,y) = y$210g3x+<7_1_4( ))nyIOng

1

3¢(2) ¢(2) €(2)

o @ (@)Y
HGE) (1 200w+ 2 -0 g2 () )

jc (22)> ya?log x + <(12> <00 tr+2m+ )+ @+ 2 - 1)

<
¢(2 C@\*\, -

3200 () )‘”

() @) (C@VY
e (“ T ke TR @ 2(4(2)))y
+ O(z*3yL?). (5.20)

Here, we substitute 7' = x into the error term of Sz 1(z, y).




247 Page 22 of 28 I. Kiuchi and W. Takeda Results Math

5.4. Estimation of S3 4(x, y).
This is determined explicitly by

a1 +1T as+iT
S,4(x,y)
( 27” ay—iT Jay—iT

cm—Sy—@x@—wn«2—%)¢“”C@ﬂ(x>ﬁﬂZBMa.

C(4—s1—52)(3— 81— s9)s152 ((51)C(s52) \w

For this purpose, we move the line of integral with respect to ss to contour
T'(8,as,T), where § = 2 7051 = 3 logx No poles are present when we deform
the path of the mtegral over so. The contribution from the horizontal lines is

@ T ’C ( lo T Ztl) CI (1 + 10 T + Ztl)'
Ju1, Jas < xy? (x) / £ = dty
Yy -7 ‘( (1+@+it1)‘(1+|t1|)

/ ‘C( logx 0'2—Z(t1+T)>C(Q—GQ—iT)C/(UQ+iT)‘ ($>02
X — dO’Q.
s |¢ (3 ik~ —ilh +T)) ¢ (o9 —&—iT)‘ 1+ |t +TNT

The inner integral is estimated as

<rrrirm (3) (07 (yf),

where we have used Lemma 3.2 and assumption y < ™. Hence, we have

2 .
22y L8 )\ T ‘g(l—@fm)’
Jut, Jus < 1478 (2 dt
B T <y) /4 A+ DA +[a[+T)

xzyLlo 1 [ 3
< T2 14T (y> .

For the integral on the vertical line, we find that

[ =it + )61 - 125 — it)C(3 + 25 — ita)
mei [ [ (T &L+ [l + )

¢(14 2 +it) ¢ (3- 2 —ita)| /02
o8 2 los (x> dtdts
‘g(1+$+itl)g(g—$wt2>‘

e (3 + )
<P (”“") L6/ <(z |/ <zt iz it dtadu
y ot 1+\U| (L4 [t2)) (1 + [u — t2])

2, 710 (L Yz

X
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using a well-known estimate flT IC(3 +it) P4 <« log? T. Hence, we take T' = z
to obtain

1/2
Sy 4(w,y) < x?yL*® (5) . (5.21)

5.5. Estimation of Sz 3(x, y).
This is determined explicitly by

a1+1iT as+iT
Sa.3(z,y)
2@ 27” a1 —iT Jas—iT

C(2 — 82 (1 + 51 — SQ)CI(SI)CI(SQ) 1‘51+52y_52
C(2+ 51 — 52)C(52)(2 — 52) 5189 dsads;.

We move the path of integration with respect to ss to F(%,ag, T). No poles
with this deformation exist. The contribution from the horizontal lines is

y2xL /T I¢" (oy + ity)|
T2 T ]. + |t1|

/3/2 (2 = o9 —iT)¢(L + a1 — on + ity — T))¢ (0 +iT)|
a ¢(o2 +iT)]|

J3,1,J33 <

2

X <l‘) dO’thl
Yy

< YL /T ¢ (o +it)|
12 r 14+t

3/2 1 AN
/ TE(*hLU?)(l + |t1 — T|)§(71+62) () doadty
. Yy

2

1/2
< yx?L® (T‘2 + 1%/ (z) >

using Lemma 3.2. In contrast, the contribution from the vertical lines is

T .
2 ¢ (our + ity)|
J3’2<yx[T 1+ [t
/T 1C(5 = it2)C(5 + foaz +i(ts = 12))C'(§ + ita)] (x>3/2dt "
G+ 2 +i<t1—t2>>\<1+\t2|> RE +m>| v “
3

logz
/2 2T 77” < + +
1+\t2| 1+ |u+ tof
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Hence, we substitute T" = x into the above to obtain

1/2
So.3(z,y) < a2yL8 (5) . (5.22)

5.6. Evaluation of S22 (x,y).
The explicit form of Sg o(z,y) is given by
a1 +1T as+iT

Sa2(w,y)
( 27” a1 —iT as—iT

C(2 = 51)C(1 — 51+ 82)("(51)( (89) w1 H52y—51
C(2—81—|—52)C(51)(2—51) 5189

First, we move the integral line from s1 to I'(2, a1, T'). The estimates over the
horizontal and vertical lines are the same as that of S33(z,y), but a simple
pole exists at s; = s inside this contour. The residue of the integrand of (5.23)
at this pole is

d82d81. (523)

((2 = 52)(¢'(52)* 25252,

€(2)¢(52)(2 — s52)s3

The contribution from the horizontal lines is

y*xL /T (" (g +ita)|

/3/2 (2~ 01 —iT)¢(L+ oz — 01 + ity = )¢ (o0 +iT)]
o |¢(o1 +4T)|

Ja1, 23 K

1

o1
X (.’E) dUldtQ
)

y?x LS /T (' (a2 + ita)|
T

< T T+ 2]

3/2 . 1 )\
/ T3 (1) (14 |ty — )5 (7o) <) doxdh
aq 4

1/2
< ya?I8 <T2 LT3/ (Z) >

using Lemma 3.2. In contrast, the contribution from the vertical lines is
T ! ;
|¢" (az + ita)|
Joo < 233/ —_—
22 XY s 1+t
/T C(5 = 1)¢(5 + poag +ilta — 1)) (5 +it1)] <x>3/2 et
5 - - 1dt2
(3 + oz itz = t))|(L+ [ )2IC(5 +ita)| \y

3/2 2T 1 ;

x |§ = tl HC( + 1 x"‘“‘)‘

< Lﬁ/ / 2 s dudt
yx( ) A+ [a)? 1d|utty] v
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2\ 372
<y () L8,
Y

Hence, we substitute T' = x into the above to obtain

1/2
Jo1,Jo2, Jos < a?yL? (j) .

Hence, we have

2 " 1/2
So.o(x,y) = %Q(%y) +0 (nyL8 <y> ) 7

where
L N R A
Q)= [ e G e (2] s

It remains to evaluate the integral Q(zx,y). We move the integration with
respect to s to I'(ag, g, T) with ag = 1 — where ¢ is a small positive

C
log T
constant, and denote the integrals over the horizontal line segments by Q1 (z, y)
and Q3(x,y), and the integral over the vertical line segment by Q2(z,y), re-

spectively. Using Lemma 3.2 and the estimate ’— ¢ (U:zg) } < logT for o > ay,
we have
Qe < [ -o - |- IR L (L)
, —0— o —— . [ — o
I Clo+il) | T° 'y
2\, 2 L3
< (y) L (042 — CYO)T < Zﬁ7

and similarly, Q3(a: y) < %%— and

c
1+ —— — 1——— +i
C ( + Ztg) ¢ ( log T + zt2>
(1 +Zt2) 1 2\ @0 2\ @0
Tor T (x ) dty < <x ) L.
Y Y

( T —|— Ztg) 1 + |1‘L2|2

Therefore, using Cauchy’s theorem, (5.11) with 4 = 22/y in Lemma 5.8
and taking T'= x in the above we have

Q2(z,

2 2y+1 x?
S. 21 31‘7_ 21 24
raoo) = G o8’ - = Syt g g
2(V+y-—m+1) 5. a?
yx-log —
¢(2) y

2+ 2y - =3 +3n+l)
() "
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+0 <x2yL8 (;)1/Q> . (5.24)

5.7. Asymptotic Formula of (1.18).

Now, we substitute (5.16), (5.20), (5.21), (5.22), and (5.24) into (5.14) to obtain
the assertion of theorem 1.15. O

6. Evaluation of cg

We use (5.19) and Lemma 3.2 to obtain

1 S/4+iT ¢'(s)¢"(2 = s) —1/2
O omi /5/4—iT st o (T ) '

then

= QL 7 AL o o)
T

it] |§ + it

As T — oo, then we have

% | ¢ (4 +it)]
/ \/ (3)2+2)((3)2+¢2)
)

4|< )| le Ga+iy)l
/ 1+y?

( >‘/ = ﬁ?y)‘ w

Here, the integral on the right-hand side of the above is absolutely convergent,
and it is a computable constant.

‘Co| < dt

dy

<0.425---
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