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Abstract. In this paper we study isometric immersions f : Mn → C
′P n of

an n-dimensional pseudo-Riemannian manifold Mn into the n-dimensional
para-complex projective space C

′P n. We study the immersion f by means
of a lift f of f into a quadric hypersurface in S2n+1

n+1 . We find the frame
equations and compatibility conditions. We specialize these results to
dimension n = 2 and a definite metric on M2 in isothermal coordinates
and consider the special cases of Lagrangian surface immersions and min-
imal surface immersions. We characterize surface immersions with special
properties in terms of primitive harmonicity of the Gauss maps.
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1. Introduction

In this paper we study isometric immersions f : Mn → C
′Pn of an n-dimensional

pseudo-Riemannian manifold Mn into the para-complex projective space C
′Pn,

more precisely into the open dense subset of non-orthogonal pairs in the prod-
uct RPn × RPn, where RPn, RPn is the real projective space and its dual,
respectively. This target space is a para-Kähler space form which has been
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listed in the classification [1] of para-Kähler symmetric spaces1, and the para-
Kähler structure on C

′Pn has been studied in [2,24].
We consider only immersions, whose tangent spaces are transversal to

both eigen-distributions Σ± of the para-complex structure J ′ of C
′Pn. We

shall call such immersions non-degenerate. It has been shown in [3, Section 4]
that every non-degenerate immersion defines a dual pair of projectively flat
torsion-free affine connections ∇,∇∗ on Mn, and, vice versa, every such pair
of connections on Mn defines locally a non-degenerate immersion into C

′Pn

which is unique up to the action of the automorphism group of C
′Pn.

Let us explain the results of this paper, section after section. In Sect. 2 we
consider for a given immersion f the relevant geometric objects on Mn, namely
a dual pair of torsion-free projectively flat connections ∇,∇∗, a non-symmetric
Codazzi tensor h of type (0, 2), whose symmetric part equals the metric g and
whose skew-symmetric part ω measures the deviation of the immersion from
a Lagrangian one, and a cubic form Cαβγ = ∇γhαβ which is symmetric in
the last two indices. We express these structures in terms of a lift f of f into
a quadric hypersurface S2n+1

n+1 in the product R
n+1 × Rn+1 of the real vector

space with its dual. We will finally derive the Maurer-Cartan equation for an
immersion f as Theorem 2.9, which will be effectively used in Sects. 4 and 5
in case of surfaces. In Sect. 3 we compute the second fundamental form of the
immersion f in terms of the cubic form C, see Theorem 3.1. This allows us to
specify our results for the case of minimal immersions.

In Sects. 2 and 3 we consider the case of general dimension n and ar-
bitrary signature of the metric on Mn, while in Sects. 4 and 5 we specialize
to dimension n = 2 and a definite metric on M2. For simplicity we assume
all immersions to be smooth. In Sect. 4 we study definite immersions from a
surface M2 into C

′P 2. Using this immersion we introduce isothermal coordi-
nates on M2 and compute the objects ∇, h, C as well as the frame equations
and compatibility conditions in these coordinates. As a result we obtain the
fundamental theorem of definite surfaces in C

′P 2 in Theorem 4.4.
Minimal Lagrangian surfaces in CP 2 have been considered in many pa-

pers, e.g., [4–8,22,25]. In particular in [9], minimal Lagrangian or minimal sur-
faces have been characterized by various Gauss maps, the so-called Ruh–Vilms
type theorems have been obtained. In Sect. 5, we will characterize surfaces in
C

′P 2 with special properties in terms of primitive harmonic maps, which are
special harmonic maps into k-symmetric space (k ≥ 2), see Theorem 5.3. In
Sect. 6 we will define various Gauss maps for surfaces in C

′P 2 by using various
bundles over S5

3 and finally derive Ruh–Vilms type theorems, Theorem 6.3.

1The para-complex projective space C′P n appears in the example on pp. 92–93 of [1] with
parameters F = R and (p, q) = (1, n). In that work this space has been represented as the
cotangent bundle of the real projective space RP n, but we shall work with the representation
as the mentioned subset of the product RP n×RPn, because the latter emphasizes the primal-
dual symmetry of the space.
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In Appendix A, basic results about C
′Pn and S2n+1

n+1 will be discussed. In
Appendix B, k-symmetric spaces and primitive harmonic maps will be intro-
duced, and finally in Appendix C various bundles will be explained.2

2. Half-Dimensional Immersions into the Para-Complex
Projective Space form C

′P n

In this section we derive the frame equations for non-degenerate n-dimensional
immersions f of a manifold Mn into the para-complex projective space C

′Pn.
The entries of the corresponding Maurer-Cartan forms are expressed by the
components of a projectively flat affine connection ∇ and a non-degenerate
non-symmetric tensor h which satisfies a Codazzi equation and is an explicit
function of the Ricci tensor of ∇ (Theorem 2.9, Remark 2.1). The components
of h and ∇ will in turn be expressed in terms of a lift f of f , which exists at
least on simply connected charts, into a quadric hypersurface S2n+1

n+1 of a real
vector space (Lemma 2.5 and 2.6). In this and the next section we work with
arbitrary coordinates on Mn.

2.1. Para-Complex Projective Space

Consider the para-complex projective space

C
′Pn = {([x], [χ]) ∈ RPn × RPn | 〈x, χ〉 > 0}, (2.1)

where RPn is the n-dimensional real projective space, RPn is its dual, and
some representatives x ∈ R

n+1 and χ ∈ Rn+1 of [x] and [χ], respectively,
are positive with respect to the natural pairing 〈, 〉 between R

n+1 and Rn+1.
Consider C

′Pn as a fibration over RPn. We have that RPn is connected, and
that the fiber over a fixed point of RPn is exactly an affine chart in RPn,
which is contractible. Hence we even have that the fundamental group of C

′Pn

equals that of RPn, and C
′Pn is isomorphic to one of the reduced para-complex

projective spaces in [10, Theorem 3.1]. In any affine chart on C
′Pn the para-

Kähler structure is generated by the para-Kähler potential log |1 +
∑

i[x]i[χ]i|
[3, Section 4]. Let us denote the metric on C

′Pn, the symplectic form, and
the para-complex structure by g, ω, and J ′, respectively. Note that J ′ acts for
X = (X,X ) ∈ T([x],[χ])RPn × T([x],[χ])RPn = T([x],[χ])C

′Pn by

J ′ : (X,X ) �→ (X,−X )

and we have the relations

g(X,Y ) = ω(J ′X,Y ), ω(X,Y ) = g(J ′X,Y ).

The integrable eigen-distributions of J ′ on C
′Pn are denoted by Σ±, respec-

tively. For a survey on para-Kähler spaces see, e.g., [11], for a detailed study

2The authors feel that the name given to the objects considered may not fit to what algebraic
geometers use. We have chosen nevertheless to use the notation used in several papers
preceding ours.
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of the para-Kähler space form C
′Pn see [2]. In Appendix A, we shall discuss

the para-Kähler structure and the basic geometry of C
′Pn in detail.

We shall consider immersions f : Mn → C
′Pn which are transversal

to both distributions Σ±. We shall call such immersions non-degenerate. The
Levi-Civita connection ∇̂ of the metric g can be decomposed into a component
∇ tangent to f and a component in the distribution Σ−, defining a torsion-free
affine connection ∇ on Mn. In the same way, a torsion-free affine connection
∇∗ can be defined on Mn by decomposing ∇̂ into a component tangent to
f and a component in Σ+. Both connections ∇,∇∗ are projectively flat [3,
Lemma 4.2]. The pullback of the non-symmetric tensor g + ω defines a non-
degenerate non-symmetric tensor h (the para-hermitian form) of type (0, 2) on
Mn [3, Lemma 2.3], i.e.,

h(X,Y ) = (g + ω)(f∗X, f∗Y ),

for tangent vectors X,Y on Mn. This tensor satisfies respectively the Codazzi
equations and the duality relation [3, Theorem 2.1]

(∇Xh)(Y,Z) = (∇Zh)(Y,X), (∇∗
Xh)(Y,Z) = (∇∗

Zh)(X,Z), (2.2)

Xh(Y,Z) = h(∇XY,Z) + h(Y,∇∗
XZ), (2.3)

for all tangent vectors X,Y,Z on Mn. From (2.3), it is easy to see that ∇̂ =
(∇+∇∗)/2. From these equations it follows that the difference tensor of type
(1, 2)

K = ∇∗ − ∇ = 2(∇̂ − ∇)

satisfies the relation

(∇Xh)(Z, Y ) = h(Z,K(X,Y )), (2.4)

where K(X,Y ) = ∇∗
XY −∇XY . It is convenient to introduce a tensor of type

(0, 3), the cubic form C by

C = ∇h,

and from the Codazzi equation (2.2), C(X,Y,Z) = ∇Zh(X,Y ) is symmetric
in the last two indices.

Remark 2.1. The tensor h can be obtained from the Ricci tensor Ric of the
connection ∇ by [3, Lemma 4.3]

h(X,Y ) =
1

n2 − 1
{nRic(X,Y ) + Ric(Y,X)} . (2.5)

On the other hand, if a manifold Mn is equipped with a projectively flat con-
nection ∇ with tensor h given by (2.5), then locally there exists an immersion
f : Mn → C

′Pn such that Σ− is transversal to f , the tensor h is the pull-back
of g + ω on Mn, and ∇ is the affine connection generated by the transversal
distribution Σ− as above [3, Theorem 4.3].
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2.2. A Natural Fibration and Horizontal Lifts

We shall denote the local coordinates on Mn by y = (y1, . . . , yn). The coor-
dinates on R

n+1 shall be denoted by x = (x1, . . . , xn+1), the coordinates on
the dual space Rn+1 by χ = (χ1, . . . , χn+1). The dual pairing on these vector
spaces will be denoted by 〈·, ·〉.

As in similar investigations, an immersion f : Mn → C
′Pn will be dis-

cussed via a lift into the total space S2n+1
n+1 of a fibration over C

′Pn. In this
paper we will consider as total space the quadric

S2n+1
n+1 =

{
(x, χ) ∈ R

n+1 × Rn+1 | 〈x, χ〉 = 1
}

, (2.6)

and will use the projection map

πH : S2n+1
n+1 → C

′Pn, (x, χ) �→ ([x], [χ]). (2.7)

Clearly, the tangent space T(x,χ)S
2n+1
n+1 to S2n+1

n+1 can be realized by pairs of
vectors, (X̂, X̂ ) ∈ R

n+1 × Rn+1 satisfying 〈X̂, χ〉 + 〈x, X̂ 〉 = 0. In order to de-
scribe tangent vectors to C

′Pn, one needs to introduce an equivalence relation
for the pair (X̂, X̂ ), since X̂ and X̂ are not uniquely defined by the equation
just stated. More naturally, one can introduce the uniquely defined horizontal
distribution Ĥ and the vertical distribution V̂ defined by

Ĥ(x,χ) =
{

(X̂, X̂ ) | 〈X̂, χ〉 = 0 and 〈x, X̂ 〉 = 0
}

, (2.8)

V̂(x,χ) = R(x,−χ). (2.9)

The horizontal distribution has the following properties. For (X̂, X̂ ) ∈ T(x,χ)

S2n+1
n+1 we have (X̂, X̂ ) ∈ Ĥ(x,χ) if and only if (X̂,−X̂ ) ∈ Ĥ(x,χ). Moreover, for

(X̂, X̂ ) ∈ Ĥ(x,χ) we have dπH(X̂,−X̂ ) = J ′dπH(X̂, X̂ ). This has the following
consequence.

Proposition 2.2. (1) The projection πH : S2n+1
n+1 → C

′Pn, (x, χ) �→ ([x], [χ]) is
a pseudo-Riemannian submersion, the differential of which has as kernel
the distribution V̂ and is for all (x, χ) ∈ S2n+1

n+1 an isomorphism from
Ĥ(x,χ) to T([x],[χ])C

′Pn.
(2) Let X,Y ∈ T([x],[χ])C

′Pn be arbitrary tangent vectors, and let (X̂,

X̂ ), (Ŷ, Ŷ) ∈ Ĥ(x,χ) be their pre-images under the map dπH at (x, χ).
Then

(g + ω)(X,Y ) = 〈X̂, Ŷ〉.
The proof will be given in Appendix A.3.2.
Let f : Mn → C

′Pn be an immersion and assume that f has a lift
f : Mn → S2n+1

n+1 . Here f is defined by the property that (x, χ) = f(y) projects
to ([x], [χ]) = f(y). It is easy to see that a lift is unique up to “scalings” of the
form

(x, χ) �→ (αx, α−1χ) (2.10)
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for never vanishing scalar functions α. In general, a given f : Mn → C
′Pn can

not be lifted, see Proposition A.13.
For later purposes we decompose the tangent map of a lift in more detail:

Let f be a lift of some immersion f : Mn → C
′Pn and write f(y) = (x(y), χ(y)).

Then the differential of f can be decomposed in T(x,χ)S
2n+1
n+1 in the form

dyf(Z) = (ξ(Z), η(Z)) + (〈dyx(Z), χ〉x, 〈x, dyχ(Z)〉χ), (2.11)

where the first term is the horizontal component and the second term is the
vertical component of dyf(Z). Moreover, we have

ξ(Z) = dyx(Z) − 〈dyx(Z), χ〉x, and η(Z) = dyχ(Z) − 〈x, dyχ(Z)〉χ. (2.12)

For convenience we also introduce the 1-form

ψ(Z) = 〈dyx(Z), χ〉 = −〈x, dyχ(Z)〉. (2.13)

It is clear that using ψ one can write the vertical component of df(Z) as

ψ(Z)(x,−χ).

If fα(y) = (αx, α−1χ) is another lift of f , then we obtain

(ξα(Z), ηα(Z)) = (αξ(Z), α−1η(Z)) (2.14)

for its horizontal component, and for its vertical component we derive
(〈dy(αx)(Z), α−1χ〉αx, 〈αx, dy(α−1χ)(Z)〉α−1χ

)

= (ψ(Z) + dy log |α|)(αx,−α−1χ). (2.15)

Hence under a scaling (2.10) the form ψ transforms as ψ �→ ψ + d log |α|. We
may thus add arbitrary differentials to ψ by changing the lift f.

As mentioned above, as a next step and as in similar geometric situations,
one wants to choose not only some lift, but preferably some “horizontal lift”
for a given immersion f : Mn → C

′Pn.

Definition 2.3. Let f : Mn → C
′Pn be an immersion and f : Mn → S2n+1

n+1 be
a lift of f . Then f is called a “horizontal lift” iff the tangent map takes values
in the horizontal distribution Ĥ. In other words, a lift is horizontal, iff the
vertical component of its differential vanishes identically, i.e., ψ = 0.

Proposition 2.4. Assume f : Mn → C
′Pn is liftable with lift f : Mn → S2n+1

n+1 ,
f(y) = (x, χ). Then there exists a never vanishing scalar function α such that
fα is a horizontal lift of f : Mn → C

′Pn if and only if the equation

α−1dα = −ψ (2.16)

has a global solution on Mn.

Proof. It is easy to verify that in view of Eq. (2.15) the condition on the lift
of being horizontal is equivalent to (2.16). �



Half-dimensional immersions into para-complex Page 7 of 46   245 

2.3. Non-symmetric Codazzi Tensor, Connection, Frame Equations

We shall now pass to the main goal of this section and compute the non-
symmetric tensor h on Mn in terms of the forms ξ, η.

Lemma 2.5. Let the non-degenerate immersion f : Mn → C
′Pn be given by

means of a lift f : Mn → S2n+1
n+1 into the quadric (2.6). Define the R

n+1- and
Rn+1-valued 1-forms ξ, η on Mn by (2.12). Then the pull-back h of the tensor
g + ω from C

′Pn to Mn is given by

h(X,Y ) = 〈ξ(X), η(Y )〉 (2.17)

for all tangent vectors X,Y on Mn.

Proof. The lemma is an immediate consequence of Proposition 2.2. �

Proposition 2.6. Retain the assumptions of Lemma 2.5, and define the 1-form
ψ by (2.13). Then for all tangent vectors X and Y we have

{
ξ(∇XY ) = X(ξ(Y )) − ψ(X)ξ(Y ) + 〈ξ(Y ), η(X)〉x,
η(∇∗

XY ) = X(η(Y )) + ψ(X)η(Y ) + 〈ξ(X), η(Y )〉χ.
(2.18)

Proof. First note that we can rephrase the left-hand side and the first term in
the right-hand side in (2.18) together as

(∇Xξ)(Y ) = X(ξ(Y )) − ξ(∇XY ), (∇∗
Xη)(Y ) = X(η(Y )) − η(∇∗

XY ).

Then using decompositions of the horizontal part and the vertical part of ∇ξ
and ∇∗η, we can set

(∇Xξ)(Y ) = a(X)ξ(Y ) + b(X,Y )x, (∇∗
Xη)(Y ) = c(X)η(Y ) + d(X,Y )χ,

(2.19)

where a and c are 1-forms and b and d are bi-linear maps. Taking the inner
product of χ in the first formula and x in the second formula, we have

b(X,Y ) = −〈ξ(Y ), η(X)〉, d(X,Y ) = −〈ξ(X), η(Y )〉.
Here we use the relations 〈Xξ(Y ), χ〉 = −〈ξ(Y ), η(X)〉 and 〈Xη(Y ), x〉 =
−〈η(Y ), ξ(X)〉, respectively, since ξ and η are horizontal vectors. We now com-
pute a. Interchanging X and Y in the first equation of (2.19), and subtracting
it from the original equation we have

Xξ(Y ) − Y ξ(X) − ξ(∇XY − ∇Y X) = a(X)ξ(Y ) − a(Y )ξ(X) + v(X,Y )x,

where we set v(X,Y ) = −〈ξ(Y ), η(X)〉 + 〈ξ(X), η(Y )〉. The left-hand side of
the above equation can be simplified by using the torsion-freeness of ∇ and
the definition of ψ as

Xξ(Y ) − Y ξ(X) − ξ(∇XY − ∇Y X)

= Xdyx(Y ) − X(ψ(Y )x) − Y dyx(X) + Y (ψ(X)x) − ξ([X,Y ])

= −ψ(Y )ξ(X) + ψ(X)ξ(Y ) + p(X,Y )x,
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where p(X,Y )x denotes the vertical part. Taking the inner product with χ,
p(X,Y ) = v(X,Y ) follows. Therefore we conclude

(a(Y ) − ψ(Y ))ξ(X) + (ψ(X) − a(X))ξ(Y ) = 0.

Since the above equation holds for any vector fields X and Y , we have a = ψ.
We can compute c similarly. This completes the proof. �

We now rewrite the above relation in (2.18) by local expression. We first
abbreviate the partial derivative by

∂α =
∂

∂yα
, (2.20)

where y1, . . . , yn are local coordinates on M .
We now use the local expression of the tensor h, i.e., hαβ = h(∂α, ∂β).

Denote by hαβ the inverse tensor, i.e., such that hαβhβγ = hγβhβα = δα
γ . Here

we use the Einstein summation convention. Moreover, we will use the notation

(ξα, ηα) = (ξ(∂α), η(∂α)) and ψα = ψ(∂α),

where ∂1, . . . , ∂n are vector fields defined in (2.20) and ξ is the horizontal
component of a lift f(y) = (x(y), χ(y)) defined in (2.12).

As a consequence of (2.17) we obtain by virtue of (2.8) that

〈∂αx, ηβ〉 = 〈ξα + 〈∂αx, χ〉x, ηβ〉 = hαβ , (2.21)

〈∂αξβ , χ〉 = −〈ξβ , ∂αχ〉 = −〈ξβ , ηα + 〈x, ∂αχ〉χ〉 = −hβα. (2.22)

Corollary 2.7. Retain the assumptions in Proposition 2.6. Then the affine con-
nection ∇ defined on Mn by the transversal distribution Σ− and the dual affine
connection ∇∗ defined on Mn by the transversal distribution Σ+ are given by

∇α
βγ = −ψγδα

β + hδα〈∂γξβ , ηδ〉, (2.23)

∇∗α
βγ = ψγδα

β + hαδ〈ξδ, ∂γηβ〉. (2.24)

For the difference tensor we obtain

Kα
βγ = 2ψγδα

β + hαδ〈ξδ, ∂γηβ〉 − hδα〈∂γξβ , ηδ〉. (2.25)

Proof. From (2.11) we obtain

∂μx = ξμ + ψμx, ∂μχ = ημ − ψμχ. (2.26)

The first relation in (2.18) can be written as

ξμ∇μ
βγ = ∂γξβ − ψγξβ + 〈ξβ , ηγ〉x.

Combining, we obtain

(∂μx − ψμx)∇μ
βγ = ∂γξβ − ψγ(∂βx − ψβx) + 〈ξβ , ηγ〉x,

which yields

∇μ
βγ∂μx = −ψγ∂βx + ∂γξβ + (∇μ

βγψμ + ψγψβ + 〈ξβ , ηγ〉)x.
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Taking the scalar product with ηδ we obtain by virtue of (2.21) that

∇μ
βγhμδ = −ψγhβδ + 〈∂γξβ , ηδ〉.

Multiplying by hδα we get relation (2.23).
Relation (2.24) is obtained similarly. The expression for the difference

tensor readily follows. �

Corollary 2.8. The cubic form is given by

Cαβγ = ∂γhαβ + 2ψγhαβ − 〈∂γξα, ηβ〉 − 〈∂γξβ , ηα〉.
Proof. The proof is straightforward by using (2.23). �

We now go on to deduce the frame equations. We shall define the primal
and dual frames as

F = (x, ξ1, . . . , ξn) and F ∗ = (χ, η1, . . . , ηn),

respectively. Note that under a scaling (x, χ) �→ (αx, α−1χ) of the lift f the
frames transform as F �→ αF , F ∗ �→ α−1F ∗. Therefore the trace-less parts
of the Maurer–Cartan forms are invariant under changes of the lift. We have
(F ∗)T F = diag

(
1, hT

)
and therefore F−1 = diag

(
1, h−T

)
(F ∗)T . This yields

Uα := F−1∂αF = diag
(
1, h−T

)
(

χT

ηT

)
(
∂αx ∂αξ

)

for the Maurer-Cartan form, where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn). Using
(2.23), (2.24) and (2.21), (2.22), (2.26) we obtain explicit expressions for the
components of U . In a similar way we obtain the components of the dual
Maurer-Cartan form U∗

α := (F ∗)−1∂αF ∗. Let us list these expressions in the
following theorem.

Theorem 2.9. Let the non-degenerate immersion f : Mn → C
′Pn be given by

means of a lift f : Mn → S2n+1
n+1 into the quadric (2.6). Define the R

n+1- and
Rn+1-valued 1-forms ξ, η on M by (2.12), and the 1-form ψ by (2.13). Let the
affine connection ∇ on Mn be defined by the transversal distribution Σ−, and
the dual affine connection ∇∗ by the transversal distribution Σ+. Define the
frames F = (x, ξ1, . . . , ξn) and F ∗ = (χ, η1, . . . , ηn). Then the Maurer-Cartan
forms

{
Uα = F−1∂αF
U∗

α = (F ∗)−1∂αF ∗

are given by
{

(Uα)00 = ψα, (Uα)0γ = −hγα, (Uα)β0 = δβ
α, (Uα)βγ = ∇β

αγ + ψαδβ
γ ,

(U∗
α)00 = −ψα, (U∗

α)0γ = −hαγ , (U∗
α)β0 = δβ

α, (U∗
α)βγ = ∇∗β

αγ − ψαδβ
γ .

Let now Mn be a manifold equipped with an affine connection ∇ and
a non-degenerate (0, 2)-tensor h. By the results of [3, Section 4] the frame
equations are locally integrable for some appropriate 1-form ψ if and only if



  245 Page 10 of 46 J. F. Dorfmeister et al. Results Math

∇ is projectively flat and h is obtained from the Ricci tensor of ∇ by formula
(2.5). Let us verify this by direct calculation.

The integrability conditions for the frame F are given by

∂δUα − ∂αUδ + [Uδ, Uα] = 0.

The upper left corner of this identity yields −hαδ + ∂δψα = −hδα + ∂αψδ.
The lower left block is not informative, while the upper right block yields
hβδ∇β

αγ + ∂δhγα = hβα∇β
δγ + ∂αhγδ. Finally, the lower right block yields

−δβ
δ hγα + ∇β

δε∇ε
αγ + ∂δ∇β

αγ + (∂δψα)δβ
γ = −δβ

αhγδ + ∇β
αε∇ε

δγ + ∂α∇β
δγ

+(∂αψδ)δβ
γ .

Denoting the Riemann curvature tensor of ∇ by

Rβ
γδα = ∂δ∇β

αγ − ∂α∇β
δγ + ∇β

δε∇ε
αγ − ∇β

αε∇ε
δγ

and the Ricci tensor by Rγα = Rδ
γδα, we obtain the compatibility conditions

⎧
⎨

⎩

∂δψα − ∂αψδ = hαδ − hδα,
∇δhγα − ∇αhγδ = 0,

Rβ
γδα = δβ

δ hγα − δβ
αhγδ + δβ

γ (hδα − hαδ).
(2.27)

From the last condition it follows by contraction that Rγα = nhγα−hαγ , which
is indeed equivalent to (2.5). The last condition can then be rewritten as

Rβ
γδα +

1

n2 − 1

{
δβ

α(nRγδ + Rδγ) − δβ
δ (nRγα + Rαγ) + (n − 1)δβ

γ (Rαδ − Rδα)
}

= 0.

On the left-hand side we recognize the Weyl projective curvature tensor W β
γδα

[12, eq. (7p)] of the connection ∇. The second condition in (2.27) is the sym-
metry of the cubic form Cαβγ = ∇γhαβ in the last two indices. It implies the
closed-ness of the form ωαδ = 1

2 (hαδ − hδα). The first condition in (2.27) can
be written as dψ = −2ω. If the second condition holds the first condition can
locally be satisfied by an appropriate choice of the potential ψ.

Thus the integrability conditions on ∇ and h amount to relation (2.5),
the vanishing of W β

γδα, and the symmetry Cαβγ = Cαγβ . These are indeed
the necessary and sufficient conditions for projective flatness of ∇ [12, p. 104].
Moreover, W β

γδα vanishes identically for n = 2, and the condition W β
γδα = 0

implies the symmetry of C for n ≥ 3 [12, p. 105].

3. Second Fundamental Form and Difference Tensor

In this section we compute the second fundamental form II of a non-degenerate
immersion f of a manifold Mn into C

′Pn. We show that the immersion is
totally geodesic if and only if the cubic form C vanishes, and it is minimal if
and only if C is trace-less with respect to the last two indices. The results of
this section are valid not only for immersions into the para-Kähler space form



Half-dimensional immersions into para-complex Page 11 of 46   245 

C
′Pn, but for non-degenerate immersions into general para-Kähler manifolds

M
2n
n .

Theorem 3.1. Let f : Mn → M
2n
n be an isometric immersion of a pseudo-

Riemannian manifold into a para-Kähler manifold such that the eigen-
distributions Σ± of the para-complex structure J ′ are transversal to f . Let
∇,∇∗ be the affine connections defined on Mn by the transversal distribu-
tions Σ−,Σ+, respectively, and let K = ∇∗ − ∇ be the difference tensor. Let
Π± = 1

2 (id ±J ′) be the projections onto Σ±, respectively, and let ΠN be the
orthogonal projection onto the normal subspace to f . Then the second funda-
mental form of f is given by

II(X,Y ) = ΠNΠ−f∗K(X,Y )

for all vector fields X,Y on Mn.

Proof. Let ∇̂ be the Levi-Civita connection of the metric g on M
2n
n . Then

by definition II(X,Y ) = ΠN ∇̂f∗Xf∗Y . Also by definition of ∇,∇∗ we have
Π+(∇̂f∗Xf∗Y −f∗∇XY ) = 0 and Π−(∇̂f∗Xf∗Y −f∗∇∗

XY ) = 0, because Σ− =
ker Π+, Σ+ = ker Π−. Using Π+ + Π− = id we obtain

Π−f∗K(X,Y ) = Π−f∗∇∗
XY − (id −Π+)f∗∇XY

= Π−∇̂f∗Xf∗Y − f∗∇XY + Π+∇̂f∗Xf∗Y

= ∇̂f∗Xf∗Y − f∗∇XY.

Applying the projection ΠN to both sides we obtain the desired identity. �

The cubic form is defined as in Section 2 by the relation C = ∇h, where
h is the pull-back of the sum g + ω to Mn and ω is the symplectic form of
M

2n
n .

Corollary 3.2. Assume the conditions of Theorem 3.1 and let g be the pseudo-
metric on Mn. Then the immersion f is minimal if and only if Trg K = 0,
and it is totally geodesic if and only if K = 0. Equivalently, the immersion f
is minimal if and only if Trg C = 0, and it is totally geodesic if and only if
C = 0, where C is the cubic form.

Proof. Since the immersion f is non-degenerate, the subspaces Σ± are transver-
sal to both the tangent and the normal subspaces. Therefore the product
ΠNΠ−f∗ maps the tangent bundle TMn bijectively onto the normal bundle.
Then by Theorem 3.1 the mean curvature of f is zero if and only if the con-
traction of the difference tensor with the metric vanishes. Likewise, the second
fundamental form vanishes if and only if the difference tensor vanishes. The
second part of the assertion follows from (2.4) and the non-degeneracy of h,
which in turn follows from the non-degeneracy of the immersion f . �
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4. Definite Surface Immersions

In this section we specialize to immersions defined on surfaces M2 with definite
metric. We allow both a positive definite and a negative definite metric. For
simplicity we assume that the surface is simply connected. We deduce the frame
equations and the compatibility conditions in the uniformizing coordinate on
the surface M2. We then consider the special cases of Lagrangian immersions
and minimal immersions.

4.1. The Maurer–Cartan Form

Whatever the sign of the metric, we may introduce a uniformizing complex
coordinate z = y1 + iy2 on the surface M2 in which the metric takes the form

g = 2Heu |dz|2,
where u : M2 → R is a function of z and z̄, i.e., u = u(z, z̄) and H = 1 (the
elliptic case) or −1 (the hyperbolic case). In the corresponding real coordinates
y1, y2 the tensor h takes the form

(
h11 h12

h21 h22

)

=
(

a b
−b a

)

with a = 2Heu. We first establish relations between the projectively flat con-
nection ∇, the cubic form C, and the expressions 〈∂αξ, η〉 and similar scalar
products in this coordinate system. This will serve to express the Maurer–
Cartan form in terms of the two independent entries a, b of h and their deriva-
tives, the two entries of ψ, and the 6 independent entries of the cubic form C.

We now convert the real coordinates to complex coordinates, see [23].
The complex canonical basis vectors take the form

∂z =
1
2
(∂1 − i∂2), ∂z̄ =

1
2
(∂1 + i∂2).

For convenience we introduce the complex functions

c = 1 + i
b

a
and ρz = 〈∂zx, χ〉 =

1
2
(ψ1 − iψ2). (4.1)

We also introduce the para-Kähler angle function θ by

θ = arctan
(

b

a

)

+
π

2
∈ (0, π). (4.2)

It is straightforward to see that arg c = θ − π
2 ∈ (−π

2 , π
2

)
.

Remark 4.1. The complex function c is nowhere zero on a surface M2 since
we assume that the immersion f : M2 → C

′P 2 is definite.3

3There is no “complex point” compared to the CP 2 case.
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Using the vector-valued 1-forms ξ, η, define vector-valued complex func-
tions

ξz =
1
2
(ξ1 − iξ2), ηz =

1
2
(η1 − iη2), ξz̄ = ξz, ηz̄ = ηz.

By abuse of notation, we denote ξz, ηz and ρz by ξ, η and ρ respectively. From
(2.8) we then obtain

〈ξ, χ〉 = 〈x, η〉 = 0. (4.3)

In complex coordinates we then have

hzz = hz̄z̄ = 0, hzz̄ =
1
2
(a + ib) = Heuc, hz̄z =

1
2
(a − ib) = Heuc̄. (4.4)

By Lemma 2.5 we obtain

〈ξ, η〉 = 〈ξ̄, η̄〉 = 0, 〈ξ, η̄〉 = Heuc, 〈ξ̄, η〉 = Heuc̄. (4.5)

Differentiating these relations, we obtain

〈ξ, ∂zη〉 = −〈∂zξ, η〉, 〈ξ, ∂z η̄〉 = −〈∂zξ, η̄〉 + ∂z(Heuc),

〈ξ, ∂z̄η〉 = −〈∂z̄ξ, η〉, 〈ξ, ∂z̄ η̄〉 = −〈∂z̄ξ, η̄〉 + ∂z̄(Heuc).

Relations (2.21) yield

〈∂zx, η〉 = 〈∂z̄x, η̄〉 = 0, 〈∂zx, η̄〉 = Heuc, 〈∂z̄x, η〉 = Heuc̄, (4.6)

while relations (2.22) become

− 〈ξ, ∂zχ〉 = 〈∂zξ, χ〉 = 〈∂z̄ ξ̄, χ〉 = 0, 〈∂z̄ξ, χ〉 = −Heuc,

〈∂z ξ̄, χ〉 = −Heuc̄. (4.7)

Note also that since the operators ∂z, ∂z̄ commute, we have

〈∂z ξ̄ − ∂z̄ξ, η〉 =〈∂z∂z̄x − 〈∂z∂z̄x, χ〉x − 〈∂z̄x, ∂zχ〉x − 〈∂z̄x, χ〉∂zx, η〉
− 〈∂z̄∂zx − 〈∂z̄∂zx, χ〉x − 〈∂zx, ∂z̄χ〉x − 〈∂zx, χ〉∂z̄x, η〉

=〈−ρ̄∂zx + ρ∂z̄x, η〉 = ρc̄Heu. (4.8)

We now introduce respectively functions φ and Q by

φ := He−u〈∂z̄ξ, η〉, (4.9)

Q := 〈∂zξ, η〉. (4.10)

Note that φdz and Qdz3 are well-defined as a 1-form and a 3-form on M2,
respectively.

Remark 4.2. (1) We now observe that if we change a lift f = (x, χ) to
(αx, α−1χ) by a real-valued function α, then the real-vectors ξ1, ξ2, η1
and η2 change accordingly to αξ1, αξ2, α−1η1, and α−1η2, respectively.
Therefore the functions u, c, and by virtue of (4.5) also φ and Q, are
independent of choice of a lift f, i.e., they are functions depending on f
not f.



  245 Page 14 of 46 J. F. Dorfmeister et al. Results Math

(2) The Tchebycheff form is defined by Tα = 1
2Cαβγgβγ . From Corollary 2.8

we get Czzz = −2〈∂zξ, η〉, Czzz̄ = Czz̄z = −2〈∂z̄ξ, η〉, and hence

Q = −1
2
Czzz.

Therefore the cubic form Qdz3 is nothing but the complex component
of the cubic form C = ∇h. Further in complex coordinates we have g−1 =
2
a

(
0 1
1 0

)

and hence Tz = 1
a (Czzz̄+Czz̄z) = − 4

a 〈∂z̄ξ, η〉 = −2He−u〈∂z̄ξ, η〉,

φ = −1
2
Tz.

The form φ dz is sometimes called the mean curvature 1-form.

We are now in a position to formulate the moving frame equations. In-
stead of the real moving frames F, F ∗ introduced in Sect. 2 we shall consider
the complex moving frames

F̃ = (ξ, ξ̄, x), F̃∗ = (η̄, η, χ).

By (4.3) and (4.5) the product F̃T F̃∗ equals

D̃ =

⎛

⎝
Hceu 0 0

0 Hc̄eu 0
0 0 1

⎞

⎠ ,

and F̃∗ = F̃−T D̃. The Maurer–Cartan forms Ũz := F̃−1∂zF̃ and Ũz̄ :=
F̃−1∂z̄F̃ are given by

Ũz = D̃−1

⎛

⎝
〈∂zξ, η̄〉 〈∂z ξ̄, η̄〉 〈∂zx, η̄〉
〈∂zξ, η〉 〈∂z ξ̄, η〉 〈∂zx, η〉
〈∂zξ, χ〉 〈∂z ξ̄, χ〉 〈∂zx, χ〉

⎞

⎠ , Ũz̄ = D̃−1

⎛

⎝
〈∂z̄ξ, η̄〉 〈∂z̄ ξ̄, η̄〉 〈∂z̄x, η̄〉
〈∂z̄ξ, η〉 〈∂z̄ ξ̄, η〉 〈∂z̄x, η〉
〈∂z̄ξ, χ〉 〈∂z̄ ξ̄, χ〉 〈∂z̄x, χ〉

⎞

⎠ .

We now compute Ũz and Ũz̄ as follows: Set

∂zξ = pξ + qξ̄ + rx,

where p, q and r are unknown complex functions to be determined. Taking
pairing with respect to χ, it is easy to see that r = 0. Moreover, taking pairing
with respect to η we have 〈∂zξ, η〉 = q〈ξ̄, η〉, and by (4.5) and (4.10), q =
Hc̄−1e−uQ follows. Finally taking pairing with respect to η̄, we have

〈∂zξ, η̄〉 = p〈ξ, η̄〉.
Let us compute the left-hand side by taking the derivative of 〈ξ, η̄〉 = Heuc
with respect to z, that is,

〈∂zξ, η̄〉 = −〈ξ, ∂z η̄〉 + Heuc ∂z(log c + u).

Since ∂z η̄ = ∂z∂z̄χ − ∂z(ρ̄χ) and by virtue of (4.7) 〈ξ, ∂zχ〉 = 0, we get

〈ξ, ∂z η̄〉 = 〈ξ, ∂z̄∂zχ〉 = −〈∂z̄ξ, ∂zχ〉.
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Moreover, ∂zχ = η−ρχ and thus 〈∂z̄ξ, ∂zχ〉 = Heuφ+ρHeuc holds. Therefore
p = φ

c + ρ + ∂z(log c + u) follows. Similarly, set

∂z ξ̄ = pξ + qξ̄ + rx,

where p, q and r are unknown complex functions to be determined. Taking
pairing with respect to χ, it is easy to see that r = −Heuc̄ by (4.7). Next
taking pairing with respect to η we have 〈∂z ξ̄, η〉 = q〈ξ̄, η〉 = qHeuc̄, and by
(4.8), q = ρ + c̄−1φ follows. Finally taking pairing with respect to η̄, we have
〈∂z ξ̄, η̄〉 = p〈ξ, η̄〉, and by (4.9) and (4.7), p = c−1φ̄ follows. By (2.26) we have

∂zx = ξ + ρx = 1 · ξ + 0 · ξ̄ + ρ · x.

One can compute Ũz̄ similarly.
Thus the Maurer-Cartan form can be computed as follows:

Ũz =

⎛

⎝
ρ + c−1φ + ∂z(u + log c) c−1φ̄ 1

Hc̄−1e−uQ ρ + c̄−1φ 0
0 −Hc̄eu ρ

⎞

⎠ ,

Ũz̄ =

⎛

⎝
ρ̄ + c−1φ̄ Hc−1e−uQ̄ 0

c̄−1φ ρ̄ + c̄−1φ̄ + ∂z̄(u + log c̄) 1
−Hceu 0 ρ̄

⎞

⎠ .

The compatibility conditions

[Ũz, Ũz̄] + ∂zŨz̄ − ∂z̄Ũz = 0

amount to the real equation ∂z̄ρ − ∂z ρ̄ = Heu(c − c̄), which can be written as

Im(∂z̄ρ) = Heu Im c (4.11)

and is equivalent to the first equation in (2.27), and the two compatibility
conditions

|c|−2|φ|2 − |c|−2e−2u|Q|2 + H(c̄ − 2c)eu − ∂z

(
c−1φ̄

)
+ ∂z̄(c−1φ)

− ∂z∂z̄(log c + u) = 0, (4.12)

(c̄−1 − c−1)(euφ̄2 − Q̄φ) − euφ̄ ∂z̄ log |c|2 + eu(∂z̄φ̄ − φ̄∂z̄u) + ∂z̄Q = 0.
(4.13)

As pointed out in (1) in Remark 4.2, the functions u, c, φ and Q are
independent of the choice of a lift f. On the other hand, the function ρ depends
on the choice of a lift.

Proposition 4.3. By choosing a lift f properly, the function ρ can be made to
satisfy the condition

∂z̄ρ = Hceu. (4.14)

In this case, we denote it by ρ0 instead of ρ.
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Proof. Let ρ0 as in (4.14). Then the compatibility condition (4.11) is equivalent
to

(ρ0 − ρ)z̄ − (ρ0 − ρ)z̄ = 0.

Therefore, the 1-form

Ω =
{

(ρ0 − ρ)dz + (ρ0 − ρ)dz̄
}

is a real-closed 1-form. Let δ : D → R denote a solution to dδ = Ω. Now the
new lift f̃ = eδf satisfies ρ̃ = ρ0. �

We now gauge the frames F̃ and F̃∗ to:

F = F̃D, F∗ = F̃∗D, (4.15)

with

D = D̃−1/2 diag(1, 1, i) =

⎛

⎝
(Hc)−1/2e−u/2 0 0

0 (Hc̄)−1/2e−u/2 0
0 0 i

⎞

⎠ .

Then a straightforward computation shows that the Maurer–Cartan form of
F can be computed as

F−1dF := Uzdz + Uz̄dz̄,

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uz =

⎛

⎜
⎝

ρ + 1
2
∂zu + 1

2
∂z log c + c−1φ |c|−1φ̄ i(Hc)1/2eu/2

|c|−1e−uHQ ρ − 1
2
∂zu − 1

2
∂z log c̄ + c̄−1φ 0

0 i(Hc̄)1/2eu/2 ρ

⎞

⎟
⎠,

Uz̄ =

⎛

⎜
⎝

ρ̄ − 1
2
∂z̄u − 1

2
∂z̄ log c + c−1φ̄ |c|−1e−uHQ̄ 0

|c|−1φ ρ̄ + 1
2
∂z̄u + 1

2
∂z̄ log c̄ + c̄−1φ̄ i(Hc̄)1/2eu/2

i(Hc)1/2eu/2 0 ρ̄

⎞

⎟
⎠.

(4.16)

We now summarize the above discussion as the following theorem.

Theorem 4.4 (Fundamental Theorem of definite surfaces in C
′P 2). Let f :

M2 → C
′P 2 be a liftable immersion and f : M2 → S5

3 a lift. Let g =
2Heudzdz̄, (H ∈ {−1, 1}) denote the induced metric, θ : M2 → (0, π) the
para-Kähler angle, Qdz3 the cubic form, φdz the mean curvature form. Set c
by c = 1 + i tan(θ − π/2) and ρ by (4.1). Then (4.11), (4.12), and (4.13) are
satisfied.

Conversely let g = 2Heudzdz̄, (H ∈ {−1, 1}) be a positive or negative
definite metric on a simply connected Riemann surface D. Let θ : D → (0, π) be
a real valued function and φdz and Qdz3 be a 1-form and a 3-form, respectively.
Set c by c = 1 + i tan(θ − π/2) and ρ by (4.11). If these data satisfy (4.12)
and (4.13), then there exists an immersion f : D → C

′P 2 which has invariants
stated as above and is unique up to isometries of C

′P 2.
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4.2. Lagrangian Surface Immersions

In this section we specify our results to the case of Lagrangian surface immer-
sions into C

′P 2. If the immersion f is Lagrangian, then ω = 0, h = g, and
C = ∇g is totally symmetric. The converse implication also holds.

Lemma 4.5. Let f : M2 → C
′P 2 be a non-degenerate surface immersion with

totally symmetric cubic form. Then f is Lagrangian.

Proof. The condition that C is totally symmetric is equivalent to the condition
∇ω = 0. Suppose for the sake of contradiction that ω does not vanish on some
neighbourhood U ⊂ M . Then ∇ preserves a non-trivial volume form on U and
is equi-affine. This implies that its Ricci tensor is symmetric [13, Proposition
I.3.1]. But then (2.5) implies ω = 0, leading to a contradiction. �

The Lagrangian condition ω = 0, or equivalently b = 0, has the implica-
tion

c = 1.

The compatibility condition (4.11) becomes Im ∂z̄ρ = 0. It is equivalent to the
form ψ to be closed. Since M is simply connected, there exists a real potential
υ such that ψ = dυ, or ρ = ∂zυ. By an appropriate scaling of the lift f of f into
S5
3 we may choose υ equal to any desired smooth real function. In particular,

we may achieve

ρ = 0

by an appropriate choice of the lift. Such a lift is horizontal in the sense
of Definition 2.3. In this case the lift f defines a dual pair of centro-affine
immersions x, χ into R

3 and R3, respectively, whose metric coincides with g
and whose centro-affine connection coincides with ∇ [2, Theorem 4.1].

Conditions (4.12) and (4.13) simplify to

{
∂z∂z̄u − |φ|2 + e−2u|Q|2 + Heu = ∂z̄φ − ∂zφ̄,

eu(∂z̄φ̄ − φ̄∂z̄u) + ∂z̄Q = 0.

The left-hand side in the first equation is real, while the right-hand side is
imaginary. Hence both sides must equal zero, and we have

⎧
⎨

⎩

−∂zφ̄ + ∂z̄φ = 0,
∂z∂z̄u − |φ|2 + e−2u|Q|2 + Heu = 0,
eu(∂z̄φ̄ − φ̄∂z̄u) + ∂z̄Q = 0.

(4.17)
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The Maurer–Cartan forms (4.16) simplify to

Uz =

⎛

⎜
⎝

1
2∂zu + φ φ̄ iH1/2eu/2

e−uHQ − 1
2∂zu + φ 0

0 iH1/2eu/2 0

⎞

⎟
⎠ ,

Uz̄ =

⎛

⎜
⎝

− 1
2∂z̄u + φ̄ e−uHQ̄ 0

φ 1
2∂z̄u + φ̄ iH1/2eu/2

iH1/2eu/2 0 0

⎞

⎟
⎠ . (4.18)

Remark 4.6. From −∂zφ̄ + ∂z̄φ = 0 the 1-form φdz + φ̄dz̄ is closed, or equiva-
lently the Tchebycheff form T is closed for a Lagrangian immersion f .

4.3. Minimal Surface Immersions

In this section we specify our results to minimal surface immersions into C
′P 2.

By Corollary 3.2 the immersion f is minimal if and only if the Tchebycheff
form T vanishes if and only if the function φ vanishes. Setting φ = 0 in the
compatibility condition (4.13) gives ∂z̄Q = 0, and Q is a holomorphic function.
Setting φ = 0 in (4.12) gives

−|c|−2e−2u|Q|2 − ∂z∂z̄u = ∂z∂z̄(log c) − H(c̄ − 2c)eu.

The left-hand side of the equation is real, and so must be the right-hand side.
Therefore we have an additional equation for the para-Kähler angle θ in (4.2),

∂z∂z̄θ = 3Heu cot θ.

The Maurer–Cartan form can be simplified to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uz =

⎛

⎜
⎝

ρ + 1
2∂zu + 1

2∂z log c 0 i(Hc)1/2eu/2

|c|−1e−uHQ ρ − 1
2∂zu − 1

2∂z log c̄ 0
0 i(Hc̄)1/2eu/2 ρ

⎞

⎟
⎠ ,

Uz̄ =

⎛

⎜
⎝

ρ̄ − 1
2∂z̄u − 1

2∂z̄ log c |c|−1e−uHQ̄ 0

0 ρ̄ + 1
2∂z̄u + 1

2∂z̄ log c̄ i(Hc̄)1/2eu/2

i(Hc)1/2eu/2 0 ρ̄

⎞

⎟
⎠ .

(4.19)

4.4. Minimal Lagrangian Surface Immersions

Combining Sect. 4.2 and Sect. 4.3, we obtain the following equations for a def-
inite minimal Lagrangian surface immersion in C

′P 2:
{

∂z∂z̄u + e−2u|Q|2 + Heu = 0,

∂z̄Q = 0.
(4.20)
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Moreover, the Maurer–Cartan form can be simplified to

Uz =

⎛

⎜
⎝

1
2∂zu 0 iH1/2eu/2

e−uHQ − 1
2∂zu 0

0 iH1/2eu/2 0

⎞

⎟
⎠ ,

Uz̄ =

⎛

⎜
⎝

− 1
2∂z̄u e−uHQ̄ 0

0 1
2∂z̄u iH1/2eu/2

iH1/2eu/2 0 0

⎞

⎟
⎠ . (4.21)

The first equation in (4.20) is known as the Tzitzéica equation and the Maurer-
Cartan form is identical to that of [14, Section 4.4 with the spectral parameter
λ = ±1]. Therefore it is easy to see that

Theorem 4.7. A definite minimal Lagrangian immersion in C
′P 2 defines a

definite proper affine sphere in R
3 and vice versa.

5. Primitive Maps and Immersions with Special Properties

In this section we characterize surface immersions in C
′P 2 with special prop-

erties (minimal, Lagrangian or minimal Lagrangian surfaces) in terms of prim-
itive harmonic maps. Since the results in this section are an adaptation the
results of [9] to the case of surface immersions into C

′P 2, we will omit detailed
proofs, and refer to Appendix B.

5.1. The Real Form τ

It is easy to see that the determinant of the moving frame F in (4.15) can be
computed as

det F = iH−1|c|−1e−u det F̃ = 2H−1|c|−1e−u det(ξ1, ξ2, x),

where ξ1 and ξ2 are real-valued vectors as in (2.12). Therefore det F takes
values in iR×. Let us denote det F by δ with a non-vanishing real function δ.
Then, it is also easy to see that det F∗ = δ−1.

As discussed in Remark 4.2, if we change a lift (x, χ) to (δ1/3x, δ−1/3χ),
then the real-vectors ξ1, ξ2, η1, and η2 change accordingly to δ1/3ξ1, δ

1/3ξ2,
δ−1/3η1, and δ−1/3η2, respectively. Then det F = det F∗ = 1 in this particular
lift. Therefore we have the following.

Lemma 5.1. Choosing the initial condition of F and F∗ properly, the gauged
moving frames

Ad(RH)(F) and Ad(R−T
H )(F∗), with RH =

⎛

⎜
⎝

1√
2

1√
2

0
i√
2

− i√
2

0
0 0

√−H

⎞

⎟
⎠ ,

(5.1)

take values in SL3R.
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Remark 5.2. The function ρ in (4.1) of the lift f such that detF = 1 cannot
satisfy (4.14) in general. In the following, we normalize a lift f such that the
frame F satisfies det F = 1, and we do not assume (4.14).

We define a real Lie group

{A | Ad(RH)(A) ∈ SL3R, where RH is defined in (5.1)} , (5.2)

which is isomorphic to the standard SL3R, and we denote it by SL3R
H. More

explicitly, the Lie group SL3R
H in (5.2) can be represented by

SL3R
H=

⎧
⎨

⎩
A=

⎛

⎝
a b

√−Hc
b̄ ā

√−Hc̄√−Hd
√−Hd̄ e

⎞

⎠
∣
∣
∣ a, b, c, d, e ∈ C and det A = 1

⎫
⎬

⎭
.

(5.3)

The Lie algebra of the above SL3R
H, which is isomorphic to the standard Lie

algebra sl3R, can be represented by

sl3R
H =

⎧
⎨

⎩
A =

⎛

⎝
a b

√−Hc
b̄ ā

√−Hc̄√−Hd
√−Hd̄ e

⎞

⎠
∣
∣
∣ a, b, c, d, e ∈ C and tr A = 0

⎫
⎬

⎭
.

Therefore without loss of generality the moving frame F (and F∗) of an im-
mersion f : M2 → C

′P 2 takes values in SL3R
H. In the following consideration,

we always assume this. Moreover, one can think gR = sl3R
H as the real form

of g = sl3C given by the anti-linear involution

τ(X) = Ad(PH)X̄, X ∈ sl3C, PH =

⎛

⎝
0 1 0
1 0 0
0 0 −H

⎞

⎠ . (5.4)

Note that PH is given by

RT
HRH = PH .

We consider the anti-linear involution τG on the group level G = SL3C as

τG(g) = Ad(PH)(ḡ), g ∈ SL3C. (5.5)

By abuse of notation we will also write τG by τ .

5.2. Primitive Maps and Immersions with Special Properties

We now consider the order 6 outer automorphism σ on sl3C is given by

σH(X) = −P ε
HXT P ε

H , where P ε
H =

⎛

⎝
0 ε2 0
ε4 0 0
0 0 −H

⎞

⎠ (5.6)

with ε = e
iπ
3 . Note that

P ε
H = diag(ε2, ε4, 1)PH ,
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and σH with H = −1 has been used in [9,14,15]. It is easy to see that σH

commutes with τ and thus σH defines a k-symmetric space with k = 6, see Def-
inition B.1. Moreover, instead of σH , one can use σ2

H and σ3
H , which are the or-

der 3 and 2 automorphisms on sl3C, and there are corresponding k-symmetric
spaces with k = 3 and 2, respectively. Then one can introduce the primitive
harmonic into a k-symmetric space relative to σH , σ2

H and σ3
H , respectively,

see Definition B.2. The following characterizations of surface immersions with
special properties in terms of primitive harmonic maps are verbatim to the
case of those of CP 2, [9, Theorem 2.4], thus we will omit the proof.

Theorem 5.3. Let G = SL3C and g = sl3C its Lie algebra. Let τ denote the
real form involution of G singling out GR = SL3R

H in G and let σH = σG
H be

the automorphism of order 6 of G given by σH(g) = P ε
H(gT )−1P ε

H in (5.6).
Assume moreover, that f is the lift of a liftable immersion f into C

′P 2 and
with frame F in GR. Then the following statements hold:

(1) F is primitive harmonic relative to σH if and only if f is minimal La-
grangian in C

′P 2.
(2) F is primitive harmonic relative to σ2

H if and only if f is minimal in
C

′P 2.
(3) F is primitive harmonic relative to σ3

H if and only if either f is minimal
Lagrangian or f is flat homogeneous in C

′P 2.

6. Ruh–Vilms Type Theorems

In the following sections, we use the para-hermitian inner product of the 3-
dimensional para-complex vector space C

′3 with a para-Hermitian form

〈u, v〉h = u∗T PHv, (6.1)

where ∗ denotes the para-complex conjugate of a paracomplex vector in C
′3,

and PH is defined in (5.4), see also Appendix A.1.1.

Remark 6.1. The para-Hermitian form (6.1) is invariant under the Lie group
SL3R

H defined in (5.3). It is different from the standard para-Hermitian inner
product in (A.5), but they are isomorphic. The para-Hermitian form in (6.1)
is suitable for Ruh–Vilms type theorems.

The 3-dimensional para-complex vector space C
′3 is a symplectic vector

space with the symplectic form ω = −�〈 , 〉h.
In [9, Section 3], three 6-symmetric spaces of dimension 7 which are bun-

dles over S5 were defined, which were FL1, FL2 and FL3. We will analogously
define bundles over S5

3 , which will be denoted by FLH
1 , FLH

2 and FLH
3 , re-

spectively. A detailed construction can be found in Appendix C.
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6.1. Projections from Various Bundles

A family of (real) oriented Lagrangian subspaces of C
′3 forms a submanifold

of the manifold of real Grassmannian 3-spaces of C
′3, which will be called the

Grassmannian manifold of oriented Lagrangian subspaces and will be denoted
by LH

Gr(3, C′3). It is easy to see that LH
Gr(3, C′3) can be represented as the

homogeneous space GL3R
H/OH

3 . In particular the orbit of SL3R
H through the

point e ∈ SOH
3 will be called the special Lagrangian Grassmannian and it will

be denoted by SLH
Gr(3, C′3). It is also easy to see that it can be represented as

a homogeneous space

SLH
Gr(3, C′3) = SL3R

H/SOH
3 ,

see Proposition C.1. We now define two bundles over S5
3 :

FLH
1 = {(v, V ) | v ∈ S5

3 , v ∈ V, V ∈ SLH
Gr(3, C′3)},

FLH
2 =

{

(w,W)
∣
∣ w ∈ S5

3 ,W is a special regular para-complex
flag over w in C

′3 satisfying W1 = C
′w

}

.

Moreover, we define

FLH
3 =

⎧
⎨

⎩
UP ε

H UT
∣
∣
∣ U ∈ SL3R

H and P =

⎛

⎝
0 ε2 0
ε4 0 0
0 0 −H

⎞

⎠

⎫
⎬

⎭
,

where ε = eπi/3. Then FLH
j (j = 1, 2, 3) are mutually equivariantly diffeomor-

phic 6-symmetric spaces relative to σH , and they are 7-dimensional.

FLH
1

∼= FLH
2

∼= FLH
3 = SL3R

H/SO2,

see Theorem C.3. There are natural projections from SL3R
H:

πj : SL3R
H → FLH

j , (j = 1, 2, 3).

We now further define three spaces:

FlH2 = {W | W is a regular para-complex flag in C
′3},

and

F̃ lH2 = {U(P ε
H(P ε

H)T )U−1 | U ∈ SL3R
H},

S̃LH
Gr(3, C′3) = {U(P ε

H(P ε
H)T P ε

H)UT | U ∈ SL3R
H}.

It is easy to see that

SLH
Gr(3, C′) = SL3R

H/SOH
3 , S̃LH

Gr(3, C′3) = SL3R
H/SOH

3 ,

and thus the spaces SLH
Gr(3, C′3) and S̃LH

Gr(3, C′3) are naturally equivari-
antly diffeomorphic, that is, there exists a diffeomorphism φ : SLH

Gr(3, C′3) →
S̃LH

Gr(3, C′3) such that φ(g.x) = g.φ(p) for g ∈ SL3R
H and p ∈ SLH

Gr(3, C′).
symmetric spaces relative to σ3

H , and they are 5-dimensional, see Appendix C.
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It is also easy to see that

FlH2 = SL3R
H/D3, F̃ lH2 = SL3R

H/D3,

and the spaces FlH2 and F̃ lH2 are naturally equivariantly diffeomorphic 3-
symmetric spaces relative to σ2

H , and they are 6-dimensional, see again Ap-
pendix C. There are further natural projections:

π̃1 : FLH
1 → SLH

Gr(3, C′3), π̃3,1 : FLH
2 → S̃LH

Gr(3, C′3),

π̃2 : FLH
2 → FlH2 , π̃3,2 : FLH

3 → F̃ lH2 .

Schematically, we have the following diagram:

SL3R
H

FLH
1 FLH

3 FLH
2

SLH
Gr(3, C′3) ∼= S̃LH

Gr(3, C′3) F̃ lH2
∼= FlH2

�
�

�
��

π1

�
π3

�
�

�
��

π2

�
�

���

π̃1 �
�

���

π̃3,1 �
�

���

π̃3,2 �
�

�
��

π̃2

(6.2)

6.2. Ruh–Vilms Type Theorems Associated with the Gauss Maps

We will define three Gauss maps taking values in the various bundles given in
the previous subsection for any liftable immersion f : M2 → C

′P 2 with M2 a
Riemann surface.

We assume from now on M2 = D, and that f is a special lift of f . Then
we define the frame F : D → GL3R

H as in Lemma 5.1 such that detF = 1,
that is,

F : D → SL3R
H. (6.3)

The frame F will be called the normalized frame. Note that the function ρ has
been chosen now as in Remark 5.2 and will generally not coincide with ρ0 as
in Proposition 4.3.
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Definition 6.2. Let F : D → SL3R
H be the normalized frame and πi(i =

1, 2, 3), π̃i, π̃3,i(i = 1, 2) be the projections given in (6.2). Then the maps

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Gj = πj ◦ F : D → FLH
j (j = 1, 2, 3),

H1 = π̃1 ◦ π1 ◦ F : D → SLH
Gr(3, C′3),

H2 = π̃2 ◦ π2 ◦ F : D → FlH2 ,

H3,1 = π̃3,1 ◦ π3 ◦ F : D → S̃LH
Gr(3, C′3),

H3,2 = π̃3,2 ◦ π3 ◦ F : D → F̃ lH2 ,

(6.4)

will be called the Gauss maps of f .

We finally arrive at Ruh–Vilms type theorems, which is an exact analogue
to Theorem 3.6 in [9].

Theorem 6.3 (Ruh–Vilms theorems for σH , σ2
H and σ3

H). With the notation
used above we consider any liftable immersion into C

′P 2 and the Gauss maps
defined in (6.4). Then the following statements hold:

(1) Gj (j = 1, 2, 3) is primitive harmonic map into FLH
j if and only if F is

primitive harmonic relative to σH if and only if the corresponding surface
is a minimal Lagrangian immersion into C

′P 2.
(2) H2 or H3,2 is primitive harmonic in FlH2 or F̃ lH2 if and only if F is

primitive harmonic relative to σ2
H if and only if the corresponding surface

is a minimal immersion into C
′P 2.

(3) H1 or H3,1 is primitive harmonic map into SLH
Gr(3, C′3) or S̃LH

Gr(3, C′3)
if and only if F is primitive harmonic relative to σ3

H if and only if the
corresponding surface is either a minimal Lagrangian immersion or a flat
homogeneous immersion into C

′P 2.

Proof. The first equivalence in (1) is a consequence of the definition of primitive
harmonicity into a k-symmetric space, and the second equivalence in (1) has
been stated in Theorem 5.3. The proofs for (2) and (3) are similar. �
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7 Appendix

A. Basic Results for C
′P n and S2n+1

n+1

A.1. The Manifold S2n+1
n+1

A.1.1. Para-Complex Vector Space. Let us briefly recall the n-dimensional
para-complex vector space (C′)n, see [16,17]: First define a commutative and
associative multiplication “·” on R

2 by

(x, y) · (x̃, ỹ) = (xx̃ + yỹ, xỹ + yx̃), (A.1)

for (x, y), (x̃, ỹ) ∈ R
2. Then (1, 0) =: 1 is the unit element. Choosing i′ = (0, 1),

(i′)2 = 1 follows, and it is called the para-imaginary unit. Then the para-
complex numbers C

′ are defined by

C
′ = R + i′R = {x + i′y | x, y ∈ R} , (A.2)

and the multiplication on C
′ is given by

zw = xx̃ + yỹ + i′(xỹ + yx̃), z = x + i′y, w = x̃ + i′ỹ. (A.3)

Note that i′ corresponds to the para-complex structure J ′ on R
2 given by

J ′ : (x, y) ∈ R
2 �→ (y, x) ∈ R

2.

Then the para-complex conjugation z∗ of z = x + i′y ∈ C
′ is defined by

z∗ = x − i′y ∈ C
′, the real and imaginary parts of z are defined by x and

y, respectively. Note that (zw)∗ = z∗w∗. The natural scalar product of C
′ is

defined by

〈z, w〉h = z∗w. (A.4)

This is a para-Hermitian form, that is, it is C
′-antilinear in the first component

and C
′-linear in the second component, respectively, and 〈w, z〉h = 〈z, w〉∗

h

holds. Note that 〈z, z〉h takes values in R and 〈z, z〉h = 0 if and only if z =
a± i′a for some a ∈ R. The set of invertible elements will be denoted by (C′)×

and any element z ∈ C
′ such that 〈z, z〉h �= 0 is obviously invertible, and we

have z−1 = z∗/〈z, z〉h.
The n-dimensional para-complex vector space (C′)n is the n-fold direct

product of C
′. The para-Hermitian form of (C′)n is defined by

〈u, v〉h = u∗T v, u, v ∈ (C′)n. (A.5)

It is invariant under the transformation

(C′)n � u �→
(

1 + i′

2
A +

1 − i′

2
A−T

)

u ∈ (C′)n, A ∈ GLnR.

It induces the pseudo-Riemannian metric g with signature (n, n) and the
para-Hermitian form ω on (C′)n as

g(u, v) = �〈u, v〉h and ω(u, v) = −�〈u, v〉h, (A.6)

respectively. The (extension of the) para-complex structure J ′ (to (C′)n) is
clearly parallel with respect to the Levi-Civita connection (relative to g), and
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it is also clear that g(i′u, v) = ω(u, v) and g(i′u, i′v) = −g(u, v) hold. Thus
(C′)n is a para-Hermitian manifold. Moreover, ω is closed and thus it is a
symplectic form and (C′)n is a para-Kähler manifold. For more details on
para-complex manifolds see [17].

A.1.2. The Geometry of S2n+1
n+1 . From Sect. 2.2 we recall the definition of

S2n+1
n+1 ,

S2n+1
n+1 =

{
(x, χ) ∈ R

n+1 × Rn+1 | 〈x, χ〉 = 1
}

,

where R
n+1 denotes the usual n+1-dimensional Euclidean space, Rn+1 its dual

vector space and 〈·, ·〉 the natural pairing. Since the function h(x, χ) = 〈x, χ〉−1
has only regular values, we obtain that S2n+1

n+1 is an embedded submanifold of
R

n+1 × Rn+1.
It is straightforward to verify that the tangent space T(x,χ)S

2n+1
n+1 of S2n+1

n+1

can be realized by pairs of vectors (X̂, X̂ ) ∈ R
n+1 × Rn+1 satisfying

〈X̂, χ〉 + 〈x, X̂ 〉 = 0. (A.7)

To rephrase S2n+1
n+1 by the para complex number (z), we now introduce the

natural standard inner product on R
n+1, i.e. 〈x, y〉 =

∑n+1
i=1 xiyi for x =

∑n+1
i=1 xiei, y =

∑n+1
i=1 yiei ∈ R

n+1, and using it we identify R
n+1 with Rn+1.

This identification then also induces the standard inner product on Rn+1. As
a consequence of this we will replace “Rn+1” by R

n+1 from here on. But to
indicate to which space a vector belongs we will continue to use latin letters
x, y, . . . for the first component and Greek letters for the second component.

Then the real coordinates (x, χ) and the para-complex coordinates (z)
can be identified by

(x, χ) ⇐⇒ z =
x + χ

2
+ i′

x − χ

2
=

1 + i′

2
x +

1 − i′

2
χ. (A.8)

It is easy to see that 〈x, χ〉 = 〈z, z〉h under the above identification. More
generally, the para-Hermitian form (A.5) for the vectors z = 1

2 (x+χ+i′(x−χ))
and w = 1

2 (x̃ + χ̃ + i′(x̃ − χ̃)) can be computed as

〈z, w〉h =
1
2

{〈x, χ̃〉 + 〈x̃, χ〉 + i′ (−〈x, χ̃〉 + 〈x̃, χ〉)} .

Using the para-complex numbers C
′ for the description of S2n+1

n+1 we obtain

S2n+1
n+1 =

{
z ∈ (C′)n+1 | 〈z, z〉h = 1

}

and the tangent space TzS
2n+1
n+1 to S2n+1

n+1 at the point z ∈ (C′)n+1 can be
realized by the vectors ŵ ∈ (C′)n+1 satisfying

�〈ŵ, z〉h = 0. (A.9)
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Proposition A.1. Retaining the notation introduced above we have the following:

(1) The set S2n+1
n+1 is an embedded 2n+1-dimensional submanifold of (C′)n+1 =

R
2n+2.

(2) The manifold S2n+1
n+1 is a contact manifold defined by the contact 1-form

on S2n+1
n+1 :

ζ(z) = �〈z, 〉h. (A.10)

(3) The Reeb vector field R for the contact manifold S2n+1
n+1 with contact 1-

form ζ is given by

R(z) = i′z.

We also have the following properties on S2n+1
n+1 .

Lemma A.2. Let ĝ be the pseudo-Riemannian metric on S2n+1
n+1 induced from

g defined by (A.6) on (C′)n+1. Then the following statements hold:

(1) For two tangent vectors v̂, ŵ ∈ TzS
2n+1
n+1 , we have

ĝ(v̂, ŵ) = �〈v̂, ŵ〉h . (A.11)

In real coordinates (x, χ), for tangent vectors (X̂, X̂ ), (Ŷ, Ŷ) ∈ T(x,χ)S
2n+1
n+1

ĝ( (X̂, X̂ ), (Ŷ, Ŷ) ) =
1
2
( 〈X̂, Ŷ〉 + 〈Ŷ, X̂ 〉 ). (A.12)

(2) For an arbitrary vector ŵ ∈ TzS
2n+1
n+1 , the para-complex structure Ĵ ′ of

(C′)n+1 naturally acts on ŵ as

Ĵ ′ŵ = i′ŵ. (A.13)

For a real tangent vector (X̂, X̂ ) ∈ T(x,χ)S
2n+1
n+1 , Ĵ ′ acts as

Ĵ ′(X̂, X̂ ) = (X̂,−X̂ ). (A.14)

A.2. The Space C
′P n and the Fibration πH : S2n+1

n+1 → C
′P n

A.2.1. The Basic Fibration. We recall the para-Kähler complex projective
space

C
′Pn = {([x], [χ]) ∈ RPn × RPn | 〈x, χ〉 > 0},

defined in (2.1),4 where RPn is the n-dimensional real projective space, RPn

is the projective space of the dual space Rn+1 of R
n+1, sometimes also called

the “dual real projective space”. Note that the equivalence class of an element
in C

′Pn can be defined as follows: Set

(Rn+1 × Rn+1)+ = {(x, χ) | 〈x, χ〉 > 0} .

4The original definition is [x] �⊥ [χ].
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Then the quotient is defined as follows: (Rn+1 × Rn+1)+ � (x, χ) ∼ (x̃, χ̃) ∈
(Rn+1 × Rn+1)+ iff there exists a pair (p, q) ∈ R+ × R+ or (p, q) ∈ R− × R−
such that (x̃, χ̃) = (px, qχ). Thus

C
′Pn = (Rn+1 × Rn+1)+/ ∼ .

By using the correspondence between real and para-complex coordinates as
stated in (A.8), we can write C

′Pn in the form

C
′Pn =

{
[z] | z ∈ (C′)n+1, 〈z, z〉h > 0

}
, (A.15)

where [z] denotes an equivalence class defined as follows. Two elements w, z ∈
(C′)n+1 satisfying 〈z, z〉h > 0, 〈w,w〉h > 0 are equivalent, z ∼ w, if and only if
there exists λ ∈ C

′ such that z = λw. Note that then automatically 〈λ, λ〉h > 0.
It is easy to verify that the elements [z] ∈ C

′Pn in (A.15) and ([x], [χ]) ∈ C
′Pn

in the original definition in (2.1), respectively, are bijectively related by the
equivalence:

([x], [χ]) ⇐⇒ [z] =
[
x + χ

2
+ i′

x − χ

2

]

.

In fact, if (x̃, χ̃) = (px, qχ) ∈ (Rn+1 ×Rn+1)+ for some (p, q) ∈ R
± ×R

±, then
z̃ = λz by choosing

λ =
p + q

2
+ i′

p − q

2
=

1 + i′

2
p +

1 − i′

2
q. (A.16)

Vice versa, decomposing λ ∈ C
′ satisfying 〈λ, λ〉h > 0 as in (A.16), we get

(p, q) ∈ R
± × R

±, and z̃ = λz implies (x̃, χ̃) = (px, qχ). Finally, from Sect. 2.2
we recall the projection map πH : S2n+1

n+1 → C
′Pn, (x, χ) �→ ([x], [χ]). By

using the para-complex coordinates (z) and the correspondence in (A.8), we
easily see that

πH : S2n+1
n+1 → C

′Pn, z �→ [z] (A.17)

holds.

A.2.2. The Horizontal and Vertical Distributions. Recall that the tangent
space of S2n+1

n+1 at z is given by TzS
2n+1
n+1 =

{
ŵ ∈ (C′)n+1 | �〈ŵ, z〉h = 0

}
.

Since the fiber at [z] ∈ C
′Pn of the fibration πH : S2n+1

n+1 → C
′Pn is

{ei′tz ∈ S2n+1
n+1 | t ∈ R},

where ei′t = cosh t + i′ sinh t and 〈ei′t, ei′t〉h = 1, the kernel of dπH is the
direction of the Reeb vector field R(z), that is i′z. Therefore it is natural to
decompose a tangent vector ŵ ∈ TzS

2n+1
n+1 as

ŵ = (ŵ − 〈ŵ, z〉hz) + 〈ŵ, z〉hz, (A.18)

where 〈ŵ, z〉h takes imaginary values since �〈ŵ, z〉h = 0, and 〈ŵ−〈ŵ, z〉hz, z〉h

= 0. We define the horizontal distribution by

Ĥz = {ŵ ∈ (C′)n+1 | 〈ŵ, z〉h = 0},
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and on the other hand the vertical distribution by

V̂z = R(i′z). (A.19)

Thus we have ŵ ∈ TzS
2n+1
n+1 = Ĥz ⊕ V̂z.

In particular, the vertical distribution is integrable (since it is 1-
dimensional), while the horizontal distribution is not integrable. In real co-
ordinates (x, χ) the horizontal and the vertical distribution in the tangent
space T(x,χ)S

2n+1
n+1 can be given by

Ĥ(x,χ) = {(X̂, X̂ ) ∈ R
n+1 × Rn+1 | 〈X̂, χ〉 = 0 and 〈x, X̂ 〉 = 0},

V̂(x,χ) = R(x,−χ),

which are the same equations as in Sect. 2.2.
Finally we consider a finer decomposition of the tangent space of S2n+1

n+1 :
In view of (A.9) one verifies easily that the horizontal distribution can be
decomposed in the form

Ĥz = Ĥ+
z ⊕ Ĥ−

z ,

where Ĥ±
z = {ŵ ± i′ŵ | ŵ ∈ Ĥz}. In fact, for every ŵ ∈ TzS

2n+1
n+1 , that is

�〈z, ŵ〉h = 0, we have the decomposition

ŵ = (ŵ − 〈ŵ, z〉hz) + 〈ŵ, z〉hz ∈ Ĥz ⊕ V̂z

= (ŵ − 〈ŵ, z〉hz)+ + 〈ŵ, z〉hz + (ŵ − 〈ŵ, z〉hz)− ∈ Ĥ+
z ⊕ V̂z ⊕ Ĥ−

z ,

(A.20)

where (ŵ − 〈ŵ, z〉hz)± = 1±i′
2 (ŵ − 〈ŵ, z〉hz).

In real coordinates (x, χ), any tangent vector (X̂, X̂ ) ∈ T(x,χ)S
2n+1
n+1 , that

is, 〈x, X̂ 〉 = −〈X̂, χ〉, can be decomposed as

(X̂, X̂ ) = (X̂ − 〈X̂, χ〉x, X̂ − 〈x, X̂ 〉χ) + 〈X̂, χ〉(x,−χ) ∈ Ĥ(x,χ) ⊕ V̂(x,χ),

= (X̂ − 〈X̂, χ〉x, 0) + 〈X̂, χ〉(x,−χ) + (0, X̂
− 〈x, X̂ 〉χ) ∈ Ĥ+

(x,χ) ⊕ V̂(x,χ) ⊕ Ĥ−
(x,χ). (A.21)

Let us summarize the above discussion as the following proposition.

Proposition A.3. Retaining the notation introduced above we obtain:

(1) The projection map πH : S2n+1
n+1 → C

′Pn, (x, χ) �→ ([x], [χ]) is a pseudo-
Riemannian submersion with vertical distribution V̂z = R(i′z) and hori-
zontal distribution Ĥz, z ∈ (C′)n+1. Moreover, the horizontal distribution
has the following property:

For ŵ ∈ TzS
2n+1
n+1 we have ŵ ∈ Ĥz if and only if Ĵ ′ŵ ∈ Ĥz.
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(2) There are natural decompositions for TzS
2n+1
n+1

TzS
2n+1
n+1 = Ĥz ⊕ V̂z = Ĥ+

z ⊕ V̂z ⊕ Ĥ−
z . (A.22)

The distributions Ĥ± are n-dimensional distributions in TS2n+1
n+1 . The

subspaces Ĥ±
z are eigenspaces of Ĵ ′ with eigenvalues 1 and −1, respec-

tively. Moreover, Ĥ±
z are isotropic and orthogonal to the vertical subspace

V̂z with respect to the symmetric bilinear form ĝ. The restriction of ĝ to
Ĥz = Ĥ+

z ⊕ Ĥ−
z is non-degenerate with signature (n, n).

(3) The distributions Ĥ+
z , V̂z, and Ĥ−

z are integrable.

Proof. (1): We need to introduce a pseudo-Riemannian metric on C
′Pn. The

manifold S2n+1
n+1 has a pseudo-Riemannian metric with signature (n, n + 1)

induced from a natural para-Hermitian form on (C′)n+1 of constant curvature.
Then it is straightforward to introduce a pseudo-Riemannian metric on C

′Pn

through the fibration πH. Namely, it is induced from the horizontal part Ĥz

of TzS
2n+1
n+1 . In fact, the pseudo-Riemannian metric on C

′Pn is an indefinite
version of the Fubini-Study metric of the projective space CPn.

Let z, z̃ ∈ S2n+1
n+1 be such that z̃ = λz for some λ ∈ C

′, and let ŵ ∈
TzS

2n+1
n+1 . Then dπH maps λŵ ∈ Tz̃S

2n+1
n+1 to the same vector in TC

′Pn as ŵ.
Moreover, for arbitrary v̂, ŵ ∈ TzS

2n+1
n+1 we have ĝz(v̂, ŵ) = ĝz̃(λv̂, λŵ), because

〈λ, λ〉h = 1. The orthogonal complement (ker dπH)⊥ is exactly the horizontal
distribution Ĥ, since for v̂ = i′z ∈ ker dπH = V̂z and ŵ ∈ Ĥz,

ĝz(v̂, ŵ) = �〈v̂, ŵ〉h = −�〈z, ŵ〉h = 0.

Therefore dπH : (ker dπH)⊥ → TC
′Pn is an isometry and πH is a pseudo-

Riemannian submersion. The second statement is a straightforward computa-
tion.

(2): The second statement (2) follows from (A.20) and from the orthog-
onality relation deduced above.

(3): For V̂z this is clear, since the distribution is 1-dimensional. For Ĥ±
z

we obtain as integral manifolds I±
z through z the sets

I±
z =

{
p ∈ S2n+1

n+1 | z ∓ i′z = p ∓ i′p
}

. (A.23)

In real coordinates (x, χ),

I+
(x,χ) =

{
(y, π) ∈ S2n+1

n+1 | π = χ
}

, I−
(x,χ) =

{
(y, π) ∈ S2n+1

n+1 | y = x
}

.

(A.24)

This completes the proof. �

On the other hand, the contact structure on S2n+1
n+1 induces a natural

symplectic structure on the horizontal distribution Ĥ.
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Proposition A.4. (1) The differential of the contact form ζ in (A.10) defines
a symplectic 2-form on the horizontal distribution Ĥ :

ω̂z(v̂, ŵ) = dζ(v̂, ŵ) = −�〈v̂, ŵ〉h, v̂, ŵ ∈ Ĥz

For real horizontal vectors (X̂, X̂ ), (Ŷ, Ŷ) ∈ Ĥ(x,χ),

ω̂(x,χ)( (X̂, X̂ ), (Ŷ, Ŷ) ) =
1
2
( 〈X̂, Ŷ〉 − 〈Ŷ, X̂ 〉 ). (A.25)

The form ω̂ is closed and its kernel is given by the vertical subspace V̂z.
(2) The covariant derivative with respect to the Levi-Civita connection of ĝ of

the tensor Ĵ ′, and hence also the form ω̂, in the direction of the vertical
subspace vanishes. The same holds for the vector field i′z generating the
vertical subspace.

Proof. The proposition is proven by direct calculation. �

A.3. Homogeneous Structures of S2n+1
n+1 and C

′P n

A.3.1. The Action of SLn+1R on S2n+1
n+1 . It is clear that the group SLn+1R

acts naturally by matrix multiplication on R
n+1. Then the contragredient rep-

resentation of SLn+1R is given by g ∈ SLn+1R, χ ∈ Rn+1, u ∈ R
n+1:

(g∗χ)(u) = χ(g−1u). (A.26)

Using these definitions we obtain the following.

Proposition A.5. Denoting by e1, . . . en+1 the natural basis of R
n+1 and by δj,

given by δj(ek) = δjk, its dual basis, we have the following:
(1) The manifold S2n+1

n+1 is a connected homogeneous space under the action
of SLn+1R given by

g(u, χ) = (gu, g∗χ), (A.27)

where u, χ, g are as above.
(2) The isotropy group at (e1, δ1) of the action just stated is isomorphic to

SLnR ∼= {1} × SLnR and thus S2n+1
n+1 can be written as the homogeneous

space

S2n+1
n+1 = SLn+1R/SLnR. (A.28)

(3) The group SLn+1R acts on S2n+1
n+1 by isometries and leaves the horizontal

distributions Ĥ± and the vertical distribution invariant.

Proof. (1): First we note that (A.26) implies that SLn+1R leaves S2n+1
n+1 in-

variant. Let (u, χ) ∈ S2n+1
n+1 , then one can take an element g ∈ SLn+1R

such that gu = e1. Then one can take another g such that ge1 = e1 and
g∗χ = δ1. Thus the action is transitive.

(2): By the action, the pair (e1, δ1) is stabilized exactly by diag(1, S) with
S ∈ SLnR. Therefore the stabilizer is SLnR ∼= {1} × SLnR.
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(3): Since the action of SLn+1R is linear, it acts on the tangent vectors by
the same formulas as on S2n+1

n+1 . Thus the claim follows.
�

Recall that the actions of SLn+1R on S2n+1
n+1 , on (C′)n+1 and all other

geometric objects investigated in this paper, are induced naturally from the
basic matrix action on R

n+1 and the “diagonal action” (g, g∗), where g∗

denotes the contragredient action, see (A.26). Moreover, all natural isomor-
phisms/diffeomorphisms/isometries occurring in this paper are trivially equi-
variant relative to the corresponding actions of SLn+1R. Further, wherever
applicable, all these actions of SLn+1R commute.

Remark A.6. The center Cn+1 of SLn+1R is ±I, if n is even and it is I, if n is
odd. Moreover, Cn+1 acts freely and properly on S2n+1

n+1 .

To discuss the geometry of C
′Pn, we will use what was already discussed

for S2n+1
n+1 in the previous sections. As an application of these remarks we show:

Proposition A.7. Retaining the notation introduced so far, the following state-
ments hold:

(1) The projection map πH : S2n+1
n+1 → C

′Pn, (x, χ) �→ ([x], [χ]), is equivari-
ant relative to the natural action of SLn+1R on S2n+1

n+1 and the natural
action of PSLn+1R

∼= SLn+1R/Cn+1 on C
′Pn.

(2) Similar to equation (A.28) one can represent C
′Pn in the form

C
′Pn ∼= SLn+1R/

⋃

a∈R×

({a} × (a∗)−1SLnR
)

(A.29)

(2) The following diagram commutes:

{1} × SLnR
⋃

a∈R×
({a} × (a∗)−1SLnR

)

SLn+1R SLn+1R PSLn+1R

S2n+1
n+1 C

′Pn
C

′Pn

incl

incl incl

id

proj proj

proj

proj

πH id

Moreover, the fiber of ([x], [χ]) under πH is (πH)−1([x], [χ]) = {(ax, a−1ξ) |
a ∈ R

×}.
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A.3.2. The Induced Geometry on C
′P n . The discussion about the geometry

of S2n+1
n+1 induces quite directly the basic objects of the geometry of C

′Pn. We
collect these results in the following theorem.

Theorem A.8. We retain the assumptions and the notation of the previous
subsections. Then we obtain:

(1) The differential dπH induces an isomorphism from the distributions Ĥ+

and Ĥ− to the image distributions H+ and H−, where

H±
z = {dπH(ŵ ± i′ŵ) | ŵ ∈ TzS

2n+1
n+1 }.

The distributions H+ and H− are integrable.
(2) The projection πH induces naturally a non-degenerate pseudo-Riemannian

metric g on C
′Pn with signature (n, n) such that for all v, w ∈ T[z]C

′Pn

with v̂, ŵ ∈ Ĥz ⊂ TzS
2n+1
n+1 and (dπH(v̂), dπH(ŵ)) = (v, w) :

g(v, w) = ĝ(v̂, ŵ).

(3) There exists a para-complex structure J ′ on C
′Pn satisfying

dπH ◦ Ĵ ′ = J ′ ◦ dπH.

It has the spaces H+ and H− as eigenspaces with eigenvalues +1 and −1
respectively.

(4) The projection πH induces naturally a (non-degenerate, closed) symplectic
form ω on C

′Pn such that for all v, w ∈ T[z]C
′Pn with v̂, ŵ ∈ Ĥz ⊂

TzS
2n+1
n+1 and (dπH(v̂), dπH(ŵ)) = (v, w) :

ω(v, w) = ω̂(v̂, ŵ).

In particular, we have for all v, w ∈ T[z]C
′Pn

ω(v, w) = g(J ′v, w) and g(v, w) = ω(J ′v, w).

(5) The tensor J ′, and hence also ω, are parallel with respect to the Levi-
Civita connection of g, and thus C

′Pn is a para-Kähler manifold of di-
mension 2n.

Proof of Proposition 2.2. The first statement is just (1) in Proposition A.3.
For the second statement, note that the preimages of the tangent vectors
X,Y ∈ T([x],[χ])C

′Pn are (X̂, X̂ ), (Ŷ, Ŷ) ∈ Ĥ(x,χ), respectively. Then from (4)
in Theorem A.8, (A.12), and (A.25) we get

(g + ω)(X,Y ) = ĝ((X̂, X̂ ), (Ŷ, Ŷ)) + ω̂((X̂, X̂ ), (Ŷ, Ŷ))

= 〈X̂, Ŷ〉.
This completes the proof. �
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A.4. Immersions into C
′P n and Lifts to S2n+1

n+1

A.4.1. Immersions and Lifts. In this paper we investigate immersions f :
Mn → C

′Pn via immersions f : Mn → S2n+1
n+1 . To make this precise we need

Definition A.9. Let f : Mn → C
′Pn be any immersion. Then

(1) A smooth map f : Mn → S2n+1
n+1 is called a lift of f iff f = πH ◦ f.

(2) If U ⊂ Mn is an open subset of Mn, then a lift of f|U is called a “local
lift” (of f with respect to U).

It is easy to see that a lift is unique up to “scalings” of the form (x, χ) �→
(cx, c−1χ) for never vanishing scalar functions c.

Theorem A.10. If Mn is a connected, simply connected manifold and f :
Mn → C

′Pn is an immersion, then there exists a lift f : Mn → S2n+1
n+1 , i.e.

satisfying f = πH ◦ f.

Proof. We shall show that the projection πH can be restricted to a double
covering of C

′Pn. Introduce arbitrary Euclidean norms in the spaces R
n+1,

Rn+1. Consider the set

S2n = {(x, χ) ∈ S2n+1
n+1 | 〈x, x〉 = 〈χ, χ〉}. (A.30)

Clearly S2n is a smooth manifold. For every point ([x], [χ]) ∈ C
′Pn there exist

exactly two representatives (x, χ) ∈ S2n, related by a sign change in both
components. Thus the restriction of πH to S2n is a double covering of C

′Pn.
Now Mn is simply connected, path connected, and locally path con-

nected. By the unique homotopy lifting property there exists a smooth lift (in
fact, exactly two of them) of f to S2n, and hence to S2n+1

n+1 . �
Before going on we formalize the obtained results about S2n.

Proposition A.11. For the subset S2n defined in (A.30) the following state-
ments hold:

1. The set S2n is an embedded submanifold of S2n+1
n+1 .

2. S2n is a double cover of C
′Pn under the restriction of πH to S2n.

Corollary A.12. With the notation above we have:
(1) If f : Mn → C

′Pn is an immersion and U any simply connected subset
of Mn, then f |U : U → C

′Pn has a global lift. In other words, each
immersion f : Mn → C

′Pn has local lifts around each point of Mn.
(2) Let f : Mn → C

′Pn be an immersion, (Uβ)β∈J an open covering of Mn

by simply connected charts, and fβ : Uβ → S2n+1
n+1 a local lift of f on Uβ.

Then on the intersection Uβ ∩ Uγ of two such charts the lifts fβ and fγ
are transformed into each other by a scaling by a uniquely determined
never vanishing function cβγ : Uβ ∩Uγ → R\{0}. These functions form a
cocycle with values in R \ {0}, i.e. they satisfy cαβcβγ = cαγ . Moreover,
the triviality of this cocycle is equivalent to the existence of a global lift
of f .
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(3) If f : Mn → C
′Pn is an immersion, then there exists a two-fold cover M̂n

of Mn such that the natural lift f̂ of f has a global lift f̂ : M̂n → S2n+1
n+1 .

Proof. (1) and (2) follow from Theorem A.10. Let us prove (3). Recall from
Proposition A.11 that S2n ⊂ S2n+1

n+1 is a two-fold cover of C
′Pn. Pulling back

this covering p along f we obtain the commuting diagram

M̂n S2n ⊂ S2n+1
n+1

Mn
C

′Pn.

f̂

p̂ p

f

Thus f ◦ p̂ : M̂n → C
′Pn has a global lift into S2n+1

n+1 . �

In general, a given f : Mn → C
′Pn cannot be lifted:

Proposition A.13. Let f : Mn → C
′Pn be the injective immersion from Mn =

RPn to C
′Pn, given by f([x]) = ([x], [x]). Then f does not have any lift f :

Mn → S2n+1
n+1 .

Proof. Assume there exists a lift f : RPn → S2n+1
n+1 of f . Since f is injective, it

is easy to verify that f is injective. Therefore, since RPn is compact, f actually
is an embedding. Let π1 denote the natural projection π1 : S2n+1

n+1 → R
n+1. It

is easy to show that the map π1 ◦ f : RPn → R
n+1 also is an embedding. Thus

f would define a compact non-orientable submanifold of R
n+1. But this is a

contradiction, since there does not exist any closed non-orientable submanifold
of R

n+1 by see, e.g. [18]. This contradiction proves the claim. �

As a consequence of the last result we restrict our consideration in this
paper to liftable immersions f : Mn → C

′Pn.

A.4.2. Horizontal Lifts. In other cases, like minimal Lagrangian surfaces in
CP 2, one can show that certain finite coverings for a given minimal Lagrangian
immersion into CP 2 have a global horizontal lift. Below we consider similar
questions for the situation considered in this paper.

The notion of “horizontal lift” has been defined in Definition 2.3. Whether
f is locally horizontally liftable can be decided by virtue of the following result.

Lemma A.14. Let f : Mn → C
′Pn be an immersion. Then locally around

every point y ∈ Mn there exists a horizontal lift f : U → S2n+1
n+1 of f from a

neighbourhood U ⊂ Mn of y if and only if the immersion f is Lagrangian with
respect to the symplectic form ω on C

′Pn.
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Proof. Let y ∈ Mn be arbitrary, let U ⊂ Mn be a simply connected neigh-
bourhood of y, and let f : U → S2n+1

n+1 be a lift of f . By Proposition 2.4 the
lift f can be scaled to a horizontal lift fc : U → S2n+1

n+1 if and only if the form
ψ = 〈dyx, χ〉 is exact on U . Since U is simply connected, this is equivalent to
the vanishing of the exterior derivative of ψ. We have ψ =

∑n+1
i=1 χidyxi, and

hence dψ = −∑n+1
i=1 dxi ∧ dχi.

Let now Z,Z ′ ∈ TyMn be arbitrary tangent vectors, and dy(Z) = (U,U),
dy(Z ′) = (V,V) their images in the tangent space to S2n+1

n+1 at f(y) = (x, χ). By
the above we have dψ(Z,Z ′) = −〈U,V〉 + 〈V,U〉 = −2ω̂(x,χ)((U,U), (V,V)). It
follows that dψ vanishes if and only if the degenerate form ω̂ vanishes on the
image of df. However, this condition is equivalent to the vanishing of the sym-
plectic form ω on the image of df , or to the condition that f is Lagrangian. �

Combining the lemma just above with Corollary A.12 we obtain

Proposition A.15. If f : Mn → C
′Pn is a Lagrangian immersion, then there

exists a two-fold cover π : M̂n → Mn such that the natural lift f̂ = f ◦ π of f

to M̂ has a global horizontal lift f̂ : M̂n → S2n+1
n+1 .

Proof. It suffices to apply the construction in the proof of Lemma A.14 to the
lift f̂ in (3) of Corollary A.12. �

It would be interesting to understand, what manifolds Mn have hori-
zontal lifts for all immersions into C

′Pn. At least locally it is the Lagrangian
immersions. The lift is horizontal if and only if 〈dyx, χ〉 ≡ 0. A horizontal lift
of a immersion has a close relation to centro-affine immersions, that is, the
position vector of an immersion transverses to the tangent plane.

Proposition A.16. Assume f : Mn → C
′Pn has a horizontal lift f : Mn →

S2n+1
n+1 , f : y �→ (x, χ). Then the following holds:
(1) x is a centro-affine immersion of M into R

n+1 such that χ is its co-
normal map.

(2) χ is a centro-affine immersion of M into Rn+1 such that x is its co-
normal map.

(3) f : Mn → C
′Pn is Lagrangian, i.e., for every two vector fields X,Y on

Mn we have ω(f∗X, f∗Y ) = 0.

Proof. By (2.11) f is horizontal if and only if 〈dyx(Z), χ〉 = 〈x, dyχ(Z)〉 = 0 for
all Z. Hence the tangent space of the immersion x : Mn → R

n+1 is orthogonal
to χ. But 〈x, χ〉 ≡ 1, and the first assertion follows. The second assertion is
proven similarly.

Let us prove the third assertion. Consider the 2-form h(Z,W ) = 〈dy

x(Z), dyχ(W )〉 on Mn. By [13, Proposition II.5.1] this form is proportional
to the affine fundamental form induced by the centro-affine immersion x, and
hence symmetric. Therefore its skew-symmetric part vanishes. In particular, if
df(Z) = (X̂, X̂ ), df(W ) = (Ŷ, Ŷ) are tangent vector fields to the lift f, then the
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form ω̂(Z,W ) = 1
2 (〈X̂, Ŷ〉 − 〈Ŷ, X̂ 〉) vanishes. But ω̂(Z,W ) = ω(f∗Z, f∗W ),

and hence f is Lagrangian. �

Remark A.17. Centro-affine immersions in affine space R
n+1 are important in

affine differential geometry, see [13] for example.

B. k-Symmetric Spaces and Primitive Harmonic Maps

In [9,14], k-symmetric spaces and primitive harmonic maps have been consid-
ered. We will recall basic results for our case.

B.1. The Automorphism σH and k-Symmetric Spaces

Let us consider the order 6 automorphism σH on g = sl3C given in (5.6),
and also consider the order 6 automorphism σG

H on the connected Lie group
G = SL3C defined by

σG
H(g) = P ε

H(gT )−1P ε
H . (B.1)

By abuse of notation we will also denote σG
H by σH . We then associate the

order 3 and 2 autmorphisms σ2
H and σ3

H as

σ2
H(X) = P2XP−1

2 , with P2 = diag(ε4, ε2, 1), (B.2)

σ3
H(X) = −P3X

T P3, with P3 =

⎛

⎝
0 1 0
1 0 0
0 0 −H

⎞

⎠ . (B.3)

Note that σ2
H is an inner automorphism and σ3

H is an outer automorphism,
respectively. A straightforward computation shows that the eigen-spaces of σH

can be computed as

g0 =

⎧
⎨

⎩

⎛

⎝
a

−a
0

⎞

⎠

∣
∣
∣
∣
∣
∣
a ∈ C

⎫
⎬

⎭
, g1 =

⎧
⎨

⎩

⎛

⎝
0 b 0
0 0 a

−Ha 0 0

⎞

⎠

∣
∣
∣
∣
∣
∣
a, b ∈ C

⎫
⎬

⎭
,

g2 =

⎧
⎨

⎩

⎛

⎝
0 0 a
0 0 0
0 Ha 0

⎞

⎠

∣
∣
∣
∣
∣
∣
a ∈ C

⎫
⎬

⎭
, g3 =

⎧
⎨

⎩

⎛

⎝
a

a
−2a

⎞

⎠

∣
∣
∣
∣
∣
∣
a ∈ C

⎫
⎬

⎭
,

g4 =

⎧
⎨

⎩

⎛

⎝
0 0 0
0 0 a

Ha 0 0

⎞

⎠

∣
∣
∣
∣
∣
∣
a ∈ C

⎫
⎬

⎭
, g5 =

⎧
⎨

⎩

⎛

⎝
0 0 −Ha
b 0 0
0 a 0

⎞

⎠

∣
∣
∣
∣
∣
∣
a, b ∈ C

⎫
⎬

⎭
.

The eigen-spaces of σ2
H are given by g1 + g4 for the eigenvalue ε2, g2 + g5 for

the eigenvalue ε4 and g3 + g0 for the eigenvalue 1. Similarly the eigen-spaces
for σ3

H are g4 + g2 + g0 for the eigenvalue 1 and g1 + g3 + g5 for the eigenvalue
ε3 = −1. It is important that the real form involution τ in (5.4) and the order
6 automorphism σH in (5.6) commute, i.e., τ ◦ σH = σH ◦ τ holds. Therefore
τ and the eigen-spaces of σH obey the relation

τ(gj) = g−j , j = 0, 1, . . . , 5. (B.4)
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In particular, g0 and g0 ⊕ g3 are subalgebras of sl3RH with the obvious com-
plexifications.

Since σH and τ commute, we can give a definition of k-symmetric spaces
as follows.

Definition B.1. Let GR/GR
0 be a real homogeneous space such that GR is a

real form of a complex Lie group G given by a real form involution τ , that
is, GR = Fix(G, τ). Moreover, let σ be an order k (k ≥ 2) automorphism
of G, leaving GR invariant and commuting with τ . Then GR/GR

0 is called a
k-symmetric space if the following condition is satisfied

Fix(GR, σ)◦ ⊂ GR

0 ⊂ Fix(GR, σ), (B.5)

where Fix(GR, σ)◦ denotes the identity component of Fix(GR, σ).

B.2. Primitive Maps and the Extended Frames

We now consider a complex Lie group as before and let τ denote an anti-
holomorphic involution of G, and set

GR = Fix(G, τ) and LieGR = gR.

Definition B.2. Let κ be any automorphism of g of finite order k > 2. Let gm

denote the eigen-spaces of κ, where we choose m ∈ Z and actually work with
m mod k. Let F : D → G be a smooth map. Then F will be called primitive
relative to κ if

F−1dF = α−1dz + α′
0dz + α′′

0dz̄ + α1dz̄ ∈ g−1 + g0 + g1,

where αm, α′
0 and α′′

0 take values in an eigen-space gm of κ.

By abuse of notation we will also write α0 = α′
0dz + α′′

0dz̄.

Lemma B.3. Let F be primitive relative to κ and let us write F−1dF = α−1dz+
α0 + α1dz̄. Then λ−1α−1dz + α0 + λα1dz̄ is integrable for all λ ∈ C

∗.

Proof. Together with a straightforward computation one needs to use that
because of k > 2 the sum g−1 + g0 + g1 of eigen-spaces is direct. �

The importance of this observation has been elaborated on and explained
in [19, Section 3.2] and [20].

Theorem B.4 [19,20]. Let G be a complex Lie group, σH an automorphism of
G of finite order k ≥ 2 and τ an anti-holomorphic involution of G which com-
mutes with σH . Let GR

0 be any Lie subgroup of GR satisfying Fix(GR, σH)◦ ⊂
GR

0 ⊂ Fix(GR, σH). Then we consider the k-symmetric space GR/GR
0 together

with the (pseudo-)Riemannian structure induced by some bi-invariant (pseudo-
)Riemannian structure on GR. Let h : D → GR/GR

0 be a smooth map and
F : D → GR a frame for h, i.e., h = π ◦ F , where π : GR → GR/GR

0 denotes
the canonical projection.

Then the following statements hold:
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(1) If k = 2, then h is harmonic if and only if λ−1α−1dz + α0 + λα1dz̄ is
integrable for all λ ∈ C

∗.
(2) If k > 2, then h is harmonic if F is primitive relative to σH .

From the above theorem, we have the following definition.

Definition B.5. Retain the notation in Theorem B.4.
(1) The frame F is called primitive harmonic, if F−1dF = α−1dz+α0+α1dz̄

such that λ−1α−1dz + α0 + λα1dz̄ is integrable for all λ ∈ C
∗.

(2) The map h is called primitive harmonic map, if the frame F is primitive
harmonic.

This admits a direct application of the loop group method, see [21]. Since
τ maps gm to g−m, we can assume that Fλ is contained in GR for all λ ∈ S1.
We will usually also assume F(z0, λ) = I for a once and for all fixed base point
z0.

Then it follows from the above that also hλ = Fλ mod GR
0 is a primitive

harmonic map with frame Fλ. Usually Fλ is called an extended frame for h.

C. Various Bundles

This section is an adaption of Section 3 in [9] to our case, see also [25]. In [9,
Section 3], three 6-symmetric spaces of dimension 7 which are bundles over S5

were defined. We analogously define three 6-symmetric spaces of dimension 7
which are bundles over S5

3 , FLH
1 , FLH

2 , and FLH
3 .

Recall the para-hermitian inner product of C
′3 with a para-Hermitian

form

〈u, v〉h = u∗T PHv, PH =

⎛

⎝
0 1 0
1 0 0
0 0 −H

⎞

⎠ , (C.1)

where H = 1 (resp. H = −1) for the ellipic (resp. hyperbolic) case and ∗
denotes the para-complex conjugate of a paracomplex vector in C

′3. It is in-
variant under the transformation

(C′)3 � u �→
(

1 + i′

2
A +

1 − i′

2
A−T

)

u ∈ (C′)3, A ∈ GL3R
H. (C.2)

We first choose a natural basis of C
′3:

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

(1) FLH
1 : For the real 6-dimensional symplectic vector space C

′3 given
by the symplectic form ω = −�〈 , 〉h, the family of (real) oriented Lagrangian
subspaces of C

′3 forms a submanifold of the manifold of real Grassmannian
3-spaces of C

′3. They are the Grassmannian manifold LH
Gr(3, C′3) of oriented

Lagrangian subspaces. It is easy to see that LH
Gr(3, C′3) can be represented as
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the homogeneous space GL3R
H/OH

3 . The special orthogonal matrix group SOH
3

as the connected subgroup of SL3R
H corresponding to the sub-Lie-algebra of

sl3R
H given by

soH
3 =

⎧
⎨

⎩

⎛

⎝
ia 0

√−Hb
0 −ia

√−Hb̄

−√−H
−1

b̄ −√−H
−1

b 0

⎞

⎠

∣
∣
∣
∣
∣
∣
a ∈ R, b ∈ C

⎫
⎬

⎭
⊂ sl3R

H,

where H = 1 (resp. H = −1) for the ellipic (resp. hyperbolic) case, which is
isomorphic to the standard so3 by the automorphism X �→ Ad(RH)(X) with

RH =

⎛

⎜
⎝

1√
2

1√
2

0
i√
2

− i√
2

0
0 0

√−H

⎞

⎟
⎠ .

The orbit of SL3R
H in LH

Gr(3, C′3) through the point e ∈ SOH
3 will be called

the special Lagrangian Grassmannian and it will be denoted by SLH
Gr(3, C′3).

The elements in this orbit will be called oriented special Lagrangian subspaces
of C

′3. Thus we have the following:

Proposition C.1. SL3R
H acts transitively on SLH

Gr(3, C′3), and we obtain

SLH
Gr(3, C′3) = SL3R

H/SOH
3 .

The base point e ∈ SOH
3 corresponds to the real Lagrangian subspace of C

′3

given by R−1
H R

3.

We now define a bundle

FLH
1 = {(v, V ) | v ∈ S5

3 , v ∈ V, V ∈ SLH
Gr(3, C′3)}.

It is easy to verify that SL3R
H acts (diagonally) on FLH

1 . Note that the natural
projection from FLH

1 to C
′Pn is a pseudo-Riemannian submersion which is

equivariant under the natural group actions. Since S5
3 = SL3R

H/SL2R
H, where

SL2R
H means SL2R

H × {1}, the stabilizer at

(e3, spanR{e1, e2, e3}) ∈ FLH
1

is clearly given by SL2R
H ∩ SOH

3 , that is

SO2 = {(a, a−1, 1) | a ∈ S1}.

Therefore

FLH
1 = SL3R

H/SO2.

(2) FL2 : To define FLH
2 , we consider certain special regular para-complex

flags in C
′3. A regular para-complex flag Q is a sequence of four para-complex
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subspaces, Q0 = {0} ⊂ Q1 ⊂ Q2 ⊂ Q3 = C
′3 of C

′3, where Qj has para-
complex dimension j. We then define the notion of a special regular para-
complex flag in C

′3 over q ∈ S5
3 by requiring that we have a regular complex

flag in C
′3, where the space Q1 satisfies Q1 = C

′q. Thus we define

FLH
2 =

{

(w,W)
∣
∣
∣
∣

w ∈ S5
3 ,W is a special regular para-complex

flag over w in C
′3 satisfying W1 = C

′w

}

.

The definition of a special flag means that for a given vector q �= 0 in C
′3 one

can find three pairwise orthogonal vectors q1, q2, q3 ∈ C
′3 with q3 = q

|q| such
that the vectors q1, q2 and q3 represent the same orientation as e1, e2, e3. By an
argument similar to the previous case we conclude that SL3R

H acts transitively
on the family of special flags. Moreover, the stabilizer of the action at the point
(e3, 0 ⊂ C

′e3 ⊂ C
′e3⊕C

′e2 ⊂ C
′e3⊕C

′e2⊕C
′e1) is again given by SOH

3 ∩diag,
where diag denotes the set of all diagonal matrices in SL3R

H. Thus it is again
SO2 and we have altogether shown

Proposition C.2. SL3R
H acts transitively on FLH

2 , and FLH
2 can be repre-

sented as

FLH
2 = SL3R

H/SO2.

Note that the natural projection from FLH
2 to C

′P 2 is a pseudo-Riemannian
submersion which is equivariant under the natural group actions.

(3) FLH
3 : Finally, using the isometry group SL3R

H of S5
3 , we can directly

define a homogeneous space FLH
3 as

FLH
3 =

⎧
⎨

⎩
UP ε

H UT

∣
∣
∣
∣
∣
∣
U ∈ SL3R

H and P ε
H =

⎛

⎝
0 ε2 0
ε4 0 0
0 0 −H

⎞

⎠

⎫
⎬

⎭
, (C.3)

where ε = eπi/3 and H = ±1.

Theorem C.3. We retain the assumptions and the notion above. Then the fol-
lowing statements hold:

(1) The spaces FLH
j (j = 1, 2, 3) are homogeneous under the natural action

of SL3R
H.

(2) The homogeneous space FLH
j (j = 1, 2, 3) can be represented as

FLH
j = SL3R

H/SO2, where SO2 = {diag(a, a−1, 1) | a ∈ S1}.

In particular they are all 7-dimensional.

Proof. The statements clearly follow from Proposition C.1, Proposition C.2
and the definition of FLH

3 in (C.3), where the stabilizer at P ε
H is easily com-

puted as SO2. �
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Corollary C.4. The homogeneous spaces FLH
j (j = 1, 2, 3) are 6-symmetric

spaces. Furthermore, they are naturally equivariantly diffeomorphic.

Proof. First we note that the group GR = SL3R
H has the complexification

G = SL3C and is the fixed point set group of the real form involution τ given
in (5.5).

We show that FL3 is a 6-symmetric space. First note that the stabilizer

StabP = {X ∈ SL3R
H | XP XT = P} (C.4)

at the point P of FL3 is SO2. We already know that the order 6-automorphism
σH of SL3R

H given in (B.1) and the real form involution τ commute. More-
over, a direct computation shows that the fixed point set of σH in SL3R

H

is SO2. Thus StabP satisfies the condition in Definition B.1. Hence FLH
3 is

6-symmetric space in the sense of Definition B.1. Furthermore, since all the
spaces FLH

j are SL3R
H-orbits with the same stabilizer, the identity homomor-

phism of SL3R
H descends for any pair of homogeneous spaces FLH

j and FLH
m

to a diffeomorphism

φjm : FLH
m → FLH

j

such that for any g ∈ SL3R
H and p ∈ FLH

m we have

φjm(g.p) = g.φjm(p).

As a consequence, also FLH
1 and FLH

2 are 6-symmetric spaces. �

We have seen that the homogeneous spaces FLH
j (j = 1, 2, 3) are 7 di-

mensional 6-symmetric spaces. In this section we define natural projections
from FLH

j to several homogeneous spaces.

First from FLH
1 , we have a projection to SLH

Gr(3, C′3) given by

FLH
1 � (v, V ) �−→ V ∈ SLH

Gr(3, C′3).

It is easy to see that SLH
Gr(3, C′3) is a symmetric space with the involution σ3

H

defined in (B.3).
Next from FLH

2 , we have a projection to a full flag manifold:

FLH
2 � (w,W ) �−→ W ∈ FlH2 ,

where FlH2 is defined as

FlH2 = {W | W is a regular para-complex flag in C
′3}.

It is easy to see that FlH2 is a 3-symmetric space with the involution σ2
H stated

in (B.2).
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Finally from FLH
3 , we have two projections. We first let k ∈ StabP ε

H
as

in (C.4) with

P ε
H =

⎛

⎝
0 ε2 0
ε4 0 0
0 0 1

⎞

⎠ , ε = eπi/3,

then a straightforward computation shows that

kP ε
H(P ε

H)T k−1 = kP ε
HkT (P ε

H)T = P ε
H(P ε

H)T ,

kP ε
H(P ε

H)T P ε
HkT = P ε

H(kT )−1(P ε
H)T k−1P ε

H = P ε
H(P ε

H)T P ε
H .

Therefore we have two projections

FLH
3 � UP ε

HUT �−→ U(P ε
H(P ε

H)T )U−1 ∈ F̃ lH2 ,

FLH
3 � UP ε

HUT �−→ U(P ε
H(P ε

H)T P ε
H)UT ∈ S̃LH

Gr(3, C′3),

where F̃ lH2 and S̃LH
Gr(3, C′3) are defined as

F̃ lH2 = {U(P ε
H(P ε

H)T )U−1 | U ∈ SL3R
H},

S̃LH
Gr(3, C′3) = {U(P ε

H(P ε
H)T P ε

H)UT | U ∈ SL3R
H}.

Note that it is easy to compute

P ε
H(P ε

H)T =

⎛

⎝
ε4 0 0
0 ε2 v0
0 0 1

⎞

⎠ , P ε
H(P ε

H)T P ε
H = PH

⎛

⎝
0 1 0
1 0 0
0 0 −H

⎞

⎠ ,

and the stabilizer in SL3R
H at P ε

H(P ε
H)T of F̃ lH2 and the stabilizer in SL3R

H

at P ε
H(P ε

H)T P ε
H of S̃LH

Gr(3, C′3) are

StabP ε
H(P ε

H)T = D3, StabP ε
H(P ε

H)T P ε
H

= SOH
3 ,

where

D3 = {diag(a1, a2, a3) ∈ SL3R
H},

and where StabPP T P is exactly the same group as the stabilizer of SLH
Gr(3, C′3).

Thus SLH
Gr(3, C′3) and S̃LH

Gr(3, C′3) are naturally equivariantly diffeomorphic.

An analogous argument applies to FlH2 and F̃ lH2 . Now the stabilizer of F̃ lH2 is
determined by the matrix characterizing σ2

H , whence F̃ lH2 (and thus FlH2 ) is
the 3-symmetric space associated with σ2

H . Similarly, SLH
Gr(3, C′3) (and thus

S̃LH
Gr(3, C′)) is the symmetric space associated with σ3

H .
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