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Abstract. This paper aims to provide a thorough characterization of the
family of all Cantor-Bendixson derivatives of the spectrum, Browder spec-
trum, and the Drazin spectrum of bounded linear operators using pro-
jections and invariant subspaces. Furthermore, our findings demonstrate
that if two commuting operators, R and T , satisfy the conditions that R
is Riesz and T is a direct sum of an invertible operator and an operator
with an at most countable spectrum, then T +R can also be represented
as a direct sum of an invertible operator and an operator with an at most
countable spectrum.
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1. Introduction

Let X be a complex Banach space and L(X) be the set of all bounded linear
operators on X. The spectrum, Browder spectrum, and Drazin spectrum of
an operator T ∈ L(X) are denoted by σ(T ), σb(T ), and σd(T ), respectively. A
subset σ̃ ⊆ σ(T ) is called a spectral set or an isolated part of T if it is both
closed and open in σ(T ). Moreover, a subspace M ⊆ X is said to be T -invariant
if T (M) ⊆ M , and in this case, the restriction of T on M is denoted by TM .
We use (M,N) ∈ Red(T ) to denote that M and N are closed, T -invariant
subspaces such that X = M ⊕ N . We also use the notation:
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comm(T ) : The set of all operators that commute with T
comm2(T ) : The set of all operators that commute with

every operator that commutes with T
A : The closure of a complex subset A
AC : The complementary of a complex subset A
C(λ, ε) : The circle ball of radius ε centered at λ
B(λ, ε) : The open ball of radius ε centered at λ
D(λ, ε) : The closed ball of radius ε centered at λ

Descriptive set theory employs the Cantor-Bendixson derivative to gauge
the complexity of a subset of the complex plane C. Given an ordinal number α,
the α-th Cantor-Bendixson derivative of a set A ⊆ C is defined by a transfinite
recursion process, as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

acc0 A = A

accα A = acc (accα−1 A) if α is a successor ordinal
accα A =

⋂

β<α

accβ A if α is a limit ordinal

Here, acc A denotes the set of all accumulation points of A, and α − 1 denotes
the predecessor of α if it is a successor. The Cantor-Bendixson rank of A,
denoted CBR(A), is the smallest ordinal α such that accα A = accα+1 A. In
other words, CBR(A) measures the smallest number of times we need to apply
the derived set operation before the set of accumulation points stops changing.
The Cantor-Bendixson rank finds significant application in the study of Polish
spaces, which are separable topological spaces that can be completely metrized.
In fact, for every non-empty perfect Polish space, its Cantor-Bendixson rank
is a countable ordinal (see, for instance, [13, Theorem 4.9]). Thus, Cantor-
Bendixson rank offers a useful tool for measuring the complexity of subsets of
C.

For every σ∗ ∈ {σ, σb, σd}, it can be shown that σ∗(T ) is a Polish space
for every T ∈ L(X), and therefore, CBR(σ∗(T )) < ω1, where ω1 is the first un-
countable ordinal. Let λ := CBR(σ∗(T )). Note that the family (accα σ∗(T ))α≤λ

is strictly decreasing and consists of compact subsets. Furthermore, for every
ordinals α and β such that α > β, we have:

accβ σ∗(T ) \ accα σ∗(T ) =
⊔

β≤γ<α

iso ( accγ σ∗(T )),

where
⊔

denotes the mutually disjoint union. Therefore

accβ σ∗(T ) = accα σ∗(T )
⊔

⎡

⎣
⊔

β≤γ<α

iso ( accγ σ∗(T ))

⎤

⎦ .
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Thus, we can write:

σ∗(T ) = accα σ∗(T )
⊔

⎡

⎣
⊔

β<α

iso (accβ σ∗(T ))

⎤

⎦ for every ordinals α.

Since we have accα+1 σ(T ) ⊂ accα σd(T ) ⊂ accα σb(T ) ⊂ accα σ(T ) for ev-
ery ordinals α, it follows that accα σ(T ) = accα σb(T ) = accα σd(T ) for ev-
ery ordinals α ≥ ω, where ω denotes the first infinite ordinal. Therefore,
we have CBR(σ(T )) = CBR(σb(T )) = CBR(σd(T )) if CBR(σd(T )) ≥ ω. If
CBR(σd(T )) < ω, then we have:

CBR(σ(T )) − 1 ≤ CBR(σd(T )) ≤ CBR(σb(T )) ≤ CBR(σ(T )) ≤ CBR(σb(T )) + 1.

Finally, we can conclude that:

σ∗(T ) = accα σ(T )
⊔

⎡

⎣
⊔

β<α

iso (accβ σ∗(T ))

⎤

⎦ if α ≥ ω.

Towards the end of this paper, we will present the following result:

Theorem 1.1. Let T ∈ L(X) be a bounded linear operator. The following state-
ments are equivalent:

(i) T is a direct sum of an invertible operator and an operator with an at
most countable spectrum;

(ii) 0 /∈ accα σ(T ) for some ordinal α;
(iii) 0 /∈ accω1 σ(T ), where ω1 is the first uncountable ordinal;
(iv) There exists a bounded projection P ∈ comm(T ) such that T + P is

invertible and σ(TP ) is at most countable;
(v) There exists a bounded projection P ∈ comm2(T ) such that T + P is

invertible and σ(TP ) is at most countable;
(vi) There exists a pair of T -invariant subspaces (M,N) such that N is

closed, X = M ⊕ N, TM is invertible and σ(TN ) is at most countable;
(vii) There exists (M,N) ∈ ⋂

S∈comm(T ) Red(S) such that TM is invertible
and σ(TN ) is at most countable;

(viii) There exists S ∈ comm(T ) such that S2T = S and σ(T − T 2S) is at
most countable;

(ix) There exists S ∈ comm2(T ) such that S2T = S and σ(T − T 2S) is at
most countable;

(x) There exists an at most countable spectral set σ of T such that 0 /∈
σ(T ) \ σ;

(xi) There exists a spectral set σ̃ of T such that 0 /∈ σ(T ) \ σ̃ and σ̃ \ {0} ⊂⊔
β<ω1

iso (accβ σ(T )).

To establish the validity of the previous result, we will first prove the
following result, which generalizes previous findings, such as those presented
in [1,2,6,14].
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Theorem 1.2. Let α ≥ 1 be a successor ordinal, and let σ∗ ∈ {σ, σb, σd}. The
following statements are equivalent for T ∈ L(X):
(i) T = D ⊕ Q, D is an invertible operator and Q is an operator with

accα−1 σ∗(Q) ⊂ {0};
(ii) 0 /∈ accα σ∗(T );
(iii) There exists a bounded projection P ∈ comm(T ) such that T + P is

invertible and accα−1 σ∗(TP ) ⊂ {0};
(iv) There exists a bounded projection P ∈ comm2(T ) such that T + P is

invertible and accα−1 σ∗(TP ) ⊂ {0};
(v) There exists a pair of T -invariant subspaces (M,N) such that N is closed,

X = M ⊕ N, TM is invertible and accα−1 σ∗(TN ) ⊂ {0};
(vi) There exists (M,N) ∈ ⋂

S∈comm(T ) Red(S) such that TM is invertible
and accα−1 σ∗(TN ) ⊂ {0};

(vii) There exists S ∈ comm(T ) such that S2T = S and accα−1 σ∗(T −T 2S) ⊂
{0};

(viii) There exists S ∈ comm2(T ) such that S2T = S and accα−1 σ∗(T−T 2S) ⊂
{0}.

(ix) There exists a spectral set σ̃ of T such that 0 /∈ σ(T ) \ σ̃ and σ̃ \ {0} ⊂
iso (accα−1 σ∗(T )).

Furthermore, we establish that if R is a Riesz operator, that is σb(T ) ⊂
{0}, which commutes with T , where T ∈ L(X) is a direct sum of an invertible
operator and an operator with an at most countable spectrum, then T + R is
also a direct sum of an invertible operator and an operator with an at most
countable spectrum. Moreover, we demonstrate that if T has a topological
uniform descent [10], then T is Drazin invertible if and only if 0 /∈ accα σ(T )
for some ordinal α.

2. gα
σ∗-Invertible Operators

For the sake of completeness, we begin this section by including the two fol-
lowing definitions which will be useful for proving Proposition 2.3.

Definition 2.1. [16, Definition I.1.23]. Let M be a subset of a Banach algebra
A. The commutant of A is defined by M

′
:= {a ∈ A | am = ma, for every m ∈

M}. We write M
′′

instead of (M
′
)

′
for the second commutant of M.

Definition 2.2. [16, Definition I.2.2]. Let A be a commutative Banach algebra.
A linear functional φ : A −→ C is called multiplicative if it is an homomor-
phism, that is φ(1A) = 1 and φ(xy) = φ(x)φ(y) for all x, y ∈ A, where 1A is
the unit element of A.

According to the terminology introduced in [2], an operator T ∈ L(X)
is said to be zeroloid if zero is the only possible accumulation point of its
spectrum. The following proposition establishes that the product of commuting
zeroloid operators is also zeroloid.
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Proposition 2.3. Consider T, S ∈ L(X) such that TS = ST .

(i) If both T and S are zeroloid, then TS is also zeroloid.
(ii) If 0 ∈ accσ(TS), then 0 ∈ accσ(T ) ∪ accσ(S).

Proof. Let A = {T, S}′′
be the second commutant of {T, S}. It is widely

known that A is a unital commutative Banach algebra, and if σA(T ) denotes
the spectrum of T in A, then σA(T ) = σ(T ).

(i) Assuming that T and S are non-zero, we know that B(0, ε)C ∩ σ(T )
and B(0, ε)C ∩ σ(S) are finite sets for all ε > 0 since T and S are ze-
roloid. Using [16, Theorem I.2.9], we can deduce the existence of mul-
tiplicative functionals φ1, . . . , φn, ψ1, . . . , ψm on A such that B(0, μ)C ∩
σ(T ) = {φ1(T ), . . . , φn(T )} and B(0, μ)C ∩ σ(S) = {ψ1(S), . . . , ψm(S)},
where μ := ε

max{‖T‖,‖S‖} . Let φ be a multiplicative functional such that
|φ(TS)| ≥ ε. Then, we can find 1 ≤ i ≤ n and 1 ≤ j ≤ m such
that φ(TS) = φi(T )ψj(S), since min{|φ(T )|, |φ(S)|} ≥ μ. Therefore,
B(0, ε)C ∩ σ(TS) is a finite set, and consequently, TS is zeroloid.

(ii) If 0 ∈ acc σ(TS), then B(0, ε)∩ (σ(TS) \ 0) �= ∅ for every ε > 0. So, there
exists a multiplicative functional φε on A such that 0 < |φε(TS)| < ε2.
Hence, |φε(T )| < ε or |φε(S)| < ε. This implies that B(0, ε) ∩ ([σ(T ) ∪
σ(S)] \ 0) �= ∅, and as a result, 0 ∈ acc σ(T ) ∪ acc σ(S).

�

Note that the assertion (ii) of Proposition 2.3 is already proved in [14,
Theorem 5.5 ], and the proof which gave is new. Throughout our discussion,
we will use the notation σ∗ to refer to either the spectrum, Browder spectrum,
or Drazin spectrum of an operator. The following definition introduces the
classes of gα

σ∗ -invertible operators.

Definition 2.4. Let T ∈ L(X) and let α be an ordinal.

(1) If α is a successor ordinal, we say that T is gα
σ∗ -invertible provided that

there exists a pair (M,N) ∈ Red(T ) such that TM is invertible and
accα−1 σ∗(TN ) ⊂ {0}, Here, α − 1 denotes the predecessor of α.

(2) If α is a limit ordinal, we say that T is gα
σ∗ -invertible if there exists a

successor ordinal β < α such that T is gβ
σ∗ -invertible.

(3) T is called g0σ∗ -invertible if 0 /∈ σ∗(T ).

We use the notation Gα
σ∗(X) to represent the class of gα

σ∗ -invertible operators
acting on the Banach space X.

Remark 2.5. (1) The inclusions Gα
σ (X) ⊂ Gα

σb
(X) ⊂ Gα

σd
(X) ⊂ Gα+1

σ (X) and
Gα

σ∗(X) ⊂ Gβ
σ∗(X) hold for all ordinals α ≤ β.

(2) If α is a limit ordinal, then T is gα
σ∗ -invertible if and only if there exists an

ordinal β < α such that T is gβ
σ∗ -invertible. Therefore, we have Gα

σ∗(X) =
⋃

β<α Gβ
σ∗(X).
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(3) Notice that T is g1σ-invertible (resp., T is g1σb
-invertible, T is g1σd

-invertible)
if and only if T is generalized Drazin invertible [14] (resp., T is gener-
alized Drazin-Riesz invertible [18], T is generalized Drazin-meromorphic
invertible [19]).

The following theorem gives a characterization of gα
σ∗ -invertible operators

in terms of accα σ∗(T ).

Theorem 2.6. Let T ∈ L(X) and let α be an ordinal. Then T − μI is gα
σ∗-

invertible if and only if μ /∈ accα σ∗(T ).

Proof. Let us firstly prove that the result is true for all successor ordinals α.
Let μ /∈ accα σ∗(T ). Since accα σ∗(T − zI) = accα σ∗(T ) − z for every complex
number z, we may assume that μ = 0. The case of 0 /∈ acc σ(T ) is clear.
Suppose now that 0 ∈ acc σ(T ). Then 0 ∈ acc (Πα

σ∗(T )), where Πα
σ∗(T ) =

σ(T ) \ accα−1 σ∗(T ). As 0 /∈ accα σ∗(T ) then D(0, ε)∩ [accα−1 σ∗(T ) \ {0}] = ∅
for some 1 > ε > 0. Let 0 < μ < v ≤ ε. The set Πα

σ∗(T ) is countable, since
λ = CBR(σ(T )) < ω1 and Πα

σ∗(T ) ⊂ σ(T ) \ accλ σ(T ) =
⊔

β<λ iso (accβ σ(T )).
Thus there exists μ ≤ ε(μ,v) ≤ v such that C(0, ε(μ,v)) ∩ σ(T ) = ∅. Hence
σ(μ,v) := D(0, ε(μ,v)) ∩ σ(T ) ⊂ Πα

σ∗(T ) ∪ {0} is a countable spectral set of
σ(T ). So there exists (M(μ,v), N(μ,v)) ∈ Red(T ) such that σ(TM(μ,v)) = σ(T ) \
σ(μ,v) and σ(TN(μ,v)) = σ(μ,v). Further, we have −1 /∈ σ(TN(μ,v)) and σ(μ,v) ∩
(accα−1 σ∗(T ) \ {0}) = ∅, and thus accα−1 σ∗(TN(μ,v)) ⊂ {0}. This proves that
T is gα

σ∗ -invertible. Assume now that α is a limit ordinal. If 0 /∈ accα σ∗(T ),
then there exists a successor odinal β < α such that 0 /∈ accβ σ∗(T ), which
implies by the first case that T is gβ

σ∗ -invertible, and thus T is gα
σ∗ -invertible.

Conversely, assume that T is gα
σ∗ -invertible for some ordinal α. Assume that

α is a successor ordinal, then there exists (M,N) ∈ Red(T ) such that TM is
invertible and accα−1 σ∗(TN ) ⊂ {0}. So there exists ε > 0 such that B(0, ε) \
{0} ⊂ (σ(TM ))C∩(accα−1 σ∗(TN ))C ⊂ (accα−1 σ∗(TM ))C∩(accα−1 σ∗(TN ))C =
(accα−1 σ∗(T ))C . So 0 /∈ accα σ∗(T ). The case of α is a limit ordinal isbreak
clear.

�

The following corollary is a consequence of the previous theorem:

Corollary 2.7. Let T ∈ L(X) and let α be an ordinal. The following statements
hold:
(i) T is gα

σ∗-invertible if and only if T ∗ is gα
σ∗-invertible.

(ii) If Y is a complex Banach space and S ∈ L(Y ), then S⊕T is gα
σ∗-invertible

if and only if both S and T are gα
σ∗-invertible.

(iii) T is gα
σ∗-invertible if and only if Tm is gα

σ∗-invertible for some (equiva-
lently for every) integer m ≥ 1.

Since CBR(σ(T )) < ω1 and accω σ(T ) = accω σb(T ) = accω σd(T ) for
every T ∈ L(X), we can derive the following corollary from Theorem 2.6.
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This corollary indicates that gα
σ∗ -invertibility is only significant for countable

ordinals.

Corollary 2.8. Let T ∈ L(X). The following assertions hold:
(i) If α ≥ ω1 is an ordinal, then T is gα

σ∗-invertible if and only if T is gβ
σ∗-

invertible for some β < ω1.
(ii) If α ≥ ω, then T is gα

σ∗-invertible if and only if T is gα
σ∗∗-invertible, where

σ∗∗ ∈ {σ, σb, σd}.

Remark 2.9. Consider T ∈ L(X) and define the set C(T ) as:

C(T ) := {(T − zI)M : z ∈ C and M is a closed T -invariant subspace}.

Let P(C) denote the set of all subsets of C. From the proof of Theorem 2.6,
it follows that if there exists a mapping σ̃ : C(T ) −→ P(C) that satisfies the
following conditions:

(i) σ̃(TM ) is closed and σ̃(TM ) ⊂ σ(TM ) for all closed T -invariant subspaces
M .

(ii) σ̃(T ) = σ̃(TM ) ∪ σ̃(TN ) for all (M,N) ∈ Red(T ).
(iii) σ̃(T − zI) = σ̃(T ) − z for all complex numbers z.
(iv) accβ σ(T ) ⊂ accγ σ̃(T ) for some ordinals β, γ.
Then, for all successor ordinal α, we have z /∈ accα σ̃(T ) if and only if there
exists (M,N) ∈ Red(T ) such that (T − zI)M is invertible and accα−1 σ̃((T −
zI)N ) ⊂ 0.

Definition 2.10. Let α be an ordinal and let T ∈ L(X) be gα
σ∗ -invertible. We

define the degree of gσ∗ -invertibility of T, denoted β = dσ∗(T ), to be the
smallest ordinal β such that 0 /∈ accβ σ∗(T ).

Remark 2.11. (1) Let T ∈ L(X) be a gα
σ∗ -invertible such that 0 ∈ σ∗(T ).

The degree of gσ∗ -invertibility of T is known by the Cantor-Bendixson
rank of the point 0 of σ∗(T ).

(2) If T ∈ L(X) is gα
σ∗ -invertible and 0 ∈ σ∗(T ), then the degree of gσ∗ -

invertibility of T is an ordinal β such that 0 ∈ iso accβ σ∗(T ). Moreover,
it cannot be a limit ordinal.

(3) Clearly, if α > 0 is an ordinal, then

dσ(T ) ≤ dσb
(T ) ≤ dσd

(T ) ≤ CBR(σd(T ))

for every gα
σ∗ -invertible operator T, and if ω ≤ dσ(T ), then dσ(T ) =

dσb
(T ) = dσd

(T )

Recall from [14] that an operator T is called generalized Drazin invertible
if there exists a pair (M,N) ∈ Red(T ) such that TM is invertible and TN is
quasi-nilpotent. It has been shown that T is generalized Drazin invertible if
and only if there exists a bounded projection P ∈ comm2(T ) such that T + P
is invertible and TP is quasi-nilpotent. This is also equivalent to 0 not being
an accumulation point of σ(T ).
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Remark 2.12. The proof of Theorem 2.6 yields further insights into
gσ∗ -invertibility. Specifically, if T is gα

σ∗ -invertible for some successor ordi-
nal α > 0, then there exists (M,N) ∈ Red(T ) with the following prop-
erties: TM is invertible, accα−1 σ∗(TN ) ⊂ {0}, σ(TM ) ∩ σ(TN ) = ∅, and
σ(TN ) \ {0} ⊂ Πα

σ∗(T ). Consequently, the set σ̃ := σ(TN ) is at most countable
and serves as a spectral set. We also have N = R(Pσ̃) and M = N (Pσ̃), where
Pσ̃ is the spectral projection of T corresponding to σ̃. In addition, we can
define the Drazin inverse of T with respect to σ̃ as TDα

σ̃ := (TM )−1 ⊕ 0N ∈
comm2(T ). It follows that TDα

σ̃ is Drazin invertible, TDα

σ̃ TTDα

σ̃ = TDα

σ̃ , and
accα−1 σ∗(T − T 2TDα

σ̃ ) ⊂ {0}.
Moreover, we observe that accα−1 σ∗(TPσ) ⊂ {0} and T + Pσ̃ = TM ⊕

(T + I)N is invertible.

For a gα
σ∗ -invertible operator T ∈ L(X) with an at most countable suc-

cessor ordinal α, we can define the set gα
σ∗D(T ) as follows:

gα
σ∗D(T ) := {(M, N) ∈ Red(T ) such that TM is invertible and accα−1 σ∗(TN ) ⊂ {0}}.

We can show that gα
σ∗D(T ) ⊂ gα+1

σ∗ D(T ). Furthermore, the following proposi-
tion demonstrates that if T is not generalized Drazin invertible, then gα

σ∗D(T )
is at least countable.

Proposition 2.13. Let α ≥ 1 be a successor ordinal. If T ∈ L(X) is gα
σ∗-

invertible and not generalized Drazin invertible, then there exists {(Mm, Nm)}m ⊂
gα

σ∗D(T ) such that (σ(TMm
))m is a strictly increasing sequence, (σ(TNm

))m is
a strictly decreasing sequence and σ(TMm

) ∩ σ(TNm
) = ∅ for all m ∈ N.

Proof. Since T is gα
σ∗ -invertible and not generalized Drazin invertible, there

exists ε > 0 such that D(0, ε) ∩ [accα−1 σ∗(T ) \ {0}] = ∅. Moreover, there
exists a positive strictly decreasing sequence (εm)m ⊂ R such that ε = ε0,
C(0, εm) ∩ σ(T ) = ∅ and D(0, εm+1) ∩ σ(T ) � D(0, εm) ∩ σ(T ). Denote by
σm := D(0, εm) ∩ σ(T ). It follows that (σm)m is a strictly decreasing sequence
of countable spectral sets of σ(T ). By taking (Mm, Nm) = (N (Pσm

),R(Pσm
)),

where Pσm
is the spectral projection of T corresponding to σm, we get the

desired result. �
Hereafter, denote by Red2(T ) := {(M,N) ∈ Red(S) : S ∈ comm(T )}.

Theorem 2.14. Let α ≥ 1 be a successor ordinal. The following statements are
equivalent for T ∈ L(X):
(i) T is gα

σ∗-invertible;
(ii) 0 /∈ accα σ∗(T );
(iii) There exists (M,N) ∈ Red2(T ) ∩ gα

σ∗D(T );
(iv) There exists a spectral set σ̃ of T such that 0 /∈ σ(T ) \ σ̃ and σ̃ \ {0} ⊂

Πα
σ∗(T );

(v) There exists a bounded projection P ∈ comm(T ) such that T +P is gα−1
σ∗ -

invertible and accα−1 σ∗(TP ) ⊂ {0};



Vol. 79 (2024) Almost invertible operators Page 9 of 15 201

(vi) There exists a bounded projection P ∈ comm2(T ) such that T + P is
gα−1

σ∗ -invertible and accα−1 σ∗(TP ) ⊂ {0};
(vii) There exists a bounded projection P ∈ comm(T ) such that T + P is

invertible and accα−1 σ∗(TP ) ⊂ {0};
(viii) There exists a bounded projection P ∈ comm2(T ) such that T + P is

invertible and accα−1 σ∗(TP ) ⊂ {0};
(ix) There exists S ∈ comm(T ) such that S2T = S and accα−1 σ∗(T −T 2S) ⊂

{0};
(x) There exists S ∈ comm2(T ) such that S2T = S and accα−1 σ∗(T−T 2S) ⊂

{0}.

Proof. The equivalence (i) ⇐⇒ (ii) is proved in Theorem 2.6. The implications
(i) =⇒ (iii), (i) =⇒ (iv) and (i) =⇒ (viii) are proved in Remark 2.12. (iv) =⇒
(i) Let σ̃ be a spectral set of T such that 0 /∈ σ(T ) \ σ̃ and σ̃ \ {0} ⊂ Πα

σ∗(T ).
There exists (M,N) ∈ Red(T ) such that σ(TM ) = σ(T ) \ σ̃ and σ(TN ) = σ̃.
It is easily seen that (M,N) ∈ gα

σ∗D(T ), and then T is gα
σ∗ -invertible. (iii) =⇒

(viii) Let (M,N) ∈ Red2(T ) ∩ gα
σ∗D(T ). The operator S = (TM )−1 ⊕ 0N is

Drazin invertible. Moreover, S ∈ comm2(T ), TS = IM ⊕ 0N , S2T = S and
T −T 2S = 0M ⊕TN . Thus accα−1 σ∗(T −T 2S) ⊂ {0}. (ix) =⇒ (i) Suppose that
there exists S ∈ comm(T ) such that S2T = S and accα−1 σ∗(T − T 2S) ⊂ {0}.
Then TS is a projection and (M,N) := (R(TS),N (TS)) ∈ Red(T ) ∩ Red(S).
It is not difficult to see that TM is invertible and S = (TM )−1 ⊕ 0N . Thus T −
T 2S = 0⊕TN . Consequently, T is gα

σ∗ -invertible. (v) =⇒ (i) Suppose that there
exists a bounded projection P ∈ comm(T ) such that T + P is gα−1

σ∗ -invertible
and accα−1 σ∗(TP ) ⊂ {0}. Then (A,B) := (N (P ),R(P )) ∈ Red(T ). Therefore
TA is gα−1

σ∗ -invertible and accα−1 σ∗(TB) ⊂ accα−1 σ∗(TP ) ⊂ {0}. Hence there
exists (C,D) ∈ Red(TA) such that TC is invertible and accα−1 σ∗(TD) ⊂ {0}.
Thus accα−1 σ∗(TD⊕B) ⊂ {0}, and then T is gα

σ∗ -invertible. This completes
the proof of the theorem. �

For T ∈ L(X) and for a subspace M of X, TX/M means the linear map in-
duced by T on the quotient space X/M. The next proposition is a consequence
of Theorem 2.6 and the fact that σ∗(T ) ⊂ σ∗(TM ) ∪ σ∗(TX/M ).

Proposition 2.15. Let α be an ordinal. Let T ∈ L(X) and let M be a closed
T -invariant subspace. If both TM and TX/M are gα

σ∗-invertible, then T is gα
σ∗-

invertible.

We know that a linear idempotent P (i.e. P 2 = P ) acting on X is bounded
(i.e. a projection) if and only if its nullity N (P ) and range R(P ) are both
closed. The following theorem shows that if we replace the bounded projection
P in Theorem 2.14 with a linear idempotent P whose range R(P ) is the only
possible closed subspace, the conclusion still holds.

Theorem 2.16. Let α ≥ 1 be a successor ordinal. The following statements are
equivalent for T ∈ L(X):
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(i) T is gα
σ∗-invertible;

(ii) There exists a pair of T -invariant subspaces (M,N) such that N is closed,
X = M ⊕ N, TM is invertible and accα−1 σ∗(TN ) ⊂ {0};

(iii) There exists a linear idompotent P acting on X such that TP = PT,
R(P ) is closed, P ∈ comm(T ), T+P is invertible and accα−1 σ∗(TR(P )) ⊂
{0}.

Proof. Assuming (ii), consider a pair (M,N) of subspaces such that N is
closed, X = M ⊕ N , TM is invertible, and accα−1 σ∗(TN ) ⊂ 0. Let x ∈ X
be such that TX/N (x + N) = N . Then, we can deduce that Tx ∈ N be-
cause TX/N (x + N) = N implies that Tx ∈ T−1

X/N (N) = N . Moreover, since
TM is one-to-one, we also have that x ∈ N . If x ∈ X, then the surjectiv-
ity of TM implies that there exists some y ∈ M such that T (y) = PM (x).
Thus, TX/N (y + N) = x + N for all x ∈ X. This implies that TX/N is
invertible. By Theorem 2.6, there exists ε > 0 such that B(0, ε) \ {0} ⊂
(σ(TX/N ))C ∩ (accα−1 σ∗(TN ))C ⊂ accα−1 σ∗(T ). Hence, we can conclude that
T is gα

σ∗ -invertible. The other implications follow directly from the definitions
and properties of the various invertibility concepts. �

Let R(T∞) denote the intersection of the ranges of Tn for n ≥ 1, and let
N (T∞) denote the union of the nullspaces of Tn for n ≥ 1. In the context of
Drazin invertibility, we can state a stronger version of Theorem 2.16 as follows:

Theorem 2.17. Let T ∈ L(X). The following assertions are equivalent:
(i) T is Drazin invertible;
(ii) TR(T ∞) is one-to-one and TX/N (T ∞) is onto. Moreover, in this case

R(T∞) and N (T∞) are closed;
(iii) X = R(T∞) ⊕ N (T∞), where ⊕ denotes the algebraic sum;
(iv) There exists a pair of T -invariant subspaces (M,N) such that X = M ⊕

N, TM is bijective and TN is nilpotent. Moreover, in this case M =
R(T∞) and N = N (T∞) are closed;

(v) There exists a linear idompotent P acting on X such that TP = PT,
T + P is bijective and TP is nilpotent. Moreover, in this case P is a
projection.

(vi) There exists a linear map S acting on X which commutes with T, S2T =
S and Tn+1S = Tn for some positive integer n. Moreover, in this case S
is bounded and so S ∈ L(X).

Proof. (i) ⇐⇒ (ii) Assume that TR(T ∞) is one-to-one and TX/N (T ∞) is onto,
that is, N (T ) ∩ R(T∞) = {0} and X = R(T ) + N (T∞). Since R(T ) + N (Tn)
is a paracomplete subspace of X =

⋃∞
n=0[R(T )+N (Tn)], we deduce, from [15,

Proposition 2.2.4] and [12, Lemma 3.2], that there exists an integer n such that
TR(T n) is onto. Hence N (T )∩R(T∞) = N (T )∩R(Tn) = {0}, and thus TR(T n)

is invertible. So R(Tn) is closed and T is Drazin invertible. The converse is
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clear. The implications (iii) =⇒ (ii) and (i) =⇒ (iii) are obvious. (iii) ⇐⇒ (iv)
Let (M,N) be a pair of T -invariant subspaces such that X = M ⊕ N, where
TM is invertible and TN is nilpotent. Then R(T∞) = R((TM )∞) = M and
N (T∞) = N ((TN )∞) = N. The converse is obvious.

The equivalences (iv) ⇐⇒ (v) and (v) ⇐⇒ (vi) go similarly. �
The statement (vi) of Theorem 2.17 gives a generalization of the Banach

isomorphism theorem. The next result is a direct consequence of the previous
theorem.

Theorem 2.18. Let T ∈ L(X). The following assertions are equivalent:
(i) T is a Browder operator;
(ii) TR(T ∞) is one-to-one, N (T∞) has finite dimension and TX/N (T ∞) is

onto.;
(iii) N (T∞) has finite dimension and X = R(T∞)⊕N (T∞), where ⊕ denotes

the algebraic sum;
(iv) There exists a pair of T -invariant subspaces (M,N) such that N has finite

dimension, X = M ⊕ N, TM is bijective and TN is nilpotent. Moreover,
in this case M = R(T∞) is closed and N = N (T∞);

(v) There exists a linear idompotent P acting on X such that TP = PT,
R(P ) has finite dimension, T +P is bijective and TP is nilpotent. More-
over, in this case P is a finite rank projection.

3. Almost Invertible Operators

Definition 3.1. Let T ∈ L(X). We say that T is almost invertible if there exists
(M,N) ∈ Red(T ) such that TM is invertible and σ(TN ) is at most countable.
The set of almost invertible operators is denoted by G(X).

Remark 3.2. (i) Let T ∈ L(X). Then σ(T ) is at most countable if and only
if σ∗(T ) is at most countable.

(ii) It is easily seen that if T, S ∈ L(X) are commuting operators with σ(T )
and σ(S) at most countable, then σ(T +S) and σ(TS) at most countable.

Denote in the sequel by σal(T ) = {λ ∈ C : T−λI is not almost invertible}.
Based on the previous remark and the fact that accσ(T ) ⊂ σ∗(T ), we derive
the following result, which provides a characterization of almost invertible op-
erators in terms of accω1 σ∗(T ).

Theorem 3.3. Let T ∈ L(X) and let r∗ := CBR(σ∗(T )). Then T is almost
invertible if and only if T is gω1

σ∗ -invertible which is equivalent to say that
T is gr∗

σ∗-invertible. Consequently, G(X) = Gω1
σ∗ (X) = Gr∗

σ∗(X) and σal(T ) =
accω1 σ∗(T ) = accr∗ σ∗(T ).

Proof. To prove the result, it suffices to invoke Theorem 2.6 and the fact that
a compact countable complex subset A is at most countable if and only if
accr A = ∅, where r = CBR(A) is a successor ordinal when A is nonempty.
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�

By Theorem 3.3, we can conclude that σal(T ) is a compact set. Further-
more, we have the decomposition:

σ∗(T ) \ σal(T ) =
⊔

β<ω1

iso (accβ σ∗(T )).

For an almost invertible operator T ∈ L(X), we define:

Dal(T ) := {(M, N) ∈ Red(T ) such that TM is invertible and σ(TN ) is at most countable}.

Using Theorems 2.14, 2.16, 3.3, we obtain the following theorem:

Theorem 3.4. The following statements hold for every T ∈ L(X):

(i) T is almost invertible;
(ii) T is gω1

σ∗ -invertible;
(iii) 0 /∈ accω1 σ∗(T );
(iv) There exists (M,N) ∈ Red2(T ) ∩ Dal(T );
(v) There exists a pair of T -invariant subspaces (M,N) such that N is closed,

X = M ⊕ N, TM is invertible and σ(TN ) is at most countable;
(vi) There exists an at most countable spectral set σ of T such that 0 /∈ σ(T )\

σ;
(vii) There exists a spectral set σ of T such that 0 /∈ σ(T ) \ σ and σ \ {0} ⊂⊔

β<ω1
iso (accβ σ(T ));

(viii) There exists a bounded projection P ∈ comm(T ) such that T + P is
invertible and σ(TP ) is at most countable;

(ix) There exists a bounded projection P ∈ comm2(T ) such that T + P is
invertible and σ(TP ) is at most countable;

(x) There exists S ∈ comm(T ) such that S2T = S and σ(T −T 2S) is at most
countable;

(xi) There exists S ∈ comm2(T ) such that S2T = S and σ(T − T 2S) is at
most countable.

Corollary 3.5. Let T ∈ L(X). The following statements hold:

(i) T is almost invertible if and only if T ∗ is almost invertible.
(ii) If S is a bounded operator acts on a complex Banach space Y, then T ⊕S

is almost invertible if and only if both T and S are almost invertible.
(iii) T is almost invertible if and only if Tm is almost invertible for some

(equivalently for every) integer m ≥ 1.
(iv) Let M be a closed T -invariant subspace. If both TM and TX/M are almost

invertible, then T is almost invertible.
(v) If R ∈ comm(T ) is a Riesz operator, then σal(T + R) = σal(T ).

Proposition 3.6. Let T,R ∈ L(X) be almost invertible operators such that
TR = RT = 0. Then T + R is almost invertible.
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Proof. Let S ∈ comm2(T ) and S
′ ∈ comm2(R) such that S2T = S, (S

′
)2R =

S
′
, σ(T − T 2S) and σ(R − R2S

′
) are at most countable. It is easy to see

that (S + S
′
) ∈ comm2(T ), (S + S

′
)2(T + R) = S2T + (S

′
)2T = S + S

′
and

(T +R)− (T +R)2(S +S
′
) = T −T 2S +R−R2S

′
. We conclude from Remark

3.2 that T + R is almost countable. �

According to [10], an operator T is said to have a topological uniform
descent if R(T ) + N (T d) is closed for some integer d and R(T ) + N (Tn) =
R(T )+N (Tn) for all n ≥ d. For the definition of the SVEP, one can see [11].

Proposition 3.7. Let T ∈ L(X). The following assertions hold:
(i) If 0 /∈ accω1 σ(T ), then T and its dual adjoint T ∗ have the SVEP at 0.
(ii) If T has a topological uniform descent, then T is Drazin invertible if and

only if T is almost invertible.

Proof. The point (i) is a consequence of Theorem 3.3, and the point (ii) is a
consequence of [11, Theorems 3.2, 3.4]. �

In the next corollary, we denote, respectively, the essential spectrum and
the B-Fredholm spectrum of T ∈ L(X) by σe(T ) and σbf (T ). For the definition
and the properties of the B-Fredholm spectrum, one can see [3,5].

Corollary 3.8. σb(T ) = σe(T ) ∪ accω1 σ(T ) and σd(T ) = σbf (T ) ∪ accω1 σ(T ),
for all T ∈ L(X).
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