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Abstract. This paper presents two results in the realm of conformal Kaehler
submanifolds. These are conformal immersions of Kaehler manifolds into
the standard flat Euclidean space. The proofs are obtained by making
a rather strong use of several facts and techniques developed in Chion
and Dajczer (Proc Edinb Math Soc 66:810–833, 2023) for the study of
isometric immersions of Kaehler manifolds into the standard hyperbolic
space.
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Let f : M2n → R
2n+p denote a conformal Kaehler submanifold. Thus (M2n, J)

is a Kaehler manifold of complex dimension n ≥ 2 and f a conformal immer-
sion into Euclidean space that lies in codimension p. Thus, there is a positive
function λ ∈ C∞(M) such that the Kaehler metric and the one induced by f
relate by 〈, 〉f = λ2〈, 〉M2n .

Conformal Kaehler submanifolds laying in the low codimensions p = 1
and p = 2 have already been considered in [1]. In this paper, we are interested
in higher codimensions although not too large in comparison to the dimension
of the manifold.

Our first result, provides a necessary condition for the existence of a
conformal immersion in codimension at most n − 3 in terms of the sectional
curvature of the Kaehler manifold.

Theorem 1. Let f : M2n → R
2n+p, p ≤ n−3, be a conformal Kaehler submani-

fold. Then at any x ∈ M2n there is a complex vector subspace V 2m ⊂ TxM with
m ≥ n−p such that the sectional curvature of M2n satisfies KM (S, JS)(x) ≤ 0
for any S ∈ V 2m.
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Notice that the conclusion of Theorem 1 remains valid if the Euclidean
ambient space R

2n+p is replaced by any locally conformally flat manifold of
the same dimension.

Our second result characterizes a submanifold, in terms of the degree of
positiveness of the sectional curvature, as being locally the Example 2 pre-
sented below.

The light-cone V
m+1 ⊂ L

m+2 of the standard flat Lorentzian space is
any one of the two connected components of the set of all light-like vectors,
namely,

{v ∈ L
m+2 : 〈v, v〉 = 0, v 	= 0}

endowed with the (degenerate) induced metric. The Euclidean space R
m can

be realized as an umbilic hypersurface of Vm+1 as follows: Take vectors v, w ∈
V

m+1 such that 〈v, w〉 = 1 and a linear isometry C : Rm → {v, w}⊥. Let
ψ : Rm → V

m+1 ⊂ L
m+2 be defined by

ψ(x) = v + Cx − 1
2
‖x‖2w. (1)

Then ψ is an isometric embedding of Rm as an umbilical hypersurface in the
light cone which is the intersection of Vm+1 with an affine hyperplane. Namely,
we have that

ψ(Rm) = {y ∈ V
m+1 : 〈y, w〉 = 1}.

The normal bundle of ψ is NψR
m = span {ψ,w} and its second fundamental

form is

αψ(X,Y ) = −〈X,Y 〉
Rmw.

Proposition 9.9 in [3] gives an elementary correspondence between the
conformal immersions in Euclidean space and the isometric immersions into
the light cone which goes as follows: Associated to a given conformal immersion
f : Mm → R

m+p with conformal factor λ ∈ C∞(M) there is the associated
isometric immersion defined by

F =
1
λ

ψ ◦ f : Mm → V
m+p+1 ⊂ L

m+p+2.

Conversely, any isometric immersion F : Mm → V
m+p+1\Rw ⊂ L

m+p+2 gives
rise to an associated conformal immersion f : Mm → R

m+p given by ψ ◦ f =
π ◦ F with conformal factor 1/〈F,w〉. Here π : Vm+p+1 \ Rw → R

m+p is the
projection π(x) = x/〈x,w〉.
Example 2.. Let the Kaehler manifold M2n be the Riemannian product of
one hyperbolic plane and a set of two-dimensional round spheres such that

M2n = H
2
c × S

2
c2 × · · · × S

2
cn with 1/c2 + · · · + 1/cn = −1/c.

If f1 is the inclusion H
2
c ⊂ L

3 and f2 : S2c2 × · · · × S
2
cn → S

3n−4
c ⊂ R

3n−3 is the
product of umbilical spheres then the map ψ−1 ◦ (f1 × f2) : M2n → R

3n−2 is
a conformal Kaehler submanifold.
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Theorem 3.. Let f : M2n → R
2n+p, 2 ≤ p ≤ n − 2, be a connected conformal

Kaehler submanifold. Assume that at a point x0 ∈ M2n there is a complex
tangent vector subspace V 2m ⊂ Tx0M with m ≥ p + 1 such that the sectional
curvature of M2n satisfies KM (S, JS)(x) > 0 for any 0 	= S ∈ V 2m. Then
p = n − 2 and f(M) is an open subset of the submanifold given by Example 2.

1. The Proofs

Let V 2n and L
p, p ≥ 2, be real vector spaces such that there is J ∈ Aut(V )

which satisfies J2 = −I and L
p is endowed with a Lorentzian inner product

〈, 〉. Then let W p,p = L
p ⊕L

p be endowed with the inner product of signature
(p, p) defined by

〈〈(ξ, ξ̄), (η, η̄)〉〉 = 〈ξ, η〉 − 〈ξ̄, η̄〉.
A vector subspace L ⊂ W p,p is called degenerate if L ∩ L⊥ 	= 0.

Let α : V 2n×V 2n → L
p be a symmetric bilinear form and β : V 2n×V 2n →

W p,p the associated bilinear form given by

β(X,Y ) = (α(X,Y ) + α(JX, JY ), α(X,JY ) − α(JX, Y )).

We have that if β(X,Y ) = (ξ, η) then

β(X,JY ) = (η,−ξ) and β(Y,X) = (ξ,−η). (2)

We denote the vector subspace of W p,p generated by β by

S(β) = span {β(X,Y ) : X,Y ∈ V 2n}
and say that β is surjective if S(β) = W p,p. The (right) kernel β is defined by

N (β) = {Y ∈ V 2n : β(X,Y ) = 0 for all X ∈ V 2n}.

A vector X ∈ V 2n is called a (left) regular element of β if dimBX(V ) = r
where r = max{dim BX(V ) : X ∈ V } and BX : V → W p,p is the linear trans-
formation defined by BXY = β(X,Y ). The set RE(β) of regular elements of
β is easily seen to be an open dense subset of V 2n, for instance see Proposition
4.4 in [3].

It is said that β is flat if it satisfies that

〈〈β(X,Y ), β(Z, T )〉〉 − 〈〈β(X,T ), β(Z, Y )〉〉 = 0 for all X,Z, Y, T ∈ V 2n.

If β is flat and X ∈ RE(β) we have from Proposition 4.6 in [3] that

S(β|V ×ker βX
) ⊂ BX(V ) ∩ (BX(V ))⊥. (3)

Proposition 4. Let β : V 2n ×V 2n → W p,p, p ≤ n, be flat and surjective. Then

dim N (β) ≥ 2n − 2p.

Proof. This is condition (9) in Proposition 11 of [2]. �
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Let V 2n be endowed with a positive definite inner product (, ) with re-
spect to which J ∈ Aut(V ) is an isometry. Assume that there is a light-like
vector w ∈ L

p such that

〈α(X,Y ), w〉 = −(X,Y ) for any X,Y ∈ V 2n. (4)

Let Us
0 ⊂ L

p be the s-dimensional vector subspace given by

Us
0 = π1(S(β)) = span {α(X,Y ) + α(X,JY ) : X,Y ∈ V 2n},

where π1 : W p,p → L
p denotes the projection onto the first component of W p,p.

From Proposition 9 in [2] we know that

S(β) = Us
0 ⊕ Us

0 . (5)

In addition, if S(β) is a degenerate vector subspace then 1 ≤ s ≤ p − 1 and
there is a light-like vector v ∈ Us

0 such that

S(β) ∩ S(β)⊥ = span {v} ⊕ span {v}. (6)

Proposition 5. Let the bilinear form β : V 2n × V 2n → W p,p be flat and the
vector subspace S(β) degenerate. Then L = span {v, w} ⊂ L

p is a Lorentzian
plane. Moreover, choosing v such that 〈v, w〉 = −1 and setting β1 = πL⊥×L⊥ ◦
β, we have

β(X,Y ) = β1(X,Y ) + 2((X,Y )v, (X,JY )v) for any X,Y ∈ V 2n. (7)

Furthermore, if s ≤ n then

dim N (β1) ≥ 2n − 2s + 2. (8)

Proof. We obtain from (6) that

0 = 〈〈β(X,Y ), (v, 0)〉〉 = 〈α(X,Y ) + α(JX, JY ), v〉 for any X,Y ∈ V 2n.

(9)

From (4) and the fact that J is an isometry with respect to (, ), we also have
that

〈〈β(X,Y ), (w, 0)〉〉 = 〈α(X,Y ) + α(JX, JY ), w〉
= −2(X,Y ) for any X,Y ∈ V 2n. (10)

In particular, we have 〈〈β(X,X), (w, 0)〉〉 < 0 for any 0 	= X ∈ V 2n, which
jointly with (9) implies that v and w are linearly independent and thus span
a Lorentzian plane.

Since w is light-like and v satisfies 〈v, w〉 = −1, we have

α(X,Y ) + α(JX, JY ) = αL⊥(X,Y ) + αL⊥(JX, JY ) − 〈α(X,Y )

+ α(JX, JY ), v〉w − 〈α(X,Y ) + α(JX, JY ), w〉v,

where αL⊥ denotes the L⊥-component of α. Then (9) and (10) yield

α(X,Y ) + α(JX, JY ) = αL⊥(X,Y ) + αL⊥(JX, JY ) + 2(X,Y )v
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and

α(X,JY ) − α(JX, Y ) = αL⊥(X,JY ) − αL⊥(JX, Y ) + 2(X,JY )v,

from which we obtain (7).
We have from (5) and (6) that w /∈ Us

0 +L⊥. Hence dim(Us
0 +L⊥) = p−1.

It then follows from

p − 1 = dim(Us
0 + L⊥) = dimUs

0 + dim L⊥ − dim Us
0 ∩ L⊥

that U1 = Us
0 ∩ L⊥ satisfies

dim U1 = s − 1 (11)

and we have from (5), (6) and (7) that S(β1) = Us−1
1 ⊕ Us−1

1 .
From (7) we obtain that

〈〈β(X,Y ), β(Z, T )〉〉 = 〈〈β1(X,Y ), β1(Z, T )〉〉 for any X,Y,Z, T ∈ V 2n,

and hence also the bilinear form β1 : V 2n × V 2n → L⊥ ⊕ L⊥ is flat. Let X ∈
RE(β1) and set N1(X) = ker B1X where B1XY = β1(X,Y ). To obtain (8) it
suffices to show that N1(X) = N (β1) since then dimN (β1) = dim N1(X) ≥
2n − 2 dim U1 = 2n − 2 s + 2.

If β1(Y,Z) = (ξ, η) then by (2) and (7) we have β1(Z, Y ) = (ξ,−η). If
Y,Z ∈ N1(X) it follows from (3) that

0 = 〈〈β1(Y,Z), β1(Z, Y )〉〉 = 〈〈(ξ, η), (ξ,−η)〉〉 = ‖ξ‖2 + ‖η‖2.
Hence β1|N1(X)×N1(X) = 0 since the inner product induced on Us−1

1 is positive
definite. Now let β1(Y,Z) = (δ, ζ) where Y ∈ V 2n and Z ∈ N1(X). Then the
flatness of β1 yields

0 = 〈〈β1(Y,Z), β1(Z, Y )〉〉 = 〈〈(δ, ζ), (δ,−ζ)〉〉 = ‖δ‖2 + ‖ζ‖2
and therefore β1|V ×N1(X) = 0. �

Proposition 6. Let the bilinear form β : V 2n ×V 2n → W p,p be flat and satisfy

〈〈β(X,Y ), γ(Z, T )〉〉 = 〈〈β(X,T ), γ(Z, Y )〉〉 for any X,Y,Z, T ∈ V 2n (12)

where γ : V 2n × V 2n → W p,p is the bilinear form defined by

γ(X,Y ) = (α(X,Y ), α(X,JY )) for any X,Y ∈ V 2n.

If the vector subspace S(β) is degenerate and s ≤ n − 1 then there is a J-
invariant vector subspace P 2m ⊂ V 2n, m ≥ n − s + 1, such that

〈α(S, S), α(JS, JS)〉 − ‖α(S, JS)‖2 ≤ 0 for any S ∈ P 2m.

Proof. Let v ∈ Us
0 be given by (6). We claim that

〈α(X,Y ), v〉 = 0 for any X,Y ∈ V 2n. (13)

Since s ≤ n − 1 then (8) gives dim N (β1) ≥ 4. Hence (7) yields β(S, S) =
2((S, S)v, 0) for any S ∈ N (β1). Thus

〈〈γ(X,Y ), β(S, S)〉〉 = 2〈α(X,Y ), v〉 (14)
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for any S ∈ N (β1) of unit length. On the other hand, we obtain from (2) and
(7) that β(S, Y ) = β(Y, S) = 0 for any S ∈ N (β1) and Y ∈ {S, JS}⊥. Then
(12) and (14) give 〈α(X,Y ), v〉 = 0 for any X ∈ V 2n and Y ∈ {S, JS}⊥ where
S ∈ N (β1). Now that dimN (β1) ≥ 4 yields the claim.

Choosing v ∈ Us
0 as in Proposition 5 it follows from (4) and (13) that

α(X,Y ) = αL⊥(X,Y ) + (X,Y )v for any X,Y ∈ V 2n. (15)

Then we obtain from (15) that

γ(X,Y ) = (αL⊥(X,Y ) + (X,Y )v, αL⊥(X,JY )
+(X,JY )v) for any X,Y ∈ V 2n.

Set P 2m = N (β1) where 2m = dimN (β1) ≥ 2n − 2s + 2 by (8). From (7) we
have β(Z, S) = 2((Z, S)v, (Z, JS)v) for any S ∈ P 2m and Z ∈ V 2n. Then (12)
gives

〈〈γ(X,S), β(Z, Y )〉〉 = 〈〈γ(X,Y ), β(Z, S)〉〉 = 0

for any S ∈ P 2m and X,Y,Z ∈ V 2n. Hence S(γ|V ×P ) and S(β) are orthogonal
vector subspaces. From (11) we have

Us
0 = Us−1

1 ⊕ span {v} where Us−1
1 = Us

0 ∩ L⊥. (16)

Then by (5) the vector subspaces S(γ|V ×P ) and Us−1
1 ⊕ Us−1

1 are orthogonal,
and thus

〈α(X,S), ξ〉 = 〈〈γ(X,S), (ξ, 0)〉〉 = 0

for any X ∈ V 2n, S ∈ P 2m and ξ ∈ Us−1
1 . Since Us−1

1 ⊂ L⊥ then

αU1(X,S) = 0 for any X ∈ V 2n and S ∈ P 2m. (17)

Let L
p = Us−1

1 ⊕ Up−s−1
2 ⊕ L be an orthogonal decomposition. Then (5)

and (16) give

〈α(X,Y ) + α(JX, JY ), ξ2〉 = 〈〈β(X,Y ), (ξ2, 0)〉〉 = 0

for any X,Y ∈ V 2n and ξ2 ∈ Up−s−1
2 . Thus

αU2(X,Y ) = −αU2(JX, JY ) for any X,Y ∈ V 2n. (18)

Having Up−s−1
2 a positive definite induced inner product, we obtain from

(15), (17) and (18) that

〈α(S, S), α(JS, JS)〉 − ‖α(S, JS)‖2 = −‖αU2(S, S)‖2 − ‖αU2(S, JS)‖2 ≤ 0

for any S ∈ P 2m. �

Given a conformal immersion f : M2n → R
2n+p with conformal factor

λ ∈ C∞(M) we have the associated isometric immersion F = 1
λψ ◦ f : M2n →

V
2n+p+1 ⊂ L

2n+p+2 where ψ is given by (1). Differentiating 〈F, F 〉 = 0
once gives F ∈ Γ(NF M) and twice yields that the second fundamental form
αF : TM × TM → NF M of F satisfies

〈αF (X,Y ), F 〉 = −〈X,Y 〉 for any X,Y ∈ X(M). (19)
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Since ψ∗NfM ⊂ NF M the normal bundle of F decomposes as NF M =
ψ∗NfM ⊕ L2 ≡ L

p+2 where L2 is the Lorentzian plane subbundle orthog-
onal to ψ∗NfM such that F ∈ Γ(L2).

Let the bilinear forms γ, β : TxM × TxM → NF M(x) ⊕ NF M(x) be
defined by

γ(X,Y ) = (αF (X,Y ), αF (X,JY ))

and

β(X,Y ) = (αF (X,Y ) + αF (JX, JY ), αF (X,JY ) − αF (JX, Y )).

Proposition 7. Let NF M(x) ⊕ NF M(x) be endowed with the inner product
defined by

〈〈(ξ, ξ̄), (η, η̄)〉〉 = 〈ξ, η〉 − 〈ξ̄, η̄〉.
Then the bilinear form β is flat and

〈〈β(X,Y ), γ(Z, T )〉〉 = 〈〈β(X,T ), γ(Z, Y )〉〉 for any X,Y,Z, T ∈ TxM.

Proof. The proof is straightforward using that β(X,JY ) = −β(JX, Y ), that
the curvature tensor satisfies R(X,Y )JZ = JR(X,Y )Z for any X,Y,Z ∈ TxM
and the Gauss equation for f ; for details see the proof of Proposition 16 in [2]

�

Proof of Theorem 1. It suffices to show that the vector subspace S(β) is de-
generate since then the proof follows from the Gauss equation jointly with
Propositions 6 and 7. If S(β) is not degenerate, and since we have the result
given by Proposition 7, then Proposition 4 yields dimN (β) ≥ 2n−2p−4 > 0.
But this is a contradiction since from (19) we have that N (β) = 0. �

Proposition 8. Let the bilinear form β : V 2n ×V 2n → W p,p, s ≤ n, be flat. As-
sume that the vector subspace S(β) is nondegenerate and that (12) holds. For
p ≥ 4 assume further that there is no non-trivial J-invariant vector subspace
V1 ⊂ V 2n such that the subspace S(β|V1×V1) is degenerate and dim S(β|V1×V1) ≤
dim V1 − 2. Then s = n and there is an orthogonal basis {Xi, JXi}1≤i≤n of
V 2n such that:
(i) β(Yi, Yj) = 0 if i 	= j and Yk ∈ span {Xk, JXk} for k=i,j.
(ii) The vectors {β(Xj ,Xj), β(Xj , JXj)}1≤j≤n form an orthonormal basis of

S(β).

Proof. It follows from Proposition 15 in [2]. �

Proof of Theorem 3. Theorem 1 gives that p = n−2. In an open neighborhood
U of x0 in M2n there is a complex vector subbundle V̄ ⊂ TM such that
V̄ (x0) = V 2m and KM (S, JS) > 0 for any 0 	= S ∈ V̄ . At any point of
U the vector subspace S(β) is nondegenerate. In fact, if otherwise then by
Proposition 6 there is a point y ∈ U and a complex vector subspace P 2� ⊂ TyM
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with � ≥ 2 such that the sectional curvature satisfies KM (S, JS) ≤ 0 for any
0 	= S ∈ P 2�, in contradiction with our assumption.

By Proposition 8, there is at any y ∈ U an orthogonal basis {Xj , JXj}1≤j≤n

of TyM such that both parts hold. By part (ii) the vectors (ξj , 0) = β(Xj ,Xj) ∈
NF M(y), 1 ≤ j ≤ n, are orthonormal. Then the argument used for the proof
of Lemma 18 in [2] gives that F |U has flat normal bundle, that rank Aξj=2
for 1 ≤ j ≤ n and that the normal vector fields ξ1, . . . , ξn are smooth on con-
nected components of an open dense subset of U . Moreover, we obtain from
the Codazzi equation and the use of the de Rham theorem that M2n is locally
a Riemannian product of surfaces M2

1 × · · · × M2
n.

Having that the codimension is n = p + 2 and that αF (Yi, Yj) = 0 if
Yi ∈ (Ei) and Yj ∈ (Ej), i 	= j, then by Theorem 8.7 in [3] there are isometric
immersions g1 : M2

1 → L
3 and gj : M2

j → R
3, 2 ≤ j ≤ n, such that

F (x1, . . . , xn) = (g1(x1), g2(x2), . . . , gn(xn)).

Since F (M) ⊂ V
3n−1 ⊂ L

3n then 〈F, F 〉 = 0. Hence 〈gj∗Xj , gj〉 = 〈g∗Xj , gj〉 =
0 and thus ‖gj‖ = rj with −r21 +

∑n
j=2 r2j = 0. This gives that F (U) ⊂

H
2
c1 × S

2
c2 × · · · × S

n
cn where 1/ci = r2i and, by continuity, this also holds for

F (M). �
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