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Abstract. The k–generalized Fibonacci sequence {F (k)
n }n≥2−k is the lin-

ear recurrent sequence of order k whose first k terms are 0, . . . , 0, 1 and
each term afterwards is the sum of the preceding k terms. The case
k = 2 corresponds to the well known Fibonacci sequence {Fn}n≥0. In
this paper we extend the study of the exponential Diophantine equation

(Fn+1)
x + (Fn)

x − (Fn−1)
x = Fm with terms F

(k)
r instead of Fr, where

r ∈ {n+ 1, n, n − 1,m}.
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1. Introduction

Let k ≥ 2 be a fixed integer. The k−generalized Fibonacci sequence, denoted
by F (k) = {F

(k)
n }n≥−(2−k) is given by the linear recurrence

F (k)
n = F

(k)
n−1 + · · · + F

(k)
n−k for all n ≥ 2,

with the initial values

F
(k)
i = 0 for i = 2 − k, . . . , 0 and F

(k)
1 = 1.

Here, we refer to F
(k)
n as the nth k−Fibonacci number. In the particular case

k = 2, we recover the classical Fibonacci sequence denoted by F (2) = {Fn}.
Due to the vast amount of identities that Fibonacci numbers satisfy, sev-

eral authors looked at such identities but used k−Fibonacci numbers instead.
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This led to several interesting Diophantine equations. This is, for example, the
case of Bednař́ık et al [1], who showed that the equation

(
F

(k)
n+1

)2

+
(
F (k)

n

)2

= F (l)
m ,

has no positive integral solutions (k, l, n,m), with 2 ≤ k < l and n ≥ 2, in an
attempt to generalize the identity F 2

n+1 + F 2
n = F2n+1. An analogous identity

with Fibonacci numbers namely F 2
n+1 − F 2

n−1 = F2n, was also generalized for
the k−Fibonacci numbers leading to considering the Diophantine equation

(F (k)
n+1)

x − (F (k)
n−1)

x = F (k)
m

with solutions in positive integral quadruples (k, n,m, x). The study of the
above equation was initiated by Bensella, Patel and Behloul [2] and completed
by us in [10], where we found, apart from some trivial cases, two parametric
families of solutions.

Another well known identity discovered by the French mathematician
Francois Edouard Anatole Lucas in 1876 is

F 3
n+1 + F 3

n − F 3
n−1 = F3n valid for all n ≥ 1,

which was initially generalized by Patel and Teh [18] who considered the equa-
tion

F x
n+1 + F x

n − F x
n−1 = Fm

and showed that only the triplets (n,m, x) with m = 3n and x = 3 are
solutions. Our aim is to look for the positive integral quadruples (k,m, n, x),
with k ≥ 2, that solve the more general Diophantine equation(

F
(k)
n+1

)x

+
(
F (k)

n

)x

−
(
F

(k)
n−1

)x

= F (k)
m . (1)

Our main result is the following.

MainTheorem. The Diophantine Eq. (1) does not have non-trivial solutions
(k, n,m, x) with k ≥ 2, n ≥ 1, m ≥ 2 and x ≥ 1.

For the trivial ones, we invite the reader to consult Sect. 3.2.

2. Tools

2.1. Linear Forms in Logarithms

Here we present the necessary results related to non–zero linear forms in log-
arithms of algebraic numbers; i.e., some results of Baker’s theory, such as the
following result of Matveev [15].

Theorem 1 (Matveev’s theorem). Let K be a number field of degree D over Q,
γ1, . . . , γt be positive real numbers in K, and b1, . . . , bt rational integers. Put

Λ := γb1
1 · · · γbt

t − 1 and B ≥ max{|b1|, . . . , |bt|},
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and let Ai ≥ max{Dh(γi), | log γi|, 0.16} for i = 1, . . . , t. If Λ �= 0, then

|Λ| > exp
(−1.4 × 30t+3 × t4.5 × D2(1 + log D)(1 + log B)A1 · · · At

)
,

whete h(γi) is the logarithmic height of γi.

For more details and properties of the logarithmic height see [19].

2.2. Analytical Arguments

For real algebraic numbers γ1, . . . , γt if we set

Λ := γb1
1 · · · γbt

t − 1 and Γ := b1 log η1 + · · · + bt log ηt,

then we have Λ = eΓ − 1. So, it is a straight–forward exercise to show that
|Γ| < (1 − c)−1|Λ|, when |Λ| < c, for all c in (0, 1). We will use this argument
without further mention.

Moreover, the following analytic result will be used in some specific parts
of our work (see Lemma 7 from [13]).

Lemma 1. If r ≥ 1 and T > (4r2)r, then

y < T (log y)r, implies y < 2rT (log T )r.

2.3. Reduction by Continued Fractions

Since in a first stage of our process we get some large bounds on the integer
variables appearing in the Diophantine Eq. (1), we require some results from
the theory of continued fractions to reduce them.

When we treat with homogeneous linear forms in two integer variables
we use a classical theorem of Legendre.

Lemma 2. Let M be a positive integer and P1/Q1, P2/Q2, . . . be the conver-
gents of the continued fraction [a0, a1, . . .] for the real number τ . Let N be
a positive integer such that M < QN+1. If aM := max {a� : 0 ≤ � ≤ N + 1},
then the inequality ∣∣∣τ − v

u

∣∣∣ >
1

(aM + 2)u2
,

holds for all pairs (u, v) of integers with 0 < u < M .

Besides, to treat non-homogeneous linear forms in two integer variables,
we need the following slight variation of a Dujella and Pethő result (Lemma
5a in [8]). For X ∈ R, we use ||X|| := min{|X − n| : n ∈ Z} to denote the
distance from X to its nearest integer.

Lemma 3. Let M and Q be positive integers such that Q > 6M , and A,B, τ, μ
be real numbers with A > 0 and B > 1. Let ε := ||μQ|| − M ||τQ||. If ε > 0,
then there is no solution to the inequality

0 < |uτ − v + μ| < A · B−w,

in positive integers u, v and w with u ≤ M and w ≥ log(AQ/ε)/ log B.

For practical applications, Q is taken to be the denominator of a contin-
ued fraction convergent for the real number τ .
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3. Some Preliminaries

3.1. On k–Fibonacci Numbers

In this section we present some k−Fibonacci numbers properties necessary
for the development of this paper. For related results, we invite the reader to
consult [2–5,7,9,11,12,14,16,17,20].

For the k−Fibonacci sequence, it is well known that its characteristic
polynomial is given by

Ψk(z) = zk − zk−1 − · · · − z − 1.

This is irreducible over Q[z] and has only one real root outside the unit circle.
Let α1, α2, . . . , αk be all its roots with α := α1 denoting the real positive one.

Lemma 4. The sequence F (k) satisfies the following:
(i) For all k ≥ 2,

2(1 − 2−k) < α < 2.

(ii) The first k + 1 non–zero terms in F (k) are powers of two, namely

F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1.

Also, F
(k)
k+2 = 2k − 1 and, moreover,

F (k)
n < 2n−2 for all n ≥ k + 2.

(iii) Let fk(z) := (z − 1)/(2 + (k + 1)(z − 2)). For all n ≥ 1 and k ≥ 2,

F (k)
n =

k∑
i=1

fk(αi)αi
n−1 = fk(α)αn−1 + ek(n)

with |ek(n)| < 1/2.
(iv) For all k ≥ 2 and i = 2, . . . , k

fk(α) ∈ [1/2, 3/4] and |fk(αi)| < 1.

Thus, fk(α) is not an algebraic integer, for any k ≥ 2.
(v) For all n ≥ 1 and k ≥ 2,

αn−2 ≤ F (k)
n ≤ αn−1.

(vi) For all n ≥ 3 and k ≥ 3, we have

F
(k)
n−1/F

(k)
n+1 ≤ 3/7 and F (k)

n /F
(k)
n+1 ≤ 4/7.

The following lemma is a consequence of an identity of Cooper and
Howard with k−Fibonacci numbers that shows these numbers can be written
as linear combinations of powers of two with coefficients involving binomial
coefficients (see [6]).

Lemma 5. If k + 2 ≤ r < 2ck for some c ∈ (0, 1), then the following estimates
hold:
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(i) F (k)
r = 2r−2 (1 + ζ ′), with |ζ ′| <

2r

2k
<

2
2k(1−c)

.

(ii) F (k)
r = 2r−2

(
1 − r − k

2k+1
+ ζ

′′
)
, with |ζ ′′| <

4r2

22k+2
<

1
22k(1−c)

.

Since our equation involves the expression (F (k)
r )x for r ∈ {n−1, n, n+1},

we need the following lemma.

Lemma 6. Let k ≥ 2, x, r positive integers and i ∈ {−1, 0, 1}. Then
(i) For all n ≥ 2, the estimate

(F (k)
n+i)

x = fk(α)xα(n+i−1)x(1 + ηi),

holds with

|ηi| <
xex/αn+i−1

αn+i−1
.

(ii) If n + i ≥ k + 2 and max{n + i, x} < 2ck for some c ∈ (0, 1/2), then
(
F

(k)
n+i

)x

= 2(n+i−2)x

(
1 − x(n + i − k)

2k+1
+ ξi

)
,

holds with

|ξi| <
24(nx)2

22k+2
<

6
22k(1−2c)

.

The proof of the previous lemma can be found in [10]. However, we
pointed out that item (i) is a direct consequence of Lemma 4 parts (iii) and
(iv). To establish item (ii) it is sufficient to use the item (ii) of Lemma 5.

Finally, note that, since Ψk(z) is the minimal primitive polynomial of α,
we have Q(α) = Q(fk(α)). Thus, by Lemma 4 part (iv), we have that

h(α) = (log α)/k and h(fk(α)) < 2 log k, for all k ≥ 2. (2)

See [5] for further details.

3.2. The Trivial Cases

Recall that we work with integral quadruples (k, n,m, x) with k ≥ 2, n ≥ 1,
m ≥ 2 and x ≥ 1. Here we study some cases that provide trivial solutions of
our Diophantine equation.

Theorem 2. The trivial solutions (k, n,m, x) of Diophantine Eq. (1) are

(2, n, 3n, 3) for n ≥ 2.

Also, for every k ≥ 2,

(k, 1, 3, x) for x ≥ 1,

and

(k, 2,m,m − 2) whenever 2 ≤ m ≤ k + 1.
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Proof. By the work of Patel and Teh [18], when k = 2 and n ≥ 2 we have the
parametric solutions (2, n, 3n, 3).

Now, let us check some particular values of n:

• If n = 1, then Eq. (1) corresponds to 2(1)x = F
(k)
m , which has the solutions

(k, 1, 3, x) for every k ≥ 2 and x ≥ 1.
• If n = 2, then Eq. (1) corresponds to 2x = F

(k)
m . Thus, by Lemma 4 part

(ii), we get 2 ≤ m ≤ k + 1 for all k ≥ 2 and x = m − 2. Note here we
that we also have the quadruple (2, 2, 3, 1) that does not belong to the
parametric family given by Patel and Teh.

The previous analysis allows us to work with k ≥ 3 and n ≥ 3. Since x ≥ 1,
we have

(F (k)
n+1)

x + (F (k)
n )x > (F (k)

n+1)
x + F

(k)
3 > (F (k)

n−1)
x + F

(k)
3 ,

which implies that m ≥ 4.
Now, note that by Lemma 4 part (v), we have that

αm−2 ≤ F (k)
m = (F (k)

n+1)
x + (F (k)

n )x − (F (k)
n−1)

x < 2(F (k)
n+1)

x ≤ αnx+2,

and

α(n−1)x−1 < α(n−1)x − α(n−2)x ≤ (F
(k)
n+1)

x + (F (k)
n )x − (F

(k)
n−1)

x = F (k)
m ≤ αm−1.

Thus, we can conclude that

(n − 1)x < m < nx + 4. (3)

So, if we take x = 1, then the previous inequality implies that

m ∈ {n, n + 1, n + 2, n + 3}.

It is a straightforward verification argument to show that none of these options
provide solutions for the Diophantine Eq. (1). �

Therefore, now our problem is reduced to finding the quadruples (k, n,
m, x) that solve the Diophantine Eq. (1) with k ≥ 3, n ≥ 3, m ≥ 4 and x ≥ 2.

4. The Case n ≤ k

By (ii) in Lemma 4, the Diophantine Eq. (1) is equivalent to

F (k)
m = 2(n−1)x + 2(n−2)x − 2(n−3)x, (4)

which implies that

F (k)
m = 2(n−3)x

(
22x + 2x − 1

)
,

but n ≥ 3 and x ≥ 2, so F
(k)
m cannot be a power of 2. Thus, by item (ii) from

Lemma 4, we have that m ≥ k + 2.
Now, using Lemma 4 parts (ii) and (v) together with Eq. (4), we get

2(n−1)x−0.2 < 2(n−1)x − 2(n−3)x < F (k)
m < 2m−2
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and

2(m−2)/2 < αm−2 < F (k)
m < 2(n−1)x+1,

which give us

(n − 1)x + 1.8 ≤ m ≤ 2(n − 1)x + 4. (5)

Next, we look for some additional relations between the variables in the
Diophantine Eq. (4).

Lemma 7. Let 3 ≤ n ≤ k. If (k, n,m, x) is a solution of (4) with x ≥ 2, then

x < 6.4 × 1011k4(log k)2 log m. (6)

and

m < 1.8 × 1030k9(log k)6. (7)

Proof. The Binet formula in Lemma 4 part (iii) allow us to rewrite Eq. (4)
like

fk(α)αm−12−(n−1)x − 1 =
1
2x

− 1
22x

− ek(n)
2(n−1)x

,

which implies that

|Λ1| :=
∣∣∣fk(α)αm−12−(n−1)x − 1

∣∣∣ <
3
2x

. (8)

Let us set the conditions to apply Theorem 1 on inequality (8). First, note
that Λ1 = 0 implies fk(α) = α1−m2(n−1)x, which, due to the fact that α is
a unit in OK, leads to fk(α) being an algebraic integer, a contradiction with
item (iv) from Lemma 4. Thus, Λ1 �= 0. So, let us take t := 3, K := Q(α),
D := k, B := m and

(γ1, b1) := (fk(α), 1), (γ2, b2) := (α,m − 1), (γ3, b3) := (2,−(n − 1)x);
A1 := 2k log k, A2 := 0.7, A3 := 0.7k,

where we have used (2) to calculate upper bounds for the Ai’s. Thanks to
Matveev’s result, we have

exp
(−4.4 × 1011 × k4(log k)2 log m

)
< |Λ1| < 2−(x−2),

which implies that

x < 6.4 × 1011k4(log k)2 log m,

as we wanted to prove.
Returning to Eq. (4), we have

fk(α)αm−1 + ek(m) − 2(n−2)x = 2(n−3)x(22x − 1).

Thus, we get

(fk(α))−1α−(m−1)2(n−3)x(22x − 1) − 1 =
ek(m)

fk(α)αm−1
− 2(n−2)x

fk(α)αm−1
.
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By Lemma 4 items (iii) and (iv) and inequality (3), we have that

|Λ2| :=
∣∣∣(fk(α))−1α−(m−1)2(n−3)x(22x − 1) − 1

∣∣∣ <
2

αm
. (9)

Now, if Λ2 = 0, then fk(α) = α1−m2(n−3)x(22x − 1), which, analogous to the
reasoning invoked when studying Λ1 = 0, implies that fk(α) is an algebraic
integer, which is not the case. Thus, we have that Λ2 �= 0. Let us take t := 4
and K, D and B as before and apply Theorem 1 with

(γ1, b1, A1) := (fk(α),−1, 2k log k), (γ2, b2, A2) := (α,−(m − 1), 0.7),
(γ3, b3, A3) := (2, (n − 3)x, 0.7k), (γ4, b4, A4) := (22x − 1, 1, 1.4kx),

where we have used the properties of the logarithmic height and (2) to calculate
the Ai’s. Thus, Theorem 1 together with inequality (9) yield

exp(−1.6 × 1013k2(1 + log k)(1 + log m)(2k log k)(0.7)(0.7k)(1.4kx)) <
2

αm
,

which implies

m < 1.5 × 1014k4(kx)(log k)2(log m)
< 9.6 × 1025k9(log k)4(log m)2,

where we have used inequality (6). Hence, by Lemma 1 with (y, r) := (m, 2)
and T := 9.6 × 1025k9(log k)4, we have

m < 1.8 × 1030k9(log k)6,

which corresponds to inequality (7). �

Let us assume that k > 600. Therefore, we have that

m < 1.8 × 1030k9(log k)6 < 2k/2,

by equality (4) and item (i) from Lemma 5, with c = 1/2 and r = m,

|2(n−1)x + 2(n−2)x − 2(n−3)x − 2m−2| <
2m−1

2k/2
.

Let us take M := max{(n − 1)x,m − 2} and N := min{(n − 1)x,m − 2}.
Dividing by 2M both sides of the previous inequality, we get

min
{

1
4
,

1
2x+1

}
<

1
2M

|2(n−1)x + 2(n−2)x − 2(n−3)x − 2m−2| <
2

2k/2
.

If M > N , then the left–hand side is at least 1/4. We get 2k/2 < 8, which
is a contradiction since k > 600. Thus, we only need to look at the instance
M = N , or, equivalently, (n − 1)x = m − 2. By item (ii) from Lemma 5, with
c = 1/2 and r = m, we get

m − k

2k+1
<

∣∣∣∣
1
2x

− 1
22x

+
m − k

2k+1

∣∣∣∣ <
4m2

22k+2
.
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Since, we have m ≥ k + 2, the left–hand side of the previous inequality is at
least 1/2k, thus we get that

2k/2 < 2m < 3.6 × 1030k9(log k)6.

However, this implies k ≤ 388, a contradiction with our assumption.
From now on we work with k ≤ 600. Let us start by looking for an upper

bound on x. So, we take

Γ1 := (m − 1) log α − (n − 1)x log 2 + log(fk(α)).

Since x ≥ 2, by inequality (8) we have that

0 < |(m − 1) log α − (n − 1)x log 2 + log(fk(α))| <
12
2x

.

Dividing both sides of the previous inequality by log 2 and taking

τk := (log α)/ log 2, μk := log(fk(α))/ log 2, A := 18, B := 2,

we then get

0 < |(m − 1)τk − (n − 1)x + μk| < AB−x. (10)

For each k ∈ [4, 600], we consider M := 1.8×1030k9(log k)6, which is an upper
bound to m − 1, according to inequality (7). A computer search shows that

max
k∈[4,600]

{
�log

(
AQ(k)/εk

)
/ log B�

}
≤ 1189.

Hence, by Lemma 3, we can conclude that x ≤ 1189.
Now that we have bounded x, let us fix it in [2, 1189] and consider

Γ2 := (m − 1) log α − (n − 3)x log 2 − log
(

22x − 1
fk(α)

)
.

Using inequality (9) in its logarithmic form, we obtain a similar inequality to
(10), namely

0 < |(m − 1)τk − (n − 3)x + μk,x| < AB−m
k , (11)

where we have taken

τk :=
log α

log 2
, μk,x := − log((22x − 1)/fk(α))

log 2
, A := 6 and Bk := α.

Therefore, for k ∈ [4, 600] and x ∈ [2, 1189], we apply Lemma 3 to inequality
(11) using M := 1.8×1030k9(log k)6. With computational support, we obtain

max
k∈[4,600], x∈[2,1189]

{
�log

(
AQ(k,x)/εk,x

)
/ log Bk�

}
≤ 1511.

Thus, by Lemma 3, we have that m ≤ 1511.
In summary, for n ≤ k, the integer solutions (k, n,m, x) of (4) must

satisfy k ∈ [4, 600], x ∈ [2, 1189], m ∈ [k + 2, 1511] and, by (5)

n ∈ [4, N0] with N0 := min{k, 1 + �(m − 1)/x�}.
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A computational search in the above range for the solutions of the Diophantine
Eq. (4) gave us only those that we have indicated in the statement of the Main
Theorem.

5. The Case n > k

As before, here we establish some relations between the variables in our Dio-
phantine equation.

Lemma 8. Let (k, n,m, x) be an integral solution of (1) with n > k ≥ 3 and
x ≥ 2, then

x < 1.5 × 1016nk4(log k)2 log n. (12)

Proof. By item (iii) from Lemma 4, Eq. (1) can be rewritten as

fk(α)αm−1 − (F (k)
n+1)

x = (F (k)
n )x − (F (k)

n−1)
x − ek(m).

Dividing both sides by (F (k)
n+1)

x and taking absolute values, we get

|Λ3| :=
∣∣∣fk(α)αm−1(F (k)

n+1)
−x − 1

∣∣∣ < 3

(
F

(k)
n

F
(k)
n+1

)x

<
3

1.7x
, (13)

where we have used item (vi) from Lemma 4.
If Λ3 = 0, then we get fk(α) = α1−m(F (k)

n+1)
x, which implies that fk(α)

is an algebraic integer, again, a contradiction with item (iv) from Lemma 4.
Thus, we have Λ3 �= 0 and we can apply Theorem 1 with t := 3,

(γ1, b1, A1) := (fk(α), 1, 2k log k), (γ2, b2, A2) := (α,m − 1, 0.7),

(γ3, b3, A3) := (F (k)
n+1,−x, 0.7nk)

and K,D,B as for Λ1.
Now, Theorem 1 combined with inequality (13) yields

x < 1.82 × 1014nk4(log k)2 log m

< 1.9 × 1014nk4(log k)2 log(nx), (14)

where we used the fact that m < nx + 4, which follows from (3).
We next extract from (14) an upper bound for x depending on n and k.

Multiplying by n both sides of the inequality (14) we obtain

nx < 1.9 × 1014n2k4(log k)2 log(nx).

Taking y := nx and T := 1.9 × 1014n2k4(log k)2, by Lemma 1 and the fact
that k < n,

nx < 1.5 × 1016n2k4(log k)2 log n.

It remains to divide by n both sides of the previous inequality. �
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We now work under the assumption that n > 700 in order to find an
upper bound for n,m and x in terms of k only.

Lemma 9. Let (k, n,m, x) be an integral solution of (1) with n > max{k, 700}.
Then the following inequalities

n < 2.2 × 1026k6(log k)6, x < 4.9 × 1030k7(log k)6,
m < 4 × 1043k10(log k)9 (15)

hold.

Proof. Given that n > k, from (12), we have that

x < 1.5 × 1016n5(log n)3. (16)

Thus, for i ∈ {−1, 0, 1},

x

αn+i−1
<

1.5 × 1016n5(log n)3

αn−2
<

1
α0.8n

, since n > 700.

Then, by Lemma 6, we can write
(
F

(k)
n+i

)x

= fk(α)xα(n+i−1)x(1 + ηn), with |ηn| <
2

α0.8n
. (17)

We now use (17) to rewrite the Eq. (1) as
∣∣fk(α)αm−1 − fk(α)xαnxβx

∣∣ < |ηn|fk(α)xαnxβx +
1
2
, (18)

where βx := 1+α−x −α−2x. Dividing both sides of the previous inequality by
fk(α)xαnx, we conclude that

∣∣fk(α)1−xαm−1−nx − βx

∣∣ < |ηn|βx +
1

2fk(α)xαnx

<
3|ηn|

2
+

1
2

(
1

αn−2

)x

<
4

α0.8n
,

where we have used the fact that βx < 1 + α−x < 3/2, fk(α)αn > αn−2 and
(n − 2)x + 1 ≥ 0.8n for all n > 700, k ≥ 3 and x ≥ 2. Hence,

|Λ4| :=
∣∣fk(α)1−xαm−1−nx − 1

∣∣ <
4

α0.8n
+

1
αx

+
1

α2x
<

6
ακ

, (19)

with κ := min{0.8n, x}.
Now, if Λ4 = 0, then we have fk(α)x−1 = α(m−1)−(n−2)x, which implies

that fk(α) is an algebraic integer, again, a contradiction. Thus, we have Λ4 �= 0
and we can apply Theorem 1 with the parameters t := 2,

(γ1, b1, A1) := (fk(α), 1 − x, 2k log k), (γ2, b2, A2) := (α,m − 1 − nx, 0.7),

and K and D as before. Moreover, we can take B := x, since |m − 1 − nx| ≤ x
by inequality (3).
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The conclusion of Theorem 1 and the inequality (19) yield, after taking
logarithms, the following upper bound for κ:

κ < 9.3 × 109 k3(log k)2 log x. (20)

Now, let us take κ = 0.8n, then from (20),

n < 1.2 × 1010k3(log k)2 log x,

and using the inequality (16), we obtain that

n < 1.2 × 1010k3(log k)2
(
log(1.5 × 1016) + 5 log n + 3 log log n

)

< 1.2 × 1010k3(log k)2(14 log n)

< 1.7 × 1011k3(log k)2 log n,

since n > 700. Hence, we apply Lemma 1 with T := 1.7 × 1011k3(log k)2 and
(y, r) := (n, 1) to obtain

n < 9.8 × 1012k3(log k)3,

an upper bound on n depending only on k. Further, inserting it in inequality
(12) and using the inequality (3), we have that

n < 8.1 × 1012k3(log k)3, x < 4.9 × 1030k7(log k)6,
m < 4 × 1043k10(log k)9. (21)

If κ = x, then by (20) and Lemma 1 with T := 9.3 × 109k3(log k)2 and
(y, r) := (x, 1), we get

x < 4.9 × 1011k3(log k)3. (22)

Furthermore, since x ≤ 0.8n, by Lemma 6, that for i ∈ {−1, 0, 1},

x/αn+i−1 < 0.8n/αn−2 < 1/α0.98n,

where we have used the fact that n > 700. Thus,
(
F

(k)
n+i

)x

= fk(α)xα(n+i−1)x(1 + ηn), with |ηn| <
1

α0.98n
.

We return to the inequality (18) and dividing both sides by fk(α)αm−1,
we obtain

|fk(α)x−1αnx−(m−1)βx − 1| < |ηn|fk(α)x−1αnx−(m−1)βx +
1

2fk(α)αm−1

<
α(fk(α)α)x−1

α0.98n
βx +

1
αm−1

< 3
(

(3/2)0.8n

α0.98n

)
+

1
α0.38n

<
2

α0.38n
,

where we have used the inequalities:

x ≤ 0.8n, nx − (m − 1) ≤ x, m − 1 > 0.38n,
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α < 2, fk(α)α < 3/2, 3(3/2)0.8n/α0.98n < 1/α0.38n and βx < 3/2,

valid for n > 700, x ≥ 2 and k ≥ 3. In conclusion, we have shown that

|Λ5| := |fk(α)x−1αnx−(m−1)(1 + α−x − α−2x) − 1| <
2

α0.38n
. (23)

So, if Λ5 = 0, we get fk(α)x−1 = αnx−(m−1)(1 + α−x − α−2x), which implies
that fk(α) is an algebraic integer or x = 1, a contradiction. Thus, we have
Λ5 �= 0 and again we can apply Theorem 1 with the parameters t := 3,

(γ1, b1, A1) := (fk(α), x − 1, 2k log k), (γ2, b2, A2) := (α, nx − (m − 1), 0.7),
(γ3, b3, A3) := (1 + α−x − α−2x, 1, 3x)

and K and D as before. Moreover, again we can take B := x. Combining the
conclusion of Theorem 1 with inequality (23), we get

n < 1.4 × 1013 × k3(log k)2x log x. (24)

By (22), we have x < 4.9 × 1011k3(log k)3, therefore

log x < log(4.9 × 1011) + 3 log k + 3 log log k < 31 log k

since k ≥ 3. Hence, returning to inequality (24) and taking into account that
m < nx + 2, we have in summary

n < 2.2 × 1026k6(log k)6, x < 4.9 × 1011k3(log k)3,
m < 1.1 × 1038k9(log k)9. (25)

Comparing inequalities (21) and (25), we get that

n < 2.2 × 1026k6(log k)6, x < 4.9 × 1030k7(log k)6,
m < 4 × 1043k10(log k)9,

as we wanted to show. �

The inequalities in Lemma 9 were obtained under the assumptions that
n > 700. However, when n ≤ 700 the inequalities (3) and (16) yield smaller
upper bounds for x and m in terms of k.

From now on let us assume that k > 700. Thus, from (15), we have that

n + i < 2.2 × 1026k6(log k)6 < 20.24k, m < 4 × 1043k10(log k)9 < 20.48k,

for i ∈ {−1, 0, 1}. We recall that n ≥ k + 1, so m > k + 1 according to (3). By
item (ii) of Lemma 5 (for m with c := 0.48) and item (ii) Lemma 6 (for n + i
with i ∈ {−1, 0, 1} and c := 0.24), we conclude that

F (k)
m = 2m−2

(
1 − m − k

2k+1
+ ζ ′′

)
, |ζ ′′| <

1
21.04k

;

(F (k)
n+i)

x = 2(n+i−2)x

(
1 − δi

x(n + i − k)
2k+1

+ δiξi

)
, |ξi| <

6
21.04k

,
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where δ1 = 1 for all n ≥ k + 1,

δ0 =
{

1, for n ≥ k + 2;
0, for n = k + 1,

and δ−1 =
{

1, for n ≥ k + 3;
0, for n ∈ {k + 1, k + 2}.

Now, let us take again

M := max{(n − 1)x,m − 2} and N := min{(n − 1)x,m − 2}.

We get

|2(n−1)x + 2(n−2)x − 2(n−3)x − 2m−2| ≤ 2M

(
6(δ1 + δ0 + δ−1) + 1

21.04k

+
δ1 + δ0 + δ−1 + 1

20.52k+1

)

≤ 2M

(
19

21.04k
+

2
20.52k

)

<
2M+2

20.52k
.

In the above, we used that x(n + i − k) < x(n − 1) < m < 20.48k for i ∈
{−1, 0, 1}, where the last inequality is due to the fact that k > 700. After
dividing by 2M and by a previous argument, we get

min
{

1
4
,

1
2x+1

}
<

1
2M

∣∣∣2(n−1)x + 2(n−2)x − 2(n−3)x − 2m−2
∣∣∣ <

4
20.52k

.

If M > N , then the left–hand side is at least 1/4, so 20.52k < 16, which is a
contradiction since k > 700. Thus, we only need to consider the case M = N ,
or, equivalently, (n − 1)x = m − 2. We get∣∣∣∣

x(n − k + 1)
2k+1

− m − k

2k+1
+

1
22x

− 1
2x

∣∣∣∣ <
20

21.04k
,

or ∣∣∣∣
x(n − k + 1) − (m − k)

2k+1
+

1
22x

− 1
2x

∣∣∣∣ <
20

21.04k
.

But

x(n − k + 1) − (m − k) = x(n − k + 1) − (m − 2) + (k − 2)
= x(n − k + 1 − (n − 1)) + k − 2
= (k − 2)(1 − x) < 0.

Thus,∣∣∣∣
x(n − k + 1) − (m − k)

2k+1
−

(
1
2x

− 1
22x

)∣∣∣∣ >
(k − 2)(x − 1)

2k+1
≥ 1

2k+1
,

and we get
1

2k+1
<

20
21.04k

,
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or 20.04k < 40, again a contradiction with our assumption that k > 700.
Therefore, we can conclude that k ≤ 700.

Next we prove the following result which narrows down the computational
ranges to look for possible solutions of Diophantine Eq. (1).

Lemma 10. Let (k, n,m, x) be an integral solution of Diophantine Eq. (1) with
n > k ≥ 3, k ≤ 700 and x ≥ 2. Then m ∈ [M0,M1] with

M0 := �(n − 1)x + 1.8	 and M1 := 2(n − 1)x + 4. (26)

Furthermore, if n > 700, then n ≤ 1459 and x ≤ 2733, otherwise x ≤ 1822.

Proof. The range for m is given by inequality (5). Now, let us assume that
n > 700, so, we can use Lemma 9 to obtain upper bounds on n, x and m.

We assume that x ≤ 7. Using inequality (23), we take

Γ5 := (x − 1) log(fk(α)) + (nx − (m − 1)) log α + log
(
1 − α−2x

)
.

Since |Γ5| < 4/α0.38n, dividing by log α, we obtain
∣∣∣∣∣(x − 1)

log(fk(α))
log α

+
log

(
1 − α−2x

)
log α

− (m − 1 − nx)

∣∣∣∣∣ <
7

α0.38n
.

Now, let us take

τk,x := (x − 1)
log(fk(α))

log α
+

log
(
1 − α−2x

)
log α

.

Thus, we have that

min
k∈[3,700], x∈[2,7]

‖τk,x‖ < |τk,x − (m − 1 − nx)| <
7

α0.38n
.

Computationally, we found that the minimum on the left–hand of the previous
inequality is at least 0.1 × 10−4, which implies that n ≤ 73, a contradiction.
Thus, we can work from now on with x ≥ 8.

Due to inequality (19), we take

Γ4 := (x − 1) log(fk(α)−1) + (m − 1 − nx) log α.

By the analytical argument given in Sect. 2.2, we get

|Γ4| <
12
ακ

, with κ := min{0.8n, x},

where we have used the fact that κ ≥ 8. Dividing both sides of the above
inequality by (x − 1) log α, we obtain

∣∣∣∣
log(fk(α)−1)

log α
− nx + 1 − m

x − 1

∣∣∣∣ <
12

ακ(x − 1) log α
<

25
ακ(x − 1)

, (27)

and we need to proceed by cases:
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• Case m = 1 + nx. Here, the inequality (27) corresponds to
∣∣∣∣
log(fk(α)−1)

log α

∣∣∣∣ <
25

ακ(x − 1)
.

A quick computational search shows that the left–hand side of the pre-
vious inequality is greater than 0.7 for all k ∈ [3, 700]. Thus, since x ≥ 8,
we get

0.7 <
4
ακ

. (28)

Now, if we take κ = 0.8n or κ = x, then inequality (28) implies n ≤ 4 or
x ≤ 3, respectively, which contradicts our assumptions that n > 700 and
x ≥ 8.

• Case m �= 1 + nx. Here, we apply Lemma 2 to inequality (27) using
k ∈ [3, 700]. In order to do it, let us take τk := log(fk(α)−1)/ log α. By
inequality (15), we look for the integer tk such that

Q
(k)
tk

> 4.9 × 1030k7(log k)6 > x − 1,

and take aM := max{a
(k)
i : 0 ≤ i ≤ tk, 3 ≤ k ≤ 700}. Then, by Lemma

2, we have that∣∣∣∣τk − nx − (m − 1)
x − 1

∣∣∣∣ >
1

(aM + 2)(x − 1)2
. (29)

Hence, combining the inequalities (27) and (29), and taking into account
that aM + 2 < 1.1 × 10208 (confirmed by computations), we obtain

ακ < 2.8 × 10209x.

If κ = 0.8n, since n > 700 ≥ k, by inequality (16) we have

α0.8n < 4.2 × 10225n5(log n)3,

which implies

n ≤ 1459. (30)

Thus, let us consider

Γ3 := log fk(α) + (m − 1) log α − x log F
(k)
n+1, (31)

with k ∈ [3, 700] and n ∈ [701, 1459]. Note that, by inequality (13), we
have

|Γ3| <
6

1.7x
.

Dividing both sides by log F
(k)
n+1, we get

∣∣∣∣∣(m − 1)

(
log α

log F
(k)
n+1

)
− x +

log fk(α)

log F
(k)
n+1

∣∣∣∣∣ <
4

1.7x
, (32)



Vol. 79 (2024) A Diophantine Equation Page 17 of 21 136

where we used that log F
(k)
n+1 ≥ log F

(3)
5 = log 7. In order to apply Lemma

3, we take

γk,n :=
log α

log F
(k)
n+1

, μk,n :=
log fk(α)

log F
(k)
n+1

A := 4 and B := 1.7,

for k ∈ [3, 700] and n ∈ [701, 1459] with M := 1.5×1034k7(log k)6, thanks
to inequalities (5) and (15). We obtain

max
k∈[3,700], n∈[701,1459]

{
�log

(
AQ(k,n)/εk,n

)
/ log B�

}
≤ 2733,

which, by Lemma 3, implies

x ≤ 2733. (33)

Now, if κ = x, then αx < 2.8 × 10209x, which implies

x ≤ 1016. (34)

So, we go back to inequality (23) and take

Γ5 := (x − 1) log(fk(α)) + (nx − (m − 1)) log α + log
(
1 − α−2x

)
.

Since |Γ5| < 4/α0.38n, dividing by log α, we obtain
∣∣∣∣∣(x − 1)

log(fk(α))
log α

+
log

(
1 − α−2x

)
log α

− (m − 1 − nx)

∣∣∣∣∣ <
7

α0.38n
.

Here, we take

τk,x := (x − 1)
log(fk(α))

log α
+

log
(
1 − α−2x

)
log α

.

So, we have that

min
k∈[3,700], x∈[8,1016]

‖τk,x‖ < |τk,x − (m − 1 − nx)| <
7

α0.38n
.

Computationally, we found that the minimum on the left–hand of the
previous inequality is at least 0.1 × 10−9. Therefore, we get n ≤ 136, a
contradiction.

To sum up, by inequalities (30), (33) and (34), we have that the positive
integral solutions (k, n,m, x) of Diophantine Eq. (1) with n > k ≥ 3, k ≤ 700,
n > 700 and x ≥ 2, satisfy n ≤ 1459 and x ≤ 2733.

Finally, we consider the case when n ≤ 700 and, since we are working
with k ≤ 700 and n > k, it is clear that k ≤ 699. Now, we use Γ3 as we defined
it in (31) to proceed as we did with (32). This time we take k ∈ [3, 699] and
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n ∈ [k + 1, 700] with M := 6.9 × 1033k7(log k)6, which is given by inequalities
(5) and (15). We get

max
k∈[3,699], n∈[k+1,700]

{
�log

(
AQ(k,x)/εk,x

)
/ log Bk�

}
≤ 1822,

which, by Lemma 3, implies x ≤ 1822. �

In conclusion, our problem is now reduced to search for integral solutions
of the Diophantine Eq. (1) in the ranges indicated by Lemma 10; i.e., k ∈
[3, 700], m ∈ [M0,M1] (given in (26)),

n ∈ [k + 1, 700] and x ∈ [2, 1822] or n ∈ [701, 1459] and x ∈ [2, 2733].

A computational search allow us to conclude that there are no integral solu-
tions for Eq. (1) in these ranges.

6. On the Final Verifications in (1)

In the verifications of Diophantine Eq. (1), we have the parameters

n ≤ k n > k

k ∈ [4, 600] k ∈ [3, 700]
x ∈ [2, 1189], n ∈ [4, N0] if n ∈ [k + 1, 700], x ∈ [2, 1822];
N0 = min{k, 1 + �(m − 1)/x�} if n ∈ [701, 1459], x ∈ [2, 2733]
m ∈ [k + 2, 1511] m ∈ [M0,M1]

M0 = �(n − 1)x + 1.8	;
M1 = 2(n − 1)x + 4

For this task, it is necessary to calculate powers of the form (F (k)
r )x,

which can lead to cause computational or storage problems. Thus, to speed up
our calculations we have considered the following strategy:

(i) Compare the last 30 digits in equality (1), this is, we consider
(
F

(k)
n+1

)x

+
(
F (k)

n

)x

−
(
F

(k)
n−1

)x

≡ F (k)
m (mod 1030). (35)

(ii) Generate the numbers F
(k)
r iterating blocks of k terms, using the identity

F
(k)
r = 2F

(k)
r−1 − F

(k)
r−k, taking (mod 1030) at each iteration.

(iii) Create the lists, Lk := {(F (k)
n+1)

x + (F (k)
n )x − (F (k)

n−1)
x (mod 1030)} and

R := {F
(k)
m (mod 1030)}. To obtain Lk, it is convenient to compute the

list ((F (k)
r )x), and suppress a term at the beginning and at the end ac-

cording to the need for r = n + 1, n or n − 1, and give it a vectorial
treatment.
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This computation was done with the Mathematica software at Computer Cen-
ter Jurgen Tischer in the Department of Mathematics at the Universidad del
Valle on 24 parallel Pc’s (Intel Xeon E3-1240 v5, 3.5 GHz, 16 Gb of RAM),
using in turn parallelized algorithms. A total calculation time of 6 h revealed
that Lk ∩ Rk = ∅ for all k in each case.

This finishes the proof of the main theorem.
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