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Abstract. In this paper, we establish four equivalent conditions in the
metric space setting. These conditions concern the (inner) uniformity of
metric spaces, and (locally) Loewner conditions, weak slice conditions and
k-cap conditions of metric measure spaces. This investigation completes
the related study started by Bonk, Heinonen, and Koskela in 2001. Also,
two examples are constructed to demonstrate that the assumption of the
regularity of the underlying spaces can not be removed.
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1. Introduction

A metric space (X, d) is called uniform if every pair of points in X can be joined
by a so called uniform curve (see Sect. 2.1 below for the precise definition).
If a domain, i.e., an open and connected subset, in X satisfies this condition,
then it is called a uniform domain. The concept of uniformity in the metric
space setting was introduced by Bonk et al. [2]. Uniform domains in R

n with
n ≥ 2 were introduced by Martio and Sarvas [19]. Since its introduction, this
concept has played a significant role in the study of geometric function theory,
see [16] and references therein.

In order to study the theory of quasiconformal mappings in metric spaces,
Heinonen and Koskela introduced a class of metric spaces which is called
Loewner spaces [12]. A metric measure space is called Loewner if it satisfies
a Loewner condition (see Definition 2.2 below for the details). All Euclidean
spaces R

n with n ≥ 2 are Loewner. See [4,12,18] for more examples of Loewner
spaces.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-024-02127-1&domain=pdf
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In 2001, Bonk, Heinonen, and Koskela considered the relation between
uniformity and Loewner condition, and established the following sufficient con-
dition for a metric measure space to be Loewner.

Theorem A [2, Theorem 6.4]. Suppose that (X, d, μ) is a locally compact and
noncomplete metric measure space. If (X, d, μ) is a uniform and locally Q-
Loewner space with Q > 1, then it is Q-Loewner. This implication is quanti-
tative.

See Chapters 6 and 7 in [2] for the significance and the importance of
Theorem A. Throughout the paper, for a metric measure space (X, d, μ), we
assume that the measure μ is locally finite and Borel regular with dense sup-
port. The terminology in Theorem A and in the rest of this section will be
introduced in the second section unless otherwise stated.

Here and hereafter, if a condition � with data χ implies a condition �′

with data χ′ so that χ′ depends only on χ and other given quantities, then
we say that � implies �′ quantitatively, or the implication is quantitative. If
also �′ implies � quantitatively, then we say that � and �′ are quantitatively
equivalent, or the equivalence is quantitative.

In [22], Yang constructed an L1
p domain D in R

n for all p ≥ 1, which is not
uniform; see [22, Theorem 1.1]. Moreover, it is known that every L1

n domain is
QED (the abbreviated form of the phrase “quasiextremal distance”) (cf. [17]),
and every QED domain is Loewner (cf. [3]). These facts guarantee that the
domain D constructed in [22] is Loewner. Since D is not uniform, we conclude
that the converse of Theorem A is invalid. Naturally, one will ask if there is
any condition which, by combining with the Loewner condition, constitutes a
necessary and sufficient condition for a metric measure space to be uniform
and locally Loewner. The purpose of this paper is to study this question, and
the following are our answers.

Theorem 1.1. Suppose that (X, d, μ) is Q-regular with Q > 1, and G ⊆ X is a
locally compact and c-quasiconvex domain with c ≥ 1, where the case G = X
is included when (X, d) is noncomplete. Then the following are quantitatively
equivalent:
(a) G is uniform and locally Q-Loewner;
(b) G is Q-Loewner and inner uniform;
(c) G is Q-Loewner and satisfies a weak slice condition;
(d) G is Q-Loewner and satisfies a k-cap condition.

We shall construct two examples, i.e., Examples 5.1 and 5.2 below, to
demonstrate that the assumption on the regularity of the underlying spaces in
Theorem 1.1 cannot be weakened to the one of being doubling, and thus, this
implies that such an assumption cannot be removed from Theorem 1.1.

The rest of this paper is arranged as follows. In Sect. 2, necessary pre-
liminaries will be introduced and two lemmas will be proved. Several auxiliary



Vol. 79 (2024) Uniformity and Loewner Condtions of Metric Spaces Page 3 of 31 115

lemmas will be shown in Sect. 3. Section 4 will be devoted to the proof of
Theorem 1.1, and in Sect. 5, the aforementioned examples will be exhibited.

2. Preliminaries

Let (X, d) denote a metric space, X the metric completion of X, and ∂X =
X\X, the metric boundary of X. For a metric space (X, d), we write |x−y| =
d(x, y) for the distance between two pints x and y in X. The symbol B(x, r)
denotes the open ball in X with center x and radius r > 0, i.e., B(x, r) = {y ∈
X : |y − x| < r}. For λ > 0, define λB(x, r) = B(x, λr). When working in a
given domain G � X, for any x ∈ G, let λB(x) = λB(x, dG(x)), where dG(x)
denotes the distance of x to the boundary ∂G of G. Observe that every ball
λB(x) in R

n is contained in G whenever x ∈ G and λ ∈ (0, 1). But in the metric
space setting, this property is no longer valid. To overcome this deficiency, we
introduce a new notation λBG(x) = λB(x) ∩ G, which is called the Whitney
ball at x with parameter λ ∈ (0, 1). Notice that not every Whitney ball is
connected. Also, we use λBG(x) to denote the closure of λBG(x).

2.1. Uniform Metric Spaces and Quasi-hyperbolic Metrics

A curve in (X, d) is a continuous function γ : I → X from an interval I ⊂ R to
X. We use γ to denote both the function and its image set. The length �(γ) of γ
with respect to the metric d is defined in the usual way. The parameter interval
I is allowed to be closed, open or half-open. If �(γ) < ∞, then γ is said to be
rectifiable. Obviously, when I is compact, γ is a continuum (i.e., a connected
and compact set) in X since both the connectedness and the compactness are
invariant under continuous functions.

A metric space (X, d) is called geodesic if every pair of points x and y ∈ X
can be joined by a curve γ such that

�(γ) = |x − y|,
and the curve γ is also called a geodesic in X joining x and y.

A metric space (X, d) is called a-uniform if there is a constant a ≥ 1 such
that each pair of points x and y in X can be joined by a rectifiable curve γ in
X satisfying

(1) min{�(γ[x, z]), �(γ[z, y])} ≤ a dX(z) for all z ∈ γ, and
(2) �(γ) ≤ a |x − y|.

If the metric d is replaced by its inner metric σX , then uniformity is called
inner uniformity, where the inner metric σX is defined by

σX(x, y) = inf
γ∈Γ(x,y:X)

{
�(γ)

}

for any x and y in X. Here and in what follows, Γ(x, y : X) denotes the family
of all rectifiable curves in X connecting x and y.
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When our uniform space (resp. our inner uniform space) is a domain of
a metric space, we call it a uniform domain (resp. an inner uniform domain).

Assume that (X, d) is a rectifiably connected, non-complete and locally
compact metric space. The quasi-hyperbolic metric kX in X (with respect to
d) is defined by

kX(x, y) = inf
{∫

γ

1
dX(z)

|dz|
}

,

where the infimum is taken over all curves in Γ(x, y : X), dX(z) denotes the
distance from z to ∂X, and |dz| denotes the arc-length element with respect
to d. The quantity

∫
γ

1
dX(z) |dz| = �k,X(γ) is called the quasi-hyperbolic length

of γ. A curve in X connecting x and y is called a quasihyperbolic geodesic if
�k,X(γ) = kX(x, y).

For x and y ∈ X, their relative distance is defined by the number:

rX(x, y) =
|x − y|

min{dX(x), dX(y)} .

The following lemma is useful.

Lemma 2.1. Suppose that (X, d) is a noncomplete and c-quasiconvex metric
space, and let τ > 0 be a constant. For any pair of points x, y in X,

1 if |x − y| ≤ τ max{dX(x), dX(y)}/c(τ + 1), then

kX(x, y) ≤ c(τ + 1)
|x − y|

max{dX(x), dX(y)} ≤ c(τ + 1)rX(x, y);

2 if kX(x, y) ≤ τ , then

kX(x, y) ≤ c(τ + 1)rX(x, y);

3 if kX(x, y) ≥ τ , then

|x − y| ≥ τ

c(τ + 1)
max{dX(x), dX(y)};

Proof. (1) Assume that |x − y| ≤ τ max{dX(x), dX(y)}/c(τ + 1). Without
loss of generality, assume that max{dX(x), dX(y)} = dX(x). Since X is c-
quasiconvex, we know that there is a curve γxy in X connecting x and y such
that

�(γxy) ≤ c|x − y|,
and so,

�(γxy) ≤ τ

τ + 1
dX(x).

Since for every z ∈ γxy,

dX(z) ≥ dX(x) − �(γxy) ≥ 1
τ + 1

dX(x),
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and since

kX(x, y) ≤
∫

γxy

|dz|
dX(z)

,

we get

kX(x, y) ≤ c(τ + 1)
|x − y|
dX(x)

≤ c(τ + 1)rX(x, y).

(2) Assume that kX(x, y) ≤ τ . By the statement (1) of the lemma, we
may assume that |x − y| ≥ τ max{dX(x), dX(y)}/c(τ + 1). Then we deduce
that

kX(x, y) ≤ τ ≤ c(τ + 1)
|x − y|

max{dX(x), dX(y)} ≤ c(τ + 1)rX(x, y).

(3) Assume that kX(x, y) ≥ τ . Without loss of generality, we assume that
max{dX(x), dX(y)} = dX(x). Suppose on the contrary that

|x − y| < τdX(x)/c(τ + 1).

Then by the statement (1) of the lemma, we get

kX(x, y) ≤ c(τ + 1)
|x − y|
dX(x)

< τ.

This obvious contradiction proves this statement. �

For two nondegenerate and bounded sets E and F in X, let

Δ(E,F ) =
dist(E,F )

min{diamE,diamF} ,

which is called the relative distance between E and F .
Based on Lemma 2.1, we have the following sufficient condition for two

Whitney balls to be disjoint.

Lemma 2.2. Suppose that X is a metric space and G ⊂ X is a c-quasiconvex
domain. Let α > 1/2 and 0 < λ ≤ 1/4(α + 2)c. For x, y ∈ G, if kG(x, y) ≥ α,
then

Δ(λBG(x), λBG(y)) ≥ 2α − 1 and λBG(x) ∩ λBG(y) = ∅.

Proof. Let x and y be two points in G with kG(x, y) ≥ α. Then it follows from
Lemma 2.1(3) that

|x − y| >
α

c(α + 2)
max{dG(x), dG(y)}.

Obviously, λBG(x) ⊂ λB(x) and λBG(y) ⊂ λB(y), and thus, we have

Δ(λBG(x), λBG(y)) ≥ Δ(λB(x), λB(y)).

Since

dist(λB(x), λB(y)) ≥ |x − y| − λdG(x) − λdG(y)
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and

diam(λB(x)) ≤ 2λdG(x),

we know that

Δ(λBG(x), λBG(y)) ≥ 2α − 1 > 0,

since α > 1/2. Also, this implies that

λBG(x) ∩ λBG(y) = ∅.

The proof of the lemma is complete. �

Remark 2.1. For any pair of points x, y ∈ G � R
n, if kG(x, y) ≥ α > 2 log 2,

then

BkG

(
x,

α

2

)
∩ BkG

(
y,

α

2

)
= ∅,

where BkG

(
x, α

2

)
= {z ∈ G : kG(z, x) < α

2 }, the quasihyperbolic ball with
center x and radius α

2 .
Since for any z ∈ G,

(
1 − e− α

2
)

B(z) ⊂ BkG

(
z, α

2

)
(cf. [10, (5.15)]), we

get
(
1 − e− α

2
)

B(x) ∩ (
1 − e− α

2
)

B(y) = ∅.

Obviously,
1
2

B(x) ∩ 1
2

B(y) = ∅,

since 1 − e− α
2 > 1

2 .

A minimally nice (i.e., rectifiably connected, non-complete and locally
complete) metric space (X, d) is called quasihyperbolic ϕ-uniform (briefly, QH
ϕ-uniform) if there is a self-homeomorphism ϕ of [0,+∞) such that for any
pair of points x and y ∈ X,

kX(x, y) ≤ ϕ(rX(x, y)).

When the QH ϕ-uniform space is a domain of a metric space, it is called a
QH ϕ-uniform domain.

We remark that local compactness implies local completeness. Also, it is
known that uniformity is quantitatively equivalent to QH ϕ-uniformity with
ϕ being slow, i.e., lim supt→∞ ϕ(t)/t < 1, in Banach spaces; see [21, Theorem
6.16]. For general metric spaces, Buckley and Herron established the following
generalization.

Theorem 2 [7, Theorem 3.1]. A minimally nice and locally (c, λ)-quasiconvex
space (X, d) is uniform if and only if it is QH ϕ-uniform with a slow ϕ. The
uniformity constant depends only on c and ϕ, and conversely in an a-uniform
space, one can always take ϕ(t) = 4a2 log(1 + t).
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2.2. Modulus and Capacity

Let (X, d, μ) denote a metric measure space, and let Γ (sometimes with a
subscript) be a family of curves in X. For a number 1 ≤ p < ∞, the p-modulus
of Γ is defined as

modpΓ = inf
{ ∫

X

�pdμ
}

,

where the infimum is taken over all nonnegative Borel functions � : X → [0,∞]
satisfying

∫

γ

�ds ≥ 1 (2.1)

for all locally rectifiable curves γ ∈ Γ. Functions � satisfying (2.1) are called
admissible densities for Γ.

The moduli of families of curves possess the following elementary and
useful properties.

Theorem 3 [12, §2.3]. For 1 ≤ p < ∞, the following statements are true:

1 If Γ = ∅, the empty set, then modp(Γ) = 0;
2 For two families of curves Γ1 and Γ2 in X, if Γ1 ⊂ Γ2, then

modpΓ1 ≤ modpΓ2;

3 For two families of curves Γ3 and Γ4 in X, if each curve γ4 ∈ Γ4 has a
subcurve γ3 which belongs to Γ3, then

modpΓ4 ≤ modpΓ3;

4 For a sequence of families of curves {Γi}+∞
i=1 in X,

modp

(
+∞⋃

i=1

Γi

)

≤
+∞∑

i=1

modpΓi.

Let G be an open set in X, and let u be an arbitrary real-valued function
in G. We say that a Borel function ρ : G → [0,∞] is a very weak gradient of u
in G if for every pair of points x and y ∈ G,

|u(x) − u(y)| ≤
∫

γ

ρds

whenever γ belongs to Γ(x, y : G), the set of all rectifiable curves in G con-
necting x and y.

For an open subset G of X, and its two disjoint closed subsets E and
F , let the triple (E,F ;G), which is called a condenser, denote the family
of all curves in G joining E and F . With the aid of very weak gradients,
Heinonen and Koskela gave the following definition of capacity in the metric
space setting.
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Definition 2.1. For a condenser (E,F ;G) of X, its p-capacity for 1 ≤ p < ∞
is defined as

capp(E,F ;G) = inf
{ ∫

G

ρpdμ
}

,

where the infimum is taken over all very weak gradients ρ of each admissible
function u for the condenser (E,F ;G). Here, a function u in G is called ad-
missible for a condenser (E,F ;G) if the restriction u|E ≥ 1 and the restriction
u|F ≤ 0.

Heinonen and Koskela showed that for all 1 ≤ p < ∞,

capp(E,F ;G) = modp(E,F ;G)

(see [12, Proposition 2.17]). Thus, in the following, we use the notation
capp(E,F ;G) instead of modp(E,F ;G).

2.3. Capacity Conditions and Regularity

In order to generalize the theory of quasiconformal mappings to the met-
ric space setting, in [12], Heinonen and Koskela introduced the concept of a
Loewner space. The definition is as follows.

Definition 2.2. Suppose that (X, d, μ) is a rectifiably connected metric measure
space. It is called
(1) a Q-Loewner space if there is a function φ : (0,+∞) → (0,+∞) so that

capQ(E,F ;X) ≥ φ(t) (2.2)

whenever E and F are two disjoint and nondegenerate continua in X,
and

t ≥ Δ(E,F ),

where φ is called a Loenwer control function of X. Moreover, if a domain
G ⊂ X satisfies the Q-Loewner condition (2.2), then we say that G is a
Q-Loewner domain.

(2) a locally Q-Loewner space if X is locally compact and there exist numbers
κ ≥ 1, ε0 ∈ (0, κ−1], and a function φ : (0,+∞) → (0,+∞) so that

capQ(E,F ; B(x, εκdG(x))) ≥ φ(t) (2.3)

whenever x ∈ X, 0 < ε < ε0, E and F ⊂ B(x, εdG(x)) are two disjoint
and nondegenerate continua, and t ≥ Δ(E,F ).

By [12, Theorem 3.13], every Q-regular Loewner space (see Definition 2.3
for the definition of Q-regularity) satisfies the following properties.

Quasiconvexity A metric space (X, d) is said to be c-quasiconvex if there
is a constant c ≥ 1 such that for each pair of points x and y ∈ X, there exists
a curve γ joining x and y satisfying

�(γ) ≤ c|x − y|.
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Such a curve is also called a c-quasiconvex curve.
Local quasiconvexity A metric space (X, d) is said to be locally (c, α)-

quasiconvex if there are constants c ≥ 1 and 0 < α < 1 such that for each
point w ∈ X, every pair of points in αB(w) can be joined by a c-quasiconvex
curve.

Linearly local connectedness A metric space (X, d) is said to be b-linearly
locally connected (briefly, b-LLC) if there is a constant b ≥ 1 so that for each
x ∈ X and r > 0, the following conditions hold:
LLC1 : any pair of points in B(x, r) can be joined by a rectifiable curve in

B(x, br);
LLC2 : any pair of points in X \ B(x, r) can be joined by a rectifiable curve

in X \ B(x, r/b).
Locally external connectedness If a metric space (X, d) is locally compact

and the LLC2 condition holds for all x ∈ X and all r ∈ (0, dX(x)/b) with
b > 1, then we say that X is b-locally externally connected (briefly, b-LEC).

Next is the definition of (Ahlfors-David) regularity.

Definition 2.3. Suppose that (X, d, μ) is a metric measure space. If there is a
constant Cr ≥ 1 such that

C−1
r RQ ≤ μ(B(x,R)) ≤ CrR

Q

for all balls B(x,R) in X of radius R < diamX, then X is said to be Q-
regular. In particular, when only the upper bound above holds, X is called
upper Q-regular, and when only the lower bound above holds, X is called
lower Q-regular.

We make a notational convention: In the following, Cr always denotes
the constant from the definition of regularity, and also, it is called a regularity
constant of X. Its value may be different at different occasions.

It is known that every Q-regular metric measure space with Q > 1 has
Hausdorff dimension precisely Q (cf. [11, §8.7]). The converse is invalid. This
can be seen from the first statement of Example 5.1 or Example 5.2 below.

In [12], Heinonen and Koskela discussed the relationship between regu-
larity and capacity; see [12, Lemma 3.14]. In [12, Lemma 3.14], the underlying
spaces are assumed to be Loewner. But this assumption is not used in its proof.
Thus we formulate it in the following form which we need.

Theorem 4 [12, Lemma 3.14] Suppose that (X, d, μ) is Q-regular with Q > 1.
Then there is a constant C1 > 0 such that for any r with 0 < 2r < R < diamX
and y ∈ X,

capQ(B(y, r),X \ B(y,R);X) ≤ C1

(
log

R

r

)1−Q

.

The following result is from [11].



115 Page 10 of 31 X. Wang and Z. Yang Results Math

Theorem 5 [11, Proposition 8.19 and Theorem 8.23]. Let (X, d, μ) be a Q-
Loewner space. Then there is a constant C2 ≥ 1 such that

C−1
2 RQ ≤ μ(B(x,R)) (2.4)

for all balls B(x,R) in X of radius R < diamX. If X is upper Q-regular,
then (X, d, μ) is Q-regular and there is a decreasing self-homeomorphism ψ of
(0,∞) such that

capQ(E,F ;X) ≥ ψ(Δ(E,F )) (2.5)

for all disjoint and nondegenerate continua E and F in X. Moreover, we can
select ψ so as to satisfy

ψ(t) ≈ log
1
t

for all sufficiently small t, and

ψ(t) ≈ (log t)1−Q (2.6)

for all sufficiently large t. The statement is quantitative.

It is known that all Euclidean spaces R
n are 1-quasiconvex. In combina-

tion with Lemma 2.2, Remark 2.1 and the definitions of the k-cap conditions in
R

n (cf. [5,6]), we introduce the following definition in the quasiconvex metric
space setting.

Definition 2.4. Suppose that (X, d, μ) is a metric measure space, and G ⊂ X
is a locally compact and c-quasiconvex domain. Let τ > 0 and 0 < λ ≤ 1/(16c)
be constants. Then G is said to satisfy a (τ, λ)-k-cap condition if for every pair
of points x and y ∈ G with kG(x, y) ≥ 2,

capQ

(
λBG(x), λBG(y);G

) ≤ τ

kG(x, y)Q−1
. (2.7)

Also, G is called a (τ, λ)-k-cap domain. When the values of the parameters are
not important, briefly, we say that G is a k-cap domain.

Remark 2.2. By [12], Heinonen and Koskela proved that the combination of
Loewner property and regularity guarantees quasiconvexity (see [12, Theorem
3.13] or Lemma 3.5 below). Based on this, it follows from the proof of The-
orem 1.1 that the assumption of G being quasiconvex can be removed from
Theorem 1.1. As we see from Definition 2.4 that the concept of k-cap condition
is introduced in quasiconvex metric measure spaces or their domains, such an
assumption is kept in Theorem 1.1.

2.4. Weak Slice Conditions

In order to study the geometrical characterizations of domains which support
Sobolev–Poincaré-type imbeddings, Buckley and Koskela introduced a concept
which is the so-called slice condition (cf. [8]). Later, in order to establish sharp
inequalities of Trudinger-type on general domains, Buckley and O’Shea gen-
eralized the slice condition into a weaker one which is called the weak slice
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condition (cf. [9]). See [7] for an application of this condition. The following is
the definition of weak slice conditions.

Definition 2.5. Suppose that (X, d) is a b-LEC metric space, x and y ∈ X are
two points.
(1) A non-empty bounded open subset S ⊂ X is an A-slice separating x and

y if there is a constant A ≥ 2 such that

A−1
B(x) ∩ S = ∅ = S ∩ A−1

B(y),

and for all γ ∈ Γ(x, y : X),

�(γ ∩ S) ≥ A−1diam(S);

(2) For x and y in X, let S(x, y) denote a collection of pairwise disjoint
A-slices separating x and y. Define

dws(x, y) = dws(x, y;A) = 1 + sup
{
cardS(x, y)

}
,

where the supremum is taken over all S(x, y) and card means cardinality.
We say that X satisfies a weak A-slice condition if for each pair of points
x and y in X,

kX(x, y) ≤ Adws(x, y). (2.8)

In [7], Buckley and Herron considered the characterization of uniform
spaces in terms of the weak slice condition. The obtained result is as follows.

Theorem 6 [7, Theorem 4.2]. A minimally nice metric space (X, d) is uni-
form and LEC if and only if it is quasiconvex, LLC and satisfies a weak slice
condition. These implications are quantitative.

3. Auxiliary Results

The aim of this section is to establish several auxiliary lemmas, which are
useful for the proof of Theorem 1.1. The first lemma compares the relative
distance between the closures of two Whitney balls with the one between their
centers.

Lemma 3.1. Suppose that G ⊂ X is a c-quasiconvex domain, where the case
G = X is included when (X, d) is noncomplete. For any pair of points x, y in
G and 0 < λ ≤ 1/(8c), if λBG(x) ∩ λBG(y) = ∅ and kG(x, y) > 1, then

1
4λ

rG(x, y) ≤ Δ(λBG(x), λBG(y)) ≤ 1
λ

rG(x, y). (3.1)

Proof. We only need to prove the case G � X since the proof of the case G = X
is similar. Without loss of generality, we may assume that dG(x) ≤ dG(y). Since
G is c-quasiconvex and open, we infer from [15, Lemma 3.1] that

∂λBG(x) �= ∅,
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and from [15, Lemma 3.5] that for any u ∈ τBG(z),

|u − z| = τdG(z) if and only if u ∈ ∂τBG(z).

These imply that there is a point z ∈ ∂λBG(x) such that

diamλBG(x) ≥ |x − z| = λdG(x).

Since |x − y| ≥ dist(λBG(x), λBG(y)), we obtain that

Δ(λBG(x), λBG(y)) ≤ |x − y|
λdG(x)

=
1
λ

rG(x, y).

This proves the right side of (3.1).
Since kG(x, y) > 1, it follows from Lemma 2.1(3) that

|x − y| ≥ 1
2c

dG(y).

Then the assumption 0 < λ ≤ 1/(8c) implies that

dist(λBG(x), λBG(y)) ≥ |x − y| − λdG(x) − λdG(y) ≥ 1
2
|x − y|,

and thus, we get

Δ(λBG(x), λBG(y)) ≥ |x − y|
4λdG(x)

=
1
4λ

rG(x, y),

since min{diamλBG(x),diamλBG(x)} ≤ 2λdG(x). This proves the left side of
(3.1), and hence the lemma is proved. �

It is known that for any domain G ⊂ R
n, and for any λ ∈ (0, 1) and x ∈ G,

the closure λBG(x) of the Whitney ball λBG(x) = λB(x) is a continuum. But
the fact is invalid in the metric space setting. The next lemma establishes
the existence of continua in such closures of Whitney balls, which also satisfy
certain comparability conditions.

Lemma 3.2. Suppose that G ⊂ X is a c-quasiconvex domain, where the case
G = X is included when (X, d) is noncomplete. For any pair of points x, y
in G and 0 < λ ≤ 1/(8c), if λBG(x) ∩ λBG(y) = ∅ and kG(x, y) > 1, then
there are curves γx ⊂ λBG(x) and γy ⊂ λBG(y) such that both γx and γy are
continua, and

1
4λ

rG(x, y) ≤ Δ(γx, γy) ≤ 3c

2λ
rG(x, y). (3.2)

Proof. We only need to prove the case G � X since the proof of the case G = X
is similar. Since G is c-quasiconvex and open, we know from [15, Lemmas 3.1
and 3.5] that there are points x1 ∈ ∂(λ/c)BG(x) and y1 ∈ ∂(λ/c)BG(y) such
that

|x1 − x| =
1
c
λdG(x) and |y1 − y| =

1
c
λdG(y).
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Also, we know that there are a c-quasiconvex curve γx in G connecting x1

and x, and another c-quasiconvex curve γy in G connecting y1 and y. Then
γx ⊂ λBG(x) and γy ⊂ λBG(y), and both of them are continua. Since

dist(γx, γy) ≥ dist(λBG(x), λBG(y)) and
λ

c
dG(x) ≤ diam(γx) ≤ 2λdG(x),

it follows from Lemma 3.1 that

Δ(γx, γy) ≥ Δ(λBG(x), λBG(y)) ≥ 1
4λ

rG(x, y).

Next, we check the upper bound in (3.2). Since kG(x, y) > 1, by Lemma
2.1(3), we have that

|x − y| ≥ 1
2c

dG(y).

This implies that

dist(γx, γy) ≤ |x − y| + 2λdG(y) ≤ (1 + 4cλ)|x − y| ≤ 3
2
|x − y|.

Hence we obtain that

Δ(γx, γy) ≤ c

λ

dist(γx, γy)
min{dG(x), dG(y)} ≤ 3c

2λ
rG(x, y),

which is what we need. �

The following lemma is an analog of [6, Lemma 2.2] in the Q-regular
metric measure space setting.

Lemma 3.3. Suppose that (X, d, μ) is a Q-regular metric measure space with
Q > 1. Let E, F be disjoint bounded closed sets in X. Then the following two
statements are true:

1 capQ(E,F ;X) ≤ Cr(1 + 1/Δ(E,F ))Q; (Recall that the constant Cr de-
notes a regularity constant of X.)

2 If Δ(E,F ) ≥ 2, then

capQ(E,F ;X) ≤ C1 (log Δ(E,F ))1−Q
,

where the constant C1 is from Theorem 4.

Proof. Let a = diam(E) and b = dist(E,F ). Without loss of generality, we
assume that diam(E) ≤ diam(F ).

(1) For x ∈ E, let

�(y) =

{
1/b, if y ∈ B(x, a + b),

0, otherwise.

Then � is admissible for the curve family Γ(E,F : X). Since (X, d, μ) is Q-
regular, we deduce that

capQ(E,F ;X) ≤
∫

X

�Qdμ ≤ μ(B(x, a + b))/bQ ≤ Cr(1 + 1/Δ(F, F ))Q,
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where Cr ≥ 1 is a regularity constant of X.
(2). The assumption Δ(E,F ) ≥ 2 implies that b ≥ 2a. Then for x ∈ E,

we see that E ⊂ B(x, a) and F ⊂ X \ B(x, b). By Theorems 3(3) and 4, we
have that

capQ(E,F ;X) ≤ capQ(B(y, a),X \ B(y, b);X) ≤ C1 (log Δ(E,F ))1−Q
,

where the constant C1 is from Theorem 4. �
Lemma 3.4. Suppose that (X, d, μ) is a Q-regular metric measure space and
G ⊂ X is a domain. If G is Q-Loewner, then G is Q-regular.

Proof. Let x ∈ G and 0 < r < diamG. Then the inequality (2.4) in Theorem
5 ensures that there is a constant C2 ≥ 1 such that

μ(BG(x, r)) ≥ C−1
2 rQ.

Moreover, since X is Q-regular, we see that

μ(BG(x, r)) ≤ μ(B(x, r)) ≤ Crr
Q.

Let C3 = max{Cr, C2}. Then G is Q-regular with a regularity constant
C3. �

Lemma 3.5. Suppose that (X, d, μ) is a Q-regular metric measure space and
G ⊂ X is a domain. If G is Q-Loewner, then G is c-quasiconvex and c-LLC.

Proof. It follows from Lemma 3.4 that G is Q-regular, and thus, the lemma
follows from [12, Theorem 3.13]. �

4. Proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. We shall prove the theorem
by checking the implications: (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a). We only need to
prove the case when G is a proper domain in X since the proof of the case
when G = X is similar.

(a) ⇒ (b). Assume that G is a-uniform and locally Q-Loewner. This
implication follows from Theorem A since uniformity implies inner uniformity.

(b) ⇒ (c). Assume that G is Q-Loewner and a-inner uniform. Since G is
c-quasiconvex, it follows that for any pair of points x, y ∈ G, there is a curve
γxy in G connecting x and y such that

σG(x, y) ≤ l(γxy) ≤ c|x − y|.
Moreover, the assumption of G being a-inner uniform and Theorem 2

guarantee that

kG(x, y) ≤ 4a2 log
(

1 +
σG(x, y)

min{dG(x), dG(y)}
)

.

Then it follows that

kG(x, y) ≤ 4a2 log (1 + crG(x, y)) .
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By letting ϕ(t) = 4a2 log(1 + ct), we see that G is QH ϕ-uniform with
ϕ being slow. Again, we know from Theorem 2 that G is a1-uniform. Since
Lemma 3.5 indicates G is c-LLC, and thus, it is c-LEC. Hence we know from
Theorem 6 that G satisfies a weak A-slice condition, which completes the proof
of this implication.

(c) ⇒ (d). Assume that G is Q-Loewner and satisfies a weak A-slice
condition. Let x, y be two points in G with kG(x, y) ≥ 2. To prove this impli-
cation, it suffices to show that there are constants τ > 0 and 0 < λ ≤ 1/(16c),
independent of x and y, such that

capQ

(
λBG(x), λBG(y);G

)
≤ τ

kG(x, y)Q−1
. (4.1)

Since G is Loewner, Lemma 3.5 ensures that G is c-LLC, and then, we
know from the assumptions of G being c-quasiconvex and satisfying a weak
slice condition, together with Theorem 6, that it is a-uniform. Without loss of
generality, we assume that a = c and dG(x) ≤ dG(y). Let

λ = min
{ 1

16c
,
1
4
(1 − e−1/(2c2))

}
. (4.2)

Then the assumption kG(x, y) ≥ 2 and Lemma 2.2 imply that

Δ(λBG(x), λBG(y)) ≥ 3 and λBG(x) ∩ λBG(y) = ∅. (4.3)

By the assumptions that X is Q-regular and G is Loewner, we know from
Lemma 3.4 that G is Q-regular. Then Lemma 3.3(2) ensures that there is a
constant C1 ≥ 1 such that

capQ(λBG(x), λBG(y);G) ≤ C1

(
log Δ(λBG(x), λBG(y))

)1−Q
. (4.4)

Moreover, by the assumption kG(x, y) ≥ 2 and Lemma 2.1(3), we have
that rG(x, y) ≥ 2/(3c). Then we deduce from (4.2) that

1
4λ

rG(x, y) ≥ 8
3
. (4.5)

Since the assumption kG(x, y) ≥ 2, (4.3) and Lemma 3.1 guarantee that

Δ(λBG(x), λBG(y)) ≥ 1
4λ

rG(x, y),

we infer from (4.4) and (4.5) that

capQ(λBG(x), λBG(y);G) ≤ C1

(
log

1
4λ

rG(x, y)
)1−Q

. (4.6)

We still need the following relation between rG(x, y) and kG(x, y):

rG(x, y) ≥ ekG(x,y)/4c2 − 1. (4.7)

This estimate directly follows from Theorem 2 since G is a-uniform.
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Since it follows from (4.2), together with the assumption kG(x, y) ≥ 2,
that

1
4λ

(
ekG(x,y)/4c2 − 1

)
> 1,

by substituting (4.7) into (4.6), we get

capQ(λBG(x), λBG(x);G) ≤ C1

(
log

1
4λ

(
ekG(x,y)/(2c2)(1 − 1/e1/(2c2))

))1−Q

.

Again, by (4.2), we have

capQ(λBG(x), λBG(x);G) ≤ τkG(x, y)1−Q,

where τ = (2c2)Q−1C1. This proves (4.1), which indicates that G satisfies the
(τ, λ)-k-cap condition.

(d) ⇒ (a). Assume that G is a Q-Loewner space and satisfies a (τ, λ)-
k-cap condition, where τ > 0 and 0 < λ < 1/(16c). Since G is a Q-Loewner
space, we know from Lemma 3.4 that G is Q-regular. Then it follows from
[2, Proposition 6.48] that there are functions ψ: (0,+∞) → (0,+∞) and κ:
(0,+∞) → [1,+∞) with the following property: If E and F are two disjoint
nondegenerate continua in a ball B(x, r) in G, then

capQ(E,F ; B(x, κ(t)r)) ≥ ψ(t) (4.8)

whenever Δ(E,F ) ≤ t.
Let t = 16 and ε0 ∈ (0, κ(16)−1]. If E, F are disjoint nondegenerate

continua in a ball B(x, εdG(x)) in G with 0 < ε ≤ ε0 and Δ(E,F ) ≤ 16, then
we know from (4.8) that

capQ(E,F ; B(x, κ(16)εdG(x))) ≥ ψ(16).

Since G is c-quasiconvex, it follows from [2, Propositions 6.49] that G is locally
Q-Loewner. This shows that, to prove this implication, we only need to check
the uniformity of G. We are going to reach this goal by applying Theorem 2,
that is, it suffices to show that there is a slow η such that for any x, y ∈ G,

kG(x, y) ≤ η(rG(x, y)). (4.9)

To establish the existence of η, we consider two cases: kG(x, y) < 2 and
kG(x, y) ≥ 2. For the former, it follows from Lemma 2.1 (2) that

kG(x, y) ≤ 3crG(x, y). (4.10)

For the latter, that is, kG(x, y) ≥ 2, since G is Q-regular and Q-Loewner,
(2.5) in Theorem 5 guarantees that there is a decreasing self-homeomorphism
ψ of (0,∞) such that

capQ(E,F ;G) ≥ ψ(Δ(E,F ))
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for all disjoint and nondegenerate continua E and F in G. Also, (2.6) in The-
orem 5 ensures that there is a sufficiently large β and a constant C ′ > 0
satisfying that for all t > β,

ψ(t) ≥ C ′ (log t)1−Q
.

These show that for any pair of disjoint and nondegenerate continua E and F
in G, if Δ(E,F ) > β, then

capQ(E,F ;G) ≥ C ′ (log Δ(E,F ))1−Q
. (4.11)

Without loss of generality, we may assume that β ≥ 3. The following
assertion is useful for our arguments.

Claim 4.1. Suppose that λ1 is a constant with 0 < λ1 ≤ 1
3(β+1)c . Then for any

continua E1 ⊂ λ1BG(x) and F1 ⊂ λ1BG(y), we have

Δ(E1, F1) ≥ β.

Let E1 ⊂ λ1BG(x) and F1 ⊂ λ1BG(y) be continua. Obviously,

Δ(E1, F1) ≥ Δ(λ1BG(x), λ1BG(y)).

Since

|x − y| ≤ dist(λ1BG(x), λ1BG(y)) + λ1dG(x) + λ1dG(y)

≤ dist(λ1BG(x), λ1BG(y)) + 2λ1 max{dG(x), dG(y)},

max{diam(λ1BG(x)),diam(λ1BG(y))} ≤ 2λ1 max{dG(x), dG(y)}
and because Lemma 2.1(3) gives

|x − y| ≥ 2
3c

max{dG(x), dG(y)},

we get

Δ(E1, F1) ≥ 1
3cλ1

− 1 ≥ β,

which is what we need.
Let

λ2 = min
{

λ,
1

4(β + 1)c

}
.

Then the assumptions kG(x, y) ≥ 2 and β ≥ 3, together with Lemma 2.2,
ensure that

λ2BG(x) ∩ λ2BG(y) = ∅,

and so, Lemma 3.2 guarantees that there are two curves γx ⊂ λ2BG(x) and
γy ⊂ λ2BG(y) such that both γx and γy are continua, and

1
4λ2

rG(x, y) ≤ Δ(γx, γy) ≤ 3c

2λ2
rG(x, y). (4.12)
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Moreover, Claim 4.1 implies that

Δ(γx, γy) ≥ β ≥ 3. (4.13)

Obviously, the fact λ2 ≤ λ implies that γx ⊂ λBG(x) and γy ⊂ λBG(y).
By Theorem 3(3), we have

capQ(γx, γy;G) ≤ capQ(λBG(x), λBG(y);G).

Since kG(x, y) ≥ 2 and λBG(x)∩λBG(y) = ∅ by Lemma 2.2, the assump-
tion that G satisfies a (τ, λ)-k-cap condition indicates that

capQ(λBG(x), λBG(y);G) ≤ τ

kG(x, y)Q−1
,

where τ > 0 and 0 < λ ≤ 1/(16c). Thus we get

capQ(γx, γy;G) ≤ τ

kG(x, y)Q−1
.

Because it follows from (4.11) and (4.13) that

capQ(γx, γy;G) ≥ C ′( log Δ(γx, γy)
)1−Q

,

we have

kG(x, y) ≤ C0 log Δ(γx, γy),

where C0 =
(
τ/C ′)1/(Q−1), and then, (4.12) leads to

kG(x, y) ≤ C0 log
(

3c

2λ2
rG(x, y)

)
. (4.14)

To construct the needed control function η in (4.9) based on (4.10) and
(4.14), let

η0(t) = max{η1(t), η2(t)}
for t ∈ (0,∞), where

η1(t) = 3ct and η2(t) = C0 log(3ct/2λ2).

Since both η1 and η2 are strictly increasing homeomorphisms, by elementary
computations, we see that η0 is also a strictly increasing homeomorphism on
(0,+∞) as well.

Since G is c-quasiconvex, [14, Theorem 2.7(1)] implies that for any x,
y ∈ G,

kG(x, y) ≥ log
(
1 + rG(x, y)

)
.

This shows that if rG(x, y) ≥ e2 − 1, then kG(x, y) ≥ 2. Let

t0 = e2 − 1.
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Then we infer from the fact η2(t) → +∞ as t → +∞ that there is t1 ∈ (t0,+∞)
such that η2(t1) = 2η0(t0). Let

η(t) =

⎧
⎪⎨

⎪⎩

η0(t) if t ∈ [0, t0],
max{η2(t), η3(t)} if t ∈ (t0, t1],
η2(t) if t ∈ (t1,+∞),

where

η3(t) =
η0(t0)
t1 − t0

t +
(t1 − 2t0)η0(t0)

t1 − t0
.

Then η is a strictly increasing homeomorphism. Moreover,

lim
t→+∞

η(t)
t

= lim
t→+∞

η2(t)
t

= 0,

which shows that the function η is slow. Then we conclude from (4.10) and
(4.14) that η satisfies (4.9), and hence, it follows from Theorem 2 that the
implication is true. �

5. An Example

In this section, we shall provide two examples which show that the assumption
of regularity in Theorem 1.1 can not be removed. Also, these examples demon-
strate that for a metric measure space with Hausdorff dimension Q, it may
not be Q-regular. Before the statement of these examples, let us introduce the
following definitions.

Definition 5.1. A metric measure space (X, d, μ) is said to be doubling if there
is a constant Cd ≥ 1 such that

μ(B(x, 2R)) ≤ Cdμ(B(x,R))

for all balls B(x,R) in X of radius 0 < R < diamX. Also, we call Cd a doubling
constant of X.

Definition 5.2. Suppose that (X, d, μ) is a metric measure space and 1 ≤ p <
∞. We say that (X, d, μ) admits a weak (1, p)-Poincaré inequality if there are
constants β ≥ 1 and Cp ≥ 1 such that for all balls B(x,R) in X with R > 0,

∫

B(x,R)

∣
∣u − uB(x,R)

∣
∣ dμ ≤ Cp (diamB(x,R))

(∫

βB(x,R)

ρpdμ

) 1
p

whenever u is a bounded continuous function on βB(x,R) and ρ is its very
weak gradient. Also, β is called a dilation constant of X. If β = 1, then we
say that (X, d, μ) admits a (1, p)-Poincaré inequality. We use the standard
notation

uA =
∫

A

udμ =
1

μ(A)

∫

A

udμ
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for the mean value of a function u in a measurable set A of positive measure.

The following known results are useful for the arguments in this section.

Theorem 7 [11, Theorem 9.10]. Suppose that (X, d, μ) is a Q-regular, geodesic
and proper metric measure space. Then (X, d, μ) admits a (1, Q)-Poincaré in-
equality if and only if it is a Q-Loewner space.

Theorem 8 [1, Theorem 4.4]. Assume that μ supports a weak (1, p)-Poincaré
inequality on X, and let G ⊂ X be an A-uniform domain. Then there exists
α0 > 0 such that for each α ≥ −α0, the measure dν(y) = dG(y)αdμ(y) is
doubling on G and supports a weak (1, p)-Poincaré inequality on G with a
dilation constant β = 3A.

The following result is from [13, Proposition 2.2] and the proof of [13,
Theorem 6.1].

Theorem 9. Fix N ≥ 3. Consider points x0, x1 ∈ G ⊂ R
n with |x0 − x1| ≥

dG(x0)/N , and let γ be a quasihyperbolic geodesic in G joining x0 and x1.
Then there exist a positive integer k with

N − 1
2

kG(x0, x1) ≤ k ≤ 2NkG(x0, x1), (5.1)

and successive points y0 = x0, y1, . . . , yk, yk+1 = x1 in γ along the direction
from x0 to x1 such that the closed balls {Bi = B(yi, ri)}, where ri = dG(yi)/N ,
satisfy that γ ⊂ B0 ∪ B1 ∪ · · · ∪ Bk+1, and for each i ∈ {0, 1, . . . , k},

N − 1
N

ri ≤ ri+1 ≤ N + 1
N

ri and Bi+1 ⊂
(
2 +

1
N

)
Bi ⊂ G. (5.2)

Now, we are ready to state and prove our first example.

Example 5.1. Suppose that X = (R2, | · |, μ), where | · | denotes the Euclidean
metric, the measure μ is defined by dμ(x) = (1 + |x|)dx and dx stands for
the usual Lebesgue measure on R

2. Let G = R
2 \ {0}. Then the following

statements are true.
1 X is doubling and lower 2-regular, but not 2-regular;
2 G is π/ log 3-uniform and π/ log 3-inner uniform;
3 G is a locally 2-Loewner and 2-Loewner space;
4 G satisfies a weak slice condition;
5 G does not satisfy any (τ, λ)-k-cap condition with τ > 0 and 0 < λ ≤

1/16.

Proof. (1). The first statement of the example directly follows from [12, 5.3].
(2). By [10, Corollary 6.16], it follows that for each pair of points x,

y ∈ G,

kG(x, y) ≤ (π/ log 3)jG(x, y),

which implies that G is π/ log 3-uniform by [21, Theorem 6.16]. Obviously, G
is π/ log 3-inner uniform as well.
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(3). It is obvious that G is locally compact. Since (G, | · |, dx) is locally
2-Loewner by [2, Theorem 6.47], and since dμ ≥ dx, we see that (G, | · |, dμ) is
locally 2-Loewner as well. Similarly, we also know that (G, |·|, dμ) is 2-Loewner.

(4). We already know that G is π/ log 3-uniform (see the statement (2)
of the example), and also, it follows from [7, Page 202] that G is c-LEC for all
c > 1. Then Theorem 6 ensures that G satisfies a weak slice condition.

(5). Let dμ1 = dx and dμ2 = |x|dx. Obviously, dμ = dμ1 + dμ2. Suppose
on the contrary that G satisfies a (τ, λ)-k-cap condition, i.e., there are constants
0 < λ < 1/16 and τ > 0 such that for each pair of points x, y ∈ G with
kG(x, y) ≥ 2,

cap2(λB(x), λB(y);G) ≤ τ

kG(x, y)
. (5.3)

�

To reach a contradiction, we establish the following proposition.

Proposition 5.1. For each t ∈ (1 − e−2, 1), there is a pair of points xt, yt ∈ G
with kG(xt, yt) ≥ 2 such that

cap2(λB(xt), λB(yt);G) ≥ C

and

kG(xt, yt) → +∞ as t → 1−,

where C > 0 is a constant and “t → 1−” means that 0 < t < 1 and t → 1.

For the proof, let N be an integer such that

N > max
{

65,
1
λ

}
.

For each t ∈ (1 − e−2, 1), let xt ∈ G with

|xt| =
2N2t

(N − 1)(1 − t)
, (5.4)

and yt = (1 − t)xt. Then yt ∈ tB(xt), and by [20, Lemma 2.2(1) and (2)],

log
1

1 − t
≤ kG(xt, yt) ≤ t

1 − t
. (5.5)

This implies that

kG(xt, yt) ≥ 2 and kG(xt, yt) → +∞ as t → 1−. (5.6)

Let

Et =
1
N

B(xt) and Ft =
1
N

B(yt).

Since

cap2(Et, Ft;G) ≤ cap2(λB(xt), λB(yt);G),
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it follows from (5.6) that to prove Proposition 5.1, we only need to show the
following assertion.

Assertion 5.1. There is a constant C > 0 such that

cap2(Et, Ft;G) ≥ C. (5.7)

It follows from [10, Lemma 5.1] that there is a quasihyperbolic geodesic
γ in G joining xt and yt. Since t ≥ 1 − e−2 and N > 65, we know that

|xt − yt| = t|xt| ≥ dG(xt)
N

. (5.8)

To get the lower bound in (5.7), we need some preparation which consists
of three steps.

Step 5.1. There is a finite sequence of closed balls {Bi} in G such that their
centers are in γ and each Bi satisfies (5.12) below.

It follows from (5.8) and Theorem 9 that there are an integer k and
successive points x0 = xt, x1, . . . , xk, xk+1 = yt in γ from xt to yt such that

N − 1
2

kG(xt, yt) ≤ k ≤ 2NkG(xt, yt), (5.9)

and for each 0 ≤ i ≤ k,
N − 1

N
ri ≤ ri+1 ≤ N + 1

N
ri and Bi+1 ⊂ 2N + 1

N
Bi, (5.10)

where Bi = B(xi, ri) and ri = dG(xi)/N .
Obviously, B0 = Et, Bk+1 = Ft, and it follows from (5.6) and (5.9) that

k ≥ 63. (5.11)

Since X is doubling, we get

μ(Bi) ≤ μ((2 + 1/N)Bi) ≤ Cdμ((1 + 1/(2N))Bi) ≤ C2
dμ((1/2 + 1/(4N))Bi),

where Cd denotes a doubling constant of X. Then it follows from the assump-
tion N ≥ 65 that

μ(Bi) ≤ μ((2 + 1/N)Bi) ≤ C2
dμ(Bi). (5.12)

Step 5.2. For each i ∈ {0, 1, . . . , k}, the quantities μ(Bi) and μ(Bi+1) are
equivalent. More precisely, we have

C ′
0μ(Bi) ≤ μ(Bi+1) ≤ C0μ(Bi), (5.13)

where

C0 = max

{(
N + 1
N − 1

)2

,
(N + 1)4

N(N − 1)3

}

and

C ′
0 = min

{(
N − 1
N + 1

)2

,
(N − 1)2(N2 − 2N − 1)

N(N + 1)3

}

.
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Let i ∈ {0, 1, . . . , k}. Since μ1(Bi) = πr2
i , it follows from (5.10) that

(
N − 1
N + 1

)2

μ1(Bi) ≤ μ1(Bi+1) ≤
(

N + 1
N − 1

)2

μ1(Bi). (5.14)

Next, we establish an equivalence between μ2(Bi) and μ2(Bi+1) as stated
in (5.17) below. For this, let ξ ∈ (2 + 1/N)Bi. Then

dG(xi) − 2N + 1

N
ri ≤ |xi| − |xi − ξ| ≤ |ξ| ≤ |xi| + |xi − ξ| ≤ dG(xi) +

2N + 1

N
ri,

which implies that

N2 − 2N − 1
N2

dG(xi) ≤ |ξ| ≤
(

N + 1
N

)2

dG(xi).

Moreover, Bi+1 ⊂ (2+1/N)Bi by (5.10) and μ2(Bi+1) =
∫

Bi+1
|ξ|dξ. It follows

that

N2 − 2N − 1
N2

dG(xi)μ1(Bi+1) ≤ μ2(Bi+1) ≤
(

N + 1
N

)2

dG(xi)μ1(Bi+1),

and thus, (5.14) gives

μ2(Bi+1) ≤ (N + 1)4

N2(N − 1)2
dG(xi)μ1(Bi) (5.15)

and

μ2(Bi+1) ≥ (N − 1)2(N2 − 2N − 1)
N2(N + 1)2

dG(xi)μ1(Bi). (5.16)

Moreover, for ζ ∈ Bi, we have

dG(xi) − ri = |xi| − |ζ − xi| ≤ |ζ| ≤ |ζ − xi| + |xi| = ri + dG(xi),

which implies that

N − 1
N

dG(xi) ≤ |ζ| ≤ N + 1
N

dG(xi).

Thus we get

N

(N + 1)dG(xi)
μ2(Bi) ≤ μ1(Bi) ≤ N

(N − 1)dG(xi)
μ2(Bi).

Now, we infer from (5.15) and (5.16) that

(N − 1)2(N2 − 2N − 1)
N(N + 1)3

μ2(Bi) ≤ μ2(Bi+1) ≤ (N + 1)4

N(N − 1)3
μ2(Bi). (5.17)

Since μ = μ1 + μ2, we know from (5.14) and (5.17) that (5.13) is true.
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Step 5.3. We establish an estimate on the quantity
∣
∣uBi+1 − uBi

∣
∣ as follows:

There is a constant C3 > 0 such that for any admissible function u of the
condenser (Et, Ft;G) and for each very weak gradient ρ of u,

∣
∣uBi+1 − uBi

∣
∣ ≤ C3

(∫

ωBi

ρ2dμ

) 1
2

(5.18)

hold for all i ∈ {0, 1, . . . , k},where

ω = 3π(2N + 1)/(N log 3).

Obviously,

ωBi ⊂ G, (5.19)

since N ≥ 65.

For the proof, let i ∈ {0, 1, . . . , k}, and let u be an admissible function
for the condenser (Et, Ft;G). This means that

u|Et
≥ 1 and u|Ft

≤ 0.

Since
∣
∣uBi+1 − uBi

∣
∣ ≤ Ii,1 + Ii,2, (5.20)

where Ii,1 =
∣
∣
∣uBi+1 − u 2N+1

N Bi

∣
∣
∣ and Ii,2 =

∣
∣
∣uBi

− u 2N+1
N Bi

∣
∣
∣, to estimate the

quantity
∣
∣uBi+1 − uBi

∣
∣, it suffices to estimate Ii,1 and Ii,2, respectively. We

first work on the quantity Ii,1. Since

Ii,1 ≤ μ (Bi+1)
−1

∫

Bi+1

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ,

we have

Ii,1 ≤ μ (Bi+1)
−1

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ (by (5.10))

≤ C ′−1
0 μ (Bi)

−1
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ (by (5.13))

≤ C2
d

C ′
0

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ. (by (5.12)) (5.21)

It is known that (R2, |·|, μ1) is 2-regular, geodesic, proper and 2-Loewner.
Then Theorem 7 implies that (R2, | · |, μ1) admits a (1, 2)-Poincaré inequality.
This ensures that there is a constant Cp,1 ≥ 1 such that for each very weak
gradient ρ of u,

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ1 ≤ Cp,1ri

(∫

2N+1
N Bi

ρ2dμ1

) 1
2

. (5.22)

As aforementioned, (R2, | · |, μ1) admits a (1, 2)-Poincaré inequality. By
the statement (2) of the example, G is π/ log 3-uniform. Then it follows from
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Theorem 8 that (G, | · |, μ2) admits a weak (1, 2)-Poincaré inequality with a
dilation constant β = 3π/ log 3. This means that there is a constant Cp,2 ≥ 1
such that for each very weak gradient ρ of u,

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ2 ≤ Cp,2ri

(∫

ωBi

ρ2dμ2

) 1
2

. (5.23)

To continue the estimate on Ii,1, we consider three cases according to the
possible positions of ωBi in X.

Claim 5.1. ωBi ⊂ B(0, 1).

Under this assumption, we get

dμ1 ≤ dμ ≤ 2dμ1

on ωBi. Then
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ 2

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ1

≤ 2Cp,1ri

(∫

2N+1
N Bi

ρ2dμ1

) 1
2

, (by (5.22))

and so, we get
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ 6

√
πCp,1

ω log 3

(∫

ωBi

ρ2dμ

) 1
2

. (5.24)

Claim 5.2. ωBi ⊂ X \ B(0, 1).

Under this assumption, we get

dμ2 ≤ dμ ≤ 2dμ2

on ωBi. Then
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ 2

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ2

≤ 2Cp,2ri

(∫

ωBi

ρ2dμ2

) 1
2

, (by (5.23))

and thus, we have
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ 2

√
2Cp,2

π
1
2 ω

(∫

ωBi

ρ2dμ

) 1
2

, (5.25)

since μ2(ωBi) ≥ 1/2μ(ωBi) ≥ 1/2μ1(ωBi).



115 Page 26 of 31 X. Wang and Z. Yang Results Math

Claim 5.3. ωBi ∩ B(0, 1) �= ∅ and ωBi ∩ (X \ B(0, 1)) �= ∅.
Proof. Let

T1 =
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ1 and T2 =

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ2.

Then
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ T1 + T2, (5.26)

since dμ1 ≤ dμ and dμ2 ≤ dμ.
It follows from the fact μ1(((2N + 1)/N)Bi) = π((2N + 1)ri/N)2 and

(5.22) that

T1 ≤ NCp,1

(2N + 1)π
1
2

(∫

2N+1
N Bi

ρ2dμ1

) 1
2

.

Thus we get

T1 ≤ NCp,1

(2N + 1)π
1
2

(∫

ωBi

ρ2dμ1

) 1
2

(since ((2N + 1)/N)Bi ⊂ ωBi)

≤ NCp,1

(2N + 1)π
1
2

(∫

ωBi

ρ2dμ

) 1
2

. (since dμ1 ≤ dμ) (5.27)

To estimate the quantity T2, we need some preparation. Let z1 ∈ B(0, 1)∩
ωBi. Then we get

|xi| ≤ |xi − z1| + |z1| <
ω

N
|xi| + 1,

which implies that

|xi| <
N

N − ω
.

Let z2 ∈ (X \ B(0, 1)) ∩ ωBi. Then we have

|xi| ≥ |z2| − |xi − z2| > 1 − ω

N
|xi|,

which ensures that

|xi| >
N

N + ω
.

These show that
N

N + ω
< |xi| <

N

N − ω
,

and thus,
1

N + ω
< ri <

1
N − ω

,
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since ri = |xi|/N . Now, we conclude that for any x ∈ ωBi,

N2 − 2Nω − ω2

N2 − ω2
< |xi| − |x − xi| ≤ |x| ≤ |x − xi| + |xi|

<
N + ω

N − ω
. (5.28)

We are ready to estimate T2. Since (5.23) implies

T2 ≤ Cp,2ri

μ2(ωBi)
1
2

(∫

ωBi

ρ2dμ2

) 1
2

,

and since (5.28) gives

μ2(ωBi) =
∫

ωBi

|z|dz ≥ Kr2
i ,

where K = πω2(N2−2Nω−ω2)
N2−ω2 , we obtain that

T2 ≤ Cp,2

K
1
2

(∫

ωBi

ρ2dμ2

) 1
2

≤ Cp,2

K
1
2

(∫

ωBi

ρ2dμ

) 1
2

, (5.29)

where, in the second inequality, the fact dμ2 ≤ dμ is applied.
Let

K ′ =
NCp,1

(2N + 1)π
1
2

+
Cp,2

K
1
2

.

Then we conclude from (5.26), (5.27) and (5.29) that
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ K ′

(∫

ωBi

ρ2dμ

) 1
2

. (5.30)

Let

M = max

{
6
√

πCp,1

ω log 3
,
2
√

2Cp,2

π
1
2 ω

,K ′
}

.

Then the combination of (5.24), (5.25) and (5.30) ensures that
∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ ≤ M

(∫

ωBi

ρ2dμ

) 1
2

, (5.31)

and so, we get from (5.21) that

Ii,1 ≤ H

(∫

ωBi

ρ2dμ

) 1
2

, (5.32)

where H = MC2
d/C ′

0. This is an upper bound on Ii,1 which we need.
Next, we work on the quantity Ii,2. Since

Ii,2 =
∣
∣
∣
∣μ (Bi)

−1
∫

Bi

(
u − u 2N+1

N Bi

)
dμ

∣
∣
∣
∣ ,



115 Page 28 of 31 X. Wang and Z. Yang Results Math

we have that

Ii,2 ≤ μ (Bi)
−1

∫

Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ

≤ μ (Bi)
−1

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ (since Bi ⊂ (2 + 1/N)Bi)

≤ C2
d

∫

2N+1
N Bi

∣
∣
∣u − u 2N+1

N Bi

∣
∣
∣ dμ (by (5.12))

≤ H ′
(∫

ωBi

ρ2dμ

) 1
2

, (by (5.31)) (5.33)

where H ′ = MC2
d . This is an upper bound on Ii,2 which we need.

By letting C3 = H + H ′, we know from (5.20), (5.32) and (5.33) that
(5.18) is true.

In the following, based on the relation (5.18), we are going to check the
estimate (5.7) in Assertion 5.1.

First, we need a lower bound for |x| for any x ∈ Et = (1/N)B(xt). Let
x ∈ Et. Then it follows from (5.4) that

|x| ≥ |xt| − |xt − x| ≥ 2N2t

(N − 1)(1 − t)
− 2Nt

(N − 1)(1 − t)
=

2Nt

1 − t
.

Since u|Et
≥ 1 and u|Ft

≤ 0, we have that

uEt
− uFt

≥
∫

Et

(1 + |x|)dx ≥ 2Nt

1 − t
,

and so, we obtain from (5.5) and (5.9) that

k ≤ 2NkG(xt, yt) ≤ 2Nt

1 − t
≤ uEt

− uFt
. (5.34)

Moreover, by (5.18), we get

uEt
− uFt

≤
k∑

i=0

|uBi+1 − uBi
| ≤ C3(k + 1)

1
2

(
k∑

i=0

∫

ωBi

ρ2dμ

) 1
2

. (5.35)

Then we deduce that

k ≤ C3(k + 1)
1
2

(
k∑

i=0

∫

ωBi

ρ2dμ

) 1
2

(by (5.34) and (5.35))

≤ C3(k + 1)
(∫

G

ρ2dμ

) 1
2

. (by (5.19)) (5.36)

It follows from (5.11) that 1 + k ≤ 2k, and thus, we infer from (5.36)
that ∫

G

ρ2dμ ≥
( 1

2C3

)2

= C,
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from which the estimate (5.7) in Assertion 5.1 follows. Hence Proposition 5.1
is proved as well.

Now, we are ready to get a contradiction. Since (5.6) shows that for each
t ∈ (1 − e−2, 1), kG(xt, yt) ≥ 2, we know from (5.3) and Proposition 5.1 that

C ≤ τ

kG(xt, yt)

hold for all t ∈ (1 − e−2, 1). This is impossible since (5.6) ensures that
kG(xt, yt) → +∞ as t → 1−. This contradiction shows that G does not satisfy
any (τ, λ)-k-cap condition. �

Similar arguments as in the proof of Example 5.1 guarantee that the
following example is true as well.

Example 5.2. Suppose that X = (R2 \ {0}, | · |, μ), where | · | denotes the
Euclidean metric, the measure μ is defined by dμ(x) = (1 + |x|)dx, and dx
stands for the usual Lebesgue measure on R

2. Then the following statements
are true.

(1) X is doubling and lower 2-regular, but not 2-regular;
(2) X is π/ log 3-uniform and π/ log 3-inner uniform;
(3) X is a locally 2-Loewner and 2-Loewner space;
(4) X satisfies a weak slice condition;
(5) X does not satisfy any (τ, λ)-k-cap condition with τ > 0 and 0 < λ ≤

1/16.

We end this paper with the following problem: Under the assumptions of
Theorem 1.1, are the following statements quantitatively equivalent: (1) G is
uniform and locally Q-Loewner; (2) G is Q-Loewner and Gromov hyperbolic?
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