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1. Introduction

Let G be a simple, connected and undirected graph of order n with vertex set
V (G) and edge set E(G). For a graph G, a vertex subset S is independent if
the induced subgraph G[S] has no edges. The maximum size of an independent
set in G is called the independence number of G and denoted by α(G). For
the vertex set {v1, v2, . . . , vn} of G, the adjacency matrix A(G) = (aij) of G is
defined as the n × n matrix whose ij-entry is 1 if vi and vj are adjacent or 0
otherwise. Since A(G) is a real symmetric matrix, all its eigenvalues are real.
The largest eigenvalue of A(G) is called the spectral radius of G and denoted
by ρ(G). By Perron-Frobenius Theorem, ρ(G) is simple and positive.

Many studies about the relation between the spectral radius and the
independence number have been done. In particular, it is important to find
a bound of the spectral radius of graphs satisfying certain conditions and to
classify the corresponding extremal graphs. In [3], Das and Mohanty gave an
upper bound for the spectral radius of bi-block graphs with given independence
numbers, where a block of a graph is a maximal connected subgraph having
no cut-vertex and a bi-block graph is a connected graph each of whose blocks
is a complete bipartite graph. Lou and Guo [9] extended the result of [3] and
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proved that among all bipartite graphs with given independence number α,
the maximum spectral radius is uniquely attained by the complete bipartite
graph Kα,n−α.

On the other hand, determining the graphs with the minimum spectral
radius among connected graphs with given independence number is considered
to be a tough problem. ([13, §4.4]). A graph with minimum spectral radius
among a given class of graphs is called a minimizer graph. Let Gn,α be the set
of simple connected graphs of order n with independence number α. In [14], Xu,
Hong, Shu and Zhai determined the minimizer graphs with the independence
number α = 1, 2, �n

2 �, �n
2 �+1, n− 3, n− 2, n− 1. Du and Shi in [4] determined

the minimizer graph for α = 3, 4 and n = kα for some integer k and Jin and
Zhang in [8] extended this results for all α and n = kα. In [9], Lou and Guo
proved that the minimizer graph in Gn,α must be a tree if α ≥ �n

2 �. They also
determined the extremal graphs when α = n − 4. Later, Hu, Huang and Lou
[7] gave a construction of the minimizer graphs for α ≥ �n

2 �.
In this paper, we determine the minimizer graph when α = �n

2 � − 1. To
state our main theorem, we fix notations. Let Cn be the cycle of length n
and let Pn be the path of length n. Let B(m, p, q) be the graph obtained by
attaching Cm and Cq at each end vertex of the path Pp. (See Fig. 2) The main
theorem of this paper is the following.

Theorem 1.1. Let G be the minimizer graph in Gn,�n
2 �−1 where n ≥ 7 and let

k = �n
3 �. Then

G ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Cn, if n is odd
B(k + 1, k − 1, k + 1), if n ≡ 0 (mod 6)
B(k, k, k), if n ≡ 2 (mod 6)
B(k − 1, k + 1, k − 1), if n ≡ 4 (mod 6)

Remark 1.2. For completeness, we state results for n ≤ 6, which can be
checked easily. The complete graph K3 and K4 are the only graph in G3,1 and
G4,1, respectively. The minimizer graph in G5,2 is C5 and in G6,2 is B(3, 1, 3).

This paper is organized as follows. In Sect. 2, we review necessary results.
In Sect. 3, we study the spectral radius of bicyclic graphs. In Sect. 4, we prove
Theorem 1.1. For undefined terms or notations of graph theory, see West [15].
For basic properties of spectral graph theory, see Brouwer and Haemers [1] or
Godsil and Royle [5].

2. Preliminaries

In this section, we introduce relevant tools and results.

Lemma 2.1 (Perron-Frobenius theorem). Let G be a connected graph and A be
the adjacency matrix of G. Then we have the following.

1. The spectral radius ρ(G) of G is a positive simple eigenvalue of A
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· · ·

Figure 1. D̃n

2. There is a unique positive unit eigenvector of A corresponding to ρ(G).
This vector is called the Perron vector of G.

3. If there exists a nonzero vector y with y ≥ 0 and a number σ such that
Ay ≤ σy and Ay �= σy, then y > 0 and ρ(G) < σ.

Lemma 2.2 ([2, Interlacing Theorem]). Let G be a graph with n vertices and
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and let H be an induced subgraph of G with
m vertices and eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μm. Then for 1 ≤ i ≤ m,

λi ≥ μi ≥ λn−m+i.

In other words, the eigenvalues of H interlace the eigenvalues of G.

Lemma 2.3. ([2, Theorem 1.3.10]) Let G be a connected graph. Then deleting
an edge of G strictly decreases its spectral radius.

By Lemma 2.3, the characterization of the graph having maximal spectral
radius in Gn,α is immediate. The join of graphs G and H, written as G ∨ H,
is the graph union of G and H together with all the edges joining each vertex
of G to each vertex of H.

Theorem 2.4 ([9]). Let G ∈ Gn,α. Then ρ(G) ≤ ρ(Kn−α ∨ αK1) with equality
if and only if G ∼= Kn−α ∨ αK1.

We introduce operations on graphs which decreases the spectral radius.
An internal path of a graph is a sequence of vertices u1, u2, · · · , uk such that
all ui are distinct (except possibly u1 = uk), the degree d(ui) satisfy

d(u1) ≥ 3, d(u2) = · · · = d(uk−1) = 2, d(uk) ≥ 3,

and ui is adjacent to ui+1 for i = 1, 2, · · · , k − 1. Note that two adjacent
vertices with degree at least 3 form an internal path.

Lemma 2.5 ([6, Proposition 2.4]). Let G be a graph not isomorphic to the
graph D̃n depicted in Fig. 1. Then the spectral radius strictly decreases after
inserting a vertex of degree 2 to an internal path of G (i.e. after deleting an
edge uv in an internal path and adding a new vertex w and two new edges uw
and wv).

Thus, by Lemmas 2.2 and 2.5, removing a vertex outside of an internal
path and reinserting it into the internal path strictly decreases the spectral
radius while the number of vertices remains unchanged. We will repeatedly
use this operation.
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For the Perron vector x of a graph G, we denote by xu the component
of x corresponding to a vertex u ∈ V (G). A cut edge is a single edge whose
removal disconnects the graph.

Lemma 2.6 ([16, Theorem 1]). Let G be a connected graph with the Perron
vector x. Let u, v be two vertices of G. Suppose that u1, u2, . . . , us(1 ≤ s ≤
d(u)) are some vertices of NG(u)\NG(v). Let G∗ be the graph obtained from G
by deleting the edges (u, ui) and adding the edges (v, ui)(1 ≤ i ≤ s). If xu ≤ xv,
then ρ(G) < ρ(G∗).

Lemma 2.7 ([7, Lemma 3.5]). Let G be a connected graph with the Perron
vector x. Suppose that vw1 is a cut edge of G, NG(v) = {w1, w2, . . . , wt}(t ≥ 3)
and xw1 = minw∈NG(v) xw. Let G′ be a graph obtained from G by replacing v
with two new vertices v′, v′′ and adding new edges v′w1, v

′w2, . . . , v
′ws and

v′′w1, v
′′ws+1, v

′′ws+2, . . . , v
′′wt for some 2 ≤ s ≤ t − 1. Then ρ(G′) ≤ ρ(G),

with equality if and only if t = 3 and xw1 = xw2 = xw3 .

3. Spectral Radius of Bicyclic Graphs

A connected graph G is called a unicyclic graph if |E(G)| = |V (G)| and a
bicyclic graph if |E(G)| = |V (G)|+1. For even n, we will see that the minimizer
graphs in Gn,�n

2 �−1 are bicyclic graphs. In this section, we present results on
the spectral radius of bicyclic graphs, which will be used in the proof of our
main theorem.

Definition 3.1. Let m, p, q be positive integers.
1. Let P (m, p, q) be the graph obtained by identifying each end vertex of

the path graphs Pm, Pp and Pq. We assume at most one of m, p, q is one.
2. Let C(m, q) be the graph obtained by identifying a vertex of the cycle

graphs Cm and Cq. We assume m, q ≥ 3.
3. Let B(m, p, q) be the graph obtained by attaching Cm and Cq at each

end vertex of the path Pp. We assume m, q ≥ 3 and p ≥ 1.

These graphs are depicted in Fig. 2. Each of m, p, q is the number of edges
for a path or a cycle. The number of vertices of P (m, p, q) and B(m, p, q) is
m+p+q−1 and that of C(m, q) is m+q−1. We label each vertex of P (m, p, q)
and B(m, p, q) as shown in Fig. 2.

Note that a graph G with |E(G)| ≥ |V (G)| + 1 contains a subgraph
isomorphic to either P (m, p, q), C(m, q) or B(m, p, q) for some integer m, p, q.
We review results of [10] and [11].

Lemma 3.2 ([11]). For any integers m ≥ 3 and p ≥ 1, ρ(P (m, p,m)) =
ρ(B(m, p,m)).

In [11], Simić and Kocić proved Lemma 3.2 by observing that the Per-
ron vectors and the spectral radii of the two graphs should satisfy the same
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Figure 2. The bicyclic graphs P (m, p, q), C(m, q) and B(m, p, q)

equations. We remark that Lemma 3.2 can also be seen by using equitable
partition. Namely, the vertex sets

{u0, v0}, {u1, v1, um−1, vm−1}, . . . , {u� m
2 �, v�m

2 �, u�m
2 �, v�m

2 �},

{w1, wp−1}, . . . {w� p
2 �, w� p

2 �}
on both graphs form equitable partitions having the same quotient matrix.
Hence, they have the same spectral radius.

Lemma 3.3 ([11]).

1. If m+p+q is fixed, ρ(P (m, p, q)) decreases as max(m, p, q)−min(m, p, q)
decreases.

2. If m+q is fixed, ρ(C(m, q)) decreases as max(m, q)−min(m, q) decreases.

However, for the graphs B(m, p, q), the difference between parameters is
not sufficient to compare their spectral radii, unless we fix the middle param-
eter.

Lemma 3.4 ([10]). If p and m + q are fixed, ρ(B(m, p, q)) decreases as
max(m, q) − min(m, q) decreases.

Let Bn be the set of all bicyclic graphs with order n. By Lemmas 2.2
and 2.5, the minimizer graph in Bn has no vertices of degree one, because
otherwise we can remove that vertex and reinsert it to an internal path to get
a graph with less spectral radius. Also, by Lemmas 3.3 and 3.4, it is expected
that the minimizer graph is either P (m, p, q) or B(m, p, q) where the difference
max(m, p, q) − min(m, p, q) is as small as possible. In [11], Simić proved that
this is the case.

Lemma 3.5 ([10]). Assume n ≥ 7 and let k = �n
3 �. The minimizer graphs in

Bn are P (k, n + 1 − 2k, k) and B(k, n + 1 − 2k, k).

Now, we present a few comparison results between the spectral radius of
bicyclic graphs. Let

x = (xu0 , . . . , xum−1 , xw1 , . . . , xwp−1 , xv0 , . . . , xvq−1)
T
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be the Perron vector of the graph B(m, p, q) and let ρ = ρ(B(m, p, q)). Then
we have

ρxv =
∑

u∼v

xu. (1)

We will use the following elementary lemma to determine x and ρ.

Lemma 3.6 ([10, Lemma 1]). Define

fi(t, k, a, b) =
b sinh it + a sinh (k − i)t

sinh kt
.

The difference equation

ρxi+1 = xi + xi+2 (i = 0, . . . k − 2) with x0 = a, xk = b (2)

has the solution xi = fi(tρ, k, a, b), where tρ = ln(ρ+
√

ρ2−4

2 ) or equivalently
ρ = 2 cosh tρ.

Assume xu0 = a and xv0 = b. By Lemma 3.6, we have

xui
= fi(tρ,m, a, a) for i = 1, . . . , m − 1,

xwi
= fi(tρ, p, a, b) for i = 1, . . . , p − 1,

xvi
= fi(tρ, q, b, b) for i = 1, . . . , q − 1.

The numbers a and b are determined by equations (1) at vertices u0 and v0,
that is,

2a cosh tρ = 2f1(tρ,m, a, a) + f1(tρ, p, a, b),

2b cosh tρ = 2f1(tρ, q, b, b) + fp−1(tρ, p, a, b).

Rearranging terms using the definition of fi, we get

a cosh tρ − f1(tρ,m, a, a) − 1
2
f1(tρ, p, a, a) = −a − b

2
sinh tρ
sinh ptρ

, (3)

a cosh tρ − f1(tρ, q, a, a) − 1
2
f1(tρ, p, a, a) =

a(a − b)
2b

sinh tρ
sinh ptρ

. (4)

Remark 3.7. Dividing both sides of (3), (4) by a and subtracting (3) from (4),
we have

f1(tρ,m, 1, 1) − f1(tρ, q, 1, 1) = (a − b)
(

1
2a

+
1
2b

)
sinh tρ
sinh ptρ

.

It is easy to check that f1(tρ, x, 1, 1) is strictly decreasing in x.( [10, Lemma
3]) Thus, if m > q then a < b and if m = q then a = b.

The following is a slight modification of [10, Equation (11)].

Lemma 3.8. Let m, p be distinct positive integers greater than or equal to 3.
Then,

ρ(B(m, p,m)) < ρ(B(m,m, p)).
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Proof. For the Perron vector

x = (xu0 , . . . , xum−1 , xw1 , . . . , xwm−1 , xv0 , . . . , xvp−1)
T

of B(m,m, p), let xu0 = a and xv0 = b. Let σ = ρ(B(m,m, p)) and tσ =
ln(σ+

√
σ2−4
2 ). By the above discussion, a and b must satisfy

2a cosh tσ = 2f1(tσ,m, a, a) + f1(tσ,m, a, b),

2b cosh tσ = 2f1(tσ, p, b, b) + fp−1(tσ,m, a, b).

By rearranging terms as before, we have

a cosh tσ − f1(tσ,m, a, a) − 1
2
f1(tσ,m, a, a) = −a − b

2
sinh tσ

sinh mtσ
, (5)

a cosh tσ − f1(tσ, p, a, a) − 1
2
f1(tσ,m, a, a) =

a(a − b)
2b

sinh tσ
sinh mtσ

. (6)

Consider a vector

x′ = (x′
u0

, . . . , x′
um−1

, x′
w1

, . . . , x′
wp−1

, x′
v0

, . . . , x′
vm−1

)T

constructed as

x′
ui

= x′
vi

= fi(tσ,m, a, a) and x′
wj

= fj(tσ, p, a, a)

for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , p − 1, which corresponds to the graph
B(m, p,m). By construction, σx′

v =
∑

u∼v x′
u for all degree two vertices v of

B(m, p,m) by Lemma 3.6. We claim that σx′
v >

∑
u∼v x′

u for v = u0 or v = v0,
which implies ρ(B(m, p,m)) < σ by Theorem 2.1.

For v = v0, we have

σx′
v0

−
∑

u∼v0

x′
u = 2a cosh tσ − 2f1(tσ,m, a, a) − fp−1(tσ, p, a, a)

= a

(
a − b

2b
− a − b

2a

)
sinh tσ

sinh mtσ
(by adding (5) and (6))

= a(a − b)
(

1
2b

− 1
2a

)
sinh tσ

sinh mtσ

=
(a − b)2

2b

sinh tσ
sinh mtσ

.

Since σ > 2 by Lemma 4.1, tσ > 0 and hence σx′
v0

>
∑

u∼v0
x′

u. By the same
argument, we also have σx′

u0
>

∑
u∼u0

x′
u, which completes the proof. �

Lemma 3.9. Let m, p, q be positive integers with m ≥ q ≥ 3. Then,

ρ(B(m, p, q)) < ρ(C(m + p, q)).

Proof. Let x be the Perron vector of B(m, p, q). By Remark 3.7, we have
xu0 ≤ xv0 . Then Lemma 2.6 applies, where we take u = u0, v = v0, s = 1 and
u1 ∈ N(u) \ N(v). �
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· · ·

(b) G = B(m, p− 1, q + 2)

Figure 3. ρ(G′) ≤ ρ(G)

Lemma 3.10. Let m, p be positive integers with min(m, p) ≥ q ≥ 3. Then,

ρ(B(m, p, q)) ≥ ρ(B(m, p − 1, q + 2)),

with equality if and only if m = p = q.

Proof. We apply Lemma 2.7. Let G be the graph B(m, p, q) whose vertices are
labelled as in Fig. 3 (a). Then vw1 is a cut edge of G. For the Perron vector
x = (xu |u ∈ V (G)), we have

xw1 = f1(t, p, xv, xz),

xw2 = f1(t, q, xv, xv) = fq−1(t, q, xv, xv) = xw3

where ρ(G) = 2 cosh t. Since m ≥ q, we have xz ≤ xv by Remark 3.7. Thus,

f1(t, q, xv, xv) ≥ f1(t, p, xv, xv) ≥ f1(t, p, xv, xz),

where the first inequality holds because p ≥ q and f1(tρ, x, xv, xv) is strictly
decreasing in x. Therefore xw1 = minw∈NG(v) xw and hence ρ(B(m, p, q)) ≥
ρ(B(m, p − 1, q + 2)) by Lemma 2.7.

The equality holds if and only if xw1 = xw2 = xw3 . In the above inequal-
ity, this holds if and only if xz = xv and p = q, or equivalently
m = p = q. �

4. Minimizer Graphs with Independence Number �n
2
� − 1

In this section, we determine the graphs with minimal spectral radius in
Gn,�n

2 �−1. Since α(T ) ≥ �n
2 � for any tree T of order n, we will only consider

non-tree graphs. In [12], Smith showed that the only graphs with spectral ra-
dius less than two are the finite simply-laced Dynkin diagrams and the only
graphs with spectral radius equal to two are the extended simply-laced Dynkin
diagrams. The only non-tree graph among them is the cycle Cn. Hence we have
the following.

Lemma 4.1 ([12]). Let G be a non-tree graph of order n. Then ρ(G) ≥ 2 and
ρ(G) = 2 if and only if G is the cycle Cn.

Since α(Cn) = �n
2 � − 1 for odd n, the following is immediate.
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Theorem 4.2. When n is odd, the minimizer graph in Gn,�n
2 �−1 is the cycle

Cn.

From now on, we assume that n is even. By Lemma 2.3, the minimizer
graphs should have as small number of edges as possible. For a unicyclic graph
G of order n, we have α(G) ≥ �n

2 . ([15, Exercise 3.1.41]) Hence when n is
even, α(G) ≥ n

2 > �n
2 � − 1 for any unicyclic graph of order n.

Now we consider the bicyclic graphs. It is elementary to check the inde-
pendence number of graphs P (m, p, q), C(m, q) and B(m, p, q).

Lemma 4.3. Let n be the order of the graph.

1. α(P (m, p, q)) =

{
�n
2 � − 1, if exactly two of m, p, q are odd,

�n
2 �, otherwise.

2. α(C(m, q)) =

{
�n
2 � − 1, if both of m, q are odd,

�n
2 �, otherwise.

3. α(B(m, p, q)) =

{
�n
2 � − 1, if at least two of m, p, q are odd,

�n
2 �, otherwise.

When k = �n
3 � is odd, that is, when n ≡ 2 (mod 6), the graphs B(k, k, k)

and P (k, k, k) are minimizer graphs in Bn by Lemma 3.5. By Lemma 4.3,
α(B(k, k, k)) = �n

2 �− 1 and α(P (k, k, k)) = �n
2 �. Hence we have the following.

Theorem 4.4. If n ≡ 2 (mod 6) and n ≥ 7, the minimizer graph in Gn,�n
2 �−1

is isomorphic to B(k, k, k), where k = �n
3 �.

Proof. A graph G in Gn,�n
2 �−1 has at least n+1 edges. Since removing an edge

strictly decreases the spectral radius, ρ(G) ≥ ρ(H) for some bicyclic graph H.
Hence ρ(G) ≥ ρ(H) ≥ ρ(B(k, k, k)) with equality if and only if G = B(k,
k, k). �

Now, it remains to consider the cases n ≡ 0 or 4 (mod 6). Our strategy
is as follows. Since a graph G in Gn,�n

2 �−1 has more than n edges, G contains
a minimal bicyclic subgraph, which is isomorphic to one of P (m, p, q), C(m, q)
or B(m, p, q). We first show that if G contains either C(m, q) or P (m, p, q),
then ρ(G) is greater than that of the minimizer graph in Theorem 1.1. If
G does not contain any of C(m, q) or P (m, p, q), all cycles in G are disjoint
and G contains some B(m, p, q) as an induced subgraph. We prove that in
this case the minimum spectral radius is attained by the minimizer graph in
Theorem 1.1. Our main tool is Lemma 2.2 and Lemma 2.5. Namely, we take
a minimal bicyclic subgraph and remove all vertices outside of it and reinsert
them to appropriately chosen internal paths of the bicyclic subgraph. This
process will decrease the spectral radius and we end up with the minimizer
graph.
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Remark 4.5. Note that when n ≡ 0 or 4 (mod 6), we have n = 3k or 3k − 2,
respectively, where k = �n

3 � is even. Hence if the bicyclic graphs P (m, p, q) and
B(m, p, q) have order n, we have m + p + q = 3k + 1, or 3k − 1, respectively.

Proposition 4.6. Let n be an even integer with n ≥ 7 and k = �n
3 � even.

Suppose that a connected graph G of order n contains C(m, q) as a subgraph
for some m, q ≥ 3.

1. If n ≡ 0 (mod 6), then ρ(G) > ρ(B(k + 1, k − 1, k + 1)).
2. If n ≡ 4 (mod 6), then ρ(G) > ρ(B(k − 1, k + 1, k − 1)).

Proof. By Lemmas 2.2, 2.3 and 2.5, one can remove all vertices and edges
outside of C(m, q) and reinsert vertices to one of the cycles, for example to the
cycle of length q, in C(m, q) to get a graph with less spectral radius. Hence we
have ρ(C(m,n − m + 1)) ≤ ρ(G). Then,

ρ(G) ≥ ρ(C(m,n − m + 1)) ≥ ρ
(
C

(n

2
+ 1,

n

2

))
(by Lemma 3.3)

> ρ
(
B

(n

2
, 1,

n

2

))
(by Lemma 3.9)

= ρ
(
P

(n

2
, 1,

n

2

))
(by Lemma 3.2)

Since n ≥ 7, we have n/2 − 1 > 2. Thus when n ≡ 0 (mod 6), that is, when
n = 3k,

ρ
(
P

(n

2
, 1,

n

2

))
> ρ(P (k + 1, k − 1, k + 1)) = ρ(B(k + 1, k − 1, k + 1)),

by Lemma 3.2 and Lemma 3.3. The case for n ≡ 4 (mod 6) is similar. �

Proposition 4.7. Let n be an even integer with n ≥ 7 and k = �n
3 � even.

Suppose that a connected graph G of order n contains P ∗ = P (m∗, p∗, q∗) as
a subgraph for some integers m∗, q∗ ≥ 2 and p∗ ≥ 1.

1. If n ≡ 0 (mod 6) and G � P (k, k + 1, k), then

ρ(G) ≥ ρ(B(k + 1, k − 1, k + 1))

with equality if and only if G ∼= P (k + 1, k − 1, k + 1).
2. If n ≡ 4 (mod 6) and G � P (k, k − 1, k), then

ρ(G) ≥ ρ(B(k − 1, k + 1, k − 1))

with equality if and only if G ∼= P (k − 1, k + 1, k − 1).

Proof. Case 1. n ≡ 0 (mod 6)
Note that we may assume that P ∗

� P (k, k +1, k). Indeed, if G contains
P (k, k + 1, k) as a proper subgraph, that is, G is P (k, k + 1, k) with at least
one extra edge between vertices, then one can see that G contains P (m, p, q)
with m + p + q < 3k + 1, which can be chosen to be P ∗.
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Suppose that m∗ + p∗ + q∗ = 3k + 1. Since P ∗
� P (k, k + 1, k), we

have max(m∗, p∗, q∗) − min(m∗, p∗, q∗) ≥ 2. Therefore, by Lemma 3.3 and
Lemma 3.2,

ρ(G) ≥ ρ(P ∗) ≥ ρ(P (k + 1, k − 1, k + 1)) = ρ(B(k + 1, k − 1, k + 1)).

In this case, the equality holds if and only if G ∼= P (k + 1, k − 1, k + 1).
Now suppose that m∗ + p∗ + q∗ < 3k + 1. If (m∗, p∗, q∗) �= (k, k, k), by

removing all the vertices and edges outside of P ∗ and reinserting vertices to
the longest internal path in P ∗, one can find (m′, p′, q′) such that m′ +p′ +q′ =
3k+1, max(m′, p′, q′)−min(m′, p′, q′) ≥ 2 and ρ(P (m′, p′, q′)) < ρ(P ∗) < ρ(G).
Hence by the same argument as above, we have ρ(G) > ρ(B(k+1, k−1, k+1)).

Finally, if (m∗, p∗, q∗) = (k, k, k), then by Lemma 3.2 and Lemma 3.10,
we have

ρ(G) > ρ(P (k, k, k)) = ρ(B(k, k, k)) = ρ(B(k, k − 1, k + 2)).

Since ρ(B(k, k − 1, k + 2)) > ρ(B(k + 1, k − 1, k + 1)), we are done.

Case 2. n ≡ 4 (mod 6)
The proof is parallel to Case 1. We may assume that P ∗

� P (k, k −1, k).
Then, by removing all the vertices and edges outside of P ∗ and reinserting
vertices to the longest internal path in P ∗, one can find (m′, p′, q′) such that
m′ +p′ +q′ = 3k−1, max(m′, p′, q′)−min(m′, p′, q′) ≥ 2 and ρ(P (m′, p′, q′)) ≤
ρ(P ∗) ≤ ρ(G). Thus

ρ(G) ≥ ρ(P (m′, p′, q′)) ≥ ρ(P (k − 1, k + 1, k − 1)) = ρ(B(k − 1, k + 1, k − 1)).

The equality holds if and only if G ∼= P (k − 1, k + 1, k − 1). Therefore, the
proof is complete. �

By Lemma 4.3, P (k, k + 1, k) and P (k + 1, k − 1, k + 1) in the case n ≡ 0
(mod 6) and P (k, k−1, k) and P (k−1, k+1, k−1) in the case n ≡ 4 (mod 6)
are not in Gn,�n

2 �−1. Hence by Proposition 4.6 and Proposition 4.7, we now
assume that the graph G does not contain C(m, q) or P (m, p, q) as a subgraph.
This condition is equivalent to the condition that all cycles in G are mutually
disjoint.

Proposition 4.8. Let n be an even integer with n ≥ 7 and k = �n
3 � even. Let

G ∈ Gn,�n
2 �−1. Suppose that the cycles in G are mutually disjoint.

1. If n ≡ 0 (mod 6), then

ρ(G) ≥ ρ(B(k + 1, k − 1, k + 1))

with equality if and only if G ∼= B(k + 1, k − 1, k + 1).
2. If n ≡ 4 (mod 6), then

ρ(G) ≥ ρ(B(k − 1, k + 1, k − 1))

with equality if and only if G ∼= B(k − 1, k + 1, k − 1).
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Proof. Since G ∈ Gn,�n
2 �−1 has at least n + 1 edges, G contains at least two

disjoint cycles. So, G contains B∗ = B(m∗, p∗, q∗) for some integers m∗, q∗ ≥ 3
and p∗ ≥ 1. We choose B∗ having the minimum p∗ so that B∗ is an induced
subgraph of G.

Case 1. n ≡ 0 (mod 6)
Subcase 1a. m∗ + p∗ + q∗ = n + 1 = 3k + 1.
Since B∗ is an induced subgraph of G, we have G = B∗ = B(m∗, p∗, q∗)

and moreover m∗, p∗, q∗ are all odd by Lemma 4.3.
First, assume that p∗ = k + 1. Then (m∗, q∗) �= (k, k) because k is even

and hence |m∗ − q∗| ≥ 2. Thus,

ρ(G) = ρ(B(m∗, k + 1, q∗)) ≥ ρ(B(k + 1, k + 1, k − 1)) (by Lemma 3.4)

> ρ(B(k + 1, k − 1, k + 1)) (by Lemma 3.8)

Now assume p∗ �= k + 1. Then we have |m∗+q∗

2 − p∗| ≥ 2 with equality if and
only if (m∗, p∗, q∗) = (k + 1, k − 1, k + 1). So,

ρ(G) = ρ(B(m∗, p∗, q∗)) ≥ ρ(B(
m∗ + q∗

2
, p∗,

m∗ + q∗

2
)) (by Lemma 3.4)

= ρ(P (
m∗ + q∗

2
, p∗,

m∗ + q∗

2
)) (by Lemma 3.2)

≥ ρ(P (k + 1, k − 1, k + 1)) (by Lemma 3.3)

= ρ(B(k + 1, k − 1, k + 1)). (by Lemma 3.2)

Subcase 1b. m∗ + p∗ + q∗ < 3k + 1.
First assume that p∗ �= k or k + 1. Then it is not hard to see that

by removing all vertices outside of B∗ and reinserting them to appropriately
chosen internal paths in B∗, one can find (m′, p′, q′) such that m′ + p′ + q′ =
3k+1, p′ is odd, p′ �= k+1 and ρ(B(m′, p′, q′)) < ρ(B∗) < ρ(G). Then we have
|m′+q′

2 − p′| ≥ 2 with equality if and only if (m′, p′, q′) = (k + 1, k − 1, k + 1).
Thus by the similar argument as above,

ρ(G) > ρ(B(m′, p′, q′)) ≥ ρ(B(k + 1, k − 1, k + 1)).

Now assume that p∗ = k or k + 1. Suppose that (m∗, p∗, q∗) �= (k, k, k).
Then by removing all vertices outside of B∗ and reinserting them to internal
paths in B∗, one can find (m′, p′, q′) such that m′ +p′ +q′ = 3k+1, p′ = k+1,
m′ �= q′ and ρ(B(m′, p′, q′)) < ρ(B∗) ≤ ρ(G). Without loss of generality, we
may assume m′ > q′. Since m′ + q′ = 2k, we have m′ ≥ k + 1 > k − 1 ≥ q′.
Thus,

ρ(G) > ρ(B(m′, p′, q′)) ≥ ρ(B(k + 1, k + 1, k − 1))) (by Lemma 3.4)

> ρ(B(k + 1, k − 1, k + 1)) (by Lemma 3.8)

Finally, suppose that (m∗, p∗, q∗) = (k, k, k). In this case, the graph
G is the graph B(k, k, k) with an extra vertex adjacent to some vertices of
B(k, k, k). By Lemma 4.3, α(B(k, k, k)) = �n−1

2 � = n
2 . Since an independent
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set in B(k, k, k) remains independent in G, this implies α(G) ≥ n
2 , which is a

contradiction.
Therefore, we conclude that ρ(G) ≥ ρ(B(k + 1, k − 1, k + 1)) and we can

check in the proof that the equality holds if and only if G ∼= B(k+1, k−1, k+1).

Case 2. n ≡ 4 (mod 6)
Subcase 2a. m∗ + p∗ + q∗ = n + 1 = 3k − 1.
By choice of B∗, G should not have extra edges other than edges in B∗.

So, we have G = B∗ = B(m∗, p∗, q∗) and moreover m∗, p∗, q∗ are all odd by
Lemma 4.3.

First assume that p∗ = k − 1. Then (m∗, q∗) �= (k, k) because k is even
and hence |m∗ − q∗| ≥ 2. Thus,

ρ(G) = ρ(B(m∗, k − 1, q∗)) ≥ ρ(B(k + 1, k − 1, k − 1)) (by Lemma 3.4)

> ρ(B(k − 1, k + 1, k − 1)) (by Lemma 3.8)

Now assume p∗ �= k − 1. Then we have |m∗+q∗

2 − p∗| ≥ 2 with equality if and
only if (m∗, p∗, q∗) = (k − 1, k + 1, k − 1). So,

ρ(G) = ρ(B(m∗, p∗, q∗)) ≥ ρ(B(
m∗ + q∗

2
, p∗,

m∗ + q∗

2
)) (by Lemma 3.4)

= ρ(P (
m∗ + q∗

2
, p∗,

m∗ + q∗

2
)) (by Lemma 3.2)

≥ ρ(P (k − 1, k + 1, k − 1)) (by Lemma 3.3)

= ρ(B(k − 1, k + 1, k − 1)). (by Lemma 3.2)

Subcase 2b. m∗ + p∗ + q∗ < 3k − 1.
First assume that p∗ �= k − 2 or k − 1. Then it is not hard to see that

by removing all vertices outside of B∗ and reinserting them to appropriately
chosen internal paths in B∗, one can find (m′, p′, q′) such that m′ + p′ + q′ =
3k−1, p′ is odd, p′ �= k−1 and ρ(B(m′, p′, q′)) < ρ(B∗) ≤ ρ(G). Then we have
|m′+q′

2 − p′| ≥ 2 with equality if and only if (m′, p′, q′) = (k − 1, k + 1, k − 1).
By the similar argument as above,

ρ(G) > ρ(B(m′, p′, q′)) ≥ ρ(B(k − 1, k + 1, k − 1)).

Now assume that p∗ = k − 2 or k − 1. Suppose that (m∗, p∗, q∗) �=
(k, k − 2, k). Then by removing all vertices outside of B∗ and reinserting them
to internal paths in B∗, one can find (m′, p′, q′) such that m′ +p′ +q′ = 3k−1,
p′ = k − 1, m′ �= q′ and ρ(B(m′, p′, q′)) < ρ(B∗) ≤ ρ(G). Without loss of
generality, we may assume m′ > q′. Since m′ + q′ = 2k, we have m′ ≥ k + 1 >
k − 1 ≥ q′. Thus,

ρ(G) > ρ(B(m′, p′, q′)) ≥ ρ(B(k + 1, k − 1, k − 1))) (by Lemma 3.4)

> ρ(B(k − 1, k + 1, k − 1)) (by Lemma 3.8)

Finally, suppose that (m∗, p∗, q∗) = (k, k − 2, k). In this case, the graph
G is the graph B(k, k − 2, k) with an extra vertex adjacent to some vertices
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of B(k, k − 2, k). By Lemma 4.3, α(B(k, k − 2, k)) = �n−1
2 � = n

2 . Since an
independent set in B(k, k−2, k) remains independent in G, this implies α(G) ≥
n
2 , which is a contradiction.

Therefore, we conclude that ρ(G) ≥ ρ(B(k − 1, k + 1, k − 1)) and we can
check in the proof that the equality holds if and only if G ∼= B(k − 1, k + 1,
k − 1). �

By Proposition 4.6, Proposition 4.7 and Proposition 4.8, the proof of
Theorem 1.1 is complete.
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[11] Simić, S.K., Lj, V.: Kocić, On the largest eigenvalue of some homeomorphic
graphs. Publ. Inst. Math. (Beograd) 40(54), 3–9 (1986)

[12] Smith, J.H.: Some properties of the spectrum of a graph, in: R. Guy et al.(Eds.),
Combinatorial Structures and their applications, Proc. Conf. Calgary, 1969, Gor-
don and Breach, New York, pp. 403-406 (1970)
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