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Abstract. Let E be a closed subset of the unit circle T, and let α ∈
(0, 1). Nikolski’s result states that if the Hausdorff dimension of E is
strictly greater than α, then for any operator T on a separable Hilbert
space such that the point spectrum σp(T ) of T contains E, the series∑

n nα−1‖T n‖−2 converges. A partial converse of this result has been
obtained by El-Fallah and Ransford. Namely they constructed, for any α
strictly greater than the upper box dimension of E, an operator T on a

separable Hilbert space such that σp(T ) contains E and 1
n

∑n−1
k=0

∥
∥T k

∥
∥2 �

nα. In this paper, we improve on this latter result for regular sets. Indeed,
for any Ahlfors–David regular set E and for any α strictly greater than
the Hausdorff dimension of E there exists an operator T on a separable
Hilbert space such that σp(T ) contains E and ‖T n‖2 � nα.
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1. Introduction

Let T be a bounded linear operator on a complex Banach space X. The unit
circle is denoted by T, while σp(T ) := {λ ∈ C : ker(T − λI) �= ∅} represents
the point spectrum of T . Jamison [10] showed that if X is separable and T is
power-bounded, then σp(T )∩T is at most countable. Later on, several authors
(see, e.g., [1,2,4,15,16] and the references therein) have shown interest in the
study of the relationship between the size of the set σp(T ) ∩T and the growth
of ‖Tn‖ as n → ∞.
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In the case of separable Hilbert spaces, Nikolski [13] proved that if σp(T )∩T has
a positive γ-capacity, where γ : T → (0,∞) is integrable with positive Fourier
coefficients, then there exists N ∈ N such that

∑
n γ̂(n+N)‖Tn‖−2 converges

(see [11, Chapter 3, p. 31] for the definition of γ-capacity). As a by-product
of this, if σp(T ) ∩ T contains a subset E of T with dimH(E) > α > 0, where
dimH(E) is the Hausdorff dimension of E, then the series

∑
n nα−1‖Tn‖−2

converges. El-Fallah-Ransford [8] proved that, as a partial converse of the
preceding result, if α is strictly greater than the upper box dimension of E,
then there exists an operator T on a separable Hilbert space such that σp(T )∩T
contains E and the series

∑
n nα−1‖Tn‖−2 diverges. (See [9, p. 41] for more

details about the box dimension). Precisely, they constructed an operator T
such that σp(T ) contains E and

1
n

n−1∑

k=0

∥
∥T k

∥
∥2 � ω(n)2

∣
∣E1/n

∣
∣ , n � 1,

where ω : Z → (0,∞) is a regular weight function satisfying
∑

n
1

ω(n)2 < ∞,
E1/n := {ζ ∈ T : dist(E, ζ) < 1

n} with dist(., .) being the arc-length distance,
and

∣
∣E1/n

∣
∣ is its Lebesgue measure. In particular, one can obtain

inf
n≤k≤2n

‖T k‖2 � ω(n)2|E1/n|, n ≥ 1.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that E ⊂ T is a closed Ahlfors–David regular set. If
α > dimH(E), then there exists an operator T on a separable Hilbert space
such that σp(T ) ∩ T contains E and

‖Tn‖2 � nα.

The definitions of Ahlfors–David regular sets and Hausdorff dimension
are recalled in Sect. 4. Theorem 1.1 is a corollary from the following more
general result.

Theorem 1.2. Let E be closed subset of T, if there exist an increasing function
Λ : [0, 1] → [0,+∞) such that Λ(t)

tc is decreasing for some c > 0, and a positive
finite Borel measure μ on T satisfying

∫

0

dt

Λ(t)μ(ζ, t)
< ∞, ζ ∈ E, (1)

where μ(ζ, t) = μ(ζe−it, ζeit), then there exists an operator T on a separable
Hilbert space such that E ⊂ σp(T ) and

‖Tn‖2 � nΛ
(

1
n

)

, n ≥ 1.



Vol. 79 (2024) Ahlfors–David Regular Sets Page 3 of 16 74

In Sect. 2, we study the point spectrum of adjoint of the shift operator
acting on some weighted Dirichlet spaces. In Sect. 3, we determine the growth
of power of the adjoint of this shift operator. In Sect. 4, we give the proofs of
the main theorems.

2. Point Spectrum

Let Λ : [0, 1] → [0,+∞) be a positive function, let D be the unit disc, and let μ
be a positive finite Borel measure on the unit circle T. The weighted Dirichlet
integral of f ∈ Hol(D) associated with Λ and μ is defined as follows:

DΛ,μ(f) =
∫

D

|f ′(z)|2Λ(1 − |z|2)Pμ(z)dA(z),

where dA denotes the normalized area measure on D, and Pμ is the Poisson
integral of μ on T given by

Pμ(z) =
∫

T

1 − |z|2
|ζ − z|2 dμ(ζ), z ∈ D.

The associated weighted Dirichlet spaces DΛ,μ consist of all analytic functions
on D with finite weighted Dirichlet integral, i.e.,

DΛ,μ := {f ∈ Hol(D) : DΛ,μ(f) < ∞}.

We associate to DΛ,μ the following inner product

〈f, g〉Λ,μ := f(0)g(0) + DΛ,μ(f, g), f, g ∈ Hol(D),

where

DΛ,μ(f, g) =
∫

D

f ′(z))g′(z)Λ(1 − |z|2)Pμ(z)dA(z).

DΛ,μ is a reproducing kernel Hilbert space, and denote K (or KΛ,μ if necessary)
its reproducing kernel. The standard weighted Dirichlet spaces on D, denoted
Dα, correspond to Λ(t) = tα and μ = m the normalized arc measure on T.
If Λ = 1, then DΛ,μ is the harmonically weighted Dirichlet spaces. (See, e.g.,
[6,7]). Note that, in general, DΛ,μ is not contained in the Hardy space H2. In
the following proposition, using a reasoning similar to that in [3], we establish
the density of polynomials in DΛ,μ, for some regular weights Λ.

Proposition 2.1. Let μ be a positive finite Borel measure on T, and let Λ :
[0, 1] → [0,+∞) be an increasing function such that Λ(t)

tc is decreasing for
some c > 0. Then the polynomials are dense in DΛ,μ.

Proof. The proof uses the fact that the dilations fr(z) := f(rz) for r ∈ [0, 1)
tend to f in the norm, i.e.,

lim
r→1

‖fr − f‖Λ,μ = 0, f ∈ DΛ,μ.
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To this end, it is sufficient to show that

‖fr‖Λ,μ � ‖f‖Λ,μ, f ∈ DΛ,μ, r ∈ [0, 1).

Since Λ(2t) � Λ(t), we have

Λ(1 − |z|2) � Λ(1 − |w|2), z ∈ D(w, ρ(w)),

where ρ(w) = (1 − |w|)/2. Hence,

|f ′(w)|2Λ(1 − |w|2) �
∫

z∈D

|f ′(z)|2Λ(1 − |z|2) (1 − |z|2)2
|1 − zw|4 dA(z), w ∈ D,

Denote

J(z, ζ) :=
∫

w∈D

(1 − |w|2)
|1 − wz|4|1 − wζ|2 dA(w), z ∈ D.

Using the following inequality (cf. [14, Lemma 2.5]):

J(rz, ζ) � 1
(1 − r2|z|2)|1 − rζz|2 , z ∈ D, ζ ∈ T, r ∈ [0, 1),

we obtain

‖fr‖2
Λ,μ = |fr(0)|2 +

∫

w∈D

|rf ′(rw)|2Λ(1 − |w|2)Pμ(w)dA(w)

≤ |f(0)|2 +
∫

ζ∈T

∫

w∈D

|f ′(rw)|2Λ(1 − |rw|2) (1 − |w|2)
|1 − wζ|2 dA(w)dμ(ζ)

� |f(0)|2 +
∫

ζ∈T

∫

w∈D

∫

z∈D

|f ′(z)|2Λ(1 − |z|2)

(1 − |z|2)2(1 − |w|2)
|1 − rwz|4|1 − wζ|2 dA(z)dA(w)dμ(ζ)

= |f(0)|2 +
∫

ζ∈T

∫

z∈D

|f ′(z)|2Λ(1 − |z|2)(1 − |z|2)2J(rz, ζ)dA(z)dμ(ζ)

� |f(0)|2 +
∫

ζ∈T

∫

z∈D

|f ′(z)|2Λ(1 − |z|2) (1 − |z|2)
|1 − ζz|2 dA(z)dμ(ζ)

= |f(0)|2 + DΛ,μ(f)

= ‖f‖2
Λ,μ.

�

Let f ∈ Hol(D), and let ζ ∈ T, we write f∗(ζ) := limr→1 f(rζ) its
radial limit (if it exists) at ζ. Note that, under conditions of Proposition 2.1,
if sup0≤r<1 K(rζ, rζ) < ∞, then f∗(ζ) exists for every f ∈ DΛ,μ.

We denote SΛ,μ (or simply S) the shift operator acting on DΛ,μ defined
as follows:

S : DΛ,μ −→ DΛ,μ, f �→ Sf(z) = zf(z),

and S∗ is its adjoint operator.



Vol. 79 (2024) Ahlfors–David Regular Sets Page 5 of 16 74

Theorem 2.1. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0,
then

σp(S∗) ⊃
{

ζ ∈ T :
∫ 1

0

dx

Λ(x)μ(ζ, x)
< ∞

}

.

To prove Theorem 2.1, we need the following lemma.

Lemma 2.1. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0,
then

K(rζ, rζ) <∼ 1 +
∫ r

0

dx

(1 − x)Λ(1 − x)Pμ(ζx)
, r ∈ (0, 1), ζ ∈ T.

The proof of Lemma 2.1 is inspired from [5]. For the sake of completeness,
we include the proof here.

Proof. We have

K(z, z) = sup{|f(z)|2 : ‖f‖Λ,μ ≤ 1}, z ∈ D.

Let f ∈ DΛ,μ, and let z = r ∈ [ 12 , 1). Consider

Δr :=
{

x + iy ∈ D : 0 ≤ x ≤ r,
x − 1

2
≤ y ≤ 1 − x

2

}

.

We have

1
1 − r

∫ 1−r
2

− (1−r)
2

|f(r + is)|ds

=
∫ 1

2

− 1
2

|f(r + i(1 − r)y)|dy

=
∫ 1

2

− 1
2

∣
∣
∣
∣f(iy) +

∫ r

0

f ′(t + i(1 − t)y)dt

∣
∣
∣
∣ dy

≤
∫ 1

2

− 1
2

| 〈f,Kiy〉Λ,μ |dy +
∫

[0,r]×[− 1
2 ; 12 ]

|f ′(t + i(1 − t)y)| dydt

≤ ‖f‖Λ,μ

∫ 1
2

− 1
2

‖Kiy‖Λ,μdy +
∫

[0,r]×[− 1
2 ; 12 ]

|f ′(t + i(1 − t)y)| dydt

� ‖f‖Λ,μ +
∫

[0,r]×[− 1
2 ; 12 ]

|f ′(t + i(1 − t)y)| dydt.
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Using the following change of variables:

φ : [0, r] ×
[

−1
2
,
1
2

]

−→ Δr

(t, y) �−→ u + iv, with
{

u = t
v = (1 − t)y,

we obtain

1
1 − r

∫ 1−r
2

− (1−r)
2

|f(r + is)|ds

� ‖f‖Λ,μ +
∫

Δr

|f ′(u + iv)| dudv

1 − |u|
� ‖f‖Λ,μ + (DΛ,μ(f))

1
2

(∫

Δr

dudv

(1 − |u|)2Λ(1 − |u + iv|2)Pμ(u + iv)

) 1
2

.

Now, for u+iv ∈ Δr, we have |u + iv| ≤ u + |v| ≤ u +
1 − u

2
=

1 + u

2
. Then

1 − |u + iv| � 1 − 1+u
2 = 1−u

2 . Hence, Λ(1 − |u + iv|) >∼ Λ(1 − u), and P [μ](u +
iv) >∼P [μ](u). Therefore,

1
1 − r

∫ 1−r
2

− (1−r)
2

|f(r + is)|ds

� ‖f‖Λ,μ + (DΛ,μ(f))
1
2

(∫

Δr

dudv

(1 − u)2Λ(1 − u)Pμ(u)

) 1
2

= ‖f‖Λ,μ + (DΛ,μ(f))
1
2

(∫ r

u=0

∫

|v|≤ 1−u
2

dv
du

(1 − u)2Λ(1 − u)Pμ(u)

) 1
2

� ‖f‖Λ,μ + (DΛ,μ(f))
1
2

(∫ r

0

du

(1 − u)Λ(1 − u)Pμ(u)

) 1
2

.

Moreover, the disc D
(
r, 1−r

4

)
is included in

{
z = x + iy, |x − r| � 1−r

4 , |y| �
1−x

2

}
. Thus

|f(r)| � 1
(1 − r)2

∫ r+ 1−r
4

r− 1−r
4

(∫ 1−x
2

y=− (1−x)
2

|f(x + iy)|dy

)

dx

� ‖f‖Λ,μ + (DΛ,μ(f))
1
2

(∫ r

0

dx

(1 − x)Λ(1 − x)Pμ(x)

) 1
2

.

Therefore,

|f(r)|2 �
(

1 +
∫ r

0

dx

(1 − x)Λ(1 − x)Pμ(x)

)

‖f‖2
Λ,μ,
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and we get

K(z, z) � 1 +
∫ r

0

dx

(1 − x)Λ(1 − x)Pμ (xz∗)
.

�

Proof of Theorem 2.1. We have tPμ(ζ(1 − t)) >∼ μ(ζ, t) for any ζ ∈ T, and
t ∈ (0, 1). Then

∫ 1

0

dx

(1 − x)Λ(1 − x)Pμ(ζx)
<∼
∫ 1

0

dy

Λ(y)μ(ζ, y)
, ζ ∈ T. (2)

Let ζ ∈ T such that
∫ 1

0
dx

Λ(x)μ(ζ,x)
< ∞. Combining inequality (2) with Lemma

2.1, we obtain sup0≤r<1 K(rζ, rζ) < ∞. Consider now Lζ : DΛ,μ → C, f �→
f∗(ζ). Since Lζ is continuous, it follows from Riesz representation theorem

that there exists kζ ∈ DΛ,μ such that f∗(ζ) =
〈
f, kζ

〉

Λ,μ
. Hence, S∗kζ = ζkζ .

Indeed, we have
〈
f, S∗kζ

〉

Λ,μ
=
〈
Sf, kζ

〉

Λ,μ
= ζf∗(ζ) = 〈f, ζkζ〉Λ,μ .

�

3. Growth of Power of Shift Operator

Let μ be a positive finite Borel measure on T, and let S be the shift operator
acting on the Dirichlet space DΛ,μ associated with μ and a positive function
Λ.

Theorem 3.1. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0,
and

∫

0

dt

Λ(t)
< ∞. (3)

We have

||S∗n||2 � nΛ
(

1
n

)

.

To prove Theorem 3.1, we require the following lemmas.

Lemma 3.1. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0.
We have

‖zn‖2
Λ,μ � nΛ

(
1
n

)

, n ≥ 1.
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Proof. Let n ≥ 1. We have

DΛ,μ(zn) =
∫

z∈D

n2
(|z|2)n−1

Λ
(
1 − |z|2)P [μ](z)dA(z)

= n2

∫ 1

r=0

r2(n−1)Λ
(
1 − r2

)
∫ 2π

θ=0

∫ 2π

t=0

1 − r2

|eit − reiθ|2
dt

2π
dμ
(
eiθ
)
dr2

= μ(T)n2

∫ 1

0

sn−1Λ(1 − s)ds (4)

≥ μ(T)
(

1 − 2
n

)n−1

n2

∫ 2
n

1
n

Λ(t)dt

≥ μ(T)
(

1 − 2
n

)n−1

nΛ
(

1
n

)

.

Now,
∫ 1

0

rn−1Λ(1 − r)dr ≤
∫ 1

n

0

Λ(t)dt +
∫ 1

1
n

(1 − t)n−1Λ(t)dt

≤ 1
n

Λ
(

1
n

)

+ ncΛ
(

1
n

)∫ 1

0

tn−1(1 − t)cdt

=
[
1 + nc+1B(n, c + 1)

]
nΛ
(

1
n

)

,

where B is Beta function. Using equality (4), we obtain

DΛ,μ(zn) ≤ [1 + nc+1B(n, c + 1)
]
nΛ
(

1
n

)

.

�

In the case of μ = δζ , the Dirac measure at ζ ∈ T, the local weighted
Dirichlet integral of f ∈ Hol(D) is given by

DΛ,ζ(f) =
∫

D

|f ′(z)|2Λ(1 − |z|2)1 − |z|2
|ζ − z|2 dA(z),

Suppose that Λ ≡ 1. Let f ∈ Hol(D), say f(z) =
∑

n∈N
anzn, we have

Dζ(f) := D1,ζ(f) =
∑

n≥1

1
n(n + 1)

∣
∣
∣
∣
∣

n∑

k=1

kakζk

∣
∣
∣
∣
∣

2

, (5)

see [7, Theorem 7.2.6].
For the rest of the paper, we suppose that

∫
0

dt
Λ(t) < ∞. Therefore, accord-

ing to Lemma 2.1, the reproducing kernel of DΛ,ζ satisfies sup0≤r<1 KΛ,ζ(rζ, rζ) <
∞. Then the following space

D0(Λ, ζ) = {f ∈ DΛ,ζ : f∗(ζ) = 0} ,
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is closed in DΛ,ζ . In order to extend formula (5) to DΛ,ζ , we endow the space
D0(Λ, ζ) with the following norm:

||f ||20,Λ,ζ := DΛ,ζ(f), f ∈ Hol(D).

Additionally, we consider the weighted Bergman space A2
(1−|z|2)Λ(1−|z|2) equipped

with the following norm:

||f ||2 =
∫

D

|f(z)|2(1 − |z|2)Λ(1 − |z|2)dA(z), f ∈ Hol(D).

Lemma 3.2. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0,
and

∫

0

dt

Λ(t)
< ∞.

For f ∈ DΛ,ζ write f(z) =
∑

n∈N
anzn. We have

DΛ,ζ(f) =
∑

n≥1

||zn−1||2
∣
∣
∣
∣
∣

n∑

k=1

kakζk

∣
∣
∣
∣
∣

2

.

Proof. Without loss of generality, we may assume that ζ = 1. We make the
following identification

T : D0(Λ, 1) −→ A2
(1−|z|2)Λ(1−|z|2), f �→ Tf(z) = f ′(z)/(z − 1).

The operator T is a surjective isometry. Indeed, let f ∈ D0(Λ, 1), and denote
||f ||0 := ||f ||0,Λ,1, we have

||Tf ||2 =
∫

D

∣
∣
∣
∣
f ′(z)
z − 1

∣
∣
∣
∣

2

(1 − |z|2)Λ(1 − |z|2)dA(z)

=
∫

D

|f ′(z)|2 1 − |z|2
|1 − z|2 Λ(1 − |z|2)dA(z)

= ||f ||20,
then T is an isometry. To prove that T is surjective, we consider

V : C[z] −→ D0(Λ, 1), p �→ Vp(z) =
∫ 1

z

(λ − 1)p(λ)dλ,

where C[z] is the set of polynomials. Let p ∈ C[z], we have

||Vp||20 =
∫

D

| (Vp)′ (z)|2 1 − |z|2
|1 − z|2 Λ(1 − |z|2)dA(z)

=
∫

D

|p(z)|2(1 − |z|2)Λ(1 − |z|2)dA(z)

= ||p||2,
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and

TVp(z) =
(Vp)′ (z)

z − 1
= p(z), z ∈ D.

Since (1−|z|2)Λ(1−|z|2) is a radial weight, we get that polynomials are dense
in A2

(1−|z|2)Λ(1−|z|2). It follows from equality (6) that V extends to an isometry

Ṽ on A2
(1−|z|2)Λ(1−|z|2). Using equality (6), we obtain

TṼf = f, f ∈ A2
(1−|z|2)Λ(1−|z|2).

Thus, T is surjective. Moreover, since (1−|z|2)Λ(1−|z|2) is a radial weight, we
get that

(
en(z) := zn

||zn||
)

is an orthonormal basis of A2
(1−|z|2)Λ(1−|z|2). Hence,

the following sequence

un+1(z) = Ven(z) =
1

||zn||
(

1
n + 2

(zn+2 − 1) − 1
n + 1

(zn+1 − 1)
)

, z ∈ D

and n ∈ N,

is an orthonormal basis of D0(Λ, 1). Therefore, there exists a sequence (cn)n≥1

of complex numbers such that

f(z) =
∑

n≥1

cnun(z), z ∈ D.

Thus,

DΛ,1(f) =
∑

n≥1

|cn|2.

According to identification (6), we obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a0 =
∑

n≥1
cn

||zn−1||n(n+1) ,

a1 = −c1
‖z0‖ ,

an = 1
n

(
cn−1

||zn−2|| − cn

||zn−1||
)

, n ≥ 2.

Then

cn = −||zn−1||
n∑

k=1

kak, n ≥ 1.

�

Lemma 3.3. Let μ be a positive finite Borel measure on T, and let Λ : [0, 1] →
[0,+∞) be an increasing function such that Λ(t)

tc is decreasing for some c > 0,
and

∫

0

dt

Λ(t)
< ∞.
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For f ∈ DΛ,ζ write f(z) =
∑

n∈N
anzn. Then

DΛ,ζ(zpf) <∼ ||f ||2Λ,ζ

⎛

⎝1 +
∑

n≥p

p2||zn−1||2
⎛

⎝1 +
∑

n≥1

1
n4||zn−1||2

⎞

⎠

⎞

⎠ , p ≥ 1.

Proof. We have

zpf(z) =
∑

n≥0

an−pz
n with a−1 = a−2 = ... = a−p = 0, and z ∈ D.

By Theorem 3.2, we obtain

DΛ,ζ(zpf) =
∑

n≥1

||zn−1||2
∣
∣
∣
∣
∣

n∑

k=1

kak−p

∣
∣
∣
∣
∣

2

=
∑

n≥p

||zn−1||2
∣
∣
∣
∣
∣

n−p∑

i=0

(i + p)ai

∣
∣
∣
∣
∣

2

≤ 2
∑

n≥p

||zn−1||2
∣
∣
∣
∣
∣

n−p∑

k=0

kak

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸
=I1

+2
∑

n≥p

||zn−1||2
∣
∣
∣
∣
∣

n−p∑

k=0

pak

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸
I2

.

Since ||zn−1|| ≤ ||zn−1−p||, we get

I1 ≤ DΛ,ζ(f).

Let An =
∑n

k=0 kak, we have

an =
1
n

(An − An−1) , n ≥ 1,

and
∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

n∑

k=1

1
k

(Ak − Ak−1) + a0

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

n∑

k=1

1
k

Ak −
n−1∑

k=0

1
k + 1

Ak + a0

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

n−1∑

k=1

1
k(k + 1)

Ak +
1
n

An + a0

∣
∣
∣
∣
∣

2

≤ 4

∣
∣
∣
∣
∣

n−1∑

k=1

1
k(k + 1)

Ak

∣
∣
∣
∣
∣

2

+
4
n2

|An|2 + 2|a0|2.
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Then

I2 �
∑

n≥p

p2||zn−1||2
∣
∣
∣
∣
∣

n−p−1∑

k=1

1
k(k + 1)

Ak

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸
Q1

+
∑

n≥p

p2 ||zn−1||2
n2

|An−p|2

︸ ︷︷ ︸
Q2

+ |a0|2
∑

n≥p

p2||zn−1||2

︸ ︷︷ ︸
Q3

.

It follows from the inequality |a0| ≤ ||f ||Λ,δζ
that

Q3 ≤ ||f ||Λ,δζ
×
∑

n≥p

p2||zn−1||2.

In addition,

Q2 =
∑

n≥p

p2

n2
||zn−1||2|An−p|2

≤
∑

n≥p

||zn−1−p||2|An−p|2

= DΛ,ζ(f).

Moreover,
∣
∣
∣
∣
∣

n∑

k=1

1
k(k + 1)

Ak

∣
∣
∣
∣
∣

2

�
(

n∑

k=1

1
||zk−1||k2

× ||zk−1|||Ak|
)2

≤
n∑

k=1

1
k4||zk−1||2 ×

n∑

k=1

||zk−1||2|Ak|2

�
∑

n≥1

1
n4||zn−1||2 × DΛ,ζ(f).

Then

Q1 =
∑

n≥p

p2||zn−1||2
∣
∣
∣
∣
∣

n−p∑

k=1

Ak

k(k + 1)

∣
∣
∣
∣
∣

2

� DΛ,ζ(f)
∑

n≥1

1
n4||zn−1||2 ×

∑

n≥p

p2||zn−1||2.

�

We are now in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. Let p ∈ N. By definition, ‖S∗p‖ = sup‖f‖Λ,μ=1

‖S∗pf‖Λ,μ. Then we get ‖S∗p‖2 ≥ ‖zp‖2
Λ,μ � pΛ

(
1
p

)
. Now, let n ∈ N. Similar

to the proof of Lemma 3.1, we have

‖zn−1‖2 =
∫ 1

0

rn−1(1 − r)Λ(1 − r)dr � 1
n2

Λ
(

1
n

)

.

Then
∑

n

1
n4‖zn−1‖2

�
∑

n

1
n2Λ

(
1
n

)

≤ 2
∑

n

∫ 1/n

1/(n+1)

1
Λ(t)

dt

�
∫

0

dt

Λ(t)
< ∞. (6)

Furthermore,
∑

n≥p

p2‖zn−1‖2 �
∑

n≥p

p2

n2
Λ
(

1
n

)

≤ p2Λ
(

1
p

)∑

n≥p

1
n2

� pΛ
(

1
p

)

. (7)

Combining inequalities (6), (7), and Lemma 3.3, we obtain

‖S∗p‖2 = sup
‖f‖Λ,μ=1

{

|f(0)|2 +
∫

T

DΛ,ζ(zpf)dμ(ζ)
}

� sup
‖f‖Λ,μ=1

{

|f(0)|2 + pΛ
(

1
p

)

DΛ,μ(f)
}

� pΛ
(

1
p

)

.

4. Proofs of the Main Theorems

We recall some definitions which will be used in what follows. Let E ⊂ T, let
δ > 0, and let d ∈ [0,∞). Consider

Hd
δ (E) = inf

{ ∞∑

i=1

|Ii|d : E ⊂
∞⋃

i=1

Ii and |Ii| < δ

}

,

where the infimum is taken over all countable intervals covering E. The Haus-
dorff outer measure of dimension d is given by Hd(E) = limδ→0 Hd

δ (E), and
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the Hausdorff dimension of E is defined by

dimH(E) = inf{d ≥ 0 : Hd(E) = 0}.

A closed subset E of T is an Ahlfors-David regular set if there exists a measure
μ supported on E such that

C−1td ≤ μ(ζ, t) ≤ Ctd

for all ζ ∈ suppμ and t ∈ [0, 1]. In this case, we have dimH(E) = d (see [12]
for more details).

Proof Theorem 1.2. Assume that there exist μ and Λ satisfying the conditions
of Theorem 1.2. Consider the operator T = S∗ on DΛ,μ. We have σp(T ) ⊃ E.
Indeed, for ζ ∈ E, we have

∫
0

dt
Λ(t)μ(ζ,t)

< ∞, it follows from Theorem 2.1 that

ζ ∈ σp(T ). The first assertion is proved. Since μ(ζ, t)Λ(t) � Λ(t), condition (3)
holds and the last assertion comes from Theorem 3.1.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since E is an Ahlfors–David set, E∗ := {ζ ∈ T : ζ ∈ E}
is too. Thus, there exists a measure μ supported on E∗ such that μ(ζ, t) � td

for any ζ ∈ E∗, and d = dimH(E). Let α > d and consider the function
Λ(t) = t1−α, t ∈ (0, 1). We have

∫

0

dt

Λ(t)μ(ζ, t)
�
∫

0

dt

t1−(α−d)
< ∞, ζ ∈ E.

According to Theorem 1.2, we deduce the result.
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