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Abstract. In this paper, we introduce Riemannian warped product map as
a generalization of warped product isometric immersion and Riemannian
warped product submersion with examples and obtain some characteriza-
tions. First, we define Riemannian warped product map and find condi-
tions for a Riemannian map to be Riemannian warped product map. We
show that Riemannian warped product map is a composition of Riemann-
ian warped product submersion followed by warped product isometric
immersion locally. In addition, we show that Riemannian warped prod-
uct map satisfies the generalized eikonal equation which is a well known
bridge between geometrical and physical optics. We also find necessary
and sufficient conditions for the fibers, range space of the derivative map
of Riemannian warped product map and horizontal distributions to be
totally geodesic and minimal. Further, we give some fundamental geomet-
ric properties for the study of such smooth maps. Precisely, we construct
Gauss formula (second fundamental form), Weingarten formula and ten-
sion field. We obtain necessary and sufficient conditions for a Riemann-
ian warped product map to be totally geodesic, harmonic and umbilical.
Comparatively, we analyse the obtained results with the existing results
for a Riemannian map between Riemannian manifolds.
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1. Introduction

The notion of warped product manifolds is a generalization of the Riemann-
ian product manifolds [3]. In general relativity, warped product manifolds
have been used to construct Schwarzschild and Robertson–Walker cosmolog-
ical models [24]. In addition, warped product manifolds were used to obtain
new families of Hamiltonian-stationary Lagrangian submanifolds [11]. Moore
gave sufficient conditions for an isometric immersion into Euclidean space to
decompose into a product immersion [19]. Nash concluded that every Rie-
mannian manifold hence warped product manifold can be embedded to some
Euclidean space [20]. For the differential geometry of submanifolds of warped
product manifolds, we refer to [6,12,13].

Let ϕi : Mi → Ni be isometric immersions between Riemannian mani-
folds for i = 1, 2, . . . , k. Suppose ρi : Ni → R

+ and fi := ρi ◦ ϕi : Mi → R
+

for i = 1, 2, . . . , k − 1 be smooth functions. Then the smooth map ϕ : M1 ×f1

M2 ×f2 · · · ×fk−1 Mk → N1 ×ρ1 N2 ×ρ2 · · · ×ρk−1 Nk between warped prod-
uct manifolds such that ϕ(p1, p2, . . . , pk) = (ϕ1(p1), ϕ2(p2), . . . , ϕk(pk)) is also
an isometric immersion, called warped product isometric immersion. For the
fundamental studies of warped product immersions we refer to [5–10,22,31].

The geometry of Riemannian submersions and their applications have
been discussed widely by Falcitelli et al. [16]. It is known that Riemannian
submersions have been used to construct some Riemannian manifolds with
positive or non-negative sectional curvature and Einstein manifolds. In addi-
tion, Riemannian submersions have many applications in physics, Yang-Mills
theory, Kaluza-Klein theory, supergravity and superstring theories etc. Re-
cently, warped product Riemannian submersions were studied by Erken et al.
[14,15]. Let ϕi : Mi → Ni be Riemannian submersions between Riemann-
ian manifolds for i = 1, 2, . . . , k. Suppose ρi : Ni → R

+ and fi := ρi ◦ ϕi :
Mi → R

+ for i = 1, 2, . . . , k − 1 be smooth functions. Then the smooth map
ϕ : M1 ×f1 M2 ×f2 · · ·×fk−1 Mk → N1 ×ρ1 N2 ×ρ2 · · ·×ρk−1 Nk between warped
product manifolds such that ϕ(p1, p2, . . . , pk) = (ϕ1(p1), ϕ2(p2), . . . , ϕk(pk)) is
also a Riemannian submersion, called Riemannian warped product submersion.

In 1992, a generalization of the notions of an isometric immersion and
Riemannian submersion namely “Riemannian map” was introduced by Fischer
[17] satisfying the generalized eikonal equation whose applications are well
studied in geometry and physics. Importantly, Fischer proposed an approach
to build a quantum model of nature using Riemannian maps. He pointed out
an interesting relationship between Riemannian maps, harmonic maps and
Lagrangian field theory on the mathematical side, and Maxwell’s equation,
Shrödinger’s equation and their proposed generalization on the physical side.
In the last decade, Şahin investigated the geometry of Riemannian maps widely
[29].
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Now, it will be interesting to introduce the new area of research namely
“Riemannian warped product map” as a generalization of warped product iso-
metric immersion and Riemannian warped product submersion. In Sect. 2, we
recall some basic geometric concepts about the Riemannian maps and Rie-
mannian warped product manifolds. In Sect. 3, we define Riemannian warped
product map with examples and obtain some characterizations. We show that
Riemannian warped product map satisfies the generalized eikonal equation.
We also find necessary and sufficient conditions for the fibers, range space of
the derivative map of Riemannian warped product map and horizontal distri-
butions to be totally geodesic and minimal. In Sect. 4, we calculate the second
fundamental form (Gauss formula) followed by a necessary and sufficient con-
dition for a Riemannian warped product map to be totally geodesic. In Sect. 5,
we calculate tension field followed by a necessary and sufficient condition for
a Riemannian warped product map to be harmonic. In the last section, we
construct Weingarten formula followed by a necessary and sufficient condition
for a Riemannian warped product map to be umbilical.

2. Preliminaries

In this section, we survey the notion of Riemannian map between Riemannian
manifolds and its fundamental geometric properties. Later on we recall the
notion of Riemannian warped product manifolds.

2.1. Riemannian maps

Let ϕ : (Mm, gM ) → (Nn, gN ) be a smooth map between Riemannian mani-
folds such that 0 < rankϕ ≤ min{m,n} and let ϕ∗ be its differential map. We
denote the kernel space of ϕ∗ at p ∈ M by Vp = kerϕ∗p and its orthogonal
complement space in the tangent space TpM by Hp = (kerϕ∗p)⊥. Thus we
have

TpM = (kerϕ∗p) ⊕ (kerϕ∗p)⊥ = Vp ⊕ Hp.

Similarly, we denote the range space of ϕ∗ at ϕ(p) ∈ N by rangeϕ∗p and its
orthogonal complement space in the tangent space Tϕ(p)N by (rangeϕ∗p)⊥. If
rankϕ < min{m,n}, we have (rangeϕ∗)⊥ �= {0} and hence

Tϕ(p)N = (rangeϕ∗p) ⊕ (rangeϕ∗p)⊥.

We say ϕ is a Riemannian map at p ∈ M if ϕ∗p|H : ((kerϕ∗p)⊥, gM(p)|(kerϕ∗p)⊥)
→ (rangeϕ∗p, gN(ϕ(p))|(rangeϕ∗p)) is a linear isometry, i.e.

gN (ϕ∗X,ϕ∗Y ) = gM (X,Y ) for all X,Y ∈ Γ(kerϕ∗p)⊥. (1)

Clearly, it is an isometric immersion if kerϕ∗ = {0} and a Riemannian sub-
mersion if (rangeϕ∗)⊥ = {0}.
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For all vector fields X,Y on M , the O’Neill tensors A and T were defined in
[23]

AXY = H∇M
HXVY + V∇M

HXHY, (2)

TXY = H∇M
VXVY + V∇M

VXHY, (3)

where ∇M is the Levi-Civita connection of gM . Here V and H denote the
projections to vertical and horizontal subbundles, respectively. For any X ∈
Γ(TM) the operators TX and AX are skew-symmetric reversing the horizontal
and vertical distributions. In addition, TX = TVX , AX = AHX and TUW =
TW U for all U,W ∈ Γ(kerϕ∗).
Now, from (2) and (3), we have

∇M
V W = TV W + ∇̂V W,

∇M
X V = AXV + V∇M

X V

and

∇M
X Y = AXY + H∇M

X Y

for all X,Y ∈ Γ(kerϕ∗)⊥ and V,W ∈ Γ(kerϕ∗) with ∇̂V W = V∇M
V W .

The map ϕ∗ can be viewed as a section of bundle Hom(TM,ϕ−1TN) →
M , where ϕ−1TN is the pullback bundle whose fibers at p ∈ M is (ϕ−1TN)p =
Tϕ(p)N . The bundle Hom(TM,ϕ−1TN) has a connection ∇ induced from the

Levi-Civita connection ∇M and the pullback connection
N

∇ϕ. Then the second
fundamental form of ϕ is given by [21]

(∇ϕ∗)(X,Y ) = (∇ϕ∗)(Y,X) =
N

∇ϕ
Xϕ∗Y − ϕ∗(∇M

X Y ) (4)

for all X,Y ∈ Γ(TM), where
N

∇ϕ
Xϕ∗Y ◦ ϕ = ∇N

ϕ∗Xϕ∗Y .

2.2. Riemannian warped product manifolds

Let (Mm1
1 , gM1) and (Mm2

2 , gM2) be two Riemannian manifolds and f be a
positive smooth function on M1. The warped product M := M1 ×f M2 of M1

and M2 is the Cartesian product M1 ×M2 with the metric gM = gM1 + f2gM2

defined by

gM (X,Y ) = gM1(π∗(X), π∗(Y )) + f2(π(p1))gM2(σ∗(X), σ∗(Y )),

where X,Y are vector fields on M1 × M2. In addition, π : M1 ×f M2 →
M1 such that (x, y) → x and σ : M1 ×f M2 → M2 such that (x, y) → y
are the projection maps which become submersions. Moreover, we can see
that the fibers {x} × M2 = π−1(x) and the leaves M1 × {y} = σ−1(y) are
Riemannian submanifolds of M = M1 ×f M2. The vectors tangent to the
leaves are called horizontal and the vectors tangent to the fibers are called
vertical. If v ∈ TxM1, x ∈ M1 and y ∈ M2, then the lift v̄ of v to (x, y) is
the unique vector of T(x,y)M1 × M2 = T(x,y)M such that π∗(v̄) = v, and lift
of a vector field X ∈ Γ(TM1) to M = M1 ×f M2 is the vector field X̄ such



Vol. 79 (2024) Riemannian Warped Product Maps Page 5 of 30 56

that π∗(x,y)(X̄(x,y)) = Xx. Thus the lift of X ∈ Γ(TM1) to M1 × M2 is the
unique element X̄ of Γ(T (M1 × M2)) which is π-related to X. Now, the set
of all such horizontal lifts X̄ is denoted by LH(M1) and the set of all vertical
lifts by LV(M2) (for details we refer to [23] and [6]). Thus a vector field Ē of
M1 ×M2 can be written as Ē = X̄ + Ū , where X̄ ∈ LH(M1) and Ū ∈ LV(M2).
We can easily prove that π∗(LH(M1)) = Γ(TM1) and σ∗(LV(M2)) = Γ(TM2).
Clearly, π∗(X̄) = X ∈ Γ(TM1) and σ∗(Ū) = U ∈ Γ(TM2). In this paper, we
use the same notation for a vector field and for its lift to the product manifold.

Now, we recall some basic results on warped product manifolds:

Lemma 1 (Chapter 7, Lemma 34, [24, p. 206]). If f̃ ∈ F(M1), then the gradient
of the lift f̃ ◦ π of f̃ to M = M1 ×f M2 is the lift of the gradient of f̃ on M1.

Lemma 2 [24]. Let M = M1×f M2 be a Riemannian warped product manifold.
Then
(i) ∇M

X1
Y1 is the lift of ∇M1

X1
Y1,

(ii) ∇M
X1

X2 = ∇M
X2

X1 = (X1(f)/f)X2,
(iii) nor (∇M

X2
Y2) = −gM (X2, Y2)(∇M ln f),

(iv) tan (∇M
X2

Y2) is the lift of (∇M2
X2

Y2),

where Xi, Yi ∈ L(Mi). In addition, ∇M and ∇Mi are Levi-Civita connections
on M and Mi respectively for i = 1, 2.

Proposition 3 [4]. Let ϕi : Mi → Ni for i = 1, 2 be smooth functions. Then

(ϕ1 × ϕ2)∗x = (ϕ1∗x1, ϕ2∗x2),

where x = (x1, x2) ∈ T(p1,p2)(M1 × M2).

Proposition 4 [4]. Let π and σ be the projections of M1 × M2 onto M1 and
M2 respectively. Then λ : T(p1,p2)(M1 × M2) → Tp1M1 ⊕ Tp2M2 such that
x 	→ (π∗, σ∗)x is an isomorphism.

By above Proposition for X = (X1,X2) ∈ Γ(T (M1 × M2)) we can write
X = X1 + X2 where X1 ∈ L(M1) and X2 ∈ L(M2).

3. Characterizations of Riemannian Warped Product Maps

In this section, we introduce Riemannian warped product map between Rie-
mannian warped product manifolds with examples and obtain some charac-
terizations.

Proposition 5. Let ϕi : (Mi, gMi
) → (Ni, gNi

) be Riemannian maps between
Riemannian manifolds for i = 1, 2. Suppose ρ : N1 → R

+ and f := ρ ◦
ϕ1 : M1 → R

+ be smooth functions. Then the map ϕ = ϕ1 × ϕ2 : (M =
M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN ) between Riemannian warped product
manifolds such that (ϕ1×ϕ2)(p1, p2) = (ϕ1(p1), ϕ2(p2)) is a Riemannian map.
Here f is called lift of ρ.
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Proof. Let ϕi : Mi → Ni be two Riemannian maps between Riemannian
manifolds for i = 1, 2. For p = (p1, p2) ∈ M1 × M2 we have

T(p1,p2)(M1 × M2) = T(p1,p2)(M1 × {p2}) ⊕ T(p1,p2)({p1} × M2)

= (kerϕ∗p)⊥ ⊕ (kerϕ∗p),

where

T(p1,p2)(M1 × {p2}) =
(
(kerϕ1∗p1)

⊥ × {p2}
) ⊕ ((kerϕ1∗p1) × {p2})

and

T(p1,p2)({p1} × M2) =
({p1} × (kerϕ2∗p2)

⊥) ⊕ ({p1} × (kerϕ2∗p2)) .

Clearly,

(kerϕ∗p)⊥ =
(
(kerϕ1∗p1)

⊥ × {p2}
) ⊕ ({p1} × (kerϕ2∗p2)

⊥)

and

(kerϕ∗p) = ((kerϕ1∗p1) × {p2}) ⊕ ({p1} × (kerϕ2∗p2)) .

Similarly, we have

T(ϕ1(p1),ϕ2(p2))(N1 × N2) =T(ϕ1(p1),ϕ2(p2))(N1 × {ϕ2(p2)})

⊕ T(ϕ1(p1),ϕ2(p2))({ϕ1(p1)} × N2)

=(rangeϕ∗p)⊥ ⊕ (rangeϕ∗p),

where

T(ϕ1(p1),ϕ2(p2))(N1 × {ϕ2(p2)})

=
(
(rangeϕ1∗p1)

⊥ × {ϕ2(p2)}
) ⊕ ((rangeϕ1∗p1) × {ϕ2(p2)})

and

T(ϕ1(p1),ϕ2(p2))({ϕ1(p1)} × N2)

=
({ϕ1(p1)} × (rangeϕ2∗p2)

⊥) ⊕ ({ϕ1(p1)} × (rangeϕ2∗p2)) .

Clearly,

(rangeϕ∗p)⊥ =
(
(rangeϕ1∗p1)

⊥ × {ϕ2(p2)}
) ⊕ ({ϕ1(p1)} × (rangeϕ2∗p2)

⊥)

and

(rangeϕ∗p) = ((rangeϕ1∗p1) × {ϕ2(p2)}) ⊕ ({ϕ1(p1)} × (rangeϕ2∗p2)) .

Now, lift of a horizontal vector xH ∈ (kerϕi∗pi
)⊥ to (kerϕ∗p)⊥ is x̄H and

lift of a vertical tangent vector vV ∈ (kerϕi∗pi
) to (kerϕ∗p) is v̄V . Then for

X = (X1,X2), Y = (Y1, Y2) ∈ (kerϕ∗p)⊥ = (kerϕ1∗p1)
⊥ × (kerϕ2∗p2)

⊥, we
have

gN (ϕ∗X,ϕ∗Y ) =gN (ϕ∗(X1,X2), ϕ∗(Y1, Y2))

=gN1(ϕ1∗X1, ϕ1∗Y1) + ρ2(ϕ1(p1))gN2(ϕ2∗X2, ϕ2∗Y2).
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Since ϕ1 and ϕ2 are Riemannian maps and we are denoting same notation for
a vector field and its lift, using (1) in above equation, we get

gN (ϕ∗X,ϕ∗Y ) =gM1(X1, Y1) + f2(p1)gM2(X2, Y2)

=gM (X,Y ).

This implies there is an isometry between horizontal space (kerϕ∗)⊥ and range
space rangeϕ∗. This completes the proof. �
Definition 1. Let ϕi : Mi → Ni be Riemannian maps between Riemannian
manifolds for i = 1, 2. Then the map ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) →
(N = N1 ×ρ N2, gN ) between Riemannian warped product manifolds such
that (ϕ1 × ϕ2)(p1, p2) = (ϕ1(p1), ϕ2(p2)) is also a Riemannian map, called
Riemannian warped product map.

Example 1. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a smooth map between Riemannian warped product manifolds.
(i) If ϕ is a warped product isometric immersion then ϕ is a Riemannian

warped product map with kerϕ∗ = {0}.
(ii) If ϕ is a Riemannian warped product submersion then ϕ is a Riemannian

warped product map with (rangeϕ∗)⊥ = {0}.

By [25] we know that distance functions are Riemannian submersions, hence
Riemannian maps. Now, we give examples of special class of Riemannian
warped product maps in the category of distance functions.

Example 2. Let (Mi, gMi
) be Riemannian manifolds for i = 1, 2, . . . , k. Let

pi ∈ Mi be a fixed point, and di denote the distance functions of Mi from the
fixed point pi. Then ϕ : (M = M1 ×f1 M2 ×f2 · · · ×fk−1 Mk, gM ) → (N =
R

+ ×ρ1 R
+ ×ρ2 · · · ×ρk−1 R

+, gN ) such that

ϕ(q1, q2, . . . , qk) = (d1(p1, q1), d2(p2, q2), . . . , dk(pk, qk))

is a Riemannian warped product map, where fi is the lift of ρi for i =
1, 2, . . . , k − 1.

Example 3. Let (M, gM ) be a complete, non-compact Riemannian manifold
without conjugate points. Then every geodesic of M is a line that is it is
isometric to R. If γv is a line in M , then the Busemann function bv : M → R

for γv is defined as [25]

bv(p) = lim
t→∞(d(p, γv(t)) − t).

It is known that bv ∈ C1(M) and ‖∇bv‖ = 1, therefore Busemann function is a
distance function. Hence clearly any Busemann function is a Riemannian map.
Now let (Mi, gMi

) be simply connected, complete manifolds without conjugate
points for i = 1, 2, . . . , k. Then for geodesic lines γi of Mi, the map ϕ : M1 ×f1

M2 ×f2 · · · ×fk−1 Mk → R ×ρ1 R ×ρ2 · · · ×ρk−1 R defined by

ϕ(p1, p2, . . . , pk) = (bγ1(p1), bγ2(p2), . . . , bγ1(pk))
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is a Riemannian warped product map, where fi is the lift of ρi for i =
1, 2, . . . , k − 1.

Example 4. Let (M1 = {(x1, x2, x3) ∈ R
3 : x1 �= 0, x2 �= 0, x3 �= 0}, gM1 =

e2x3dx1
2 + e2x3dx2

2 + dx3
2), (N1 = {(y1, y2, y3) ∈ R

3}, gN1 = e2x3dy1
2 +

e2x3dy2
2 + dy3

2), (M2 = {(r1, r2) ∈ R
2 : r1 �= 0, r2 �= 0}, gM2 = dr1

2 + dr2
2)

and (N2 = {(s1, s2) ∈ R
2}, gN2 = ds1

2 + ds2
2) be four Riemannian manifolds.

Let ϕ1 : M1 → N1 such that

(x1, x2, x3) 	→
(

x1 + x2√
2

,
x1 − x2√

2
, 0

)

and ϕ2 : M2 → N2 such that

(r1, r2) 	→
(

r1 + r2√
2

, 0
)

be Riemannian maps. Then the map ϕ = ϕ1 × ϕ2 : (M1 ×f M2, gM = gM1 +
f2gM2) → (N1 ×ρ N2, gN = gN1 + ρ2gN2) such that

ϕ(x1, x2, x3, r1, r2) =
(

x1 + x2√
2

,
x1 − x2√

2
, 0,

r1 + r2√
2

, 0
)

is a Riemannian warped product map, where ρ : N1 → R
+ and f : M1 → R

+

be smooth functions with f = ρ ◦ ϕ1.

Let ϕi : Mi → Ni be smooth maps between Riemannian manifolds for
i = 1, 2 and let ϕ : (M = M1 × M2, gM ) → (N = N1 × N2, gN ) be a smooth
map between Riemannian warped product manifolds. Define linear transfor-
mations
P(p1,p2) : T(p1,p2)(M1 × M2) → T(p1,p2)(M1 × M2); P(p1,p2) = ∗ϕ∗(p1,p2) ◦
ϕ∗(p1,p2) and Q(p1,p2) : T(ϕ1(p1),ϕ2(p2))(N1×N2) → T(ϕ1(p1),ϕ2(p2))(N1×N2); Q(p1,p2) =
∗ϕ∗(p1,p2) ◦ ϕ∗(p1,p2) where pi ∈ Mi for i = 1, 2. In addition, ∗ϕ∗ denotes the
adjoint of ϕ∗ (see [29]). Using these linear transformations, we obtain the fol-
lowing characterizations of Riemannian warped product maps:

Theorem 6. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a smooth map between Riemannian warped product manifolds. Then the
following statements are equivalent:
(i) ϕ is Riemannian warped product map at (p1, p2) ∈ M .

(ii) P(p1,p2) is a projection, i.e. P(p1,p2) ◦ P(p1,p2) = P(p1,p2).
(iii) Q(p1,p2) is a projection, i.e. Q(p1,p2) ◦ Q(p1,p2) = Q(p1,p2).

Proof. Since the proof is similar to Theorem 80 of [29], we are omitting it. �

Now, we recall that a map ϕ : (M, gM ) → (N, gN ) between Riemannian
manifolds is called subimmersion at p ∈ M if there is an open neighborhood
U of p, a manifold M ′, a submersion ϕS : U → M ′, and an immersion ϕI :
M ′ → N such that ϕ|U = ϕU = ϕI ◦ϕS [17,29]. We say ϕ is a subimmersion if
it is subimmersion at each p ∈ M . It is known that ϕ : (M, gM ) → (N, gN ) is
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a subimmersion if and only if the rank function is locally constant, and hence
constant on the connected components of M [1,27].

Definition 2. A map ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ

N2, gN ) between Riemannian warped product manifolds is called warped prod-
uct subimmersion at p = (p1, p2) ∈ M1 × M2 if there is an open neighborhood
U = U1 ×f U2 of p = (p1, p2), a warped product manifold M ′

1 ×f ′ M ′
2, a warped

product submersion ϕS : U1 ×f U2 → M ′
1 ×f ′ M ′

2, and a warped product im-
mersion ϕI : M ′

1 ×f ′ M ′
2 → N1 ×ρ N2 such that ϕ|U = ϕU = ϕI ◦ ϕS , where

M ′
1 and M ′

2 are Riemannian manifolds and f ′ is warping function on M ′
1. We

say ϕ is a warped product subimmersion if it is warped product subimmersion
at each p ∈ M1 × M2.

Theorem 7. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then, locally, ϕ is the composition of a Riemannian warped product
submersion followed by a warped product isometric immersion.

Proof. Let U = U1 ×f U2 be an open neighborhood of p = (p1, p2) ∈ M1 ×M2,
ϕS : U1 ×f U2 → M ′

1 ×f ′ M ′
2 be a warped product submersion and ϕI : M ′

1 ×f ′

M ′
2 → N1×ρN2 be a warped product immersion such that ϕ|U = ϕU = ϕI ◦ϕS .

From Lemma 4.3.1 of [18], it follows that (M ′
1×f ′M ′

2, gM ′) is also a Riemannian
warped product manifold and ϕI : (M ′

1 ×f ′ M ′
2, g

′
M ) → (N1 ×ρ N2, gN ) is

a warped product isometric immersion. Therefore it is enough to show that
horizontal restriction of ϕS is a warped product submersion. As in [27], for
each p = (p1, p2) ∈ U1 × U2 define

ϕS∗p|H : (kerϕ1∗p1)
⊥ × (kerϕ2∗p2)

⊥ → TϕS(p)(M
′
1 × M ′

2)

as ϕS∗p|HX = ϕS∗pX and

ϕI∗p|H : TϕS(p)(M
′
1 × M ′

2) → (rangeϕ1∗p1) × (rangeϕ2∗p2)

as ϕI∗p|HZ = ϕI∗pZ. Thus we have ϕ∗p|H = (ϕI∗p|H ◦ ϕS∗p|H) = (ϕI∗p ◦
ϕS∗p)|H : kerϕ∗p = (kerϕ1∗p1)

⊥ × (kerϕ2∗p2)
⊥ → rangeϕ∗p = (rangeϕ1∗p1)×

(rangeϕ2∗p2). Then for X = (X1,X2) and Y = (Y1, Y2) ∈ (kerϕ1∗p1)
⊥ ×

(kerϕ2∗p2)
⊥, we get

gN (ϕ∗p|HX,ϕ∗p|HY ) = gN (ϕI∗p|H ◦ ϕS∗p|HX,ϕI∗p|H ◦ ϕS∗p|HY ).

Since ϕ : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN ) is a Riemannian
warped product map and ϕI : (M ′

1 ×f ′ M ′
2, g

′
M ) → (N1 ×ρ N2, gN ) is a warped

product isometric immersion, we get gM ′ = ϕ∗
IgN . Then

gN (ϕ∗p|H(X1,X2), ϕ∗p|H(Y1, Y2))

= gN (ϕI∗p|H ◦ ϕS∗p|H(X1,X2), ϕI∗p|H ◦ ϕS∗p|H(Y1, Y2)),

which implies

gM |U ((X1,X2), (Y1, Y2)) = gM ′(ϕS∗p|H(X1,X2), ϕS∗p|H(Y1, Y2)).
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Thus ϕS : (U1 ×f U2, gM |U ) → (M ′
1 ×f ′ M ′

2, gM ′) is a Riemannian warped
product submersion. Hence we finish the required proof. �

Remark 1. Note that a Riemannian map between Riemannian manifolds is
a composition of a Riemannian submersion followed by an isometric immer-
sion [17] locally. It is also true that a Riemannian warped product map is a
composition of a Riemannian warped product submersion followed by warped
product isometric immersion locally.

Now, we give the following examples of Riemannian warped product maps
as an application of the above Theorem 7:

Example 5. Consider the immersions ϕ1 : R+ → E
2 = {(x, y) ∈ R

2 : y > 0}
such that

ϕ1(t) = (t, t)

and ϕ2 : S1 → S
1 such that

ϕ2(s) = s.

Then by [22], ϕ = ϕ1 × ϕ2 : R+ ×f S
1 → E

2 ×f ′ S1 defined by

ϕ(t, s) = (t, t, s)

is a warped product isometric immersion with (f ′ ◦ ϕ1)(t) = t = f(t). Also,
consider the Riemannian submersions ψ1 : F2 = {(t1, t2) ∈ R

2 : t1 > 0} → R
+

such that

ψ1(t1, t2) = t1

and ψ2 : S1 → S
1 such that

ψ2(s) = s.

Then by [14], ψ = ψ1 × ψ2 : F2 ×f ′ S1 → R
+ ×ρ S

1 defined by

ψ(t1, t2, s) = (t1, s)

is a Riemannian warped product submersion with (ρ ◦ ψ1)(t1, t2) = t1 =
f ′(t1, t2). Thus ϕ ◦ ψ : R

2 ×f ′ R2 → R
2 ×f ′ R2 is a Riemannian warped

product map.

Example 6. Consider the immersions ϕi : R → R
2 for i = 1, 2 such that

ϕi(t) = (cos t, sin t).

Then by [22], ϕ = ϕ1 × ϕ2 : R ×f R → R
2 ×f ′ R2 defined by

ϕ(t1, t2) = (cos t1, sin t1, cos t2, sin t2)

is a warped product isometric immersion with f ′ ◦ ϕ1 = f . Also, consider the
Riemannian submersions ψi : R2 → R for i = 1, 2 such that

ψi(x1, x2) = x1.
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Then by [14], ψ = ψ1 × ψ2 : R2 ×f ′ R2 → R ×ρ R defined by

ψ(x1, x2, y1, y2) = (x1, y1)

is a Riemannian warped product submersion with ρ ◦ ψ1 = f ′. Thus ϕ ◦ ψ :
R

2 ×f ′ R2 → R
2 ×f ′ R2 is a Riemannian warped product map.

Theorem 8. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then

‖ϕ∗‖2 = rankϕ1 + ρ2rankϕ2.

Proof. Define a linear transformation G : ((kerϕ∗p)⊥ = (kerϕ1∗p1)
⊥ ×

(kerϕ2∗p2)
⊥, gMp) → ((kerϕ∗p)⊥ = (kerϕ1∗p1)

⊥×(kerϕ2∗p2)
⊥, gMp) such that

G = ∗ϕ∗p ◦ϕ∗p, where ∗ϕ∗p is the adjoint of ϕ∗p. Then for X = (X1,X2), Y =
(Y1, Y2) ∈ (kerϕ∗p)⊥, we have

gM (GX,Y ) =gM (∗ϕ∗p ◦ ϕ∗pX,Y ) = gN (ϕ∗pX,ϕ∗pY )

=gN1(ϕ1∗X1, ϕ1∗X2) + ρ2(ϕ1(p1))gN2(ϕ2∗Y1, ϕ2∗Y2).

Since ϕ1 and ϕ2 are Riemannian maps, using (1) in above equation, we get

gM (GX,Y ) = gM1(X1,X2) + f2(p1)gM2(Y1, Y2).

Now let {x̃i}m1+m2−r1−r2
i=1 , {xj}m1

j=r1+1 and {x∗
k}m1−r1+m2−r2

k=m1−r1+1 denote orthonor-
mal bases of (kerϕ∗p)⊥, (kerϕ1∗p1)

⊥, and (kerϕ2∗p2)
⊥, respectively, and x̃i =

(xj , x
∗
k) ∈ (kerϕ∗p)⊥. Then we have

‖ϕ∗‖2(p) =
m1+m2−r1−r2∑

i=1

gN (ϕ∗px̃i, ϕ∗px̃i)

=
m1∑

j=1+r1

gN1(ϕ1∗xj , ϕ1∗xj)

+ρ2(ϕ1(p1))
m2−r2+m1−r1∑

k=m1−r1+1

gN2(ϕ2∗x∗
k, ϕ2∗x∗

k)

= (m1 − r1) + ρ2(ϕ1(p1))(m2 − r2),

where m1+m2−r1−r2 = dim(kerϕ∗)⊥, r1 = dim(kerϕ1∗), r2 = dim(kerϕ2∗),
m1 = dim(M1) and m2 = dim(M2). This completes the proof. �

Remark 2. We can observe that a Riemannian map ϕ between Riemannian
manifolds satisfies ‖ϕ∗‖2 = rankϕ [17], while a Riemannian warped product
map ϕ = ϕ1 × ϕ2 : M1 ×f M2 → N1 ×ρ M2 between Riemannian warped
product manifolds satisfies ‖ϕ∗‖2 = rankϕ1 + ρ2rankϕ2. Hence Riemannian
warped product map satisfies the generalized eikonal equation.

Lemma 9. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN ) be
a smooth map between Riemannian warped product manifolds. Then
(i) ∇N

ϕ1∗X1
ϕ1∗Y1 is the lift of ∇N1

ϕ1∗X1
ϕ1∗Y1,

(ii) ∇N
ϕ1∗X1

ϕ2∗X2= ∇N
ϕ2∗X2

ϕ1∗X1= (ϕ1∗X1(ρ)/ρ)ϕ2∗X2,
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(iii) tan ∇N
ϕ2∗X2

ϕ2∗Y2 is the lift of ∇N2
ϕ2∗X2

ϕ2∗Y2,
(iv) nor ∇N

ϕ2∗X2
ϕ2∗Y2 = −gN (ϕ2∗X2, ϕ2∗Y2)(∇N ln ρ),

where ϕi∗Xi, ϕi∗Yi ∈ L(Ni). In addition, ∇N and ∇Ni are the Levi-Civita
connections on N and Ni respectively for i = 1, 2.

Proof. Since N = N1×ρN2 is a Riemannian warped product manifold, by using
Lemma 2 we can easily see that (i) and (ii) are hold. Now for ϕ1∗X1, ϕ1∗Y1 ∈
L(N1) and ϕ1∗X2, ϕ1∗Y2 ∈ L(N2), we write

∇N
ϕ2∗X2

ϕ2∗Y2 = nor∇N
ϕ2∗X2

ϕ2∗Y2 + tan∇N
ϕ2∗X2

ϕ2∗Y2.

Using Lemma 2, we get

∇N
ϕ2∗X2

ϕ2∗Y2 = −gN (ϕ2∗X2, ϕ2∗Y2)(∇N ln ρ) + ∇N2
ϕ2∗X2

ϕ2∗Y2.

Thus (iii) and (iv) also hold. �
Proposition 10. Let ϕ = ϕ1×ϕ2 : (M = M1×f M2, gM ) → (N = N1×ρN2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then

ϕ1∗X1(ln ρ) = X1(ln f) = X1(f)/(f),

where X1 ∈ Γ(kerϕ1∗)⊥.

Proof. For X1 ∈ Γ(kerϕ1∗)⊥, we have

ϕ1∗X1(ln ρ) = gN1(ϕ1∗X1,∇N1(ln ρ)).

Since f is lift of ρ, using Lemma 1 in above equation, we get

ϕ1∗X1(ln ρ) = gN1(ϕ1∗X1, ϕ1∗(∇M1(ln f))).

Since ϕ1 is a Riemannian map, we can write

ϕ1∗X1(ln ρ) = gM1(X1,∇M1(ln f)).

This completes the proof. �
Theorem 11. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then the following statements are hold:
(i) The distribution kerϕ∗ is totally geodesic if and only if the distributions

kerϕ1∗ and kerϕ2∗ are totally geodesic, and H(∇M ln f) = 0,
(ii) The distribution kerϕ∗ is minimal if and only if either the distribution

kerϕ1∗ is minimal and H2 = H(∇M ln f) or the distribution kerϕ2∗ is
minimal and H1 =

(
r2
r1

)
H(∇M ln f),

(iii) The distribution (kerϕ∗)⊥ is totally geodesic if and only if the distribu-
tions (kerϕ1∗)⊥ and (kerϕ2∗)⊥ are totally geodesic, and V(∇M ln f) = 0,

(iv) The distribution rangeϕ∗ is minimal if and only if either the distribution
rangeϕ1∗ is minimal and H4 = ∇N ln ρ or the distribution rangeϕ2∗ is
minimal and H3 =

(
m2−r2
m1−r1

)
∇N ln ρ,
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(v) The distribution (kerϕ∗)⊥ is minimal if and only if either the distribu-
tion (kerϕ1∗)⊥ is minimal and H⊥

2 = V(∇M ln f) or the distribution
(kerϕ2∗)⊥ is minimal and H⊥

1 =
(

m2−r2
m1−r1

)
V(∇M ln f),

(vi) The distribution (rangeϕ∗)⊥ is minimal if and only if either the distri-
bution (rangeϕ1∗)⊥ is minimal and H⊥

4 = ∇N ln ρ or the distribution
(rangeϕ2∗)⊥ is minimal and H⊥

3 =
(

n4
n3

)
∇N ln ρ,

where ∇M and ∇N are Levi-Civita connections on M and N respectively. In
addition H1,H2,H3,H4,H

⊥
1 ,H⊥

2 ,H⊥
3 and H⊥

4 are the mean curvature vector
fields of kerϕ1∗, kerϕ2∗, rangeϕ1∗, rangeϕ2∗, (kerϕ1∗)⊥, (kerϕ2∗)⊥,
(rangeϕ1∗)⊥ and (rangeϕ2∗)⊥ respectively. Also here r1 = dim(kerϕ1∗), r2 =
dim(kerϕ2∗),m1 − r1 = dim(rangeϕ1∗), m2 − r2 = dim(rangeϕ2∗), n3 =
dim((rangeϕ1∗)⊥) and n4 = dim((rangeϕ2∗)⊥).

Proof. Let {ui}r1
i=1 and {u∗

a}r1+r2
a=r1+1 be orthonormal bases of kerϕ1∗ and kerϕ2∗,

respectively. Then

‖T‖2 =
r1∑

i,j=1

gM (T (ui, uj), T (ui, uj)) +
r1+r2∑

a,b=r1+1

gM (T (u∗
a, u∗

b), T (u∗
a, u∗

b))

=
r1∑

i,j=1

gM (T1(ui, uj), T1(ui, uj))

+
r1+r2∑

a,b=r1+1

gM (T2(u∗
a, u∗

b) − gM (u∗
a, u∗

b)(H∇M ln f), T2(u∗
a, u∗

b)

− gM (u∗
a, u∗

b)(H∇M ln f)),

where T, T1 and T2 are O’Neill tensors on kerϕ∗, kerϕ1∗ and kerϕ2∗ respec-
tively [14]. Thus

‖T‖2 = ‖T1‖2 + ‖T2‖2 + r2 ‖H(∇M ln f)‖. (5)

In addition the mean curvature vector field of kerϕ∗ is given by

H =
1

r1 + r2

(
r1∑

i=1

T (ui, ui) +
r1+r2∑

a=r1+1

T (u∗
a, u∗

a)

)

=
1

r1 + r2

(
r1∑

i=1

T1(ui, ui) +
r1+r2∑

a=r1+1

T2(u∗
a, u∗

a) − gM (u∗
a, u∗

a)(H∇M ln f)

)

.

(6)

We know that [29]

H1 =
1
r1

r1∑

i=1

T1(ui, ui) (7)
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and

H2 =
1
r2

r1+r2∑

a=r1+1

T2(u∗
a, u∗

a), (8)

where H1 and H2 denote the mean curvature vector fields of the distributions
kerϕ1∗ and kerϕ2∗, respectively. Using (7) and (8) in (6), we get

H =
1

r1 + r2

(
r1H1 + r2(H2 − H∇M ln f)

)
. (9)

Further, let {xi}m1
i=r1+1 and {x∗

a}m1−r1+m2−r2
a=m1−r1+1 be orthonormal bases of (kerϕ1∗)⊥

and (kerϕ2∗)⊥, respectively. Then

‖A‖2 =

m1∑

i,j=r1+1

gM (A(xi, xj), A(xi, xj)) +

m1−r1+m2−r2∑

a,b=m1−r1+1

gM (A(x∗
a, x∗

b), A(x∗
a, x∗

b))

=

m1∑

i,j=r1+1

gM (A1(xi, xj), A1(xi, xj))

+

m1−r1+m2−r2∑

a,b=m1−r1+1

gM (A2(x
∗
a, x∗

b) − gM (x∗
a, x∗

b)(V∇M ln f), A2(x
∗
a, x∗

b)

− gM (x∗
a, x∗

b)(V∇M ln f)),

where A,A1 and A2 are O’Neill tensors on (kerϕ∗)⊥, (kerϕ1∗)⊥ and (kerϕ2∗)⊥

respectively [14]. Thus

‖A‖2 = ‖A1‖2 + ‖A2‖2 + (m2 − r2) ‖V(∇M ln f)‖. (10)

In addition the mean curvature vector field of rangeϕ∗ is given by

H ′ =
1

m1 − r1 + m2 − r2

(
m1∑

i=r1+1

∇ϕ
xi

ϕ1∗xi +
m1−r1+m2−r2∑

a=m1−r1+1

∇ϕ
x∗

a
ϕ2∗x∗

a

)

.

(11)

Using Lemma 9 in (11), we get

H ′ =
1

m1 − r1 + m2 − r2

m1∑

i=r1+1

∇ϕ1
xi

ϕ1∗xi

+
1

m1 − r1 + m2 − r2

m1−r1+m2−r2∑

a=m1−r1+1

∇ϕ2
x∗

a
ϕ2∗x∗

a − gM (x∗
a, x∗

a)∇N ln ρ.

(12)

We know that [29]

H3 =
1

m1 − r1

m1∑

i=r1+1

∇ϕ1
xi

ϕ1∗xi (13)
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and

H4 =
1

m2 − r2

m1−r1+m2−r2∑

a=m1−r1+1

∇ϕ2
x∗

a
ϕ2∗x∗

a, (14)

where H3 and H4 denote the mean curvature vector fields of the distributions
rangeϕ1∗ and rangeϕ2∗, respectively. Using (13) and (14) in (12), we get

H ′ =
1

m1 − r1 + m2 − r2

(
(m1 − r1)H3 + (m2 − r2)(H4 − ∇N ln ρ)

)
. (15)

Also, the mean curvature vector field of (kerϕ∗)⊥ is given by

H⊥ =
1

m1 − r1 + m2 − r2

(
m1∑

i=r1+1

A(xi, xi) +
m1−r1+m2−r2∑

a=m1−r1+1

A(x∗
a, x∗

a)

)

=
1

m1 − r1 + m2 − r2

(
m1∑

i=r1+1

A1(xi, xi) +
m1−r1+m2−r2∑

a=m1−r1+1

A2(x∗
a, x∗

a)

−gM (x∗
a, x∗

a)(V∇M ln f)
)
. (16)

We know that [29]

H⊥
1 =

1
m1 − r1

m1∑

i=r1+1

A1(xi, xi) (17)

and

H⊥
2 =

1
m2 − r2

m1−r1+m2−r2∑

a=m1−r1+1

A2(x∗
a, x∗

a), (18)

where H⊥
1 and H⊥

2 denote the mean curvature vector fields of the distributions
(kerϕ1∗)⊥ and (kerϕ2∗)⊥, respectively. Using (17) and (18) in (16), we get

H⊥ =
1

m1 − r1 + m2 − r2

(
(m1 − r1)H⊥

1 + (m2 − r2)(H⊥
2 − V∇M ln f)

)
.

(19)

Finally, let {ēl}n3
l=1 and {ěs}n3+n4

s=n3+1 be orthonormal bases of (rangeϕ1∗)⊥ and
(rangeϕ2∗)⊥, respectively. Then the mean curvature vector field of (rangeϕ∗)⊥

is

H ′⊥ =
1

n3 + n4

(
n3∑

l=1

∇ϕ⊥
ēl

ēl +
n3+n4∑

s=1+n3

∇ϕ⊥
ěs

ěs

)

. (20)

Using Lemma 9 in (20), we get

H ′⊥ =
1

n3 + n4

(
n3∑

l=1

∇ϕ⊥
1

ēl
ēl +

n3+n4∑

s=1+n3

∇ϕ⊥
2

ěs
ěs − gN (ěs, ěs)∇N ln ρ

)

. (21)
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We know that [29]

H⊥
3 =

1
n3

n3∑

l=1

∇ϕ⊥
1

ēl
ēl (22)

and

H⊥
4 =

1
n4

n3+n4∑

s=1+n3

∇ϕ⊥
2

ěs
ěs, (23)

where H⊥
3 and H⊥

4 denote the mean curvature vector fields of the distributions
(rangeϕ1∗)⊥ and (rangeϕ2∗)⊥, respectively. Using (22) and (23) in (21), we
get

H ′⊥ =
1

n3 + n4

(
n3 H⊥

3 + n4(H⊥
4 − ∇N ln ρ)

)
. (24)

Then proof follows by (5), (9), (10), (15), (19) and (24). �

4. Totally Geodesic Riemannian Warped Product Maps

In this section, we construct the Gauss formula (second fundamental form)
for a Riemannian warped product map between Riemannian warped product
manifolds and discuss totally geodesicity [32].

Theorem 12. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then the second fundamental form of ϕ is

(∇ϕ∗)(X,Y ) =(∇1ϕ1∗)(X1, Y1) + (∇2ϕ2∗)(X2, Y2)

+ (ϕ1∗Y1(ln ρ))ϕ2∗X2 + (ϕ1∗X1(ln ρ))ϕ2∗Y2 (25)

− (X1(ln f))ϕ2∗Y2 − (Y1(ln f))ϕ2∗X2,

where X = (X1,X2), Y = (Y1, Y2) ∈ Γ(T (M1 × M2)) and ϕi : Mi → Ni are
Riemannian maps between Riemannian manifolds for i = 1, 2. In addition,
the bundle TM∗

i ⊗ ϕ−1
i (TNi) has connection ∇i induced from the Levi-Civita

connection ∇Mi of Mi for i = 1, 2. This is known as Gauss formula also.

Proof. Let ϕi : Mi → Ni be Riemannian maps between Riemannian manifolds
and TNi be bundle over Ni for i = 1, 2. Now, the pullback bundle ϕ−1

i (TNi) →
Mi has the fibers (ϕ−1

i (TNi))pi
= Tϕi(pi)Ni for pi ∈ Mi. We shall use this

identification without comment. The Levi-Civita connection ∇Ni on Ni and
the pullback connection ∇ϕi are the unique linear connections on the pullback
bundle ϕ−1

i (TNi) such that for each Zi ∈ Γ(TNi)

∇ϕi

Xi
(ϕ∗

i Zi) = ∇Ni

ϕi∗Xi
Zi,

where ϕ∗
i Zi = Zi◦ϕi ∈ Γ(ϕ−1

i Ni) and ϕi∗ is section of Hom(TMi, ϕ
−1
i (TNi)) =

TM∗
i ⊗ ϕ−1

i (TNi) → Mi = TM∗
i ⊗ ϕ−1

i (TNi). In addition, the bundle TM∗
i ⊗
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ϕ−1
i (TNi) has connection ∇i induced from the Levi-Civita connection ∇Mi of

Mi and the pull back connection ∇ϕi . The covariant derivative of ϕi∗ called
the second fundamental form of ϕi, i.e. ∇iϕi∗ ∈ Γ(T ∗Mi ⊗T ∗Mi ⊗ϕ−1(TNi))
such that

(∇iϕi∗)(Xi, Yi) = ∇ϕi

Xi
(ϕi∗(Yi)) − ϕi∗(∇Mi

Xi
Yi), (26)

where Xi, Yi ∈ Γ(TMi). Here the map ϕ∗ = (ϕ1×ϕ2)∗ is section of Hom(T (M1

× M2), ϕ−1(T (N1 × N2))) → M1 × M2. Let the bundle T ∗(M1 × M2) ⊗
ϕ−1(T (N1 × N2)) has connection ∇ induced from the Levi-Civita connec-
tion ∇M of M = M1 ×f M2 and the pull back connection ∇ϕ. The covariant
derivative ∇ϕ∗ is the second fundamental form of ϕ, i.e.

∇ϕ∗ ∈ Γ(T ∗(M1 × M2) ⊗ T ∗(M1 × M2) ⊗ ϕ−1(T (N1 × N2))).

Now for X = (X1,X2) and Y = (Y1, Y2), we have

(∇ϕ∗)(X,Y ) =∇ϕ
Xϕ∗Y − ϕ∗(∇M

X Y )

=∇ϕ
(X1,X2)

ϕ∗(Y1, Y2) − ϕ∗(∇M
(X1,X2)

(Y1, Y2)).

Now by using Proposition 4, we get

(∇ϕ∗)(X,Y ) =∇ϕ
(X1+X2)

(ϕ1∗Y1 + ϕ2∗Y2) − ϕ∗(∇M
(X1+X2)

(Y1 + Y2))

=∇ϕ
X1

ϕ1∗(Y1) + ∇ϕ
X2

ϕ1∗(Y1) + ∇ϕ
X1

ϕ2∗(Y2)

+ ∇ϕ
X2

ϕ2∗(Y2) − ϕ∗(∇M
X1

Y1 + ∇M
X1

Y2 + ∇M
X2

Y1 + ∇M
X2

Y2).
(27)

Using Lemma 2 in (27), we get

(∇ϕ∗)(X,Y ) =∇ϕ
X1

ϕ1∗(Y1) + ∇ϕ
X2

ϕ1∗(Y1) + ∇ϕ
X1

ϕ2∗(Y2) + ∇ϕ
X2

ϕ2∗(Y2)

− ϕ∗(∇M
X1

Y1 + (X1(f)/f)Y2

+ (Y1(f)/f)X2 + nor(∇M
X2

Y2) + tan(∇M
X2

Y2))

=∇N
ϕ1∗X1

ϕ1∗Y1 + ∇N
ϕ2∗X2

ϕ1∗Y1 + ∇N
ϕ1∗X1

ϕ2∗Y2 + ∇N
ϕ2∗X2

ϕ2∗Y2

− ϕ1∗(∇M1
X1

Y1) − (X1(f)/f)ϕ2∗Y2 − (Y1(f)/f)ϕ2∗X2

+ gM (X2, Y2)ϕ∗(∇ ln f) − ϕ2∗(∇M2
X2

Y2).

Using Lemma 9 in above equation, we get

(∇ϕ∗)(X,Y ) =∇N1
ϕ1∗X1

ϕ1∗Y1 + (ϕ1∗Y1(ρ)/ρ)ϕ2∗X2 + (ϕ1∗X1(ρ)/ρ)ϕ2∗Y2

− gN (ϕ2∗X2, ϕ2∗Y2)(∇N ln ρ) + ∇N2
ϕ2∗X2

ϕ2∗Y2 − ϕ1∗(∇M1
X1

Y1)

− (X1(f)/f)ϕ2∗Y2 − (Y1(f)/f)ϕ2∗X2 (28)

+ gM (X2, Y2)ϕ∗(∇M ln f) − ϕ2∗(∇M2
X2

Y2).

This is the second fundamental form (Gauss formula) for a smooth map be-
tween Riemannian warped product manifolds. Since ϕ is Riemannian warped
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product map, (28) implies

(∇ϕ∗)(X,Y ) =∇N1
ϕ1∗X1

ϕ1∗Y1 + (ϕ1∗Y1(ρ)/ρ)ϕ2∗X2 + (ϕ1∗X1(ρ)/ρ)ϕ2∗Y2

− gM (X2, Y2)(∇N ln ρ) + ∇N2
ϕ2∗X2

ϕ2∗Y2 − ϕ1∗(∇M1
X1

Y1)

− (X1(f)/f)ϕ2∗Y2 − (Y1(f)/f)ϕ2∗X2 (29)

+ gM (X2, Y2)ϕ∗(∇M ln f) − ϕ2∗(∇M2
X2

Y2).

We know that f is lift of ρ then by Lemma 1, we have

ϕ∗(∇M ln f) = ∇N ln ρ. (30)

Using (26) and (30) in (29), we get the required proof. �

Now, from Proposition 10, Theorem 12 and Lemma 4 of [14] we have following
consequences:

Corollary 13. Let ϕ = ϕ1 ×ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then

(i) (∇ϕ∗)(X,Y ) = −ϕ1∗(H1∇M1
U1

V1) = −ϕ1∗(T1(U1, V1)) ∈ Γ(rangeϕ1∗) for
X = (U1, 0), Y = (V1, 0) ∈ Γ(T (M1 × M2)), where U1, V1 ∈ Γ(kerϕ1∗).

(ii) (∇ϕ∗)(X,Y ) = ∇N1
ϕ1∗X1

ϕ1∗Y1 − ϕ1∗(∇M1
X1

Y1) = (∇1ϕ1∗)(X1, Y1) ∈ Γ
(rangeϕ1∗)⊥ for X = (X1, 0), Y = (Y1, 0) ∈ Γ(T (M1 × M2)), where
X1, Y1 ∈ Γ(kerϕ1∗)⊥.

(iii) (∇ϕ∗)(X,Y ) = (∇1ϕ1∗)(X1, Y1)−ϕ2∗(T2(U2, V2)) for X = (X1, U2), Y =
(Y1, V2) ∈ Γ(T (M1 × M2)), where X1, Y1 ∈ Γ(kerϕ1∗)⊥ and U2, V2 ∈
Γ(kerϕ2∗).

(iv) (∇ϕ∗)(X,Y ) = (∇2ϕ2∗)(X2, Y2) − ϕ1∗(T1(U1, V1)) − U1(ln f)ϕ2∗Y2 −
V1(ln f)ϕ2∗X2 for X = (U1,X2), Y = (V1, Y2) ∈ Γ(T (M1 × M2)), where
U1, V1 ∈ Γ(kerϕ1∗) and X2, Y2 ∈ Γ(kerϕ2∗)⊥.

(v) (∇ϕ∗)(X,Y ) = −ϕ2∗(H2∇M2
U2

V2) = −ϕ2∗(T2(U2, V2)) ∈ Γ(rangeϕ2∗) for
X = (0, U2), Y = (0, V2) ∈ Γ(T (M1 × M2)), where U2, V2 ∈ Γ(kerϕ2∗).

(vi) (∇ϕ∗)(X,Y ) = (∇2ϕ2∗)(X2, Y2) ∈ Γ(rangeϕ2∗)⊥ for X = (0,X2), Y =
(0, Y2) ∈ Γ(T (M1 × M2)), where X2, Y2 ∈ Γ(kerϕ2∗)⊥.

(vii) (∇ϕ∗)(X,Y ) = −ϕ1∗(T1(U1, V1)) − ϕ2∗(T2(U2, V2)) ∈ Γ(rangeϕ∗) for
X = (U1, U2), Y = (V1, V2) ∈ Γ(T (M1 × M2)), where Ui, Vi ∈ Γ(kerϕi∗).

(viii) (∇ϕ∗)(X,Y ) = (∇1ϕ1∗)(X1, Y1) + (∇2ϕ2∗)(X2, Y2) ∈ Γ(rangeϕ∗)⊥ for
X = (X1,X2), Y = (Y1, Y2) ∈ Γ(T (M1×M2)), where Xi, Yi ∈ Γ(kerϕi∗)⊥.

(ix) (∇ϕ∗)(X,Y ) = (∇1ϕ1∗)(X1, Y1)−ϕ2∗(H2∇M2
U2

Y2) for X = (X1, U2), Y =
(Y1, Y2) ∈ Γ(T (M1×M2)), where X1, Y1 ∈ Γ(kerϕ1∗)⊥, Y2 ∈ Γ(kerϕ2∗)⊥

and U2 ∈ Γ(kerϕ2∗).
(x) (∇ϕ∗)(X,Y ) = (∇1ϕ1∗)(X1, Y1) − ϕ2∗(A2(X2, V2)) for X = (X1,X2),

Y = (Y1, V2) ∈ Γ(T (M1 × M2)), where X1, Y1 ∈ Γ(kerϕ1∗)⊥, X2 ∈
Γ(kerϕ2∗)⊥ and V2 ∈ Γ(kerϕ2∗).
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(xi) (∇ϕ∗)(X,Y ) = (∇2ϕ2∗)(X2, Y2) − ϕ1∗(H1∇U1Y1) − U1(ln f)ϕ2∗Y2 for
X = (U1,X2), Y = (Y1, Y2) ∈ Γ(T (M1 × M2)), where Y1 ∈ Γ(kerϕ1∗)⊥,
X2, Y2 ∈ Γ(kerϕ2∗)⊥ and U1 ∈ Γ(kerϕ1∗).

(xii) (∇ϕ∗)(X,Y ) = (∇2ϕ2∗)(X2, Y2) − V1(ln f)ϕ2∗X2 − ϕ1∗(A1(X1, V1)) for
X = (X1,X2), Y = (V1, Y2) ∈ Γ(T (M1 ×M2)), where X1 ∈ Γ(kerϕ1∗)⊥,
X2, Y2 ∈ Γ(kerϕ2∗)⊥ and V1 ∈ Γ(kerϕ1∗).

Remark 3. In Lemma 3.1 of [26], Şahin showed that for a Riemannian map
ϕ between Riemannian manifolds (∇ϕ∗)(X,Y ) ∈ Γ(rangeϕ∗)⊥ if X,Y ∈
Γ(kerϕ∗)⊥. Similarly in the (viii) statement of Corollary 13, we get that for a
Riemannian warped product map between Riemannian warped product man-
ifolds (∇ϕ∗)(X,Y ) ∈ Γ(rangeϕ∗)⊥ for X = (X1,X2), Y = (Y1, Y2), where
Xi, Yi ∈ Γ(kerϕi∗)⊥.

Now, we give the definition of totally geodesic map between Riemannian
warped product manifolds.

Definition 3. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then ϕ is called totally geodesic if (∇ϕ∗)(X,Y ) = 0 for all X =
(X1,X2), Y = (Y1, Y2) ∈ Γ(T (M1 × M2)).

Theorem 14. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then ϕ is totally geodesic if and only if
(i) ϕ1 is totally geodesic, and

(ii) ϕ2 is totally geodesic, and
(iii) f is constant on kerϕ1∗.

Proof. The proof follows by Theorem 12 and Corollary 13. �

5. Harmonic Riemannian Warped Product Maps

In this section, we calculate the tension field for a Riemannian warped product
map between Riemannian warped product manifolds and discuss harmonicity
[2,29].

First, we give the definition of the tension field for a smooth map between
Riemannian warped product manifolds [2].

Definition 4. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a smooth map between Riemannian warped product manifolds. Then the
tension field τ(ϕ) of ϕ is trace of the second fundamental form of ϕ with
respect to gM , i.e.

τ(ϕ) = trace(∇ϕ∗) = trace(∇ϕ∗)((X1, X2), (Y1, Y2)) =

m1∑

i=1

m1+m2∑

a=m1+1

(∇ϕ∗)((ei, ea), (ei, ea)),
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where (X1,X2), (Y1, Y2) ∈ Γ(T (M1 × M2)) and {ei}m1
i=1, {ea}m1+m2

a=m1+1 are or-
thonormal bases of Tp1M1 and Tp2M2, respectively. The tension field of ϕ is a
vector field along ϕ, i.e. τ(ϕ) ∈ Γϕ(T (N1 × N2)).

Lemma 15. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then

τ(ϕ) = −r1 ϕ1∗(H1) − r2 ϕ2∗(H2) + (m1 − r1)H3 + (m2 − r2)H4,

where r1 = dim(kerϕ1∗), r2 = dim(kerϕ2∗),m1 − r1 = dim(rangeϕ1∗) and
m2 − r2 = dim(rangeϕ2∗). In addition H1,H2,H3 and H4 are the mean cur-
vature vector fields of kerϕ1∗, kerϕ2∗, rangeϕ1∗ and rangeϕ2∗, respectively.

Proof. Let {u1, u2, . . . , ur1}, {xr1+1, xr1+2, . . . , xm1}, {u∗
r1+1, u

∗
r1+2, . . . , u

∗
r1+r2

}
and {x∗

m1−r1+1, x
∗
m1−r1+2, . . . , x

∗
m1−r1+m2−r2

} be orthonormal bases of
kerϕ1∗, (kerϕ1∗)⊥, kerϕ2∗ and (kerϕ2∗)⊥, respectively. We know that

τ(ϕ) = τkerϕ∗(ϕ) + τ (kerϕ∗)⊥
(ϕ). (31)

Now

τkerϕ∗(ϕ) =
r1∑

i=1

r1+r2∑

a=r1+1

(∇ϕ∗)((ui, u
∗
a), (ui, u

∗
a)), (32)

where (ui, u
∗
a) ∈ kerϕ1∗ × kerϕ2∗ = kerϕ∗, and {ui}r1

i=1, {u∗
a}r1+r2

a=r1+1 are or-
thonormal bases of kerϕ1∗ and kerϕ2∗, respectively. Using (25) in (32), we
get

τkerϕ∗(ϕ) =
r1∑

i=1

(∇1ϕ1∗)(ui, ui) +
r1+r2∑

a=r1+1

(∇2ϕ2∗)(u∗
a, u∗

a)

+
r1∑

i=1

r1+r2∑

a=r1+1

(ϕ1∗ui(ln ρ))ϕ2∗u∗
a +

r1∑

i=1

r1+r2∑

a=r1+1

(ϕ1∗ui(ln ρ))ϕ2∗u∗
a

−
r1∑

i=1

r1+r2∑

a=r1+1

{(ui(ln f))ϕ2∗u∗
a + (ui(ln f))ϕ2∗u∗

a} .

Using (26) in above equation, we get

τkerϕ∗(ϕ) = −
r1∑

i=1

(∇1ϕ1∗)(ui, ui) −
r1+r2∑

a=r1+1

(∇2ϕ2∗)(u∗
a, u∗

a). (33)

Using (7) and (8) in (33), we get

τkerϕ∗ = −r1 ϕ1∗(H1) − r2 ϕ2∗(H2), (34)
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where H1 and H2 are the mean curvature vector fields of kerϕ1∗ and kerϕ2∗
respectively. On the other hand

τ (kerϕ∗)⊥
(ϕ) =

m1∑

i=r1+1

m1−r1+m2−r2∑

a=m1−r1+1

(∇ϕ∗)((xi, x
∗
a)(xi, x

∗
a)), (35)

where {xi}m1
i=r1+1 and {x∗

a}m1−r1+m2−r2
a=m1−r1+1 are orthonormal bases of (kerϕ1∗)⊥

and (kerϕ2∗)⊥, respectively. Using (viii) statement of Corollary 13 in (35), we
get

τ (kerϕ∗)⊥
(ϕ) =

m1∑

i=r1+1

(∇1ϕ1∗)(xi, xi) +
m1−r1+m2−r2∑

a=m1−r1+1

(∇2ϕ2∗)(x∗
a, x∗

a).

Equivalently

τ (kerϕ∗)⊥
(ϕ) =

m1∑

i=r1+1

n1∑

p=1

gN ((∇1ϕ1∗)(xi, xi), zp)zp

+
m1−r1+m2−r2∑

a=m1−r1+1

n2∑

q=n1+1

gN ((∇2ϕ2∗)(x∗
a, x∗

a), z′
q)z

′
q,

where {zp}n1
p=1 and {z′

q}n1+n2
q=n1+1 are orthonormal bases of TN1 and TN2 respec-

tively. On decomposition

τ (kerϕ∗)⊥
(ϕ) =

m1∑

i=r1+1

m1∑

k=r1+1

gN1((∇1ϕ1∗)(xi, xi), ẽk)ẽk

+
m1∑

i=r1+1

n3∑

l=1

gN1((∇1ϕ1∗)(xi, xi), ēl), ēl)

+
m1−r1+m2−r2∑

a=m1−r1+1

{

ρ2
m1−r1+m2−r2∑

t=m1−r1+1

gN2((∇2ϕ2∗)(x∗
a, x∗

a), êt)êt

}

+
m1−r1+m2−r2∑

a=m1−r1+1

{
n3+n4∑

s=1+n3

ρ2gN2((∇2ϕ2∗)(x∗
a, x∗

a), ěs)ěs

}

,

where {ẽk}m1
k=r1+1, {ēl}n3

l=1, {êt}m1−r1+m2−r2
t=m1−r1+1 and {ěs}n3+n4

s=n3+1 are orthonormal
bases of rangeϕ1∗, (rangeϕ1∗)⊥, rangeϕ2∗ and (rangeϕ2∗)⊥, respectively. Us-
ing (26) in above equation, we get

τ (kerϕ∗)⊥
(ϕ) =

m1∑

i=r1+1

n3∑

l=1

gN1(∇ϕ1
xi

ϕ1∗(xi), ēl)ēl

+
m1−r1+m2−r2∑

a=m1−r1+1

n3+n4∑

s=1+n3

ρ2gN2(∇ϕ2
x∗

a
ϕ2∗(x∗

a), ěs)ěs. (36)
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Using (13) and (14) in (36), we get

τ (kerϕ∗)⊥
(ϕ) = (m1 − r1)

n3∑

l=1

gN1(H3, ēl)ēl + (m2 − r2)

n3+n4∑

s=1+n3

ρ2gN2(H4, ěs)ěs,

where H3 and H4 are the mean curvature vector fields of rangeϕ1∗ and
rangeϕ2∗ respectively. Thus

τ (kerϕ∗)⊥
(ϕ) = (m1 − r1)H3 + (m2 − r2)H4. (37)

Then we get required proof by using (31), (34) and (37). �

Remark 4. In Lemma 4.2 of [27], Şahin showed that for a Riemannian map
ϕ between Riemannian manifolds τ(ϕ) = −rϕ∗(H) + (m − r)H ′, where r =
dim(kerϕ∗) and m−r = dim(rangeϕ∗). Also, H and H ′ denote the mean cur-
vature vector fields of kerϕ∗ and rangeϕ∗, respectively. While in Lemma 15, we
get that for a Riemannian warped product map between Riemannian warped
product manifolds τ(ϕ) = −r1ϕ1∗(H1)−r2ϕ2∗(H2)+(m1−r1)H3+(m2−r2)H4,
where r1 = dim(kerϕ1∗), r2 = dim(kerϕ2∗),m1 − r1 = dim(rangeϕ1∗) and
m2 − r2 = dim(rangeϕ2∗). Here H1,H2,H3 and H4 are the mean curvature
vector fields of kerϕ1∗, kerϕ2∗, rangeϕ1∗ and rangeϕ2∗, respectively.

Now, we give the definition of harmonic map between Riemannian warped
product manifolds.

Definition 5. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then ϕ is harmonic if its tension field τ(ϕ) vanishes.

Theorem 16. Let ϕ = ϕ1×ϕ2 : (M = M1×f M2, gM ) → (N = N1×ρN2, gN ) be
a non-constant Riemannian warped product map between Riemannian warped
product manifolds. Then any four conditions imply fifth:

(i) ϕ is harmonic.
(ii) The distribution kerϕ1∗ is minimal.

(iii) The distribution kerϕ2∗ is minimal.
(iv) The distribution rangeϕ1∗ is minimal.
(v) The distribution rangeϕ2∗ is minimal.

Proof. We know that a distribution is minimal if and only if its mean curvature
vector field vanishes. Then the proof follows by Lemma 15. �

Remark 5. The harmonicity conditions for a Riemannian map between Rie-
mannian manifolds were given in Theorem 6.1 of [30] by Şahin. Similarly, we
obtain the harmonicity conditions for a Riemannian warped product map be-
tween Riemannian warped product manifolds in Theorem 16.
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6. Umbilical Riemannian Warped Product Maps

In this section, we construct Weingarten formula for a Riemannian warped
product map between Riemannian warped product manifolds and discuss um-
bilicity.

Let ϕ = ϕ1 × ϕ2 : M = M1 ×f M2 → N = N1 ×ρ N2 be a Riemannian
warped product map between Riemannian warped product manifolds and ∇N

be the Levi-Civita connection on N = N1 ×ρ N2. From now on wards, for the
sake of simplicity we denote both the Levi-Civita connection on (N, gN ) and
its pullback along ϕ by ∇N . Here we denote (rangeϕ∗)⊥ = (rangeϕ1∗)⊥ ×
(rangeϕ2∗)⊥ is subbundle of ϕ−1(T (N1 × N2)) with fiber ϕ1∗(Tp1M1)⊥ ×
ϕ2∗(Tp2M2)⊥ the orthogonal complement of ϕ1∗(Tp1M1) × ϕ2∗(Tp2M2) for
gN = gN1 + ρ2 gN2 over p = (p1, p2) ∈ M1 ×f M2. For any vector field X =
(X1,X2) on M = M1 ×f M2 and any section V = (V1, V2) of (rangeϕ∗)⊥ =
(rangeϕ1∗)⊥ × (rangeϕ2∗)⊥, we define ∇ϕ⊥

X V = ∇ϕ⊥
X1+X2

V1 + V2, which is
orthogonal projection of ∇N

X1+X2
V1 + V2 on (rangeϕ∗)⊥ = (rangeϕ1∗)⊥ ×

(rangeϕ2∗)⊥. Then ∇ϕ⊥ is a linear connection on (rangeϕ∗)⊥ such that ∇ϕ⊥gN

= 0 [21].
Now we construct Weingarten formula for Riemannian warped product

map. Define shape operator SV on rangeϕ∗ = rangeϕ1∗×rangeϕ2∗. Since ϕ is
a Riemannian map, for X = (X1,X2) ∈ Γ(kerϕ1∗) × Γ(kerϕ2∗) = Γ(kerϕ∗)⊥

and V = (V1, V2) ∈ Γ(rangeϕ1∗)⊥ × Γ(rangeϕ2∗)⊥ = Γ(rangeϕ∗)⊥, we have
[29]

∇N
ϕ∗(X1+X2)

(V1, V2) = −S(V1,V2)ϕ∗(X1,X2) + ∇ϕ⊥
(X1,X2)

(V1, V2).

Since Tp1M1 × Tp2M2
∼= Tp1M1 ⊕ Tp2M2, above equation can be written as

∇N
ϕ∗X1+ϕ∗X2

(V1 + V2) = −S(V1+V2)(ϕ∗X1 + ϕ∗X2) + ∇ϕ⊥
(X1+X2)

(V1 + V2).

Since ∇ is a linear connection and SV1 is a shape operator on rangeϕ1∗, there is
no meaning of SV1ϕ2∗X2. Similarly we treat for SV2 . Then by above equation,
we have

∇N
ϕ1∗X1

V1 + ∇N
ϕ1∗X1

V2 + ∇N
ϕ2∗X2

V1

+ ∇N
ϕ2∗X2

V2 = −SV1ϕ1∗X1 − SV2ϕ2∗X2

+ ∇ϕ⊥
X1

V1 + ∇ϕ⊥
X1

V2 + ∇ϕ⊥
X2

V1 + ∇ϕ⊥
X2

V2.

Using Lemma 9 in above equation, we get

∇N1
ϕ1∗X1

V1 +
(ϕ1∗X1(ρ))

ρ
V2 +

(V1(ρ))

ρ
ϕ2∗X2 + ∇N2

ϕ2∗X2
V2 = − SV1ϕ1∗X1 − SV2ϕ2∗X2

+ ∇ϕ⊥
X1

V1 + ∇ϕ⊥
X2

V2,

(38)
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where SVi
ϕi∗Xi is tangential component (vector fields along ϕi) of ∇Ni

ϕi∗Xi
Vi.

Observe that ∇Ni

ϕi∗Xi
Vi is pullback connection of ∇Ni . Here (38) is known as

Weingarten formula for Riemannian warped product map.
Since (rangeϕ∗)⊥ is subbundle of ϕ−1(T (N ×N2)) and ϕ−1(T (N1×N2))

is bundle on M = M1 ×f M2, (rangeϕ∗)⊥ is also bundle on M . Thus

ϕ−1(T (N1 × N2)) = (rangeϕ∗)⊥ ⊕ (rangeϕ∗).

Lemma 17. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ N2, gN )
be a Riemannian warped product map between Riemannian warped product
manifolds. Then ρ is a constant function on (rangeϕ∗)⊥.

Proof. For V = (V1, V2) ∈ Γ(rangeϕ∗)⊥, we have

V (ln ρ) =gN (V,∇N ln ρ)

=gN1(V1,∇N ln ρ) + ρ2 gN2(V2,∇N ln ρ).

Using Lemma 1, we get

V (ln ρ) = gN1(V1, ϕ1∗(∇M1f)).

Since ϕ1∗(∇M1f) ∈ Γ(rangeϕ∗), V (ln ρ) = 0. This implies the proof. �

Proposition 18. Let ϕ = ϕ1 × ϕ2 : (M = M1 ×f M2, gM ) → (N = N1 ×ρ

N2, gN ) be a non-constant Riemannian warped product map between Riemann-
ian warped product manifolds. Then

gN (S(V1,V2)ϕ∗(X1,X2), ϕ∗(Y1, Y2)) = gN ((∇ϕ∗)((X1,X2), (Y1, Y2)), (V1, V2)),

where X = (X1,X2), Y = (Y1, Y2) ∈ Γ(kerϕ1∗)⊥ × Γ(kerϕ2∗)⊥ and V =
(V1, V2) ∈ Γ(rangeϕ1∗)⊥ × Γ(rangeϕ2∗)⊥.

Proof. By Weingarten formula for X = (X1,X2), Y = (Y1, Y2) ∈ Γ(kerϕ1∗)⊥×
Γ(kerϕ2∗)⊥ and V = (V1, V2) ∈ Γ(rangeϕ∗)⊥, we have

gN (SV1ϕ1∗X1 + SV2ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2)

= gN (∇ϕ⊥
X1

V1 + ∇ϕ⊥
X2

V2 − ∇N
ϕ1∗X1

V1 − ∇N
ϕ2∗X2

V2 (39)

− (ϕ1∗X1(ln ρ))V2 − (V1(ln ρ))ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2),

which implies
gN (SV1ϕ1∗X1 + SV2ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2) = − gN (∇N1

ϕ1∗X1
V1, ϕ1∗Y1)

− gN (∇N2
ϕ2∗X2

V2, ϕ2∗Y2)

− gN ((ϕ1∗X1)(ln ρ)V2, ϕ1∗Y1 + ϕ2∗Y2)

− gN (V1(ln ρ)ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2)

= − gN1 (∇N1
ϕ1∗X1

V1, ϕ1∗Y1)

− ρ2gN2 (∇N2
ϕ2∗X2

V2, ϕ2∗Y2)

− ρ2 {V1(ln ρ)gN2(ϕ2∗X2, ϕ2∗Y2)} .
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Using metric compatibility condition and Lemma 17 in above equation, we get

gN (SV1ϕ1∗X1 + SV2ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2) =gN1(∇N1
ϕ1∗X1

ϕ1∗Y1, V1)

+ ρ2 gN2(∇N2
ϕ2∗X2

ϕ2∗Y2, V2).
(40)

Using (4) in (40), we get

gN (SV1ϕ1∗X1 + SV2ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2) =gN1(∇ϕ1
X1

ϕ1∗(Y1), V1)

+ ρ2gN2(∇ϕ2
X2

ϕ2∗(Y2), V2).

Using (26) in above equation, we get

gN (SV1ϕ1∗X1 + SV2ϕ2∗X2, ϕ1∗Y1 + ϕ2∗Y2) =gN1((∇1ϕ1∗)(X1, Y1), V1)

+ ρ2 gN2((∇2ϕ2∗)(X2, Y2), V2).
(41)

This implies the proof. �
Remark 6. For a Riemannian map between Riemannian manifolds Şahin ob-
tained that gN (SV ϕ∗X,ϕ∗Y ) = gN ((∇ϕ∗)(X,Y ), V ) for X,Y ∈ Γ(kerϕ∗)⊥

and V ∈ Γ(rangeϕ∗)⊥ [29]. While in Proposition 18, for a Riemannian warped
product map between Riemannian warped product manifolds we obtain that
gN (S(V1,V2)ϕ∗(X1,X2), ϕ∗(Y1, Y2)) = gN ((∇ϕ∗)((X1,X2), (Y1, Y2)), (V1, V2))
for X = (X1,X2), Y = (Y1, Y2) ∈ Γ(kerϕ1∗)⊥ × Γ(kerϕ2∗)⊥ and V =
(V1, V2) ∈ Γ(rangeϕ1∗)⊥ × Γ(rangeϕ2∗)⊥. Now, since the second fundamental
form (∇ϕ∗)((X1,X2), (Y1, Y2)) of ϕ is symmetric, we conclude that SV is a
symmetric linear transformation of (rangeϕ∗).

Now we give definition of umbilical map between Riemannian warped
product manifolds.

Definition 6. Let ϕ = ϕ1 × ϕ2 : M = M1 ×f M2 → N = N1 ×ρ N2 be a
Riemannian warped product map between Riemannian warped product man-
ifolds. Then we say that ϕ is an umbilical Riemannian warped product map
at p = (p1, p2) ∈ M1 ×f M2 if

S(V1,V2)ϕ∗(X1,X2) = λ(ϕ∗(X1,X2)).

Equivalently

S(V1+V2)(ϕ1∗X1 + ϕ2∗X2) = λ(ϕ1∗X1 + ϕ2∗X2),

where λ : N = N1 ×ρ N2 → R is a smooth function such that λ = (λ1, λ2) and
λi is smooth function on Ni. We say ϕ is an umbilical map if it is umbilical at
all p ∈ M .

Theorem 19. Let ϕ = ϕ1 × ϕ2 : M = M1 ×f M2 → N = N1 ×ρ N2 be a Rie-
mannian warped product map between Riemannian warped product manifolds.
Then ϕ is umbilical if and only if

(∇ϕ∗)((X1,X2), (Y1, Y2)) = (H3,H4)gM ((X1, Y1), (X2, Y2)),
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where X = (X1,X2), Y = (Y1, Y2) ∈ Γ(kerϕ1∗)⊥ × Γ(kerϕ2∗)⊥ and V =
(V1, V2) ∈ Γ(rangeϕ1∗)⊥ × Γ(rangeϕ2∗)⊥. In addition, H3 and H4 are the
mean curvature vector fields of rangeϕ1∗ and rangeϕ2∗ respectively.

Proof. Let {u1, u2, . . . , ur1}, {xr1+1, xr1+2, . . . , xm1}, {u∗
r1+1, u

∗
r1+2, . . . , u

∗
r1+r2

}
and {x∗

m1−r1+1, x
∗
m1−r1+2, . . . , x

∗
m1−r1+m2−r2

} be orthonormal bases of
kerϕ1∗, (kerϕ1∗)⊥, kerϕ2∗ and (kerϕ2∗)⊥, respectively. Then the Riemannian
warped product map ϕ = ϕ1 × ϕ2 implies {ϕ1∗(xr1+1), ϕ1∗(xr1+2), . . . , ϕ1∗
(xm1)} and {ϕ2∗(x∗

m1−r1+1), . . . , ϕ2∗(x∗
m1−r1+m2−r2

)} are orthonormal bases
of rangeϕ1∗ and rangeϕ2∗, respectively. Then

m1∑

i=r1+1

m1−r1+m2−r2∑

j=m1−r1+1

gN (S(V1+V2)ϕ∗(xi, x
∗
j ), ϕ∗(xi, x

∗
j ))

=
m1∑

i=r1+1

m1−r1+m2−r2∑

j=m1−r1+1

gN (λ{ϕ1∗(xi) + ϕ2∗(x∗
j )}, ϕ1∗(xi) + ϕ2∗(x∗

j )).

On solving above equation, we get
m1∑

i=r1+1

m1−r1+m2−r2∑

j=m1−r1+1

gN (SV1(ϕ1∗xi) + SV2(ϕ2∗x∗
j ), ϕ1∗(xi) + ϕ2∗(x∗

j ))

=
m1∑

i=r1+1

m1−r1+m2−r2∑

j=m1−r1+1

(λ1, λ2)(gN1(ϕ1∗xi, ϕ1∗xi) + ρ2 gN2(ϕ1∗x∗
j , ϕ1∗x∗

j )).

(42)

Using (41) in (42), we get
m1∑

i=r1+1

gN1((∇1ϕ1∗)(xi, xi), V1) +
m1−r1+m2−r2∑

j=m1−r1+1

ρ2 gN2((∇2ϕ2∗)(x∗
j , x

∗
j ), V2)

= λ1(m1 − r1) + λ2 ρ2 (m2 − r2).

Using (13) and (14) in above equation, we get

(m1 − r1) gN1(H3, V1) + ρ2 (m2 − r2) gN2(H4, V2)

= λ1 (m1 − r1) + λ2 ρ2 (m2 − r2),

where H3 and H4 are the mean curvature vector fields of rangeϕ1∗ and
rangeϕ2∗ respectively. On comparison, we get

λ1 = gN1(H3, V1) and λ2 = gN2(H4, V2),

By (41) and Definition 6, we get

gN1((∇1ϕ1∗)(X1, Y1), V1) + ρ2 gN2((∇2ϕ2∗)(X2, Y2), V2)

= gN1(H3, V1)gM1(X1, Y1) + ρ2 gN2(H4, V2) gM2(X2, Y2),

which implies
gN ((∇ϕ∗)((X1,X2)(Y1, Y2)), (V1, V2))
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= gN ((H3,H4), (V1, V2))gM ((X1, Y1), (X2, Y2)).

This implies the required proof. �
Remark 7. In Lemma 4.1 of [28], Şahin showed that a Riemannian map ϕ
between Riemannian manifolds is umbilical if and only if (∇ϕ∗)(X,Y ) =
H ′gM (X,Y ) for X,Y ∈ Γ(kerϕ∗)⊥ and H ′ mean curvature vector field of
rangeϕ∗. While in Theorem 19, we show that a Riemannian warped prod-
uct map between Riemannian warped product manifolds is umbilical if and
only if (∇ϕ∗)((X1,X2), (Y1, Y2)) = (H3,H4)gM ((X1, Y1), (X2, Y2)) for X =
(X1,X2), Y = (Y1, Y2) ∈ Γ(kerϕ1∗)⊥ × Γ(kerϕ2∗)⊥, and H3 and H4 the mean
curvature vector fields of rangeϕ1∗ and rangeϕ2∗ respectively.
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