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Abstract. In this paper, we introduce the notion of large scale resemblance
structure as a new large scale structure by axiomatizing the concept of
being alike in large scale for a family of subsets of a set. We see that in a
particular case, large scale resemblances on a set can induce a nearness
on it, and as a consequence, we offer a relatively big class of examples
to show that not every near family is contained in a bunch. Besides, We
show how some large scale properties like asymptotic dimension can be
generalized to large scale resemblance spaces.
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1. Introduction

In 1951 Efremovic defined the concept of proximity as a small scale structure
on sets. He, in fact, tried to axiomatize the notion of being near for two subsets
A and B of a set X [3,4]. As a generalization for the concept of proximity,
Herrlich defined the notion of nearness [7]. Nearness, as a small scale structure,
tries to axiomatize the concept of being near for a family of subsets of a set X,
and it somehow unifies other small scale structures like uniformity, proximity
and contiguity :

‘The category of all nearness spaces and nearness maps contains cate-
gories of these small scale structures and their preserving maps as embedded
subcategories with some nice properties [7].’

It is worth mentioning that each small scale structure has its advantages
and difficulties, and our purposes and needs can lead us to use one of them.
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For more details about small scale structures and their relative applications,
we recommend the reader to see [2,10,11].

Recently investigating spaces in large scale has drawn a significant amount
of attention. Most large scale structures have been defined inspired by defini-
tions of well-known small scale structures. For example, Roe defined the con-
cept of coarse structures inspired by the definition of uniformity [13]. Another
example of a large scale structure is the concept of asymptotic resemblance
relation that has been defined influenced by the definition of proximity [9]. An
asymptotic resemblance relation on a set X tries to axiomatize the concept
of being alike in large scale for two subsets A and B of X. This paper is an
attempt for axiomatizing the concept of being alike in large scale for a fam-
ily of subsets of a set X. For this reason, we define the notion of large scale
resemblance and investigate some of its properties. Let us give an abbreviate
overview of what happens in this paper.

In § 2 we discuss briefly what is needed for understanding the rest of
the paper. We give basic definitions and properties about near structures and
proximities in small scale, and coarse structures and asymptotic resemblance
relations in large scale. We introduce large scale resemblance spaces in § 3.
Besides, basic definitions and properties about large scale resemblance spaces
together with some examples of large scale resemblance spaces can be found
in this section. In § 4 we show how in some cases, a large scale resemblance
structure on a set X can induce a nearness structure on X. In addition, we
show that the answer to the following question in ‘No’ for a relatively big class
of examples.

Question 1.1. Suppose that (X,N) is a near space and A ∈ N. Is there any
bunch C in (X,N) such that A ⊆ C?

We show how the concept of asymptotic dimension can be generalized
to large scale resemblance spaces in § 5. In this section, we also show that
large scale equivalent large scale resemblance spaces have the same asymptotic
dimension. Finally, in § 6 we define large scale regular (LS-regular) large scale
resemblance spaces. We show in this section, the category of LS-regular large
scale resemblance spaces and large scale mappings contains the category of all
asymptotic resemblance spaces and AS.R mappings as an embedded reflective
full subcategory.

2. Preliminaries

2.1. Proximity and Nearness

Let us fix some notation first. For a nonempty set X, P(X) denotes the family
of all subsets of X, so P(P(X)) denotes the family of all subsets of P(X). For
two elements A and B of P(P(X)) we define

A ∨ B = {A ∪ B | A ∈ A, B ∈ B}
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In addition, assume that A,B ⊆ P(X). We write B � A, if for each A ∈ A
there exists some B ∈ B such that B ⊆ A.

Definition 2.1. Let X be a nonempty set. A near structure or a nearness on X
is a subset N of P(P(X)) such that it has the following additional properties.

(i) If
⋂

A∈A A �= ∅ then A ∈ N.
(ii) If A ∈ N and A � B, then B ∈ N.
(iii) Each member of N does not contain ∅.
(iv) If A,B /∈ N then A ∨ B /∈ N.
If N is a nearness on X, then the pair (X,N) is called a N-space.

Remark 2.2. Herrlich’s definition of nearness is slightly different from Defini-
tion 2.1 and it needs another additional property (see Definition 4.9).

Let (X,N) be a N-space. For A ⊆ X and x ∈ X define x ∈ A if {x,A} ∈
N. We say that the topology T on X is compatible with N if A is exactly
the closure of A in the topological space (X, T ), for all A ⊆ X. It is easy
to show that if a topological space has a compatible nearness then it is a R0

topological space. To make this paper more self-contained, let us recall some
more definitions here.

Definition 2.3. Let X be a set. Suppose that δ is a relation on P(X). For each
A,B ⊆ X, denote (A,B) /∈ δ by Aδ̄B. Then the relation δ is called a proximity
on X if it satisfies the following properties.

(i) If AδB then BδA.
(ii) Aδ(B ∪ C) if and only if AδB or AδC.
(iii) If AδB then A �= ∅ and B �= ∅.
(iv) If Aδ̄B then there exists some D ⊆ X such that Aδ̄D and (X \ D)δ̄B.
for all A,B,C ⊆ X. The pair (X, δ) is called a proximity space [3,4]. A prox-
imity space (X, δ) is called separated if {x}δ{y} implies x = y, for all x, y ∈ X.

Let (X, δ) be a proximity space and A ⊆ X. Define x ∈ A if {x}δA. If
we assume A ⊆ X is closed, if and only if, A = A then we have a topology on
X which is called the induced topology by δ on X.

Definition 2.4. Suppose that (X, δ) is a proximity space. A family C of subsets
of X is called a cluster in (X, δ) if it satisfies the following properties.

(i) AδB, for all A,B ∈ C.
(ii) (A ∪ B) ∈ C if and only if A ∈ C or B ∈ C.
(iii) AδB for all B ∈ C implies A ∈ C.

Suppose that (X, δ) is separated proximity space. Let X denote the family
of all clusters in (X, δ). For two subsets A and B of X, define Aδ∗B if for all A
such that A is in all elements of A and for all B such that B is in all elements of
B we have AδB. It can be shown that (X, δ∗) is a compact Hausdorff proximity
space and it contains X as a dense subset. Thus X is a compactification of
(X, δ) and it is called the Smirnov compactification of X. For more details
about proximity spaces and their Smirnov compactifications see [10] and [11].
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2.2. Coarse Structures and Asymptotic Resemblance Relations

Definition 2.5. Let X be a set and assume that E,F ⊆ X × X. We define

E−1 = {(y, x) ∈ X × X | (x, y) ∈ E}
and

E ◦ F = {(x, y) ∈ X × X | there exists some z ∈ X such that (x, z) ∈ F

and (z, y) ∈ E}
A subset E of P(X ×X) is called a coarse structure on the set X, if it satisfies
the following properties.

(i) If E ⊆ F , for some F ∈ E , then E ∈ E .
(ii) E ◦ F,E ∪ F,E−1 ∈ E , for all E,F ∈ E .
(iii) Δ = {(x, x) | x ∈ X} ∈ E .
If E is a coarse structure on the set X then the pair (X, E) is called a coarse
space.

Example 2.6. Suppose that (X, d) is a metric space. Define E ∈ Ed if there
exists some r > 0 such that d(x, y) ≤ r, for all (x, y) ∈ E. The family Ed is a
coarse structure on X.

Suppose that X is a set and E ⊆ (X × X). Let

E(A) = {b ∈ X | (a, b) ∈ E for some a ∈ A}
for all A ⊆ X.

Example 2.7. Let X be a compactification of the Hausdorff and locally com-
pact topological space X. Define E ⊆ P(X × X) as follows.

‘E ∈ E if E(K) is relatively compact in X, for all relatively compact
K ⊆ X, and if (xα, yα)α∈I is a net in E and xα → w ∈ (X \X) then yα → w.’

Recall that a subset K of X is called relatively compact if K is compact.
The family E defines a coarse structure on X and it is called the topological
coarse structure associated to the compactification X of X (see 2.2 of [13]).

A coarse structure E on the topological space X is called compatible with
the topology if there exists an open E ∈ E in the product topology on X × X
such that Δ ⊆ E, and it is called proper if each bounded subset of (X, E) is
relatively compact. The following question arises naturally from Example 2.7.

‘Let X be a locally compact Hausdorff topological space with a compat-
ible and proper coarse structure E . Is there any compactification X of X such
that the topological coarse structure associated to X is equal to E?’.

This question has a partial answer.

Proposition 2.8. Let E be a proper and compatible coarse structure on the
Hausdorff topological space X. Then there exists a compactification hX of
X such that the topological coarse structure associated to hX contains E. In
addition, if X is another compactification of X with this property, then the
identity map extends uniquely to a continuous map from hX to X.
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Proof. See Proposition 2.39 of [13]. �

The compactification hX in Proposition 2.8 is called the Higson compact-
ification of X. We denote the boundary hX\X by νX and we call it the Higson
corona of X. For a way of constructing the Higson compactification of a topo-
logical space with a proper and compatible coarse structure, see §2.3 of [13].

Definition 2.9. Let X be a set. An equivalence relation λ on P(X) is called an
asymptotic resemblance (an AS.R) if,

(i) AiλBi for i ∈ {1, 2} then (A1 ∪ B1)λ(A2 ∪ B2).
(ii) (A1∪A2)λB for nonempty subsets A1, A2, B ⊆ X then there are B1, B2 �=

∅ such that B = B1 ∪ B2 and AiλBi, for i ∈ {1, 2}.
In this case the pair (X,λ) is called an asymptotic resemblance space (AS.R
space). For two subsets A and B of an AS.R space (X,λ) if AλB then we say
A and B are asymptotically alike.

Example 2.10. Suppose that X is a set and let E denote a coarse structure
on X. Define AλEB if there exists some E ∈ E such that A ⊆ E(B) and
B ⊆ E(A). It can be easily seen that λE is an AS.R on X. If E = Ed for some
metric d on X then we denote λE by λd. In this case, if A,B ⊆ X then AλdB
means that A and B has finite Hausdorff distance.

Let (X,λ) be an AS.R space. A subset D of X is called bounded if D = ∅
or Dλ{x}, for some x ∈ X. Two subsets A1 and A2 of X are called asymp-
totically disjoint, if L1 is an unbounded subset of A1 and L2 is an unbounded
subset of A2 then they are not asymptotically alike. The AS.R space (X,λ) is
called to be asymptotically normal if for each two asymptotically disjoint sub-
sets A1 and A2 of X there are subsets X1 and X2 of X such that X = X1∪X2

and Xi is asymptotically disjoint from Ai, for i ∈ {1, 2}. Let us recall that if
d is a metric on the set X, then D is bounded in the AS.R space (X,λd), if
and only if, D is bounded in the metric space (X, d). It can be shown that if
(X, d) is a metric space, then (X,λd) is an asymptotically normal AS.R space
(Proposition 4.5 of [9]).

Definition 2.11. Let E be a compatible and proper coarse structure on the
normal topological space X. Assume that (X,λE) is an asymptotically normal
AS.R space. Define

‘AδB if A∩B �= ∅ or A and B are not asymptotically disjoint in (X,λE).’

It can be shown that the relation δ defined in Definition 2.11 is a separated
proximity on the normal topological space X which is compatible with the
topology of X and the Smirnov compactification of (X, δ) is homeomorphic
to the Higson compactification of the coarse space (X, E) (for details see §5 of
[9]).

We can end our preliminaries by the definition of asymptotic dimension.
The notion of asymptotic dimension of metric spaces has been introduced in [6].
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For more detailed information about this concept, we recommend the reader
to see [1]. First recall that a family U of subsets of the coarse space (X, E) is
called uniformly bounded if there exists some E ∈ E such that U × U ⊆ E,
for all U ∈ U . If E = Ed, for some metric d on X, we can equivalently say
that U is uniformly bounded, if and only if, there exists some r > 0 such that
diam(U) ≤ r, for all U ∈ U . For the case of AS.R spaces, we have the following
definition.

Definition 2.12. Suppose that (X,λ) is an AS.R space and U is a family of
subsets of X. Let

⊗

U
=

⋃

U∈U
U × U

We call the family U uniformly bounded if A ⊆
⊗

U (B) and B ⊆
⊗

U (A)
implies AλB, for all A,B ⊆ X.

It can be shown that if (X, d) is a metric space then a family U of subsets
of X is uniformly bounded in the AS.R space (X,λd), if and only if, U is
uniformly bounded it the coarse space (X, Ed) (see Proposition 6.2 of [9]). Let
X be a set and assume that U ,V ⊆ P(X). Recall that ‘U refines V’ means
that for each U ∈ U there exists some V ∈ V such that U ⊆ V . In addition,
recall that the multiplicity of a cover U of X is the smallest natural number n
(if such a n exists) such that each x ∈ X belongs to at most n elements of U .
Several equivalent definitions can be found in the literature for the asymptotic
dimension of metric spaces and coarse spaces (see [1,5]). Since the following
definition can be applied to AS.R spaces too, it is our favourite one.

Definition 2.13. Let (X, d) be a metric space. We say that the asymptotic
dimension of X is less than or equal to n ∈ N if for each uniformly bounded
cover U of X there exists a uniformly bounded cover V of X such that U refines
V and the multiplicity of V is less than or equal to n + 1. If the asymptotic
dimension of the metric space (X, d) is less than or equal to n, but it is not
less than n− 1, then we say that the asymptotic dimension of X is equal to n.

We have definitions of asymptotic dimensions of coarse spaces and AS.R
spaces if we substitute the word ‘metric space’ with ‘coarse space’ and ‘AS.R
space’, respectively.

3. Large Scale Resemblance

The following definition is the main definition of this paper.

Definition 3.1. Let X be a nonempty set. We call a subset C of P(P(X)) a
large scale resemblance (LS.R) on X if it has the following properties.

(i) {A} ∈ C, for all A ⊆ X.
(ii) If B ⊆ A, for some A ∈ C, then B ∈ C.
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(iii) If A,B ∈ C and A ∩ B �= ∅, then A ∪ B ∈ C.
(iv) If A,B ∈ C, then A ∨ B ∈ C.
If C denotes a LS.R on the set X, then we call the pair (X,C) a large scale
resemblance space (LS.R space).

Example 3.2. Let X = {a, b, c}. Assume that

C = {{A} | A ⊆ X} ∪ {{{a}, {a, b}}, {{a, c}, {a, b, c}}}
It is easy to see that C is a LS.R on X.

Example 3.3. Let d be a metric on the set X. Define the subset Cd of P(P(X))
as follows.

‘A ∈ Cd if there exists some k > 0 such that dH(A,B) ≤ k, for each
A,B ∈ A.’

This subset Cd of P(P(X)) is a LS.R on X and we call it the LS.R
induced by the metric d on X. Instead of proving the claim of this example,
we prove a much more general result in Example 3.4.

Example 3.4. Let E be a coarse structure on the nonempty set X. We define
the subset CE of P(P(X)) as follows.

‘A ∈ CE if there exists some E ∈ E such that for each A,B ∈ A, A ⊆
E(B).’

Properties (i) and (ii) of Definition 3.1 hold evidently by using Defini-
tion 2.5. For the property (iii) of Definition 3.1 suppose that A,B ∈ CE and
C ∈ A

⋂
B. Suppose that E,F ∈ E are such that A ⊆ E(A′) and B ⊆ F (B′),

for all A,A′ ∈ A and B,B′ ∈ B. Since A ⊆ E(C) and C ⊆ E(A), for all
A ∈ A, and B ⊆ F (C) and C ⊆ F (B), for all B ∈ B, we clearly have
A ⊆ (E ◦ F ∪ F ◦ E)(B) for all A,B ∈ (A ∪ B). Thus A ∪ B ∈ CE . Since the
union of two elements of E is a member of E , it is straightforward to verify the
property iv) of Definition 3.1. Therefore CE is a large scale resemblance on X
and we call it the LS.R induced by the coarse structure E on X.

Example 3.5. Let (X, E) be a coarse space. Define C̃E as follows.
‘A ∈ C̃E if for each A,B ∈ A there exists some E ∈ E such that A ⊆ E(B)

and B ⊆ E(A)’.
Similar arguments to Example 3.4 can easily show that C̃E is a LS.R on

X.

Example 3.6. Let (X,λ) be an AS.R space. We define Cλ ⊆ P(P(X)) as fol-
lows.

‘A ∈ Cλ if AλB, for all A,B ∈ A.’
Properties (i), (ii) and (iii) of Definition 3.1 are straightforward conse-

quences of the fact that λ is an equivalence relation on P(X). Since for all
A,B,A′, B′ ⊆ X, AλA′ and BλB′ implies (A ∪ A′)λ(B ∪ B′), property iv)
of Definition 3.1 easily holds. Thus Cλ is a LS.R on X. We call Cλ the LS.R
induced by λ.
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Recall that a coarse structure E on the set X is called connected if for
each x, y ∈ X there exists some E ∈ E such that (x, y) ∈ E.

Corollary 3.7. Let E be a coarse structure on the nonempty set X and let
λ = λE . Then
(i) CE ⊆ C̃E . If E is a connected coarse structure, then C̃E = CE , if and only

if, X is bounded. Besides, if X is bounded then CE = P(P(X)).
(ii) C̃E = Cλ.

Proof. It is straightforward. �

Lemma 3.8. Suppose that U and V are two uniformly bounded families of sub-
sets of the AS.R space (X,λ). Then

W = {U ∪ V | U ∈ U , V ∈ V and U ∩ V �= ∅}
is a uniformly bounded family of subsets of (X,λ).

Proof. Suppose that A,B ⊆ X and A ⊆
⊗

W(B) and B ⊆
⊗

W(A). So

A ⊆
(

⊗

U
(B) ∪

⊗

V
(B) ∪

⊗

U
(C1) ∪

⊗

V
(C2)

)

where C =
⋃

U∈U,V ∈V(U ∩ V ) and C1 =
⊗

V(B) ∩ C and C2 =
⊗

U (B) ∩ C.
Since U and V are uniformly bounded it can be easily shown that there are
subsets B1, B2, B3, B4 of B such that are asymptotically alike to

⊗
U (B),⊗

V(B),
⊗

U (C1),
⊗

V(C2), respectively. Thus there exists a subset D of X
such that A ⊆ D and DλB′ where B′ = B1 ∪ B2 ∪ B3 ∪ B4. Therefore A is
asymptotically alike to a subset of B and one can similarly show that B is
asymptotically alike to a subset of A. The combination of these two facts can
easily show that A and B are asymptotically alike. �

Example 3.9. Let λ be an AS.R on the set X. Define C̃λ as follows.
‘A ∈ C̃λ if there exists a uniformly bounded family U of subsets of X

such that A ⊆
⊗

U (B), for each A,B ∈ A.’
To see the first property of Definition 3.1 it suffices to notice that the

family U = {{x} | x ∈ X} is uniformly bounded. Property (ii) of Definition 3.1
is an evident consequence of the definition of C̃λ. Suppose that A,B ∈ C̃λ.
Assume that U and V denote uniformly bounded families of subsets of X
such that they have the property mentioned above for A and B respectively. If
A∩B �= ∅ one can easily see that the uniformly bounded family W mentioned in
Lemma 3.8 shows (A∪B) ∈ C̃λ. Property iv) is a straightforward consequence
of the fact U ∪ V is a uniformly bounded family of subsets of X.

Corollary 3.10. Let λ be an AS.R on the set X. Then,
(i) C̃λ ⊆ Cλ.
(ii) If λ is the AS.R induced by the metric d on X, then C̃λ = Cd.
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(iii) If λ is the AS.R induced by the coarse structure E on X, then CE ⊆ C̃λ ⊆
C̃E = Cλ.

Proof. Parts (i) and (iii) are straightforward. Part (ii) is an immediate conse-
quence of Proposition 6.2 of [9]. �

Definition 3.11. Let (X,C) be a LS.R space. We call a subset B of X bounded,
if B = ∅ or there exists some x ∈ X such that {B, {x}} ∈ C. We call the LS.R
space (X,C) connected, if {{x}, {y}} ∈ C, for each x, y ∈ X.

Lemma 3.12. Let (X,C) be a connected LS.R space. Then the union of two
bounded subsets of X is a bounded subset of X.

Proof. Assume that B1, B2 ⊆ X are bounded. Let x, y ∈ X be such that
{B1, {x}}, {B2, {y}} ∈ C. Since (X,C) is connected, {{x}, {y}} ∈ C. Thus by
property (iii) of Definition 3.1,

A = {B1, {x}, {y}},B = {B2, {x}, {y}} ∈ C

Property iv) of Definition 3.1 shows that A ∨ B ∈ C. Thus property (ii) of
Definition 3.1 clearly implies that B1 ∪ B2 is bounded. �

Lemma 3.13. Let (X,C) be a LS.R space and assume that L ⊆ X is unbounded.
If L′ ⊆ X and L,L′ ∈ A, for some A ∈ C, then L′ is also unbounded.

Proof. Suppose that, contrary to our claim, L′ is bounded. So there exists some
x ∈ X such that B = {L′, {x}} ∈ C. Since L′ ∈ A ∩ B, properties (ii) and (iii)
of Definition 3.1 show that {L, {x}} ∈ C, which contradicts our assumption
that L is unbounded. �

Definition 3.14. Let (X,C) and (Y,C′) be two LS.R spaces. We call the map
f : X → Y a large scale resemblance mapping (LS.R mapping) if the inverse
image of each bounded subset of Y is a bounded subset of X and f(A) ∈ C′,
for all A ∈ C, where

f(A) = {f(A) | A ∈ A}
We call a LS.R mapping f : X → Y a large scale equivalence if there exists a
LS.R mapping g : Y → X such that if g ◦ f(A) ∈ C then g ◦ f(A) ∪ A ∈ C and
if f ◦ g(B) ∈ C′ then f ◦ g(B) ∪ B ∈ C′, for all A ⊆ P(X) and B ⊆ P(Y ). In
this case we call g a large scale inverse of f . Two LS.R spaces are called large
scale equivalent if there exists a large scale equivalence between them.

Lemma 3.15. Let (X,C) and (Y,C′) be two LS.R spaces. Assume that f : X →
Y is a large scale equivalence between X and Y and g : Y → X is a large scale
inverse of f .
(i) If f ◦ g(B) ∈ C′ then B ∈ C′ and if g ◦ f(A) ∈ C then A ∈ C, for all

A ⊆ P(X) and B ⊆ P(Y ).
(ii) If B ∈ C′, then f ◦ g(B) ∪ B ∈ C′, and if A ∈ C, then g ◦ f(A) ∪ A ∈ C.
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Proof. Both parts are easy to verify. �

Proposition 3.16. Let (X, d1) and (Y, d2) be two metric spaces. Suppose that
C1 and C2 are LS.Rs associated to metrics d1 and d2 on X and Y , respectively.
Then the map f : X → Y

(i) is a LS.R mapping, if and only if, it is a coarse map.
(ii) is a large scale equivalence, if and only if, it is a coarse equivalence.

Proof. The proof is straightforward by using Theorem 2.3 and Proposition
2.16 of [9]. �

Proposition 3.17. Let (X, E) and (Y, E ′) be two coarse spaces and assume that
f : X → Y is a coarse map. Then f is a LS.R mapping between LS.R spaces
(X,CE) and (Y,CE′) (LS.R spaces (X, C̃E) and (Y, C̃E′)).

Proof. It is easy to verify. �

Proposition 3.18. Suppose that (X,λ) and (Y, λ′) are two AS.R spaces and
f : X → Y . Then,
(i) f is a LS.R mapping from (X,Cλ) to (Y,Cλ′), if and only if, it is an

AS.R mapping from (X,λ) to (Y, λ′).
(ii) f is a large scale equivalence between LS.R spaces (X,Cλ) and (Y,Cλ′),

if and only if, it is an asymptotic equivalence between AS.R spaces (X,λ)
and (Y, λ′).

Proof. It is straightforward. �

From now on we assume all LS.R spaces are connected.

4. Nearness Structures Induced from Large Scale Resemblances

Example 4.1. Assume that X is a dense subspace of the topological space Y .
Define the subset CY of P(P(X)) as follows.

‘A ∈ CY if A ∩ (Y \X) = B ∩ (Y \X), for each A,B ∈ A.’
It is straightforward to show that CY is a LS.R on X. We call CY the

topological LS.R on X associated to Y .

Proposition 4.2. Let E be a proper and compatible coarse structure on the topo-
logical space X and assume that hX denotes the Higson compactification of X.
Then

CE , C̃E ⊆ ChX

Proof. Let A,B ⊆ X and assume that A ⊆ E(B) and B ⊆ E(A), for some
E ∈ E . Let w ∈ (A ∩ νX). Then there exists a net (xα)α∈I in A such that
xα → w. Since A ⊆ E(B), there exists some yα ∈ B such that (yα, xα) ∈ E,
for each α ∈ I. By Proposition 2.8, E is a member of the topological coarse
structure associated to hX. Therefore yα → w by definition of the topological
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coarse structure. It shows that w ∈ (B∩νX). Thus A∩νX ⊆ B∩νX. Similarly
one can show that B ∩ νX ⊆ A ∩ νX. Therefore A ∩ νX = B ∩ νX. By using
this fact, it is straightforward to show the claim of this proposition. �

Proposition 4.3. Let d be a metric on the set X and let λ = λd. Then Cλ =
ChX .

Proof. It is a direct consequence of Proposition 4.22 and Corollary 4.24
of [9]. �

Example 4.4. Let X = R be equipped with the discrete topology. Suppose
that Y is the one point compactification of X. Clearly A ∈ CY , if and only
if, all members of A are finite or all members of A are infinite. We claim that
CY �= CE , for all coarse structure E on X. Suppose that, contrary to our claim,
E is a coarse structure on X and CY = CE . Clearly {{x}, E(x)} ∈ CY = CE ,
for all E ∈ E and x ∈ X. Thus E(x) is finite for all E ∈ E and x ∈ X.
Since {N,R} ∈ CY = CE , there exists some E ∈ E such that R ⊆ E(N) and
N ⊆ E(R). So R ⊆

⋃
n∈N

E(n). Since E(n) is finite for all n ∈ N,
⋃

n∈N
E(n) is

countable and this contradicts the fact that R is uncountable. Therefore CY �=
CE as we claimed. A completely similar argument can show that CY �= C̃E , for
all coarse structure E on X.

Example 4.5. Suppose that X = R and consider X with the discrete topology
as in Example 4.4. Define E ⊆ X × X as follows.

‘E ∈ E if E(x) is finite, for each x ∈ X.’
It is straightforward to show that E is a proper and compatible coarse

structure on the topological space X. Since two subsets A and B of X are
asymptotically disjoint, if and only if, one of them is finite, it is easy to see that
(X,λE) is asymptotically normal. Assume that C and C′ are two clusters in hX\
X and C �= C′ (Definition 2.11). Then there are infinite subsets A ∈ C and B ∈
C′ such that are asymptotically disjoint, a contradiction. Therefore the Higson
compactification of X is the one point compactification. By Example 4.4 and
Proposition 4.2, CE and C̃E are proper subsets of ChX .

Definition 4.6. Suppose that C is a LS.R on the set X. Define the subset NC

of P(P(X)) as follows.
‘A ∈ NC if

⋂
A∈A A �= ∅, or there exists some B ∈ C such that B does not

contain any bounded subsets of X and B � A.’

Before going further let us set up a notation. Let E be a coarse structure
on the set X and E ∈ E . For a subset L of X, we denote the family of all
L′ ⊆ X such that L ⊆ E(L′) and L′ ⊆ E(L), by NE(L).

Corollary 4.7. Let (X, E) be a coarse space. Then NE(L) ∈ CE , for each E ∈ E
and L ⊆ X. If A ∈ CE then there exists some E ∈ E such that A ⊆ NE(L),
for all L ∈ A.
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Proof. Notice that if A,B ∈ NE(L), then A ⊆ E ◦ E(B) and B ⊆ E ◦ E(A).
By using this fact the proof of this corollary is straightforward. �
Theorem 4.8. Let E be a coarse structure on the Hausdorff topological space
X and let C = CE . Then NC is a nearness structure on X and it is compatible
with the topology of X.

Proof. Properties (i), (ii) and (iii) of Definition 2.1 are easy to prove. We are
going to prove the property iv) of Definition 2.1. Suppose that A,B /∈ NC. Thus⋂

A∈A A =
⋂

B∈B B = ∅ and this easily shows that
⋂

C∈A∨B C = ∅. Suppose
that there exists some C ∈ C such that C � A ∨ B. Let L be an arbitrary
element of C. Assume that E ∈ E is such that E = E−1 and C ⊆ NE(L). Let
A ∈ A and B ∈ B. Since there exists some K ⊆ (A ∪ B) such that L ⊆ E(K),
if a ∈ L\E(A) then we can choose some ba ∈ B such that (a, ba) ∈ E. Let
LA

B = {ba | a ∈ L\E(A)}. Let LB =
⋃

A∈A LA
B , for each B ∈ B. We have

LA
B ⊆ E(L\E(A)) and (L\E(A)) ⊆ E(LA

C), for all A ∈ A and B,C ∈ B. Thus
LA

B ⊆ E ◦ E(LA
C), for all A ∈ A and B,C ∈ B. It shows that LB ⊆ E ◦ E(LC),

for all B,C ∈ B. Therefore C̃ = {LB | B ∈ B} ∈ C. Since we assumed that
B /∈ NC, Lemma 3.13 shows that C̃ does not contain any unbounded subset of
(X,C). Thus LB is bounded for each B ∈ B. Now, fix B ∈ B. Suppose that
A ∈ A. Since A∪B has a subset in NE(L), if a ∈ (L\E(LB)) then we can choose
some ca ∈ A such that (a, ca) ∈ E. Let RA = {ca | a ∈ (L \ E(LB))}. Clearly
RA ⊆ E(L\E(LB)) and (L\E(LB)) ⊆ E(RC) and thus RA ⊆ E ◦ E(RC),
for all A,C ∈ A. It implies that D = {RA | A ∈ A} ∈ C. Since D � A and
A /∈ NC, RA is bounded for all A ∈ A. Thus L\E(B) is bounded and hence
L = E(LB)∪(L\E(LB)) is bounded. We showed that if C ∈ C and C � A∨B,
then each member of C is bounded. Therefore A ∨ B /∈ NC. Now assume that
{{x}, A} ∈ NC, for some x ∈ X and A ⊆ X. Since {x} is bounded in (X,C),
we clearly should have x ∈ A. This can show that NC is compatible with the
original topology of X. �

Let A be a family of subsets of the topological space X. Define

A = {A | A ∈ A}

Definition 4.9. A nearness N on the set X is said to be a Herrlich nearness
(H-nearness) if A ∈ N implies that A ∈ N.

Corollary 4.10. Let E be a compatible and proper coarse structure on the topo-
logical space X. If C = CE , then NC is a H-nearness.

Proof. Assume that A ∈ NC. If
⋂

A∈A A �= ∅ then A ∈ NC, by Definition 4.6.
Now assume that there exists some B ∈ C such that each element of B is
unbounded and B � A. Choose an open E ∈ E such that it contains the
diagonal and E = E−1. It can be easily seen that A ⊆ E(A), for all A ⊆ X.
Choose F ∈ E such that B1 ⊆ F (B2), for all B1, B2 ∈ B. For each A ∈ A,
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choose B ∈ B such that B ⊆ A and let LA = E(B) ∩ A. Thus LA contains
B and hence it is unbounded. Since B ⊆ E(A), clearly B ⊆ E(LA) and
LA ⊆ E(B). Let A1, A2 ∈ A. It is easy to see that LA1 ⊆ E(F (E(LA2))). Thus
E◦F ◦E is the desired element in E that can show that C = {LA | A ∈ A} ∈ C.
Clearly C � A and hence A ∈ NC. �

Example 4.11. Let X and Y be as Example 4.4 and assume that C = CY . It
can be easily seen that A ∈ NC , if and only if,

⋂
A∈A A �= ∅ or all elements of

A are infinite, for all A ⊆ P(X). Suppose that A,B /∈ NC. So
⋂

A∈A A = ∅
and

⋂
B∈B B = ∅ and it clearly shows that

⋂
C∈A∨B C = ∅. In addition, there

are A ∈ A and B ∈ B such that A and B are finite subsets of X. Thus
(A ∪ B) ∈ (A ∨ B) is finite and hence A ∨ B /∈ NC. Even though C �= CE , for
each coarse structure E on X, we showed that NC is a nearness on X (in fact
NC is a H-nearness).

Proposition 4.12. Let E be a compatible and proper coarse structure on the
topological space X and denote CE by C. Then A ∈ NC implies

⋂
A∈A νA �= ∅,

where νA = A ∩ νX and A is the closure of A in hX.

Proof. It is a straightforward consequence of Proposition 4.2. �

The inverse of Proposition 4.12 is not true in general.

Example 4.13. Let X = N and consider X with the standard metric induced
from R. Let C = Cd and assume that δ is the proximity defined in Defini-
tion 2.11, where E = Ed. For each n ∈ N suppose that

An = {2nk | k ∈ N}
Let F denote the family of all B ⊆ X such that An ⊆ B, for some n ∈ N.
Clearly F is a filter in X. Let F̃ be an ultrafilter containing F and let

C = {A ⊆ X | AδB for all B ∈ F̃}
The family C is a cluster in (X, δ) (see Theorem 5.8 of [11]) and clearly C ∈ νX.
In addition C ∈ νAn for all n ∈ N. Therefore

⋂
n∈N

νAn �= ∅. Now suppose
that L ⊆ A1 and m = min{a | a ∈ L}. So m = 2k, for some k ∈ N. Since
if n → +∞ then | 2n − 2k |→ +∞, d(m,An) → +∞, where n → +∞. This
clearly shows that {An | n ∈ N} /∈ NC.

Definition 4.14. Let (X,N) be a N-space. The nonempty subset C of P(X) is
called a bunch in (X,N) if it satisfies the following properties.

(i) C ∈ N.
(ii) A ∪ B ∈ C, if and only if, A ∈ C or B ∈ C, for all A,B ⊆ X.
(iii) if A ∈ C then A ∈ C.

It is worth mentioning that a bunch C in (X,N) is called a near cluster if
({{A}} ∪ C) ∈ N then A ∈ C.
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It is known that if AδB for two subsets A and B of the proximity space
(X, δ) then there exists a cluster C in (X, δ) such that A,B ∈ C [14]. But this
result can not be generalized to all nearness spaces. A counter example for this
later fact is given in [12]. We are going to offer a relatively big class of counter
examples here.

Proposition 4.15. Let d be a metric on the set X and let C = Cd. Assume
that A ∈ NC is such that

⋂
A∈A A = ∅. Then each bunch in (X,NC) does not

contain A.

Proof. Assume that, contrary to our claim, there exists some bunch C in
(X,Nd) such that A ⊆ C. Since C ∈ NC, there exists some B ∈ Cd such
that B does not contain any bounded subset of X and B � C. Let L ∈ B.
By Lemma 4.2 of [8], there are unbounded and asymptotically disjoint subsets
L1 and L2 of L in the AS.R space (X,λd). Since (X,λd) is an asymptotically
normal AS.R space, there exist X1,X2 ⊆ X such that X = X1 ∪ X2 and they
are asymptotically disjoint from L1 and L2 in (X,λd), respectively. Thus X1

and X2 do not contain any subset with finite Hausdorff distance from L. Thus
X1,X2 /∈ C and hence X /∈ C, a contradiction. �

Suppose that X is a dense subspace of the topological space Y . Define,
‘A ∈ NY if

⋂
A∈A A �= ∅, for all A ⊆ P(X)’.

The nearness structure NY is called the topological nearness on X asso-
ciated to Y .

Corollary 4.16. Let (X, d) be a metric space and assume that C = Cd. Then
the nearness NC is not the topological nearness associated to Y , for each com-
pactification Y of X.

Proof. It is a straightforward consequence of Proposition 4.15. �

5. Asymptotic Dimension of LS.R Spaces

Definition 5.1. Let C be a LS.R on the set X. We say the family U of subsets
of X is uniformly bounded in (X,C), if

AV =

{

A ⊆ X | A ⊆
⋃

U∈V
U and A ∩ U �= ∅ for all U ∈ V

}

∈ C

for all nonempty V ⊆ U .

Corollary 5.2. Suppose that U is a uniformly bounded family of subsets of the
LS.R space (X,C), then each element of U is bounded.

Proof. Assume that U ∈ U and x ∈ U . Let V = {U}. Clearly x,U ∈ AV and
property (ii) of Definition 3.1 clearly shows that {{x}, U} ∈ C. �

Let us recall the following lemma from [9].
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Lemma 5.3. Suppose that (X, d) is a metric space. Let (an)n∈N and (bn)n∈N

are two sequences in X. If for each I ⊆ N the Hausdorff distance between
{ai | i ∈ I} and {bi | i ∈ I} is finite, then there exists some R > 0 such that
d(an, bn) ≤ R, for all n ∈ N.

Proof. It is Lemma 2.2 of [9]. �

Proposition 5.4. Let d be a metric on the set X. Then the family U of subsets
of (X,Cd) is uniformly bounded, if and only if, there exists some R > 0 such
that diam(U) ≤ R, for all U ∈ U .

Proof. Suppose that there exists some R > 0 such that diam(U) ≤ R, for all
U ∈ U . Let V be a nonempty subset of U . Suppose that A,B ∈ AV . If a ∈ A
there exists some U ∈ V such that a ∈ U . Since B ∩ U �= ∅, there exists some
b ∈ (B ∩ U). So d(a, b) ≤ R. Similar argument holds for each element of B
and this shows that the Hausdorff distance between A and B is less than or
equal to R. Thus AV ∈ Cd. To prove the converse, suppose that contrary to the
claim of this proposition, for each n ∈ N there exists some Un ∈ U such that
diam(Un) > n. Thus there are an, bn ∈ Un such that d(an, bn) > n, for each
n ∈ N. Assume that I ⊆ N. Let V = {Ui | i ∈ I}. Suppose that A = {ai | i ∈ I}
and B = {bi | i ∈ I}. Clearly A,B ∈ AV . Since AV ∈ Cd, there exists some
K > 0 such that dH(A,B) ≤ K. Now clearly Lemma 5.3 shows that there
exists some R > 0 such that d(an, bn) ≤ R, for all n ∈ N, a contradiction. �

Let X be a set and assume U ,V ⊆ P(X). Recall that ‘U refines V’ means
that for each U ∈ U there exists some V ∈ V such that U ⊆ V . In addition,
recall that the multiplicity of a cover U of X is the smallest natural number n
(if such a n exists) such that each x ∈ X belongs to at most n elements of U .

Definition 5.5. We say that the asymptotic dimension of the LS.R space (X,C)
is less than or equal to n (n ∈ N∪{0}) if each uniformly bounded cover U of X
refines a uniformly bounded cover V of X such that the multiplicity of V is less
than or equal to n + 1. In this case we write asdimC X ≤ n. If asdimC X ≤ n
and asdimC X ≤ n−1 is not true, we say asdimC X = n. If asdimC X ≤ n does
not hold for each n ∈ N, we say that (X,C) has infinite asymptotic dimension.

Definition 5.6. Let (X,C) be a LS.R space and let Y be a nonempty subset of
X. We define

‘A ∈ C |Y if A ∈ C, for all A ⊆ P(Y ).’
The family C |Y is a LS.R on Y and we call it the subspace LS.R induced

on Y .

Proposition 5.7. Let Y be a nonempty subset of the LS.R space (X,C). Then

asdimC|Y Y ≤ asdimC X
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Proof. Suppose that asdimC X ≤ n, for some n ∈ N ∪ {0}. Assume that U is
a uniformly bounded cover of Y . Let V = U ∪ {{x} | x ∈ X\Y }. Suppose that
W ⊆ V. Let

B = {x ∈ X \ Y | {x} ∈ W}
Assume that B = {A ∩ Y | A ∈ AW} and let W ′ = {U ∈ U | U ∈ W}. It
is easy to see that B = AW′ . Since U is a uniformly bounded cover of Y and
W ′ ⊂ U , B ∈ C |Y . Thus B ∈ C. Since A = (A∩Y )∪B, for all A ∈ AW , clearly
AW = B ∨ {B} ∈ C. So property iv) of Definition 3.1 shows that AW ∈ C.
Thus V is a uniformly bounded cover of X. Since asdimC X ≤ n, there exist a
uniformly bounded cover V ′ of X such that V refines V ′ and the multiplicity
of V ′ is less than or equal to n + 1. Let

U ′ = {U ∩ Y | U ∈ V ′ and V ⊆ U, for someV ∈ U}
Clearly U refines U ′ and the multiplicity of U ′ is less than or equal to n+1. In
addition, it is straightforward to show that U ′ is a uniformly bounded family
of subsets of the LS.R space (Y,C |Y ). This shows that asdimC|Y Y ≤ n.
Therefore, asdimC|Y Y ≤ asdimC X. �

Theorem 5.8. Assume that (X,C) and (Y,C′) are two large scale equivalent
LS.R spaces. Then

asdimC X = asdimC′ Y

Proof. Let f : X → Y be a large scale equivalence between X and Y and let g :
Y → X be a large scale inverse of f . Assume that n ∈ N∪{0} and asdimC X ≤
n. Suppose that U is a uniformly bounded cover of Y . Let V = {g(U) | U ∈ U}.
Suppose that W ⊆ V and let A ∈ AW . Let W ′ = {U ∈ U | g(U) ∈ W}.
Assume that A′ = g−1(A) ∩ (

⋃
U∈W′ U). It is easy to verify that A′ ∈ AW′

and g(A′) = A. Thus there exists a subset B of AW′ such that g(B) = AW .
Since AW′ ∈ C′, property (ii) of Definition 3.1 shows that B ∈ C′ and since
g is a LS.R mapping, AW = g(B) ∈ C. Therefore V is a uniformly bounded
cover of Z, where Z = g(Y ). By Proposition 5.7, asdimC|Z Z ≤ n. Thus there
exists a uniformly bounded cover V ′ of Z such that the multiplicity of V ′ is
less than or equal to n + 1 and V refines V ′. Let U ′ = {g−1(V ) | V ∈ V ′}. It is
straightforward to show that U refines U ′ and the multiplicity of U ′ is less than
or equal to n + 1. It remains to show that U ′ is a uniformly bounded family of
subsets of (Y,C′). To do so, assume that O ⊆ U ′. Let O′ = {V ∈ V ′ | g−1(V ) ∈
O}. It is easy to show that g(AO) ⊆ AO′ . So by property (ii) of Definition 3.1
we have g(AO) ∈ C and since f is a LS.R mapping, f(g(AO)) ∈ C′. Thus
part (i) of Lemma 3.15 implies that AO ∈ C′, as we desired. Therefore we
showed that asdimC′ Y ≤ n. This shows that asdimC′ Y ≤ asdimC X. Similar
arguments can verify the inequality asdimC X ≤ asdimC′ Y . �

Example 5.9. Let X = N and consider X with the discrete topology. Let Y
denote the one point compactification of X. Assume that U is a uniformly
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bounded cover of (X,CY ). First notice that since U is uniformly bounded,
Corollary 5.2 shows that each element of U is bounded and hence finite. Let
i ∈ N. Suppose that W = {U ∈ U | i ∈ U}. Since {i} ∈ AW and AW ∈
CY , each element of AW is bounded. So all elements of AW are finite. Thus⋃

U∈W U ∈ AW is finite. It clearly implies that W is finite. Therefore we
showed that the set of all x ∈ N such that x, i ∈ U , for some U ∈ U , has
maximum. Let a1 = 1. Suppose that an is chosen, for some n ∈ N. Let an+1

be the largest x ∈ N such that x, l ∈ U , for some U ∈ U and some l ≤ an + 1.
Assume that V1 = {1, ..., a2} and Vn+1 = {an + 1, ..., an+2}, for each n ∈ N.
Let V = {Vn | n ∈ N}. Assume that U ∈ U and m = min{x | x ∈ U}. If
m = 1 then clearly U ⊆ V1. Assume that m ≥ 2. Choose n ∈ N such that
an + 1 ≤ m ≤ an+1 (notice that it is immediate that an+1 ≥ an + 1, for each
n ∈ N). It is easy to verify that U ⊆ Vn+1. Thus U refines V. Suppose that
V ′ ⊆ V. If V ′ is finite, then each element of AV′ is finite and if V ′ is infinite,
then each element of AV′ is infinite. Thus in both cases AV′ ∈ CY . This shows
that V is a uniformly bounded family of subsets of X. In addition, if n ∈ N then
Vn ∩ Vm = ∅, for each m ≥ n + 2. It shows that the multiplicity of V is equal
to 2. Thus we showed that asdimCY

X ≤ 1. Now let O = {{n, n + 1} | n ∈ N}.
It is easy to see that the family O is a uniformly bounded family of subsets
of X. Assume that O′ is a uniformly bounded cover of (X, CY ) such that O
refines it. Suppose that the multiplicity of O′ is less than or equal to 1. Choose
O ∈ O′ such that {1, 2} ⊆ O. Suppose that n ∈ N and n ∈ O. Since the
multiplicity of O′ is less than 1, n /∈ O′, for all O′ ∈ O′ such that O′ �= O.
Since {n, n + 1} ∈ O, n + 1 ∈ O. So O = N and this contradicts the fact O is
bounded. Thus the multiplicity of O′ is bigger than or equal to 2. Therefore
we showed that asdimCY

X ≥ 1 and this leads to asdimCY
X = 1.

6. Large Scale Regular LS.R Spaces

Definition 6.1. We call the LS.R space (X,C) large scale regular (LS-regular),
if A ∈ C and (A1 ∪ A2) ∈ A, for two nonempty subsets A1 and A2 of X, then
there exist some A1,A2 ∈ C such that they contain A1 and A2, respectively
and A ⊆ (A1 ∨ A2).

Corollary 6.2. Let X be a set and assume that E and λ are denoting a coarse
structure and an AS.R on X, respectively. Then CE , C̃E , Cλ and C̃λ are LS-
regular large scale resemblances on X.

Proof. It is straightforward. �

Example 6.3. Let X and C be as Example 3.2. Clearly C is not LS-regular.

Example 6.4. The LS.R CY defined in Example 4.4, is clearly LS-regular. Re-
call that CY �= CE , C̃E , for all coarse structure E on X.
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Definition 6.5. Let C be a LS.regular LS.R on the set X. For two subsets A
and B of X, define

‘AλCB if A,B ∈ A, for some A ∈ C’.
It is easy to verify that λC is an AS.R on the set X.

Assume that λ and λ′ are two AS.R relations on the set X. We say λ ≤ λ′

if AλB implies Aλ′B, for all A,B ⊆ X. The following two propositions are
easy to prove.

Proposition 6.6. Let λ be an AS.R on the set X. Denote Cλ and C̃λ by C and
C′, respectively. Then λC = λ and λC′ ≤ λ.

Proposition 6.7. Let C be a LS.regular LS.R on the set X and denote λC by
λ. Then C ⊆ Cλ.

Proposition 6.8. Let (X,C) be a LS-regular LS.R space. If U is a uniformly
bounded family of subsets of the LS.R space (X,C), then it is a uniformly
bounded family of subsets of the AS.R space (X,λC),

Proof. Assume that A and B are two subsets of X such that A ⊆
⊗

U (B) and
B ⊆

⊗
U (A). Let V = {U ∈ U | A ∩ U �= ∅ and B ∩ U �= ∅}. Clearly A,B ∈ AU

and hence AλCB. �

The converse of Proposition 6.8 is not true in general.

Example 6.9. Let X = N and assume that E denotes the family of all E ⊆
X × X with the following property.

‘There exists some n ∈ N such that E(x) and E−1(x) have at most n
members, for all x ∈ X.’

The family E is a coarse structure on X (Example 2.44 of [13]). Let
C = CE . For two subsets A and B of X we have AλCB if and only if A and B
are both finite or both infinite (see Example 3.1 of [9]). Let Ui = {i, i+1, ..., 2i},
for each i ∈ N. Assume that U = {Ui | i ∈ N}. It is easy to verify that
U is a uniformly bounded family of subsets of the AS.R space (X,λC). We
claim that AU /∈ C. Suppose that, contrary to our claim, E ∈ E is such that
A ⊆ E(B), for all A,B ∈ AU . Let N ∈ N be such that E(x) and E−1(x)
has at most N members, for all x ∈ X. Clearly X ∈ AU . Since for each
x ∈ X, E(x) and E−1(x) have finite elements, we can choose m ∈ N large
enough to have (E(m) ∪ E−1(m)) ∩ Ui = ∅, for each i ≤ 2N . Let i > 2N .
Since Ui has more then 2N + 1 elements, we can choose ai ∈ Ui such that
ai /∈ (E(m) ∪ E−1(m)). Let A = (∪2N

i=1Ui) ∪ B, where B = {ai | i > 2N}.
Clearly A ∈ AU and (E(m)∪E−1(m))∩A = ∅. It shows that N is not a subset
of E(A), a contradiction. Therefore AU /∈ C and hence U is not a uniformly
bounded family of subsets of the LS.R space (X,C).

Definition 6.10. We call the LS.R space (X,C) an A-LS.R space if,
(i) (X,C) is LS-regular.
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(ii) A ⊆ P(X) and {A,B} ∈ C, for each A,B ∈ A, then A ∈ C.

We denote the category of all LS.R spaces and LS.R mappings by L.

Theorem 6.11. Suppose that A and R denote full subcategories of L whose
objects are all A-LS.R spaces and all LS-regular LS.R spaces, respectively.
Then,
(i) A is isomorphic to the category of all AS.R spaces and AS.R mappings.
(ii) A is a reflective full subcategory of R.

Proof. (i) Suppose that F denotes the functor that associates each A-LS.R
space (X,C), to the AS.R space (X,λC) and each LS.R mapping f : X →
Y between two A-LS.R spaces (X,C) and (Y,C′), to the AS.R mapping f :
(X,λC) → (Y, λC′). It is straightforward to show that F defines an isomorphism
of categories.

(ii) Suppose that (X,C) is a LS-regular LS.R space. Define C̃ to be the
set of all A ⊆ P(X) such that {A,B} ∈ C, for all A,B ∈ A. Clearly (X, C̃)
is an A-LS.R space. In addition notice that if (Y,D) is an A-LS.R space and
f : (X,C) → (Y,D) is a LS.R mapping, then f : (X, C̃) → (Y,D) is a LS.R
mapping. Thus ((X, C̃), i) is the A reflection of (X,C). �
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