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1. Introduction

This paper deals with the class of functions of two non-commuting matrices
introduced in [13, Sec. 3]. Such a class is constituted by functions whose ex-
pression is based on a combination of primary matrix functions and is revisited
here by convenience. We refer the reader to [22,25] for details about primary
matrix functions. Throughout the text, K denotes either R or C.

Definition 1. Let A,B ∈ K
n×n and let the symbol � denote either a matrix

sum or a matrix product, so that A � B means A + B or AB. Assume that
φ(z), ˜φ(z) and ψ(z) are scalar valued complex functions such that φ(A), ˜φ(B)
and ψ

(

φ(A) � ˜φ(B)
)

are primary matrix functions. We say that

f : Kn×n × K
n×n −→ K

n×n

(A,B) �−→ C = f(A,B)

belongs to the P2 class (P from primary and 2 from two variables), if f (A,B)
can be written as a finite number of products and/or sums of functions of the
form ψ

(

φ(A) � ˜φ(B)
)

.

The class of functions P2 includes well-known functions depending on
two non-commuting matrices. For instance, the matrix-matrix exponentiation
[7], the Lie bracket [17], means of two matrices [4,19,26], matrix beta function
[28], polynomials in A and B (particular cases of polynomials of two non-
commuting variables, that is, linear combinations of products of powers of the
variables), rational functions involving two non-commuting matrices, etc..

The definition we used (Definition 1) makes it easier to extend the Fréchet
derivatives to functions that depend on two matrices. Such derivatives play a
key role in the definition of condition numbers that allow us to measure the
sensitivity of functions in the P2 class to perturbations of first order in the
input matrices A and B.

In this work, we assume that A and B have a special structure, that is,
they belong to either a certain automorphism group, a Lie algebra or a Jordan
algebra associated with a given scalar product. In the numerical computation
of f (A,B), it is important to assess the sensitivity of f to perturbations in
A and B. If A is perturbed by an arbitrary matrix E and B is perturbed by
another arbitrary matrix F , then the unstructured condition number provides
a key tool to understand such a sensitivity. However, if the perturbations are
structured, i.e., if A and A+E (resp., B and B +F ) have the same structure,
then the unstructured condition number may be useless, especially if it has
a large value. To deal with these cases, we need to define and estimate the
structured condition number of a function in P2 to understand how structure
preserving algorithms for computing f (A,B) behave when implemented in
finite precision environments. If the unstructured condition number is large
while the structured one is small, this misleads us to think that the problem
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is ill conditioning when actually it is not. This makes clear the importance
of investigating the structured condition number. As will be seen in Section
2.2, the structured condition number takes into account the structure of the
matrices while the unstructured one does not.

There is a large literature devoted to study structured problems, including
the computation of functions depending on a single structured matrix; see [22,
Sec.14.1] and the large amount of the references therein. We recall here by
convenience what is written at the beginning of Sec.14.1 of Higham’s book: “ In
many applications the matrices that arise are structured and when structure is
present it is natural to try to exploit it. The benefits to be gained include faster
and more accurate algorithms and reduced storage, as well as more physically
meaningful solutions in the presence of rounding and truncation errors.”

As far as we know, this paper is the first one dedicated to the inves-
tigation of the structured condition number of functions depending on two
non-commuting structured matrices. We propose a definition to the structured
condition number of a function f in P2 that extends the definition considered
in [6,14] for primary matrix functions. It turns out that the computation of the
exact structured condition number requires the orthogonalization of a set of
vectors with dimension n2, which is an expensive procedure. To overcome this
issue, we derive upper and lower bounds on the structured condition number,
that are relatively cheaper to compute than obtaining the exact structured
condition number. Our general results are then applied to particular functions
in P2, such as the geometric mean, the exp-log mean and the matrix-matrix
exponentiation. By exploiting the properties of these functions and the struc-
ture of the matrices A and B, we design algorithms to compute the structured
condition number. A set of numerical experiments is then carried out to un-
derstand whether the estimates given by the bounds are reliable and also to
compare the structured condition number with the unstructured one.

If MT M = I, MT = −M , it is proved in [14] that the structured and the
unstructured condition numbers of primary matrix functions coincide, when-
ever the input matrix is symmetric or belongs to a Lie algebra. A compari-
son between those two condition numbers is also investigated for functions in
P2, when A and B are either symmetric or skew-symmetric. Unfortunately,
their values may be different, in particular, for the matrix-matrix exponentia-
tion function. However, the numerical examples suggest that they coincide for
both the geometric and exp-log means in the special case of A and B being
symmetric. When A and B are skew-symmetric, we will see that, in general,
the structured and the unstructured condition numbers are distinct. A cou-
ple of interesting results relating those two condition numbers when the input
matrices are symmetric or skew-symmetric are stated.

Let us now recall the definition of three functions in P2 whose structured
condition number will be investigated in this work. The first one is the geo-
metric mean function A#B of two Hermitian positive definite matrices A and
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B, which may be defined by [26]

A#B := A1/2
(

A−1/2BA−1/2
)1/2

A1/2, (1)

where Y = X1/2 stands for the principal square root of the matrix X. Recall
that, for any matrix X with no non-positive eigenvalues, the principal square
root Y of X is the unique matrix having eigenvalues on the open right half
plane such that Y 2 = X. Using the properties of the principal matrix square
root, namely the fact that (S X S−1)1/2 = S X1/2 S−1, for any non-singular
matrix S, it can be shown that

A#B = A(A−1B)1/2 = (AB−1)1/2B = (BA−1)1/2A = B(B−1A)1/2. (2)

We recall that A#B as defined in (1) is a geodesic in the cone of symmet-
ric positive definite matrices, in the sense that it minimizes the Riemannian
distance; see, for instance, [31, Sec.3].

Ando, Li and Mathias defined the k-geometric means (ALM-mean) of
positive definite matrices in [4]. Similarly to the ALM-mean, a new geometric
mean is defined in [9], with applications in elasticity experiments in physics
[21]. The matrix geometric mean has also applications in electrical networks
[33], image processing [15] and medical imaging [5]. Trapp [35] also gave a list
of applications of the geometric mean in electrical engineering literature.

In this paper, we consider the extension of the geometric mean concept
to other matrices A and B, and use the notation f(A,B) instead of A#B,
that is,

f(A,B) := A1/2
(

A−1/2BA−1/2
)1/2

A1/2, (3)

where A and A−1/2BA−1/2 are assumed to have no non-positive real eigen-
value. The identities in (2) also hold in this case. We recall that means of
matrices that are not symmetric positive definite might be of interest in ap-
plications; see for instance [30] for means of rotation matrices.

The second one is the exp-log mean function, which arises in applications
in optometry [16,18,19]. Another application occurs in the different version of
Hellinger distance given in terms of the geometric mean and the exp-log mean
[8]. Hellinger distance is used to measure the similarity distance between two
probability distributions.

Assuming that A and B have no eigenvalues on the closed negative real
axis, the exp-log mean function is defined by

g(A,B) = e0.5(log A+log B) (4)

where eX and log X denote the matrix exponential and the principal matrix
logarithm of X, respectively.

The last function in P2 to be addressed with special emphasis is the
matrix-matrix exponentiation. If A has no eigenvalue on the closed negative
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real axis and if B is a square matrix, then AB is defined as

h(A,B) = e(log A)B . (5)

Von Neumann found a connection between quantum mechanics and thermo-
dynamics in 1931 [7]. The entropy of a quantum system can be written as

S(A) = − log(det(AA))

for a density matrix A. In [7, Sec.4], the authors explain how this new rep-
resentation of the entropy can bring benefits. Von Neumann’s entropy is also
used to deal with the entanglement between the multipartite systems [32] and
to obtain entropy of a black hole [10].

The paper is organized as follows. In Sect. 2, we start by reviewing the
structured condition number of a primary matrix function, where we assume
that the input matrix has some particular structure. Then, in Sect. 2.2, we
generalize the concept of structured condition number to functions in P2 and
derive lower and upper bounds to its value. Algorithms for computing ex-
actly or estimate the structured condition number are proposed as well. The
particular case when the input matrices are symmetric or skew-symmetric is
investigated in Sect. 2.3. Section 3 deals with three particular functions in P2,
where we construct the Kronecker forms of their Fréchet derivatives. In Sect. 4,
a set of numerical results is carried out to illustrate our results and to investi-
gate the significance of the structured condition number for functions in P2. In
particular, we compare the structured condition number with their bounds and
with the unstructured condition number. In the final section, some concluding
remarks are drawn.

2. Sensitivity Analysis

An important tool to assess the sensitivity of a function f to perturbations of
first order in the input matrix A is the Fréchet derivative. We recall that the
Fréchet derivative of a primary matrix function f at A is a linear mapping
Lf (A,E) : Kn×n → K

n×n such that ‖f(A+E)− f(A)−Lf (A,E)‖ = o(‖E‖)
for all E ∈ K

n×n. Applying the vec operator to Lf (A,E) gives vec(Lf (A,E)) =
Kf (A)vec(E), where Kf (A) ∈ K

n2×n2
is called the Kronecker form of the

Fréchet derivative, where vec(.) denotes the operator that stacks the columns
of a matrix into one column vector. See [22] for more information on the
Fréchet derivative. Provided that f is Fréchet differentiable at A, the absolute
(unstructured) condition number of a primary matrix function f(A) is given
by

cond(f,A) := lim
ε→0

sup
‖E‖≤ε

‖f(A + E) − f(A)‖
ε

,

where ‖ · ‖ stands for a given matrix norm. For a more comprehensive explo-
ration of the theory of condition numbers, please see [34]. The unstructured
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condition number can be expressed in terms of the norm of the Fréchet deriv-
ative:

cond(f,A) = max
E �=0

‖Lf (A,E)‖
‖E‖ .

If we specialize to the Frobenius norm we obtain the unstructured condition
number via the Kronecker form of the Fréchet derivative:

cond(f,A) = max
E �=0

‖Lf (A,E)‖F

‖E‖F
= max

E �=0

‖vec(Lf (A,E))‖2
‖vec(E)‖2 = ‖Kf (A)‖2,

where we use the fact that for A ∈ K
n×n, ‖A‖F = ‖vec(A)‖2, where ‖ · ‖2

stands for the 2-norm. Let M be a given real non-singular matrix and consider
the scalar product from K

n × K
n to K: (x, y) �→ 〈x, y〉M defined by

〈x, y〉M =
{

xT My, for real or complex bilinear forms,
x∗My, for sesquilinear forms,

where x∗ stands for the conjugate transpose of x. For any matrix A ∈ K
n×n,

there exists a unique A� ∈ K
n×n, called the adjoint of A with respect to 〈., .〉M ,

that is given by

A� =
{

M−1AT M, for real or complex bilinear forms,
M−1A∗M, for sesquilinear forms.

There are three classes of structured matrices associated with 〈. , .〉M : a Jordan
algebra JM , a Lie algebra LM and an automorphism group GM , which are
defined by

JM : = {A ∈ K
n×n | A� = A}, LM : = {A ∈ K

n×n | A� = −A},

GM : = {A ∈ K
n×n | A� = A−1}.

For convenience, our focus in this work is on real and complex bilinear forms,
so sesquilinear forms will not be addressed. In Table 1, we give examples of the
most common algebraic structures generated by bilinear forms. The following
notation is used:

Σp,q =
[

Ip 0
0 −Iq

]

, p + q = n, R =

[

1
. . .

1

]

, and J =
[

0 In/2

−In/2 0

]

(6)

where Is is the identity matrix of order s. All the matrices M involved in
Table 1 satisfy MT M = I and M = μMT , with μ = ±1.

2.1. Structured Condition Number for f(A)
In this work we restrict the function f to real submanifolds of the n2-dimensional
real vector space R

n×n or complex submanifolds of the n2-dimensional com-
plex vector space Cn×n associated with real bilinear forms and complex bilinear
forms contained in the domain of f . We first review the structured condition
number of primary matrix functions [6,14].
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Definition 2. Let f : M → N be a K-differentiable map between two smooth
square matrix manifolds M, N ⊆ K

n×n. Given A ∈ M, assume that f(A) is
a primary matrix function. Then the absolute structured condition number of
f(A) is

condstruc(f,A) = lim
ε→0

sup
‖X−A‖≤ε

X∈M

‖f(X) − f(A)‖
ε

.

The extra condition X ∈ M restricts the choice of the perturbation X−A
to a smaller set, and hence, by the definition of supremum, obviously we have

condstruc(f,A) ≤ cond(f,A).

For a smooth manifold M ⊆ K
n×n the matrix E ∈ K

n×n is called a tangent
vector of M at A ∈ M if there is a smooth curve γ : K → M such that
γ(0) = A, γ′(0) = E. The tangent space of M at A is given as

TAM := {E ∈ K
n×n | ∃ γ : K → M smooth with γ(0) = A, γ′(0) = E}.

If f : M → N is K-differentiable then the differential of f at the point A is
the map

dfA : TAM → Tf(A)N , dfA(γ′(0)) = (f ◦ γ)′(0).

The case M ⊆ C
n×n with f being R-Fréchet differentiable f will not be

analysed here. It is possible to express the structured condition number by
the differential of f at A, which is defined between the tangent spaces in the
following way:

‖dfA‖ := max
E∈TAM

E �=0

‖dfA(E)‖
‖E‖ .

In [6, Thm. 2.3], it is proved that condstruc(f,A) = ‖dfA‖.
Let the columns of U span the tangent space TAM and let p = dimK TAM.

Then, for any E ∈ TAM, there exists y ∈ K
p such that vec(E) = Uy. The

structured condition number is obtained as

condstruc(f,A) = max
E∈TAM

E �=0

‖vec(Lf (A,E))‖2
‖vec(E)‖2

= max
y∈Kp

y �=0

‖Kf (A)Uy‖2
‖Uy‖2

=
‖Kf (A)UU+Uy‖2

‖Uy‖2
= ‖Kf (A)UU+‖2,

where U+ denotes the Moore-Penrose inverse of U . By using the property
‖U+‖−1

2 ‖y‖2 ≤ ‖Uy‖2 ≤ ‖U‖2‖y‖2, we can obtain the following upper and
the lower bounds:

‖Kf (A)U‖2‖U‖−1
2 ≤ condstruc(f,A) ≤ ‖Kf (A)U‖2‖U+‖2. (7)
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If U has orthonormal columns then the upper and lower bounds coincide and

condstruc(f,A) = ‖Kf (A)U‖2.

2.2. Structured Condition Number for f(A,B)
Let M1 ⊆ K

n×n and M2 ⊆ K
n×n be smooth square matrix manifolds. Given

the matrix function f(A,B) : M1 × M2 → N , the Fréchet derivative [13] is
defined by

‖f(A + E,B + F ) − f(A,B) − Lf (A,B;E,F )‖ = o (‖(E,F )‖) .

Assuming that f is Fréchet differentiable at (A,B), with respect to an induced
norm, we obtain the unstructured condition number

cond(f, (A,B)) := max
(E,F ) �=0

‖Lf (A,B;E,F )‖
‖(E,F )‖ .

We recall that the condition number gives an upper perturbation bound for
small perturbations E and F :

‖f(A + E,B + F ) − f(A,B)‖
‖f(A,B)‖ ≤ cond(f, (A,B))

‖(E,F )‖
‖f(A,B)‖ + o(‖(E,F )‖).

Applying the vec operator to the Fréchet derivative of f(A,B), gives

vec(Lf (A,B;E,F )) = Kf (A,B)
[

vec(E)
vec(F )

]

, (8)

where Kf (A,B) ∈ K
n2×2n2

is the Kronecker form of the Fréchet derivative
and cond(f, (A,B)) = ‖Kf (A,B)‖2. For the structured condition number, we
propose the following definition:

condstruc(f, (A,B)) = lim
ε→0

sup
‖(X−A,Y −B)‖≤ε

X∈M1, Y ∈M2

‖f(X,Y ) − f(A,B)‖
ε

. (9)

The differential of f at the point (A,B) is defined between the tangent spaces
T(A,B) (M1 × M2) and Tf(A,B)N [36]:

df(A,B) : T(A,B) (M1 × M2) → Tf(A,B)N ,

where we can write T(A,B) (M1 × M2) = TAM1 × TBM2, which restricts the
perturbation matrices to the corresponding tangent spaces, that is, E ∈ TAM1

and F ∈ TBM2.

Theorem 1. Let f : Ω1×Ω2 → Ω be a map between the open subsets Ω1 ⊂ M1,
Ω2 ⊂ M2 and Ω ⊂ N , where M1, M2 and N are smooth square matrix
manifolds of Kn×n. Assuming that f ∈ P2, for any pair (A,B) ∈ Ω1 × Ω2, we
have

condstruc(f, (A,B)) = ‖df(A,B)‖.
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Proof. Consider the curves X(t) = A+tE with X(0) = A, X(ε) = X, X ′(0) =
E and Y (t) = B + tF with Y (0) = B, Y (ε) = Y , Y ′(0) = F . For all t in a
certain neighbourhood of 0, we assume that X(t) ∈ Ω1 and Y (t) ∈ Ω2. We
can write the following: f(X,Y ) = f(A,B) + ε df(A,B)(E,F ) + o(ε). From the
definition of the structured condition number we obtain

condstruc(f, (A,B)) = lim
ε→0

sup
‖(X−A,Y −B)‖≤ε

X∈Ω1, Y ∈Ω2

‖f(X,Y ) − f(A,B)‖
ε

= lim
‖(X−A,Y −B)‖→0

sup
X∈Ω1
Y ∈Ω2

‖f(X,Y ) − f(A,B)‖
‖(X − A, Y − B)‖

= lim
ε→0

sup
E∈TAΩ1
F ∈TBΩ2

ε‖df(A,B)(E,F )‖ + o(ε)
ε‖(E,F )‖ + o(ε)

= ‖df(A,B)‖.

�

From the uniqueness of the differential and the Fréchet derivative we
conclude that df(A,B)(E,F ) = Lf (A,B;E,F ). Hence, for A ∈ M1 and B ∈
M2, the structured condition number may be written in terms of the Fréchet
derivative as

condstruc(f, (A,B)) = max
E∈TAM1, F ∈TBM2

(E,F )�=0

‖Lf (A,B;E,F )‖
‖(E,F )‖ .

With respect to the Frobenius norm, we have

condstruc(f, (A,B)) = max
E∈TAM1, F ∈TBM2

(E,F )�=0

‖Lf (A,B;E,F )‖F

‖(E,F )‖F

= max
y1∈K

p1 , y2∈K
p2

y1 �=0, y2 �=0

‖Kf (A,B)Uy‖2
‖Uy‖2

= ‖Kf (A,B)UU+‖2.
Here U ∈ K

2n2×(p1+p2), with p1 = dimK TAM1, p2 = dimK TBM2, and y are
given as

U =
[

U1 0
0 U2

]

, y =
[

y1
y2

]

, y1 ∈ K
p1 and y2 ∈ K

p2 ,

where the columns of U1 ∈ K
n2×p1 and U2 ∈ K

n2×p2 are the bases of TAM1

and TBM2, respectively. Substituting vec(E) = U1y1 and vec(F ) = U2y2 in
(8) gives

Kf (A,B)
[

vec(E)
vec(F )

]

= Kf (A,B)
[

U1y1
U2y2

]

= Kf (A,B)
[

U1 0
0 U2

] [

y1
y2

]

.
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Hence, we obtain the following bounds which extend the ones given in (7) to
f ∈ P2:

‖Kf (A,B)U‖2‖U‖−1
2 ≤ ‖Kf (A,B)UU+‖2 ≤ ‖Kf (A,B)U‖2‖U+‖2. (10)

If U has orthonormal columns, then the structured condition number of f(A,B)
can be computed by means of the Kronecker form of the Fréchet derivative:

condstruc(f, (A,B)) = ‖Kf (A,B)U‖2.
However, if U does not have orthonormal columns, then

condstruc(f, (A,B)) ≤ ‖Kf (A,B)U‖2.
Now we summarize the process of constructing the basis U1 and U2 of

the tangent spaces TAM1 and TBM2, respectively, at the structured matrices
A and B. For more details, see [6]. Let SM represent either M1 or M2. For
SM ∈ {JM ,LM}, the basis of the tangent space of SM , which is SM itself, can
be given by

USM
= (In ⊗ M−1)DSM

, (11)

with

DSM
=

{
[

˜Dμs Ǐ
]

if μs = 1,
˜Dμs if μs = −1,

(12)

where s = 1 if SM = JM , s = −1 if SM = LM and ˜Dμs ∈ R
n2×n(n−1)/2 is a

matrix with columns

(e(i−1)n+j + μse(j−1)n+i)/
√

2, 1 ≤ i < j ≤ n,

and Ǐ ∈ R
n2×n has the column vectors e(i−1)n+i, i = 1, . . . , n. Here, ei denotes

the n2 ×1 vector with 1 in the i-position and zeros elsewhere and μ = ±1 such
that M = μMT .

For real or complex bilinear forms, the basis of the tangent space to
SM ∈ {GM} at X is given by

UGM
= (In ⊗ XM−1)DLM

. (13)

For example,
• if A ∈ JM (suppose μs = 1) and B ∈ GM (suppose μs = −1), then the

matrix U is built as

U =
[

(In ⊗ M−1)
[

˜Dμs Ǐ
]

0
0 (In ⊗ BM−1) ˜Dμs

]

;

• if A ∈ GM (suppose μs = −1) and B ∈ GM (suppose μs = 1), then the
matrix U is given by

U =
[

(In ⊗ AM−1) ˜Dμs 0
0 (In ⊗ BM−1)

[

˜Dμs Ǐ
]

]

.



248 Page 12 of 34 B. Arslan and J. R. Cardoso Results Math

Provided that M is orthogonal and MT = ±M , for SM ∈ {JM ,LM},
the columns of USM

given by (11) are ortohonormal so no orthonormalization
process is required to compute the exact structured condition number. This
is the case of all the Jordan and Lie algebras listed in Table 1. Recall that
for SM ∈ {JM ,LM}, TXSM = SM since JM and LM are linear subspaces so
they are flat smooth manifolds. However, if A or B are not orthogonal and
belong to an automorphism group GM , the columns of UGM

in (13) may not
be orthonormal. Since Ui has size n2 × pi, for some integer pi ≤ n2 (i = 1, 2),
orthogonalizing its columns is in general an expensive procedure, requiring
about O(n2p2i ) operations (see [20, ch.5] for a description of the most used
orthogonalization techniques). Our proposal to round this issue is to derive
lower and upper bounds that are able to estimate the structured condition
number in O(pn2) flops.

We now specify the bounds in (10) to four different cases, where the
dependence on ‖Ui‖2 and ‖U+

i ‖2 (i = 1, 2) is avoided. For {JM ,LM} classes,
we use the following inequalities

‖U+‖2 = max{‖U+
1 ‖2, ‖U+

2 ‖2} ≤ max{‖M1‖2, ‖M2‖2}
‖U‖2 = max{‖U1‖2, ‖U2‖2} ≤ max{‖M−1

1 ‖2, ‖M−1
2 ‖2}.

Here M1 and M2 are the real non-singular matrices involved in the scalar
products defining M1 and M2, respectively, which are chosen from Eq. (6),
according to the structure of A and B. For the {GM} class, we have the
inequalities

‖U1‖2 ≤ ‖M−1
1 ‖2‖A‖2 and ‖U+

1 ‖2 ≤ ‖DT
LM1

(In ⊗ AT M1)‖2 ≤ ‖A‖2‖M1‖2
‖U2‖2 ≤ ‖M−1

2 ‖2‖B‖2 and ‖U+
2 ‖2 ≤ ‖DT

LM2
(In ⊗ BT M2)‖2 ≤ ‖B‖2‖M2‖2.

Let us denote κ̂ := condstruc(f, (A,B)). So, for each class, the upper bounds
are given as:

(i) Mi, (i = 1, 2) is a Jordan or Lie algebra:

‖Kf (A,B)U‖2
max{‖M1‖2, ‖M2‖2} ≤ κ̂ ≤ ‖Kf (A,B)U‖2 max{‖M1‖2, ‖M2‖2}. (14)

(ii) M1 and M2 are automorphism groups:

‖Kf (A,B)U‖2
max{‖A‖2‖M1‖2, ‖B‖2‖M2‖2}

≤ κ̂ ≤ ‖Kf (A,B)U‖2 × max{‖A‖2‖M1‖2, ‖B‖2‖M2‖2}. (15)

(iii) M1 is an automorphism group and M2 is a Jordan or Lie algebra:

‖Kf (A,B)U‖2
max{‖A‖2‖M1‖2, ‖M2‖2} ≤ κ̂ ≤ ‖Kf (A,B)U‖2 max{‖A‖2‖M1‖2, ‖M2‖2}.

(16)
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(iv) M1 is a Jordan or Lie algebra and M2 is an automorphism group:

‖Kf (A,B)U‖2
max{‖M1‖2, ‖B‖2‖M2‖2} ≤ κ̂ ≤ ‖Kf (A,B)U‖2 max{‖M1‖2, ‖B‖2‖M2‖2}.

(17)

Let us now assume that M1 and M2 are orthogonal and that (A,B) ∈
GM1 × GM2 . Excepting the particular case M1 = M2 = I, in general there is
no orthonormal basis U available to GM1 ×GM2 and so we must resort to the
bounds (15) to get an estimate of the structured condition number. In the next
lines, we will derive an inequality that give some clues on how the condition
number of the matrices A and B with respect to the Frobenius norm, κF (A) =
‖A‖F ‖A−1‖F and κF (B) = ‖B‖F ‖B−1‖F , influence the quality of the es-
timate of the relative structured condition number κ̂‖(A,B)‖F /‖f(A,B)‖F

provided by ‖Kf (A,B)U‖2/‖f(A,B)‖F .
Since

max{‖A‖2, ‖B‖2} = ‖diag(A,B)‖2 ≤ ‖diag(A,B)‖F = ‖(A,B)‖F ,

(15) yields

‖Kf (A,B)U‖2
‖(A,B)‖F

≤ κ̂ ≤ ‖Kf (A,B)U‖2‖(A,B)‖F ,

and hence

‖Kf (A,B)U‖2
‖f(A,B)‖F

≤ κ̂
‖(A,B)‖F

‖f(A,B)‖F
≤ ‖Kf (A,B)U‖2

‖f(A,B)‖F
‖(A,B)‖2F .

Attending that ‖A−1‖F = ‖A‖F and ‖B−1‖F = ‖B‖F hold (recall that for
any X ∈ GM , with M orthogonal, X−1 = MT XT M implies that ‖X−1‖F =
‖X‖F ) so that ‖(A,B)‖2F = κF (A) + κF (B), we arrive at

‖Kf (A,B)U‖2
‖f(A,B)‖F

≤ κ̂
‖(A,B)‖F

‖f(A,B)‖F
≤ (κF (A) + κF (B))

‖Kf (A,B)U‖2
‖f(A,B)‖F

.

(18)

Inequality (18) shows in particular that if A or B are well-conditioned, so
κF (A) + κF (B) ≈ 2, then ‖Kf (A,B)U‖2/‖f(A,B)‖F provides an acceptable
estimate to the relative structured condition number. The quality of the bound
estimations according to the value of max{κF (A), κF (B)} will be discussed in
Sect. 4.

In the two next algorithms, we address the computation of κ :=
‖Kf (A,B)U‖2, which corresponds to the structured condition number if U
has orthonormal columns or to an upper bound if not. Algorithm 1 can be
viewed as an extension of [6, Alg. 2.6] to the functions in the class P2, and,
provided that U has orthonormal columns and that Lf (A,B;E,F ) can be
computed exactly, it gives the exact structured condition number.
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Algorithm 1. Let f(A,B) : M1 × M2 → N , where M1, M2 are smooth
manifolds of Kn×n and let U1 and U2 be bases of the tangent spaces TAM1 and
TBM2, respectively. Assume that for any E ∈ TAM1, vec(E) = U1y1 for some
y1 ∈ K

p1 and F ∈ TBM2, vec(F ) = U2y2 for some y2 ∈ K
p2 . Provided that

an algorithm for evaluating the Fréchet derivative Lf (A,B;E,F ) is available,
this algorithm computes κ = ‖Kf (A,B)U‖2, where U = diag(U1, U2).

1: X ∈ K
n2×p (p = p1 + p2)

2: for i = 1 : p1 do
3: Compute L1 = Lf (A,B;Ei, Fi),
4: X(:, i) = vec(L1)
5: end for
6: for i = 1 : p2 do
7: Compute L2 = Lf (A,B;Ei, Fi),
8: X(:, i + p1) = vec(L2)
9: end for

10: κ = ‖X‖2
In Step 3 (resp., Step 7), vec(Ei) = U1ei and vec(Fi) = U2ei, where ei

denotes the p1 × 1 (resp., p2 × 1) vector with 1 in the i-th position and zeros
elsewhere.

Since Algorithm 1 is in general computationally expensive (about O(p2n2+
pn3) flops, where constructing X costs O(pn3) flops and computing its 2-norm
costs O(p2n2) flops if f(A,B) and Lf (A,B;E,F ) can be computed in O(n3)
flops), we can alternatively estimate the structured condition number by a
cheaper method, like the following one, which is based on the power method
which requires only O(kpn2) flops, where k is the number of iterations. To
estimate ‖Kf (A,B)U‖2 by the power method, one needs to use the adjoint
operator L�

f (A,B;W ), which satisfies the property

vec
(

L�
f (A,B;W )

)

= K∗
f (A,B)vec(W ); (19)

see [23, Lem. 6.1] and also [13, Sec. 6].

Algorithm 2. With the same notation and conditions of Algorithm 1, this al-
gorithm uses the power method to compute γ such that γ ≤ ‖Kf (A,B)U‖2.
1: for k = 0 : ∞ do
2: zk = [y∗

k h∗
k]∗

3: vec(Ek) = U1yk, vec(Fk) = U2hk

4: Wk+1 = Lf (A,B;Ek, Fk)
5: Yk+1 = L�

f (A,B;Wk+1)
6: zk+1 = U∗vec(Yk+1)
7: γk+1 = ‖zk+1‖2/‖Wk+1‖F

8: if converged, then
9: γ = γk+1, quit,

10: end if
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11: end for

Algorithms 1 and 2 do not require the orthogonalization process for U .
If U is orthonormal, Algorithm 1 gives the exact structured condition num-
ber while Algorithm 2 provides an estimate. Note however that the former
algorithm is more expensive than the latter. If U does not have orthonormal
columns, instead of orthonormalizing U , which is in general expensive, we may
alternatively use the bound (10) or its specifications (14)–(17). The computa-
tion of the value ‖Kf (A,B)U‖2 involved in those bounds can be carried out
by means of O(kpn2) flops, if estimated by Algorithm 2. Here k is the number
of iterations required in the power method. In some cases, we may exploit the
structure of U1 and U2 in line 3 of Algorithm 1 to reduce the cost.

In Algorithms 1 and 2 we need to compute the Fréchet derivative in the
given directions. Depending on the way the Fréchet derivatives are evaluated
(different functions require usually distinct procedures), these two algorithms
can be adapted to particular functions belonging to the class P2. In particular,
specifications of those algorithm to the geometric mean, exp-log mean and
matrix-matrix exponentiation will be included in Sect. 3.

2.3. A and B are Either Symmetric or Skew-Symmetric

In this section, we investigate the structured condition number of a given
function f(A,B) ∈ P2, in the particular case when A and B are both either
symmetric or skew-symmetric matrices. Thus, we are assuming that M = I
and that either A,B ∈ JI or A,B ∈ LI . This issue might be of interest for
some functions involving structured matrices, like, for instance, the geometric
mean of two symmetric positive definite matrices or the exponential of a sum
of skew-symmetric matrices.

The results derived below involve the well-known commutation matrix Π
of order �2, which is the unique matrix that satisfies Π vec(X) = vec(XT ), for
any matrix X of order � [29, Sec.9.2]. Π is symmetric and orthogonal, with
spectrum {−1, 1}, where the eigenvalue (−1)i has multiplicity ni = 1

2n(n +
(−1)i), i = 1, 2. Note that n1 + n2 = n2. Hence, there is a real orthogonal
matrix Q such that

Π = Qdiag(−In1 , In2)QT . (20)

Let us now consider the matrices

˜Ui :=
1
2

(

In2 + (−1)i Π
)

, (21)

where i = 1, 2. Both matrices ˜U1 and ˜U2 are symmetric, idempotent and diag-
onalizable with eigenvalues 0 and 1. Moreover, if Q is the orthogonal matrix
considered in (20), we have

˜U1 = Qdiag(In1 , 0n2)QT ,

˜U2 = Qdiag(0n1 , In2)QT .
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Lemma 1. Let M = I, and assume that DJI
and DLI

are matrices defined as
in (12) and that UJI

and ULI
are defined as in (11). Then, both UJI

= DJI
and

ULI
= DLI

have orthonormal columns, that is, UT
JI

UJI
= I and UT

LI
ULI

= I.
Moreover, UJI

UT
JI

= ˜U2 and ULI
UT
LI

= ˜U1, where ˜Ui (i = 1, 2) are given in
(21).

Proof. The results follow from the way as the matrices UJI
and ULI

are defined.
Check (11). �

In [14, Sec.4], it is proven that, if A is symmetric or skew-symmetric,
then the structured and the unstructured condition numbers of f(A) coincide.
The proof is mainly based on the fact that the Kronecker form Kf (A) is
symmetric and commutes with the commutation matrix Π. Unfortunately,
these results cannot be extended to functions f(A,B) ∈ P2. Indeed, if A and
B are either both symmetric or skew-symmetric, the Kronecker form of the
Fréchet derivative Kf (A,B) = [K1 K2] ∈ K

n2×2n2
is a non-square matrix,

with K1 and K2 being in general non-symmetric. Moreover, K1 and K2 do
not commute in general with Π and cond(f, (A,B)) and condstruc(f, (A,B))
may not coincide. The connections we have found between these two condition
numbers are stated in the following theorem. Before that, it is worth to recall
that UJI

, ULI
, Π and Q are real matrices, while Kf (A,B) may be non-real if

A or B have non-real entries.

Theorem 2. Let A,B ∈ K
n×n be either both symmetric or skew-symmetric

matrices such that f(A,B) ∈ P2 and let S := K1K
∗
1 + K2K

∗
2 , where K1 and

K2 are square matrices of order n2 such that Kf (A,B) = [K1 K2]. Assume in
addition that K1 and K2 commute with the commutation matrix Π.

(i) QT S Q = diag (S1, S2), where Q is the orthogonal matrix in (20) and,
for i = 1, 2, Si is a Hermitian matrix of order ni = 1

2n(n + (−1)i).
(ii) If A and B are symmetric, then condstruc(f, (A,B)) = ‖S2‖1/2

2 and

cond(f, (A,B)) = max
{

‖S1‖1/2
2 , condstruc(f, (A,B))

}

. (22)

(iii) If A and B are skew-symmetric, then condstruc(f, (A,B)) = ‖S1‖1/2
2 and

cond(f, (A,B)) = max
{

condstruc(f, (A,B)), ‖S2‖1/2
2

}

. (23)

Proof. To ease the notation, let K := Kf (A,B) = [K1 K2] ∈ K
n2×2n2

.

(i) Let us consider the orthonormal basis UJI
for JI , as defined in (11). Since

K1 and K2 commute with Π, it is easy to show that S = K1K
∗
1 + K2K

∗
2

commutes with ˜U2 = 1
2 (In2 + Π). Because S is Hermitian, there exists

R unitary and D diagonal with real entries, such that S = R D R∗. Let
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V := R∗Q, where Q is the orthogonal matrix of (20). Hence

S ˜U2 = ˜U2 S

⇐⇒ R D R∗Qdiag(0n1 , In2)Q
T = Qdiag(0n1 , In2)QT R D R∗

⇐⇒ V ∗DV diag(0n1 , In2) = diag(0n1 , In2)V
∗DV,

which means that V ∗DV commutes with diag(0n1 , In2). If we denote
G := V ∗DV and partition it conformally with diag(0n1 , In2),

G =
[

G1 G2

G3 G4

]

,

then

diag(0n1 , In2)G = G diag(0n1 , In2)

implies that G1 and G4 are Hermitian matrices of orders, respectively,
n1 and n2, and G2 and G3 are zero matrices. Therefore,

V ∗DV = diag(G1, G4)

⇐⇒ QT RDR∗Q = diag(G1, G4)

⇐⇒ QT SQ = diag(G1, G4),

and the result follows by letting S1 := G1 and S2 := G4.
(ii) For any matrix X ∈ K

n×n, it is known that ‖X‖22 = ‖XX∗‖2 = ‖X∗X‖2.
Denoting U := diag (UJI

, UJI
), we have:

condstruc(f, (A,B)) = ‖K U‖2
= ‖(K U)∗‖2
= ‖KU(KU)∗‖1/2

2

=
∥

∥

∥

˜U2S
∥

∥

∥

1/2

2

=
∥

∥Qdiag(0n1 , In2)QT Qdiag(S1, S2)QT
∥

∥

1/2

2

= ‖diag(0n1 , S2)‖1/2
2

= ‖S2‖1/2
2 ,

which proves the first part of the claim (ii). The equality (22) holds,
because

cond(f, (A,B)) = ‖K‖2
= ‖K∗‖2
= ‖KK∗‖1/2

2

= ‖diag(S1, S2)‖1/2
2

= max
{

‖S1‖1/2
2 , ‖S2‖1/2

2

}

.

(iii) Similar to the proof of (ii). �
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If A and B are symmetric, it will be shown in Sect. 3 that both the matrix
geometric mean and the exp-log mean satisfy the conditions of Theorem 2,
namely K1 and K2 commute with Π. Hence, for these two functions we can
ensure that the structured and unstructured condition numbers can be related
by (22). Surprisingly, in all the experiments we have carried out with the matrix
geometric and the exp-log means of randomized symmetric matrices, we have
noticed an equality between those two condition numbers. Although we were
not able to provide a theoretical support for this fact, a possible explanation
may lie on the fact that the order of S2, which is equal to n2 = 1

2n(n + 1), is
larger than the order of S1 (n1 = 1

2n(n − 1)) which makes more probable that
the largest singular value of S comes from S2 instead of S1. In contrast, no
pair of skew-symmetric matrices A and B was found to illustrate a possible
equality between the unstructured and the structured condition numbers.

In the case of the matrix-matrix exponentiation, in general the matrices
K1 and K2 do not commute with Π, even in the particular case when A and B
are commuting matrices and symmetric. Hence, the conditions of Theorem 2
are not satisfied and equality (22) may not be valid.

3. Some Important Functions in the Class P2

3.1. Matrix Geometric Mean

In this section, we will assume that f(A,B) stands for the geometric mean
defined in (3).

Lemma 2. Let M be real non-singular and let A,B ∈ GM (resp., JM ) such that
A and A−1/2BA−1/2 have no non-positive eigenvalue. Then f(A,B) ∈ GM

(resp., JM ).

Proof. The (principal) matrix square root and the matrix inverse preserve au-
tomorphism groups [24]. Since GM is closed under multiplications, the geomet-
ric mean preserves the automorphism group structure. To show that A,B ∈ JM

implies f(A,B) ∈ JM , we just need to carry out a few calculations and pay
attention to the identities (2). �

From Lemma 2, we can say, in particular, that if A and B are orthogonal
(resp., symplectic, symmetric) matrices satisfying the above mentioned spec-
tral restrictions, then f(A,B) is orthogonal (resp., symplectic, symmetric).

The Kronecker form of f(A,B) is given in the next lemma.

Lemma 3. Assume that A and A−1/2BA−1/2 have no non-positive eigenvalue.
The Kronecker form of the Fréchet derivative of the matrix geometric mean
function f(A,B) is given by

Kf (A,B) =
[

(I ⊗ Z + Y T ⊗ I)−1 (I ⊗ Z−1 + Y −T ⊗ I)−1
]

(24)

where Z = (AB−1)1/2 and Y = (B−1A)1/2.
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Proof. The proof is omitted because it is somewhat similar to the one given in
[26, Thm. 3.1], with the difference that here A and B may not be symmetric
positive definite. �

Algorithms 1 and 2 presented in Sect. 2.2 are now particularized for the
geometric mean function.

Algorithm 3. Assume that A ∈ M1 and B ∈ M2, where M1, M2 are smooth
matrix manifolds of Kn×n, are given. For any E ∈ TAM1, with vec(E) = U1y1
for some y1 ∈ K

p1 and F ∈ TBM2, with vec(F ) = U2y2 for some y2 ∈ K
p2 ,

this algorithm computes κ = ‖Kf (A,B)U‖2 (U = diag(U1, U2)) for the matrix
geometric mean.

1: X ∈ K
n2×p (p = p1 + p2)

2: Z = (AB−1)1/2

3: Y = (B−1A)1/2

4: for i = 1 : p1 do
5: Solve ZL1 + L1Y = E, where vec(E) = U1ei

6: X(:, i) = vec(L1)
7: end for
8: for i = 1 : p2 do
9: Solve Z−1L2 + L2Y

−1 = F , where vec(F ) = U2ei

10: X(:, i + p1) = vec(L2)
11: end forκ = ‖X‖2

For the matrix geometric mean, the adjoint operator (19) is now given
by

vec
(

L�
f (A,B;W )

)

=
[

(I ⊗ Z∗ + Y ⊗ I)−1vec(W )
(I ⊗ Z−∗ + Y −1 ⊗ I)−1vec(W )

]

.

The following algorithm is employing the power method to estimate the struc-
tured condition number of geometric mean.

Algorithm 4. Given the same function and matrices as in Algorithm 3, this
algorithm uses the power method to compute γ such that γ ≤ ‖Kf (A,B)U‖2.
1: X1 = BA−1, X2 = AB−1

2: Choose nonzero starting vectors e0 ∈ K
p1 and f0 ∈ K

p2 , (p = p1 + p2)
3: for k = 0 : ∞ do
4: vec(Ek) = U1ek and vec(Fk) = U2fk

5: Wk+1 = Lsqrt(X1, Ek)
6: ˜Wk+1 = Lsqrt(X2, Fk)
7: V1 = Lsqrt(X∗

1 ,Wk+1)
8: V2 = Lsqrt(X∗

2 , ˜Wk+1)
9: v1 = vec(V1)

10: v2 = vec(V2)
11: yk+1 = U∗[v∗

1 v∗
2 ]

∗
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12: γk+1 = ‖yk+1‖2/‖Wk+1‖F

13: vec(Ek+1) = yk+1(1 : p1), vec(Fk+1) = yk+1(p1 + 1 : p)
14: if converged, then
15: γ = γk+1, quit,
16: end if
17: end for

3.2. The Exp-Log Mean

We now return to the exp-log mean function g(A,B) defined in (4), which is
written here for convenience: g(A,B) = exp(0.5(log A + log B)).

Lemma 4. Let M be non-singular and let A and B have no eigenvalues on the
closed negative real axis. If A,B ∈ GM (resp., JM ), then g(A,B) ∈ GM (resp.,
JM ).

Proof. The proof is mainly based on the fact that for any X ∈ GM with no
non-positive eigenvalue, log(X) ∈ LM , while eY ∈ GM , for any Y ∈ LM . For
more details see [12]. �

Lemma 4 implies, in particular, that the exp-log mean of orthogonal
(resp., symplectic) matrices is also orthogonal (resp., symplectic).

Lemma 5. Let A and B have no eigenvalues on the closed negative real axis.
The Fréchet derivative of the exp-log mean of g at (A,B) in the direction of
(E,F ) is given by

Lg(A,B;E,F ) = Lexp

(

0.5(log A + log B); 0.5(Llog(A,E) + Llog(B,F ))
)

,

where Lexp and Llog represent the Fréchet derivatives of the matrix exponential
and the principal logarithm, respectively.

Proof. Using [13, Thm. 4.1], we have

g

([

A E
0 A

]

,

[

B F
0 B

])

= exp

(

0.5

(

log

[

A E
0 A

]

+ log

[

B F
0 B

]))

= exp

(

0.5

[

logA + logB Llog(A,E) + Llog(B,F )
0 logA + logB

])

=

[

exp(0.5(logA + logB)) Lexp(X,W )
0 exp(0.5(logA + logB))

]

where X = 0.5(log A + log B) and W = 0.5(Llog(A,E) + Llog(B,F )), which
proves the result. �

Hence, the Kronecker form of the exp-log mean is given by

Kg(A,B) = Kexp(X)
[

Klog(A) Klog(B)
]

, (25)

where Kexp(X) and Klog(X) represent the Kronecker forms of the Fréchet
derivative of the matrix exponential and the principal logarithm, respectively.
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Hence, building the Kronecker form of the exp-log mean requires the construc-
tion of the Kronecker forms of the matrix exponential and logarithm functions
and two matrix-matrix multiplications.

The adapted versions of Algorithms 1 and 2 for the exp-log mean function
are given in the next two algorithms.

Algorithm 5. Let us assume that A ∈ M1 and B ∈ M2, where M1, M2 are
smooth matrix manifolds of Kn×n, are given. For any E ∈ TAM1, vec(E) =
U1y1, for some y1 ∈ K

p1 , and F ∈ TBM2, vec(F ) = U2y2, for some y2 ∈ K
p2 ,

this algorithm computes κ = ‖Kg(A,B)U‖2 (U = diag(U1, U2)) for the exp-log
mean.

1: X ∈ K
n2×p (p = p1 + p2)

2: X = 0.5(log A + log B)
3: for i = 1 : p1 do
4: Compute L1 = Lexp(X;Llog(A,E)), where vec(E) = U1ei

5: X(:, i) = vec(L1)
6: end for
7: for i = 1 : p2 do
8: Compute L2 = Lexp(X;Llog(B,F )), where vec(F ) = U2ei

9: X(:, i + p1) = vec(L2)
10: end for
11: κ = ‖X‖2

In the next less expensive algorithm we estimate the structured condition
number of g(A,B), where the Eq. (19) has now the form

vec
(

L�
g(A,B;W )

)

=

[

Klog(A∗)Kexp(X∗)vec(W )
Klog(B∗)Kexp(X∗)vec(W )

]

and, consequently, we have

L�
g(A,B;W ) =

[

Llog(A∗, Lexp(X∗,W ))
Llog(B∗, Lexp(X∗,W ))

]

.

Algorithm 6. Given the same function and matrices as in Algorithm 5, this
algorithm uses the power method to compute γ such that γ ≤ ‖Kg(A,B)U‖2.
1: X = 0.5(log A + log B)
2: Choose a nonzero starting vectors e0 ∈ K

p1 and f0 ∈ K
p2 (p = p1 + p2)

3: for k = 0 : ∞ do
4: vec(Ek) = U1ek and vec(Fk) = U2fk

5: Wk+1 = Lexp(X;Llog(A,Ek) + Llog(B,Fk))
6: L = Lexp(X∗,Wk+1)
7: v1 = vec(Llog(A∗, L))
8: v2 = vec(Llog(B∗, L))
9: yk+1 = U∗[v∗

1 v∗
2 ]

∗
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10: γk+1 = ‖yk+1‖2/‖Wk+1‖F

11: vec(Ek+1) = yk+1(1 : p1), vec(Fk+1) = yk+1(p1 + 1 : p)
12: if converged, then
13: γ = γk+1, quit,
14: end if
15: end for

3.3. Matrix–Matrix Exponentiation

As a last primary matrix function in P2, we analyse the matrix-matrix expo-
nentiation h(A,B) = e(log A)B.

Lemma 6. Given a non-singular matrix M , let A,B ∈ JM and let them com-
mute. Then AB ∈ JM .

Proof. For a given matrix function we have h(X�) = h(X)�.
(

AB
)�

=
(

e(log A)B
)�

= eB�(log A)�

= eB(log A�)

= eB(log A)

If B commutes with A then B commutes with log A [22, Thm. 1.13], which
yields

(

elog(A)B
)�

= e(log A)B.

�

Lemma 7 [13]. Let A have no eigenvalues on R
−
0 (the closed negative real axis)

and B be arbitrary. The Fréchet derivative of h(A,B) = AB is given by

Lh(A,B;E,F ) = Lexp(log(A)B; log(A)F + Llog(A,E)B)

where Lexp and Llog represent the Fréchet derivatives of the matrix exponential
and matrix logarithm, respectively.

The Kronecker form Kh(A,B) of the matrix-matrix exponentiation is
obtained as [13]

Kh(A,B) = Kexp ((log A)B) [(BT ⊗ I)Klog(A) I ⊗ log A]. (26)

The cost of constructing the Kronecker form of the matrix-matrix exponen-
tiation has the same cost of the exp-log mean function since it requires the
computation of the Kronecker form of the matrix exponential and logarithm
together with their multiplication.

Algorithm 7. Let us assume that A ∈ M1 and B ∈ M2, where M1, M2 are
smooth matrix manifolds of Kn×n, are given. For any E ∈ TAM1, vec(E) =
U1y1 for some y1 ∈ K

p1 and F ∈ TBM2, vec(F ) = U2y2 for some y2 ∈ K
p2
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this algorithm computes κ = ‖Kh(A,B)U‖2 (U = diag(U1, U2)) for the matrix-
matrix exponentiation.

1: X ∈ K
n2×p (p = p1 + p2)

2: X = log(A)B
3: for i = 1 : p1 do
4: Compute L1 = Lexp(X;Llog(A,E)B), where vec(E) = U1ei

5: X(:, i) = vec(L1)
6: end for
7: for i = 1 : p2 do
8: Compute L2 = Lexp(X; log(A)F ), where vec(F ) = U2ei

9: X(:, i + p1) = vec(L2)
10: end for
11: κ = ‖X‖2

For the matrix-matrix exponentiation Eq. (19) yields

L�
h(A,B;W ) =

[

Llog(A∗;Lexp(X∗;W )B∗)
log(A∗)Lexp(X∗;W )

]

We present the power method to estimate the structured condition number of
matrix-matrix exponentiation.

Algorithm 8. Given the same function and matrices as in Algorithm 7, this
algorithm uses the power method to compute γ such that γ ≤ ‖Kh(A,B)U‖2.
1: X = (log A)B
2: Choose a nonzero starting vectors e0 ∈ K

p1 and f0 ∈ K
p2 (p = p1 + p2)

3: for k = 0 : ∞ do
4: vec(Ek) = U1ek and vec(Fk) = U2fk

5: Wk+1 = Lexp(X; log(A)Fk + Llog(A,Ek)B)
6: L = Lexp(X∗;Wk+1)
7: v1 = Llog(A∗;LB∗)
8: v2 = log(A∗)L
9: yk+1 = U∗[v∗

1 v∗
2 ]

∗

10: γk+1 = ‖yk+1‖2/‖Wk+1‖F

11: vec(Ek+1) = yk+1(1 : p1), vec(Fk+1) = yk+1(p1 + 1 : p)
12: if converged, then
13: γ = γk+1, quit,
14: end if
15: end for

3.4. A and B are Symmetric or Skew-Symmetric

In this section we investigate whether the above three particular primary ma-
trix functions f(A,B), g(A,B) and h(A,B) satisfy the conditions of Theo-
rem 2, whenever A and B are either symmetric or skew-symmetric matrices,
namely if K1 and K2 commute with the commutation matrix Π. The results
for f and g are displayed in next Lemma.
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Lemma 8. Let A and B be either symmetric or skew-symmetric matrices.

(i) If W1 = f(A,B) is well defined, then W1 is a symmetric matrix and both
K1 and K2 commute with Π, where Kf (A,B) = [K1 K2] is the matrix
in (24).

(ii) If W2 = g(A,B) is well defined, then W2 is symmetric and both K1 and
K2 commute with Π, where Kg(A,B) = [K1 K2] is the matrix in (25).

Proof. The symmetry of W1 and W2 comes from Lemmas 2 and 4, respectively.
To avoid repetition, we prove the above results only for the matrix K1, with
the assumption of A and B being symmetric.

(i) From (24) we have K1 = (I ⊗ Z + Y T ⊗ I)−1, where Y = (B−1A)1/2

and Z = (AB−1)1/2. Since A and B are assumed to be symmetric, the
properties of the inverse and of the matrix square root ensure that Z =
Y T . Hence, K1 = (I ⊗ Z + Z ⊗ I)−1. Attending that the commutation
matrix Π of order n2 satisfies Π−1 = Π and Π(X1⊗X2) = (X2⊗X1)Π, for
every matrix X1 and X2 of order n, a few calculations yield K1Π = ΠK1.

(ii) Now, we have K1 = Kexp(X)Klog(A), where X = 0.5 (log(A) + log(B));
see (25). Then the result follows because, for a given symmetric matrix W
for which Klog(W ) exists, it is known that both Klog(W ) and Kexp(W )
commute with Π; see [14].

�

If A and B are symmetric and AB = BA, we know that the matrix-
matrix exponentiation AB is symmetric; check Lemma 6. However, as men-
tioned previously, K1 and K2 may not commute with Π and so the conditions
of Theorem 2 are not full filled.

4. Numerical Experiments

In this section we conducted numerical tests to compare the structured and
unstructured condition number and to analyse the reliability of the lower and
the upper bounds on the structured condition number. All the numerical ex-
periments were performed in MATLAB R2020b on a machine with Core i7
for which the unit roundoff is u ≈ 1.1 × 10−16. We consider the follow-
ing primary matrix functions from P2: f(A,B) = A(A−1B)1/2 , g(A,B) =
exp(0.5(log A + log B)) and h(A,B) = AB .

The exact structured condition number of the matrix functions f(A,B),
g(A,B) and h(A,B) is computed by Algorithms 3, 5 and 7, respectively. These
algorithms are also used for computing the unstructured condition number,
with the difference that now we take U = I2n2 .

To compute the square root of a matrix in automorphism groups (real
orthogonal, symplectic and perplectic matrices), we use the following structure
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preserving iteration [24]:

Yk+1 =
1
3
Yk

[

I + 8
(

I + 3ZkYk

)−1]
, Y0 = A,

Zk+1 =
1
3
[

I + 8
(

I + 3ZkYk

)−1]
Zk, Z0 = I,

where

lim
k→∞

Yk = A1/2 lim
k→∞

Zk = A−1/2,

while for the remaining test matrices, we use the sqrtm MATLAB function.
Matrix logarithm and matrix exponential are computed by [3, Algor. 5.1] and
expm MATLAB function based on [2], respectively. For the Fréchet derivative
of matrix exponential and the matrix logarithm, we employ [1, Alg. 6.4] and
[3, Algor. 6.1], respectively.

In the first part of the experiment, we consider two symplectic matrices
taken from [18], regarding an application of averaging eyes in Optometry:

A =

⎡

⎢

⎢

⎣

−0.0835 0.1331 0.0166 0.0004
0.1286 0.1326 0.0004 0.0169

−64.4147 7.9214 0.8281 0.0295
7.7307 −52.5506 0.0297 0.8535

⎤

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎣

0.0385 0.0882 0.0158 0
0.0888 0.2505 0 0.0160

−61.1187 5.0696 0.8806 0.0025
5.1390 −48.4305 0.0025 0.8994

⎤

⎥

⎥

⎦

.

We construct the basis using Eq. (13) in which

M =
[

0 I2
−I2 0

]

and compute the exp-log mean of A and B. The unstructured condition number
is about cond(g, (A,B)) = 56.5468, while the structured condition number is
much lower: condstruc(g, (A,B)) = 2.4482. Here, the ratio between the unstruc-
tured and structured condition number is about 23, that is, the unstructured
condition number is 23 times the structured one.

In the second part of the experiment the size of the test matrices is chosen
as 10 apart from the last experiment which is 2 and they are built as follows:

• For random orthogonal, symplectic and perplectic matrices we use Jag-
ger’s MATLAB Toolbox [27];

• Hamiltonian matrices are constructed by

A =
[

X G
F −XT

]

, FT = F and GT = G;

• For symmetric positive definite matrices we use A = XXT , where X is
a random n × n matrix.
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Figure 1. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of f(A,B) (top)
and g(A,B) (bottom) for orthogonal matrices A and B

In figures we plot the values of the relative unstructured uscond and relative
structured scond condition numbers

uscond = cond(f, (A,B))
‖(A,B)‖F

‖f(A,B)‖F
,

scond = condstruc(f, (A,B))
‖(A,B)‖F

‖f(A,B)‖F
,

together with the lower and the upper bounds on the structured condition
number given in (14), (15), (16) and (17). For some test matrices, we present
the maximum condition number of the test matrices A or B.

Figure 1 presents the bounds and the condition numbers for the geometric
mean and exp-log mean of orthogonal matrices A and B. Since the orthogonal
matrices are well-conditioned, the difference between the structured and un-
structured condition numbers is relatively small. For some cases, we observe
that the unstructured condition number is larger than the upper bound. The
results of the exp-log mean for symplectic and perplectic matrices A and B
are reported in Figs. 2 and 3, respectively, with increasing maximum condition
number of κF (A) and κF (B). Figures 4 and 5 assess the experiments for the
geometric mean of symplectic and perplectic pairs A and B, respectively. The
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Figure 2. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of g(A,B) for sym-
plectic matrices A and B

Figure 3. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of g(A,B) for per-
plectic matrices A and B
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Figure 4. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of f(A,B) for sym-
plectic matrices A and B

Figure 5. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of f(A,B) for per-
plectic matrices A and B
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Figure 6. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of h(A,B) for sym-
plectic matrices A and B

gap between the structured and unstructured condition numbers is increasing
in Figs. 2, 3, 4 and 5, in particular for the test matrices with high condition
numbers. Figure 6 shows the experimental data on the matrix-matrix exponen-
tiation of the symplectic matrices A and B. Figure 7 provides results to AB ,
with orthogonal A and skew-symmetric B on the top graphic and symplectic
A and Hamiltonian B on the bottom. Similarly, the unstructured condition
number can be relatively larger than the structured condition number for ill-
conditioned matrices, as shown in Figs. 6 and 7. Finally, in Figs. 8 and 9 we
compare the unstructured and structured condition numbers with the bounds
for the given three functions in P2 with the input matrices A and B being
symmetric positive definite. While for the geometric mean and the exp-log
mean the structured and unstructured condition numbers are the same (see
Sect. 2.3), we get a small difference for the matrix-matrix exponentiation. We
also see that the bounds are equal to the structured condition number when
A and B are symmetric positive definite. Recall that in this situation an or-
thonormal basis U is available. In all the experiments we observe that the
lower bound of the structured condition number, which is cheaper to evaluate,
is a good approximation to the structured condition number even for the ill-
conditioned matrices. While in most of the cases the unstructured condition
number is smaller than the upper bound of the structured condition number,
in some of them it is larger, which might happen.
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Figure 7. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of h(A,B). In the
top picture, A is orthogonal and B is skew-symmetric; in the
bottom picture, A is symplectic and B is Hamiltonian

5. Conclusion

In this work, we have given a detailed analysis of the structured condition
number for a certain class of functions of two matrices, here denoted by P2.
When the unstructured condition number is small, the problem of computing
f(A,B), with A and B structured, is well conditioned; however, if it is large
that does not necessarily mean that the problem is ill conditioning, because the
structured condition number may be small. This situation reinforces the inter-
est in estimating the structured condition number. We also have shown that
for certain functions depending on two non-commuting symmetric matrices
the two condition numbers are likely to be the same and hence in these special
situations there is no need of estimating the structured condition number.

Algorithms for computing the structured condition number and lower/
upper bounds have been provided for it. When orthonormal bases for the tan-
gent spaces of M1 and M2 are not available, it is cheaper to estimate the
structured condition number by the bounds, instead of orthonormalizing the
bases. Particular emphasis has been devoted to the geometric mean, the exp-log
mean and the matrix-matrix exponentiation functions. A set of experiments
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Figure 8. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of f(A,B) and
g(A,B) for symmetric positive definite matrices A and B

Figure 9. Lower and upper bounds, together with the struc-
tured and unstructured condition numbers of h(A,B) for sym-
metric positive definite matrices A and B
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has shown that the unstructured condition number can be relatively larger
than the structured condition number, especially for ill-conditioned matrices.
One of the examples comes from a practical application in Optometry. The
results also indicate that in most of the cases the lower bound is a good ap-
proximation to the structured condition number, even when the matrices are
ill-conditioned, which gives an advantage in terms of computational cost. For
future work, we are planning to generalize our results to functions depending
on more than two non-commuting matrices.
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