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1. Introduction

The dynamic equation is used to solve the differential and difference equations
together in one domain, called time scale. This new and assertive field is more
general and versatile than the traditional theories of differential and difference
equations, and hence it is an optimal way for accurate and malleable math-
ematical modeling. Traditionally, researchers have assumed that dynamical
processes are either continuous or discrete and thus employed either differen-
tial or difference equations to demonstrate the mathematical description of the
dynamic model. There are certain important phenomena that do not possess
only continuous or only discrete data but rather hybrid data. A simple example
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of this type can be seen in seasonally breeding populations which leads to non
overlapping generations. In such cases, solutions of dynamic equations can give
the required data of the dynamic model under consideration. The study of the
existence and uniqueness of solutions of various dynamic equations involving
initial and boundary conditions can be seen in [1,3,15,17,29-32,34] and the
references therein.

The discussion on the stability of solutions is one of the most important
properties among various qualitative properties of solutions. In the existing lit-
erature, there are several stability theories, for both differential and difference
equations, for instance one can see [6-10]. But the concept of Ulam stability
has significant applications in various fields of mathematical analysis, this is
because Ulam Stability essentially deals with the existence of an exact solu-
tion near every approximate solution and is useful in the situation when it is
difficult to find the exact solution. This kind of stability for functional equa-
tions was first discussed by Ulam [33] in 1940 and Hyers [22] in 1941. Very
recently, Ulam stability for differential, difference, and integral equations has
been seriously studied by many researchers employing several techniques. For
convenience, readers can see [11,13,15,26-28] and the references therein.

Kumar and Malik [23], by employing Banach fixed point theorem, stud-
ied the existence and stability of solutions of fractional integro-differential
equations on time scales involving non-instantaneous integrable impulses and
periodic boundary conditions. Further, the same authors have established the
results of the existence, stability, and controllability of solutions of fractional
dynamic systems on time scales [24] by using Banach fixed point theorem and
the nonlinear alternative of Leray—Schauder. Applications of these results to
population dynamics are also given in the same paper.

Quite recently, Bohner and Tikare [16] obtained results of Ulam stability
for first-order nonlinear dynamic equations on time scales by employing the
method of Picard’s operator and dynamic inequalities. In [20], Gogoi et al.
introduced a new approach for nabla-type fractional derivatives and integrals
on the time scale domain.

In view of the usefulness of the existence, uniqueness, and Ulam stability
of solutions of dynamic equations, we are motivated to study the following
periodic boundary value problem for fractional dynamic equations (PBVP).

{th(g) = Z(¢MQ).C DR(C)),

h0)=h(T)=0, TEeR, (L.1)

where ( € 7 =[0,T]NT, T >0and & : J xR xR — R is a ld-continuous
function in its first variable and other terms are specified in Sect. 2.

This manuscript is organized as follows: In Sect. 2, we highlight the pre-
liminaries of fractional dynamic equations on time scales. The existence and
uniqueness of solutions of (1.1) is established in Sect. 3. Section 4 includes re-
sults of four types of Ulam stability of (1.1). In Sect. 5, we have presented an
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example for implementing all the theoretical results of the paper. Finally, the
conclusion of the paper is given in Sect. 6.

2. Preliminaries

A time scale T is a nonempty closed subset of the set of real numbers R
inherited from the standard topology of R. For ¢ € T, we define the backward
jump operator is defined as p(¢) := sup{€ € T: £ < (}. If T has a minimum
element (, then we define p(¢) = ¢, in this sense, we get inf T = sup (). With the
help of operator p, we classify a point ¢ € T as left-scattered if p(¢) < ¢ and as
left-dense if p(¢) = ¢. Further, the backward graininess function v: T — [0, o)
is defined by v({) := ¢ — p(¢). We derive a new set from T, denoted by T, as
follows: If T has a right-scattered minimum m, then T,, = T\ {m}. Otherwise,
T, = T. This set Ty is needed while defining V-derivative. The following
definition is taken from [12].

Definition 2.1 (Nabla derivative). Let h: T — R be a function and ¢ € T,.
Then we define the nabla derivative of h at the point { to be the number
hv(¢) (provided it exists) with the property that for each ¢ > 0 there is a
neighborhood U of ¢ such that

Ih(p(€)) = h(68) — b (O)[p(¢) — 6] < elp(€) — 6] for all ¢ € U.

In this case, the function h is said to be nabla differentiable at ¢ € T,.

Theorem 2.2 [14, Theorem 8.39]. Assume h: T — R is a function and let
¢ € Ty. Then we have the following:

(i) If h is continuous at ¢ and ( is left-scattered, then h is nabla differentiable

at ¢ with
h(¢) = h(p(<))
h =
(i) If C is left-dense, then h is nabla differentiable at ¢ if and only if the
limit
. h(¢) — h(0)
e
exists as a finite number. In this case
_ i h(Q) = R(0)

Definition 2.3 [14, Definition 8.43]. A function g: J — R is said to be ld-
continuous if for all left-dense point of 7, ¢ is continuous, and its right sided
limit exists at all right-dense points of 7.
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The symbol £(J,R) is used to denote the set of all ld-continuous functions
from J to R. We note that the set £ = £(J,R) forms a Banach space when
coupled with the supremum norm

llgll := sup [g(C)], g€ L. (2.1)
ceg

Definition 2.4 [14, Theorem 8.47]. Let g: J — R be a V-integrable function.
Then, for any ¢ € J, we have

/()Tg(e)ve:/ch(a)ve+/<Tg(9)ve.

Remark 2.5. [5] Consider the coordinate-wise 1d-continuous function A : T x
T — R for v > 0, such that ho({,¢{p) = 1 and

¢
hys1(C.Go) = /< o (6, o)V for all ¢, ¢y € T. (2:2)

Furthermore, for a;,y > 1, one can obtain

¢
/ Bt G PO a0 p O = B s Cl) 0

for all {,n € T with n <.

Definition 2.6 [5]. Let g € £(T,,R) be such that it is Lebesgue V- integrable
on T. Then for 0 < v < 1, the fractional V-integral (in the sense of Riemann—
Liouville) is defined as

¢

T2 9(C) 1= /< ho1(C.p(0))g(6)V, ¢ € U (2.4)
0

where U is a neighborhood of ¢ such that U C T.

Note that Z%(¢) = g(¢).

Remark 2.7. The V-power function hy_1(¢, p(0)) is different for different time

scale T.

—1
For T =R, we have p(f) = 60 and h,_1(¢, p(0)) = %. In this case, (2.4)
becomes

¥ _ ¢ (C B 9)W71
Z:,9(¢) = /0 T g(60)do.
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For T = Z, we have p(6) = 0 — 1 and h,_1(C, p(0)) = 4O — (S=o(®)),

where for any v € R, {7 = FC(JS) From (2.4), we get

¢
7. 9(0) = / hy—1(C. p(8))9(C) V8

1[¢ T
-7 / (¢ — p(6)) Tg(6)V0
LCl 0—1) ﬁ(@)
I'(y) & 7

For T = ¢"o, we have h,_1(¢,p(0)) = Ty(7) q;:ll (¢ —q0)]7", where Ty is a
g-gamma function.

Next, based on the definition given in [18], we define the following:

Definition 2.8 (Riemann-Liouville fractional V-derivative). Let g: T,m — R
be an ld-continuous function. Then the Riemann—Liouville fractional V-derivative
of order v € R is defined as follows.

D0+g(<) = D?*I(ﬁi’yg(g)a C € j? Y Z Oa
where m € Ny, m := [y]+ 1. The set Ty;m is obtained by cutting off m number
of right-scattered minimum left end points of T.

Definition 2.9 (Caputo fractional V-derivative). Let g: Tym — R be an ld-
continuous function such that V™™g exists in Tym for m € Ny. Then the Caputo
fractional V-derivative of g is defined as

¢
DY, g(C) = /Ohmﬂ<<,p<c>>vm<g<e>>ve, Ced, v>0.

Remark 2.10. From Definition 2.8, we see that “DJ, g(¢) = Z;} " DJ., where
m=[y]+1.

Theorem 2.11 [2]. A subset D of C(T,R) is relatively compact if and only if it
is bounded and equicontinuous simultaneously, where C(T,R) is the set of all
continuous functions defined on T and taking values in R.

Definition 2.12 [21]. Let X and Y be two Banach spaces. A mapping 4: X —
Y is completely continuous, if for a bounded subset B C X, ¢4(B) is relatively
compact in Y.

The following Proposition is proved in [19, Proposition 3.2].
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Proposition 2.13. For g € L([0,T]r,R), if g is an extension of g to the real
line interval [0,T] such that

. J9(Q) ifCEeT,
50) = {g<9> FCe (0(0).0) £ T,

then we get

/O " ove < /0 50

Theorem 2.14 (Krasnoselskii fixed point theorem) [25, Theorem 11.2]. Let
C be a nonempty closed, convexr subset of a Banach space B. Suppose that
Fi1,Fo: C — B be such that

1. F1 is contraction.
2. Fo is continuous and F1(C) is relatively compact.
3. Fi[¢]+ Fan) € C for all {,n € C,

Then there is a { € C such that F1[(] + Fa[(] = (.

Below, we state V-dynamic inequality which is used in proving uniqueness
of solution. This inequality is proved in [4, Corollary 3.2] for the delta case.

Theorem 2.15 Let g,p,h € L(J,R) and p,h are two non negative functions.
Then

¢
9(0) < p(0) /C g(r)h(r)VT for all ¢ € T,

mmplies
g(¢) <0, forall ( € T,.

3. Existence and Uniqueness Results

Definition 3.1 A function g € LN Ly (J,R) is a solution of PBVP (1.1) if and
only if g({) > 0, ¢ € J, and g satisfies equation and conditions in (1.1), where
Ly (J,R) is a class of Lebesgue V-integrable function from J to R.

The following lemma allow us to transform the PBVP (1.1) into an inte-
gral equation, which is key to apply fixed point theory.

Lemma 3.2 Let 1 < v < 2. Then, g € LN Ly (J,R) is a solution of PBVP
(1.1), if and only if g is a solution of the following integral equation

T
90 = | (.02 (0.9(0). D9(0))7 (3.1)
where G((,0) is Green function defined by

Thy-1(¢,p(0)) + *Chw—lngm(e)) if0<0<(

G =1 g " o
{ SNNC fC<O<T.
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Proof For 1 <~ < 2, in view of Definition 2.9, we have
‘DY) =T*Tg5(C), CeJ.
Next, from Lemma 2.7 [34], we obtain
DY) =TT g3 Q)

=T°¢% ()

= g(¢) + ko + k1¢ for some ko, k1 € R.
Let “D7g(¢) = r(¢), ¢ € J. Then, we have

9(Q) =17r(¢) — ko — k(. (33)

Now, using the boundary conditions given in (1.1), we get ky = 0, and
1 /7
b= [ e T0)r6)ve.
0
Hence, from the equation (3.3), we get
¢ T
90) = [ oa(CpO)r©)VO — & [ b (T p0))r(6)V0
0 0

o (Homa (60D | Goms 0D gy
0 T g

+/T [~ ghv_l(T,p(e))]T(g)ve

T

TC
:/ G(¢,0)r0)Veo.
0
That is,

T
90 = [ G(G.0) “Dg(0)v0.
0
This together with (1.1) gives (3.1). The converse can be seen easily. O

Throughout the paper, we prove our results based on the following assumptions:

(H1) The function Z : J x R x R — R is a ld-continuous in its first variable
and continuous in its second and third variable separately.

(H3) For a function 2 in (Hp), there exist positive constants E > 0 and F'
satisfying 0 < F' < 1 such that

|g(§7917¢1) - g(<7027w2)‘ S E‘al - 92| "‘FWI _¢2|

for (C,Gz,dh) e J xRxR (Z: 1,2).
(H3) For a function % in (Hy), there exists &2 € £ and constants R > 0 and
@ with 0 < @ < 1 such that
|Z(C,0,9) < [2(0)] + Rl + QY|
for (,0,¢) € I xR x R.
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(Hy) The Green function G(-,-) is bounded piecewise continuous on [0,7].
Moreover, the function G satisfies

¢ T
[ecorvosk wma [ acovosm
0 ¢
where k and m are positive real constants and 0 < ¢ < 7. Further,
T
/ G(¢(,0)Vo=AeR.
0

To prove the existence and uniqueness results for PBVP (1.1), we shall ap-
ply Theorem 2.14. For this, first we have to go through with the following
essentials.

Consider a subset of £ defined as

My ={9: T —-R:g9) € L,|gl <a,a>0} (3.4)
Clearly, M, is a Banach subspace of L. Next, we define two mappings
: My — Land Fp: M, — L by

¢
Filg)(Q) = / G(¢.0)2(0, 9(6).C Dg(0))V0 (3.5)

and
T
Falgl(0) = /C G(C.0)Z(6.9(6).C Dg(6))V0 (3.6)

respectively.
Let us prove some useful lemmas.

Lemma 3.3 Suppose that (Hy), (Hs), and (Hy) hold. If £E <1, then
F1: My — L defined in (3.5) is contractive.

Proof Let “D7g;(¢) = r:(¢), ¢ € J, i = 1,2, where g1,92 € M,. Then, in
view of (3.5), we can write for ¢ € J,

¢
\Fila](€) = Fulg2) Q) = | | G(¢.0)2Z(6,91(6).° D791 (0)) VO

¢
- / G(C.0)Z (6. 92(6).C D7 g2(6)) V0

/Gce Z7(0,0:(0).° Dg1(6)

—2(0,92(0),C DVg2(0))) VO

¢
< / G(C,0)] |2 (6, 91(8),m1(6))
—2(6,92(0),72(0))| V9, (37)
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where 71,79 € M,,. But, in view of (1.1), for § € J
r1(0) = r2(0) = | 2°(0, 91(0),71(0)) — Z (¢, 92(C),m2(0))]
" Blgu(0) — 92(0) + Flr (6) — r2(0)].
This gives
E
[r1(60) —r2(0)| < ﬁ|gl(9)*92(9)|- (3.8)

Now, using (3.8) in (3.7), we obtain

|F1lg1] = Falga]ll < 1= — 92| Vo
( 1) Ek H I
= 7Z g1 — g2
Since =% < 1, the mapping 71 : M, — L is contractive. O

Theorem 3.4 Suppose that (Hy)—(Hy) hold. Then, Fy : My — L defined in
(3.6) is continuous and Fa(My) is relatively compact.

Proof Let “D7g,(¢) = 7,(¢), n € N and “D7g(¢) = r(¢), ¢ € J. Consider
Fs i M, — L, the mapping defined in (3.6). We divide the proof into the
following steps.

Step 1: F5 : M, — L is continuous.
Let {gn}nen be a sequence in M, which converges to g in M. Then, for
¢ €[0,T1], we have

T
Ifa[gn](C)—fz[g](C)IZ/ G(C,0)Z (0, 9n(0), D7 g0 (6)) VO

/ G(¢,0)Z (0, 9(6),C D g(6)) VO

/Gce Z(0, 90(6).C D5, (6))

~Z(0,9(0),C Dg(0))) VO

¢
< / (G, 0)] |2 (0, 90(0).74.(0))
~7(0,9(0),7(0))| V0, (3.9)
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where 7,7 € M,. But, in view of (1.1), for § € J

ra(6) — r(0)] = | Z (0, 9u(0). 70 (8)) — Z(C.9(C),r(6))]
"2 Elga(0) — g(0)] + Flra(0) — r(0)].

This gives
70 (0) = ()] < =5 19n(0) — 9(O)]. (3.10)
Now, using (3.10) in (3.9), we obtain
7ol = Flall < 125 [ 160 o ol v
(H4) Fk
< 2 g gl
That is,
- < — 4.
12lgu] — Al < T g — ol

This yields that the right side of the above inequality approaches to 0 as g,
approaches to g. Hence Fs : M, — L is continuous.

Step 2: F5 : M, — L is bounded.
From (3.6), we write for { € J

Flgl(Q)] < /< C G 0112 (0,9(0).C D g(0)) V0
- L L 16012 (0,90),r0) V0
- /< 6. 0)lr )96, (3.11)
where r € M. But, in view of (1.1), for § € J, we have
r(0)] = |2 (0.9(0).7(6))

(Hs)
< [2(0) + Rlg(0)] + Q|r(0)]

This gives

() < 120+ Fla®)]

< e (3.12)
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Now, using (3.12) in (3.11), and then taking the norm of (2.1), we obtain

||I3”II + Rllgll

ol

T
FAOIES /C G(C.0)
(1) || 2| + Ra
—_— 1 _ Q .
That is,

m| 2| + Ra
<

1l < T

Thus, F5 : M — L is bounded.

Step 3: F> : M — L is equicontinuous.
Let (1,(s € J be such that ¢(; < (2. Then for g € M, we have

|F2[9](C1) — Falg]Ca)l
T
G(G1,0)2 (6,9(6).C D79(6)) V0
C1
T
- C G(CQy 9)20(97 9(9)70 DVg(Q))VQ
T T
G(G, Vo — [ G((2,0)V0
¢ C2
T T
C1 C2
(3.12) T T
¢1 C2

|Z(6,9(0), D7g(6))|

r(0)]

1-@Q

(1201 Ao

That is,

T T
G(C1,0)Vo — G(¢2,0)V0

|F2[g](¢1) — F2lg]¢2)| < <|73—|—R04> C C

1-Q

(3.13)

Now, using the Green function given in (3.2) and Remark 2.5, we can write,

for (1,60 € T

G p)V0 = [ ~Gaho 1 (T, p(6)) V9

¢1
Gy (T, p(0))

7 (3.14)
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and

' GR(T, p(0)) Vo = —2 (T2 p(0))

(3.15)
G T

Using (3.14) and (3.15) in (3.13), we get

[eadl +Ra> ho (T, p(6))
1-Q T

We find that the right side of (3.16) approaches to zero as (; approaches to (s.
This gives || F2[g](¢1) — Falg](¢2)|| — 0. Thus, the mapping 7o : M, — L is
equicontinuous. Now, since Fy(M,,) is bounded and equicontinuous, by virtue
of Theorem 2.11, it infer that F2(M,,) is relatively compact. O

Falg)(C1) — Falolca)] < ( (G-G).  (3.16)

Theorem 3.5 Suppose (Hy)—(Hy) hold. Let M, = {g : J — R : g(¢) €
L, |lgll < a}, where o is such that % < «. Then, PBVP (1.1)
has a solution in M,,.

Proof By Lemma 3.3, F1 : M, — L, defined in (3.5), is contractive. Also, by
Theorem 3.4, F5 : M, — L, defined in (3.6), is continuous and Fo(M,) is

relatively compact. Let “D7g(¢) = 7(¢) and “D7h(¢) = ¢(¢) for ¢ € J. Then,
for g,h € M, we can write

¢
F (O + Flh)(0)] < / IG(C.0)| 26, 9(6).C D g(6))| VO

T
+ /< IG(C.0)|] (6, h(0).C Dh(0))| V6

C‘ T
< / IG(C,0)|[F(0)| V0 + /< G(C,0)/[a(60)[ V0. (3.17)
But, in view of (1.1), for § € J, we have
r(O)] = 12 (6,9(0), 7(6))|

= |2(0)| + R|g(0)| + Q|r(0)]
< [Z0)] + Rlg(0)]

< == (3.18)
and
q(0)] = |2 (6, 1(6),4(6))|
&\ 20)| + RIn®)| + Qla(6)|
< |20+ Rn(0)] (3.19)

< 1-0
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Now, using (3.18) and (3.19) in (3.17), we obtain

¢
1700+ 720l < [ leon (P25 v

+/<T .oy (2B o

1-Q
(Ha) 12| + Ra |2 + Ra
S (5 (59"
k(2| + R
_(m+ )1(”_Q|+ ) g (3.20)

Thus, for g,h € Mg, Filg] + Fa2lh] € M,. Clearly, all the hypotheses of
Theorem 2.14 are satisfied. Thus, there exists a fixed point g € M,, such that
g = Filg] + Falg] which is a solution of PBVP (1.1). O

Theorem 3.6 (Uniqueness) If the functions 2 and G satisfies conditions given
in (H1)—(Hy), then (1.1) has unique solution.

Proof Let g1, 92 € M,, be two solutions of PBVP (1.1) and “D7g;(¢) = r:(¢)
for ¢ € J, i =1,2. Then, we have

T
191(¢) — g2(¢)] < /0 IG(C, 01| Z(0,91(0), D791(0)) — Z(0,92(0),° D g2(0))| VO
S/O IG(¢, 0120, 91(0),71.(0)) — Z(0, g2(0),72(0))| VO. (3.21)

In view of (1.1), for 6 € J, we have

r1(0) = r2(0)] = [2(0,91(0),71(8)) — Z(0,92(0),72(0))|
< Elgi(0) — 92(0)] + Flri(0) — r2(0)].
This gives
E

r1(0) — r2(0)] < ﬁbl(@) — g2(0)]. (3.22)

Now, using (3.22) in (3.21), we obtain

191(0) - / G(C.0)]19:(6) — g(0)| V0. (3.23)

Ol < 1-F
Applying the inequality given in Theorem 2.15 to (3.23) gives that |g1(¢) —
92(¢)] < 0 and hence ¢1(¢) = g2(¢) for all ¢ € J. This proves the uniqueness
of solution of (1.1). O
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4. Ulam Stability Results for (1.1)
In this section, we are analyzing Ulam stability of PBVP (1.1).

Definition 4.1 We say that PBVP (1.1) has Hyers-Ulam stability (HUS) if
there exists N# > 0 such that for each € > 0 and for each g € M, satisfying

“D79(¢) = Z(¢,9(¢)." D7g(Q))| < € for all ( € T, (4.1)
there exists a solution h € M, of PBVP (1.1) such that

l9(¢) — h(¢)] < Nge forall ( € J.
Such Ny > 0 is said as HUS constant.
Definition 4.2 We say that PBVP (1.1) has generalized Hyers-Ulam stability
(GHUS) if there exists a positive continuous function Hz with He (0) = 0

such that for each g € M, satisfying (4.1), there exists a solution h € M,, of
PBVP (1.1) such that

19(¢) —h({)| < Hz(e) forall ( € J.

Definition 4.3 Let I be a family of positive, nondecreasing ld-continuous real-
valued function defined on J. We say that PBVP (1.1) has Hyers-Ulam—
Rassias stability (HURS) of type K if for each ¥ € K and ¢ > 0, there exists
Ny g > 0 such that for each g € M,, satisfying

“Dg(¢) = Z(¢.9(Q).“ D7g(¢))| < e¥(C) for all ¢ € T, (4.2)
there exists a solution h € M, of PBVP (1.1) such that

19(¢) = h(Q)] < eNz w¥(C) forall ¢ € J.

Such N ¢ > 0 is said as HURS constant.
Definition 4.4 Let C be a family of positive, non decreasing ld-continuous real-
valued function defined on 7. We say that PBVP (1.1) has generalized Hyers—
Ulam-Rassias stability (GHURS) of type K if for each ¥ € K, there exists
Ny w > 0 such that for each g € M, satisfying

“DY9(¢) = Z(C9(0). D g(O) S W(CQ) forall (€ T, (4.3)
there exists a solution h € M, of PBVP (1.1) such that

19(¢) — ()| < Ny 4 ¥(C) for all ¢ € J.
Such Ny ¢ > 0 is said as GHURS constant.

Remark 4.5 A function g € CL,(7,R) is s solution of (4.2) if there exists a
function
A € CL (T, R) (depending on g) with the following property:
(i) [A(Q)] < e¥(¢) for all C € T,
(i) “D7g(¢) = Z(¢, 9(¢),” DVg(Q)) + A(C) for all ¢ € T
Similar arguments also hold for (4.1) and (4.3).



Vol. 78 (2023) Periodic Boundary Value Problems Page 15 of 21 228

Theorem 4.6 Suppose (Hy)~(Hy) hold true with 22 < 1. Then, PBVP (1.1)
has Hyers—Ulam—Rassias stability of type K.

Proof Let g € CL(J,R) satisfy (4.2). Then, by Remark 4.5, there exists for
A € Cly(T,R) satistying |#(¢)| < e¥(() such that

“Dg(¢) = Z(¢,9(¢)," D7g(¢)) + H(C) for all ¢ € T,.
For “D7g(¢) = q(¢), ¢ € J, with h € M, using Lemma 3.2, write

T
00 = [ 6O (0.010).0(0)) + 4(0)) V0. (1.4
For ¥ € K, using Remark 4.5, from (4.4), we can write

T
9(0) — / G(C.0)Z (0, 9(0), q(0)) V6| < AcW(Q) for C € Tp. (45

Let h € M, be a solution of (1.1). Then, for { € J, we have

CDVR(C) = Z(¢, h(C),C DVR(C))
h0)=h(T)=0, TEeR.

If “D7h(¢) = r(C), ¢ € J,. with r € M, then from Lemma 3.2, we have

(4.6)

T
h(¢) = / G(C.6)2(8, h(6), r(8)) V6. (@.7)
From (4.6) and (4.7), we can write
19(0)—h(O)]= ]g<<>— / " 6,020, 9(0), 4(0) v+ / " 6(¢.0)2(6,9(0), a(6)) VO
— /OT G(¢(,0)Z (0, h(9),r(0))V€’

< 'g«;) - [ e 20.90).a0)v0

T T
+ / G(C,0)Z(6,9(6),q(6))V6 — / G(C,0)Z (60, h(8), 7(6))V0
0 0

(4.5) T
< Ae¥(Q) +/O GG, O1Z(0,9(0),a(0)) — Z(0,h(0),r(0))|V0.
(4.8)
But, in view of (1.1), for ( € J

r(0) — q(0)] = |26, h(6),7(0)) — Z(0,9(6), 4(9))]

(Hz)
< E[n0O) — g(0)| + F|r(0) — q(0)].

That is,

7(6) — a(6)] < T2 [(6) — 9(6)].
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From (4.8), we obtain

AE
19(C) = Q) < T—51h(0) = 9(O)] + A¥(C)
A
So—a4g°€ e¥(C) < NeW (). (4.9)
i-F
Thus, PBVP (1.1) has Hyers-Ulam-Rassias stability of type K with HURS
constant N = A4=F) 5 ¢, g

T—AE—F
Corollary 4.7 Suppose that (Hy)-(Hy) hold true with {22 < 1. Then, PBVP
(1.1) has generalized Hyers—Ulam—Rassias stability of type K with GHURS

constant Ny ¢ = 1{%;32,
Proof The proof follows easily by taking ¢ = 1 in the proof of
Theorem 4.6. g

Corollary 4.8 Suppose that (Hy)~(Ha) hold true with AL < 1. Then, PBVP

(1.1) has Hyers—Ulam stability with HUS constant N; = 1_%;3,.

Proof The proof follows easily by taking #(¢) = 1 in the proof
of Theorem 4.6. O

Corollary 4.9 Suppose that (Hy)~(Ha) hold true with £ < 1. Then, PBVP
(1.1) has generalized Hyers—Ulam stability.

Proof Taking Hy (¢) = 1’3(2;32,6 and 1(¢) = 1 in the proof of Theorem 4.6,
the proof follows easily. O

5. Example

Let T =1[0,1] U [2,3] and T = 2. Then J = [0,2] N'T = [0,1] U {2}. Consider
the PBVP

e ¢ | sinfh(Q)] + sin |“D2h(¢)]

CD1'5 —
h(C) 30 + e3¢ ’

h(0) = h(2) = 0.

—4¢ in|h sin [CD3h
e 20100 D) = £ SO sn D)

(Hy). For q; € L£,i=1,2, let “D'5¢;(¢)) = r;(¢) and for ¢ € J, we note that

|°@f(C7Q1(C)77ﬂ1(C)) - g(C,QQ(C),TQ(C))l
et sinfgi(¢)| +sin|ri(Q)] 6’4< _ sinfga(Q)] +Sin|7“2(4)|‘

which satisfy

8 30 + e3¢ 30 + e3¢
_ |sinfq (O] +sinfri(¢)]  sinfga(¢ |+sm|rz )
30 + e3¢ 30 + e3¢

1

1
< %Vh(o - q2(¢)| + %In(o —r2(¢Q)]-
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That is,

12600 m1(0) — 26O < 55
Hence, (Ha) satisfied with E = F = 5. Also, For ¢ € £, let “D'%¢(¢)) = r(¢).
Then for ( € J,

1
\fh — @ + 0|7’1 —ral.

12(6a(Q), Q)] < 5 + 55 10(Q)] + (O]

Hence, (H;) satisfied with P = = 30, and Q = 0' Now, using the above
data, the inequality % <1 yields k < 29. Again, using this value in
(k+m) ([Pl + Fa) _
1-Q -
we obtain m < 851%0, a > 0. Further, keeping in mind the boundary condi-
tions h(0) = h(2) = 0, using Proposition 2.13, we have

/GCGV&‘ /G(Hd@’

_ 0.5 ¢ _ pn\0.5
S/(ce e d(,ig/«g)d@
0 2 ) T(3)

<1
This yields that (H,) satisfied with A = 1. Thus, all the conditions of theo-

rems 3.5 and 3.6 are satisfied. Hence, the PBVP (5.1) has unique solution A
and by Lemma (3.2), this solution is given by

_ /2 G(¢,0) (e:e ;. SinJA(6)] +Sm|%%h(9)') Ve, (5.2)
0

ool —

a >0,

30 4 e3¢
Further, if g € Cl(J,R) satisfies

e~ sin[g(¢)] +sin |“D2g(Q)|

<
8 30 + e3¢ c

— )

then by making use of Corollary 4.8, there exists a solution h of (5.1) satisfying
29
— < —e.
19(0) — Q)| < 2o

Hence, PBVP (5.1) has Hyers—Ulam stability with HUS constant 23.

6. Conclusion

We have investigated the existence, uniqueness, and the Ulam stability of
solutions of nonlinear fractional dynamic equations with periodic boundary
conditions involving Caputo fractional V-derivative. Our approach is based
on Krasnoselskii fixed point theorem, which allows breaking of the mapping
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and makes calculation easier. For the guarantee of uniqueness of solutions,
we employ V-dynamic inequality. We complemented our results through a
stimulative example. We believe the results presented here are employable in
the mathematical modeling of hybrid continuous-discrete phenomena. Further,
the involvement of fractional V-derivative gives significantly better accuracy in
the modeling process. Investigation of qualitative properties of other nonlinear
fractional dynamic equations involving various fractional derivative operators
on time scales will be our future work.
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