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1. Introduction

Let X be a separable Hilbert space and A : D(A) ⊂ X → X be an un-
bounded linear, closed, densely defined, self-adjoint and for some a > 0, sat-
isfies 〈Au, u〉 � a〈u, u〉 or all u ∈ D(A). We also assume that A has compact
resolvent on X. It is well-known that with those hypotheses, we can define the
fractional power Aα of order 0 < α < 1 according to [2] and [11], as a closed
linear operator, see e.g. [10,11,13,18]. Denote by Xα = D(Aα) for 0 � α � 1
(taking A0 := I on X0 := X when α = 0). Recall that Xα is dense in X for all
0 � α � 1, for details see [2, Theorem 4.6.5]. The fractional power space Xα

endowed with the norm ‖ · ‖Xα := ‖Aα · ‖X is a Banach space. With this nota-
tion, we have X−α = (Xα)′ for all α > 0, see [2,26,27] for the characterization
of the negative scale.

F. D. M. Bezerra: Research partially supported by CNPq/Finance Code # 303039/2021-3,
Brazil. C. R. Takaessu: Research partially supported by CAPES-PROEX-11169228/D and
by FAPESP # 2020/14353-6, Brazil.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-01999-z&domain=pdf
http://orcid.org/0000-0001-8856-5388


220 Page 2 of 14 F. D. M. Bezerra et al. Results Math

In this paper we consider the fourth-order linear equation in time

utttt + A
2
5 u + aA

1
5 uttt + bA

4
5 utt + cAut = 0, (1.1)

where a, b, c � 0.
We discuss here the well-posedness of Eq. (1.1) in terms of the scalar

parameters a, b and c considering the theory of strongly continuous bounded
linear operators on suitable phase spaces.

In recent years higher-order evolution equations in time have attracted
the attention of many researchers. This can be explained by the sensitiv-
ity of the conditions of well-posedness and regularity of solutions of these
equations in infinite-dimensional Banach spaces, see e.g. [3–5,8,9,22], see also
the Moore-Gibson-Thompson (MGT) equations, see e.g. [1,6,7,12,15–17,19–
21,24,25] and reference therein.

We also observe that it is possible to find in the literature some works
dedicated to fourth-order equations in time motivated by MGT equations,
see e.g. [1,7,16,19–21]; in these papers are made formulations for fourth-order
equations of the MGT type, and results of blow-up of solutions, well-posedness,
stability and regularity of solutions are obtained.

Our best knowledge indicates that no information is known for models
of the type (1.1) concerning the well-posedness and regularity of solutions.
This paper makes this point. Furthermore, abstract differential equations of
order greater than two are generally ill-posed in the sense of the theory of
semigroups of bounded linear operators. However, we identify cases where
(1.1) is well-posed. Namely, cases in which this equation is associated with a
strongly continuous semigroup and instances in which it is associated with an
analytic semigroup.

We will divide our problem into two cases: c > 0 and c = 0. First of all,
note that our linear problem (1.1) can be rewritten as a first-order abstract
system of the form

Ut + Sa,b,cU = 0, t > 0,

on the phase space

Y = X1 × X
4
5 × X

3
5 × X,

endowed with the usual inner product, where U =
[

u
ut
utt
uttt

]
, and the matrix

operator Sa,b,c can be seen as a unbounded linear operator defined by

D(Sa,b,c) = X1 × X1 × X
4
5 × X

1
5

and

Sa,b,c =

⎡
⎢⎢⎣

0 −I 0 0
0 0 −I 0
0 0 0 −I

A
2
5 cA bA

4
5 aA

1
5

⎤
⎥⎥⎦
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Namely, the unbounded linear operator Sa,b,c : D(Sa,b,c) ⊂ Y → Y is closed
and densely defined.

It is easily seen that λ ∈ ρ(−Sa,b,c) if and only if λ4I +aλ3A
1
5 + bλ2A

4
5 +

cλA + A
2
5 is bijective. Consequently, if λ ∈ C is such that

λ4 + aμ
1
5 λ3 + bμ

4
5 λ2 + cμλ + μ

2
5 = 0

for some μ ∈ σ(A), then λ ∈ σ(−Sa,b,c). Since σ(A) is countably infinite, we
will consider the characteristic polynomials”

pn(λ) = λ4 + aμ
1
5
nλ3 + bμ

4
5
nλ2 + cμnλ + μ

2
5
n . (1.2)

with μn ∈ σ(A). Recall that μn > 0 and μn → ∞ as n → ∞.
Note that the discriminant of (1.2) is given by

Δn = (−4b3c2)µ
22
5

n + (−27c4 + 18abc3 + a2b2c2)µ4
n + (16b4 − 4a3c3)µ

18
5

n + (144a2b)µ
17
5

n

+ (144bc2 − 80ab2c − 4a2b3)µ
16
5

n + (18a3bc − 6a2c2)µ
14
5

n − (128b2)µ
12
5

n − (192ac)µ2
n

− 27a4µ
8
5
n + 256µ

6
5
n,

see [14, Example on the pages 192-193].
We can summarize the behavior of Δn when n >> 0 as follows

(Table 1).
See Tables 1, 2, 3 below
This is a key result in our analysis since a geometric localization of the

points of the spectral set of −Sa,b,c can provide us with information about
the generation of strongly continuous semigroups of bounded linear operators
associated with the problem (1.1), see e.g. [23, Chapter 1, Corollary 3.8].

This work is organized as follows. In Sect. 2 we consider the case c > 0
and we treat three subcases c = ab, c > ab, and c < ab. Finally, in Sect. 3 we
consider the case c = 0 and we treat three subcases a = b = c = 0, a 	= 0 and
b = c = 0, b 	= 0 and a = c = 0, and a, b 	= 0 and c = 0.

The tables below summarize our results, where � means that it is possible
to generate the respective strongly continuous semigroups of bounded linear
operators on Y , and × means that it is not possible to generate the respective
strongly continuous semigroups of bounded linear operators on Y .

For c > 0, we have the following results (Table 2):

Table 1. Signal of the discriminant Δn

a b c Δn

� 0 � 0 > 0 < 0
� 0 > 0 0 > 0
> 0 0 0 < 0
0 0 0 > 0
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Table 2. Case c > 0

Analytic semigroup Strongly continuous semigroup

c = ab × �
c > ab × ×
c < ab × �

Table 3. Case c = 0

Analytic semigroup Strongly continuous semigroup

a = b = c = 0 × ×
a 	= 0 and b = c = 0 × ×
b 	= 0 and a = c = 0 × �
a, b 	= 0 and c = 0 × �

For c = 0, we have the following results (Table 3):

2. Case c > 0

Since Δn < 0 for large n when c > 0 we guarantee the existence of two complex
conjugated roots zn and zn and two real roots xn and yn. The following lemma
shows the behavior of one of the real roots for the polynomial pn in (1.2).

Lemma 2.1. If c > 0, then yn → 0 as n → +∞.

Proof. Given ε > 0 we have

pn(−ε) = ε4 − aμ
1
5
n ε3 + bμ

4
5
n ε2 − cμnε + μ

2
5
n .

It is easy to see that pn(−ε) → −∞ as n → +∞. Since pn(0) > 0 for any
n, we guarantee that yn ∈ (−ε, 0) for large n; that is, yn → 0 as n → +∞.

Corollary 2.2. If (xn + aμ
1
5
n ) → K as n → +∞, then Re(zn) → −K

2
as

n → +∞.

Proof. It follows directly from Vieta’s formulas

xn + yn + zn + zn = −aμ
1
5
n . (2.1)

jointly with Lemma 2.1.

Remark 2.3. It will be useful later to know that for any ε > 0 we have
p(−aμ

1
5
n − ε) given by

(a2b − ac)μ
6
5
n + (2ab − c)εμn + (ε2b)μ

4
5
n + (a3ε)μ

3
5
n

+(3a2ε2 + 1)μ
2
5
n + 3aε3μ

1
5
n + ε4.
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2.1. Subcase ab = c

In this subcase the polynomial pn becomes

pn(λ) = λ4 + aμ
1
5
nλ3 + bμ

4
5
nλ2 + abμn + μ

2
5
n .

We will prove that xn + aμ
1
5
n → 0 and consequently by Corollary 2.2 we

have Re(zn) → 0. From this, we will see that it is possible to prove a result of
well-posedness for Eq. (1.1).

Proposition 2.4. If c > 0 and c = ab, then Re(zn) → 0. This means that, in the
best case scenario, the problem (1.1) can only generate a strongly continuous
semigroup on Y .

Proof. We will show that xn → −aμ
1
5
n and the other claim follows from the

Hille-Yosida Theorem, see e.g. [23, Chapter 1, Theorem 3.1]. Fixing ε > 0 it is

easy to see (Remark 2.3) that p(−aμ
1
5
n +ε) < 0 for large n. Since pn(−aμ

1
5
n ) > 0

we know that xn ∈ (−aμ
1
5
n ,−aμ

1
5
n + ε) for large n; that is, xn → −aμ

1
5
n as

n → +∞.

Theorem 2.5. If c > 0 and c = ab, then problem (1.1) is well-posedness on
Y ; that is, the linear operator associated with this problem is the infinitesimal
generator of a strongly continuous semigroup on Y .

Proof. Define

z = ut + aA
1
5 u (2.2)

and

v = uttt + aA
1
5 utt + bA

4
5 ut + abAu. (2.3)

Transferring our problem to the phase space

Z = X × X × X × X

endowed with the usual inner product, we define the vector W =

[ Au
Az

A
3
5 zt

A
3
5 v

]
. It

is easy to see that (1.1) can be rewritten as a first-order abstract system of
the form

Wt = ΛW, t > 0,

where Λ denotes the unbounded linear operator given by

Λ =

⎡
⎢⎢⎣

−aA
1
5 1 0 0

0 0 A
2
5 0

0 −bA
2
5 0 1

−I 0 0 0

⎤
⎥⎥⎦ .

Namely, this linear operator is closed and densely defined. Moreover, it is a
maximally dissipative operator (see [23, Chapter 1, Definition 4.1]) on a space
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in which the norm is equivalent to the norm of space Z. This also implies that[
u
ut
utt
uttt

]
∈ Y .

2.2. Subcase c > ab

We will show that in this subcase the problem (1.1) is ill-posed, that is, the
operator associated with the problem does not generate a strongly continuous
semigroup of bounded linear operators.

Proposition 2.6. If c > 0 and c > ab then Re(zn) → +∞. Consequently, the
unbounded linear operator associated with (1.1) does not generate a strongly
continuous semigroup on Y .

Proof. It follows from Remark (2.3) that pn(−aμ
1
5
n −μ

1
10
n ) < 0 for large n. Since

pn(λ) → +∞ as λ → −∞ we guarantee that xn < −aμ
1
5
n − μ

1
10
n . From (2.1)

and Lemma 2.1 we obtain Re(zn) → +∞. This violates a necessary condition
for the generation of a strongly continuous semigroup, see e.g. [23, Chapter 1,
Corollary 3.8].

2.3. Subcase c < ab

Note that in this subcase we have to assume that a, b, c 	= 0. We will see that
problem (1.1) can be well-posed in the sense of the theory of semigroups of
bounded linear operators. However, the semigroup associated with (1.1) cannot
be analytic on Y .

Lemma 2.7. If a, b, c 	= 0 and c < ab then xn → −cμ
1
5
n

b
as n → +∞.

Proof. Firstly note that

pn

(
−cμ

1
5
n

b

)
=

c3(c − ab)
b4

μ
4
5
n + μ

2
5
n

and therefore pn(−cb−1μ
1
5
n ) < 0 for large n. Fixing ε > 0 we can easily compute

that

pn(−cb−1μ
1
5
n − ε) = εcμn + (c4b−4 − ac3b−3 + ε2b)μ

4
5
n + (4c3b−3ε − 3ac2b−2ε)μ

3
5
n

+ (1 + 6ε2c2b−2 − 3ε2acb−1)μ
2
5
n + (4ε3cb−1 − aε2)μ

1
5
n + ε4.

Hence pn(−cb−1μ
1
5
n − ε) > 0 for large n which guarantees that

xn ∈ (−cb−1μ
1
5
n − ε,−cb−1μ

1
5
n )

for large n; that is, xn → −cb−1μ
1
5
n as n → +∞.
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Corollary 2.8. If a, b, c 	= 0 and c < ab then Re(zn) → (c − ab)2−1b−1μ
1
5
n .

Therefore the problem (1.1) can be well-posed in the sense of the theory of
semigroups of bounded linear operators. Moreover, the solution of (1.1) cannot
be analytic on Y in the sense of [11].

Proof. From Vieta’s formulas and Lemma 2.7 it follows immediately that
Re(zn) → (c − ab)2−1b−1μ

1
5
n and that

(
Im(zn)
Re(zn)

)2

=
4b3μ

2
5
n

(c − ab)2
→ +∞,

which concludes the proof.

3. Case c = 0

3.1. Subcase a = b = c = 0
In this case, the polynomial is given by

pn(λ) = λ4 + μ
2
5
n = 0.

It is easy to see that the roots of pn are μ
1
10
n e

π
4 i, μ

1
10
n e

3π
4 i, μ

1
10
n e

5π
4 i and μ

1
10
n e

7π
4 i.

To simplify our view, we can rewrite these roots as

μ
1
10
n

(√
2

2
+ i

√
2

2

)
, μ

1
10
n

(
−

√
2

2
+ i

√
2

2

)
, μ

1
10
n

(
−

√
2

2
− i

√
2

2

)

and μ
1
10
n

(√
2

2
− i

√
2

2

)
.

Theorem 3.1. If a = b = c = 0, then problem (1.1) is ill-posed in the sense of
the theory of semigroups of bounded linear operators on Y .

Proof. Since μn → +∞ our next result follows directly from the Hille-Yosida
Theorem, see e.g. [23, Chapter 1, Theorem 3.1].

3.2. Subcase a �= 0 and b = c = 0
In this case we know that Δn < 0 for large n and therefore our polynomial

λ4 + aμ
1
5
nλ3 + μ

2
5
n

have two real roots xn, yn and two complex roots zn and zn.

Lemma 3.2. If a 	= 0 and b = c = 0 then xn → −aμ
1
5
n as n → +∞.

Proof. Given ε > 0 we have

pn(−aμ
1
5
n + ε) = −εa3μ

3
5
n + (3a2ε2 + 1)μ

2
5
n − 3aε3μ

1
5
n + ε4.

Hence pn(−aμ
1
5
n +ε) < 0 for large n. Since pn(−aμ

1
5
n ) > 0 for any n, we conclude

that xn ∈ (−aμ
1
5
n ,−aμ

1
5
n + ε) for large n; that is, xn → −aμ

1
5
n as n → +∞.
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Lemma 3.3. If a 	= 0 and b = c = 0 then yn → −a− 1
3 μ

1
15
n as n → +∞.

Proof. Fix ε > 0 and note that

pn(−a− 1
3 μ

1
15
n − ε) = −3εa

1
3 μ

5
15
n + (a− 4

3 − 3ε2a
2
3 )μ

4
15
n + (4εa−1 − aε3)μ

3
15
n

+ 6ε2a− 2
3 μ

2
15
n + 4ε3a− 1

3 μ
1
15
n + ε4.

Thus pn(−a− 1
3 μ

1
15
n − ε) < 0 for large n. Since pn(−a− 1

3 μ
1
15
n ) = a

−4
3 μ

4
15
n , we

guarantee that pn(−a− 1
3 μ

1
15
n ) > 0 for large n and therefore

yn ∈ (−a− 1
3 μ

1
15
n − ε,−a− 1

3 μ
1
15
n )

when n is large. This means that |yn + a− 1
3 μ

1
15
n | → 0 as n → +∞.

Corollary 3.4. If a 	= 0 and b = c = 0 then Re(zn) → +∞. Consequently,
problem (1.1) is ill-posed in the sense of the theory of semigroups of bounded
linear operators on Y .

3.3. Subscase b �= 0 and a = c = 0
In this case we have the polynomial

λ4 + bμ
4
5
nλ2 + μ

2
5
n (3.1)

which has Δn > 0 for large n and Pn = 8bμ
4
5
n > 0; that is, our polynomial has

two pairs of non-real complex conjugate roots.

Lemma 3.5. If b 	= 0 and a = c = 0 then all roots are imaginary for large
n. Consequently, problem (1.1) can generate a strongly continuous semigroup
of bounded linear operators on Y . Moreover, it cannot generate an analytic
semigroup on Y in the sense of [11].

Proof. Denoting the four roots by zn, zn, wn, wn we know from Vieta’s formu-
las that

Re(wn) = −Re(zn), |zn|2|wn|2 = μ
2
5
n (3.2)

and

Re(wn)(|zn|2 − |wn|2) = 0.

Assume that Re(wn) 	= 0. Then

|zn|2 = |wn|2 = μ
1
5
n . (3.3)

Writing wn on its polar form wn = rneiθn and using (3.1) it follows that

r4
nei4θn + bμ

4
5
n r2

nei2θn + μ
2
5
n = 0

and therefore

r2
n(r2

nsin(4θn) + bμ
4
5
nsin(2θn)) = 0. (3.4)
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From (3.1) we have rn = |wn| 	= 0 and this leads to

r2
nsin(4θn) + bμ

4
5
nsin(2θn) = 0.

Case sin(4θn) = 0 we have sin(2θn) = 0, and θn = 0 or θn = π
2 . From this,

sin(4θn) 	= 0; that is,

r2
n =

−sin(2θn)bμ
4
5
n

sin(4θn)
. (3.5)

Putting (3.3) and (3.5) together we obtain

−sin(2θn)bμ
3
5
n = sin(4θn).

Thus

sin(2θn)(bμ
3
5
n + 2cos(2θn)) = 0.

Since bμ
3
5
n +2cos(2θn) 	= 0 for large n we conclude that sin(2θn) = 0 and

θn = 0 or θn =
π

2
(3.6)

which contradicts our assumption that wn /∈ R and Re(wn) 	= 0. Therefore

Re(wn) = Re(zn) = 0

for large n we conclude the proof.

Theorem 3.6. If b 	= 0 and a = c = 0 then the problem (1.1) generates a
strongly continuous semigroup on Y .

Proof. It follows similarly to Theorem 2.5.

3.4. Subcase a, b �= 0 and c = 0

In this case we have the polynomial

λ4 + aμ
1
5
nλ3 + bμ

4
5
nλ2 + μ

2
5
n (3.7)

which has Δn > 0 for large n. Moreover, Pn = 8bμ
4
5
n − 3a2μ

2
5
n > 0 for large n,

which implies that our polynomial has four complex roots zn, zn, wn and wn.

Lemma 3.7. Two of the four roots of polynomial (3.7); namely wn and wn

satisfy

|wn| = |wn| → b− 1
2 μ

− 1
5

n as n → +∞.

Proof. From Vieta’s formulas, we can easily obtain that
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|wn|2|zn|2 = μ
2
5
n , (3.8)

Re(zn)|wn|2 = −Re(wn)|zn|2 (3.9)

|zn|2 + |wn|2 + 4Re(zn)Re(wn) = bμ
4
5
n (3.10)

and

Re(wn) + Re(zn) =
−aμ

1
5
n

2
. (3.11)

Since wn, zn 	= 0 we can put (3.8) and (3.9) into Eq. (3.10) to obtain
that

μ
2
5
n

|wn|2 + |wn|2 − 4Re(wn)2μ
2
5
n

|wn|4 = bμ
4
5
n .

which leads us to

μ
2
5
n |wn|2 + |wn|6 − 4Re(wn)2μ

2
5
n − bμ

4
5
n |wn|4 = 0. (3.12)

Now, putting (3.9) and (3.11) together we have

−aμ
1
5
n |wn|2
2

= Re(wn)(|wn|2 − |zn|2). (3.13)

Since wn 	= 0 we know from (3.13) that |wn|2−|zn|2 	= 0 and consequently

Re(wn) =
−aμ

1
5
n |wn|2

2(|wn|2 − |zn|2) .

Putting this equation together with (3.8) we have (the well-defined) equa-
tion

Re(wn) =
−aμ

1
5
n |wn|4

2(|wn|4 − μ
2
5
n )

. (3.14)

Finally, putting (3.12) and (3.14) together we obtain

μ
2
5
n |wn|2 + |wn|6 − a2μ

4
5
n |wn|8

|wn|8 − 2μ
2
5
n |wn|4 + μ

4
5
n

− bμ
4
5
n |wn|4 = 0.

From this we have

(μ
2
5
n |wn|2 + |wn|6 − bμ

4
5
n |wn|4)(|wn|8 − 2μ

2
5
n |wn|4 + μ

4
5
n ) − a2μ

4
5
n |wn|8 = 0

and consequently

|wn|14 − bμ
4
5
n |wn|12 − μ

2
5
n ‖wn ‖10 +(2bμ

6
5
n − a2μ

4
5
n )|wn|8

− μ
4
5
n |wn|6 − bμ

8
5
n |wn|4 + μ

6
5
n |wn|2 = 0.



Vol. 78 (2023) Spectral analysis of some fourth-order differential equations Page 11 of 14 220

Dividing both sides by |wn|2 we finally have

|wn|12 − bμ
4
5
n |wn|10 − μ

2
5
n |wn|8

+ (2bμ
6
5
n − a2μ

4
5
n )|wn|6 − μ

4
5
n |wn|4 − bμ

8
5
n |wn|2 + μ

6
5
n = 0.

Define the polynomial qn : R → R as

qn(x) = x12 − bμ
4
5
nx10 − μ

2
5
nx8 + (2bμ

6
5
n − a2μ

4
5
n )x6 − μ

4
5
nx4 − bμ

8
5
nx2 + μ

6
5
n .

From

qn(b− 1
2 μ

− 1
5

n ) = b−6μ
− 12

5
n − 2b−4μ

− 6
5

n − a2b−3μ
− 2

5
n − 2b−2

we obtain that qn(b− 1
2 μ

− 1
5

n ) < 0 for large n. It is easy to see that for any ε > 0

we have qn(b− 1
2 μ

− 1
5

n − ε) > 0 for large n. Thus, given ε > 0 we have

|wn| = |wn| ∈ (b− 1
2 μ

− 1
5

n − ε, b− 1
2 μ

− 1
5

n )

for large n, which completes the proof.
Lemma 3.8. Assume that wn is a root of polynomial (3.7) such that

|wn| → b− 1
2 μ

− 1
5

n

as n → +∞. Then
Re(wn)
Im(wn)

→ 0 as n → +∞.

Proof. We will denote the polar form of wn as rneiθn . Remember that

rn → b− 1
2 μ

− 1
5

n as n → +∞.

We just need to prove that θn → π

2
or θn → 3π

2
.

Since wn is a root of (3.7), we have

r2
n(r2

ncos(4θn) + aμ
1
5
n rncos(3θn) + bμ

4
5
n cos(2θn)) = −μ

2
5
n .

It is easy to see that a root from (3.7) must be different from zero. Thus

r2
ncos(4θn) + aμ

1
5
n rncos(3θn) + bμ

4
5
n cos(2θn) = −μ

2
5
n r−2

n .

Since −μ
2
5
n r−2

n → −bμ
4
5
n we conclude that

r2
ncos(4θn) + aμ

1
5
n rncos(3θn) + bμ

4
5
n cos(2θn) → −bμ

4
5
n .

From the fact that rn → b− 1
2 μ

− 1
5

n it is easy to see that θn → π

2
or

θn → 3π

2
as n → +∞.

Corollary 3.9. There exist two roots of polynomial (3.7); namely wn and wn

such that wn → b− 1
2 μ

− 1
5

n i and wn → −b− 1
2 μ

− 1
5

n i as n → +∞.
Proof. It follows immediately from Lemmas 3.7 and 3.8.
Corollary 3.10. If a, b 	= 0 and c = 0 then the problem (1.1) can generate a
strongly continuous semigroup. Furthermore, the semigroup cannot be of an
analytic type on Y in the sense of [11].
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Proof. From Corollary 3.9 and Vieta’s formulas, we have that

Re(zn) → −a

2
μ

1
5
n as n → +∞.

This means that problem (1.1) can generate a strongly continuous semigroup.
Once again from Vieta’s formulas we can obtain that

(Im(zn))2 → bμ
4
5
n − a2

4
μ

2
5
n as n → +∞,

implying that

(Im(zn))2

(Re(zn))2
→ +∞ as n → +∞.

Therefore, problem (1.1) cannot have an analytic semigroup on Y as a solution
operator.
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