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Abstract. Let S be a semigroup. We solve the cosine–sine functional
equation f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y) for unknown functions
f, g, h : S → C. The solutions on a group were found by Chung, Kan-
nappan, and Ng in 1985. More recently the solutions on several large
classes of semigroups have been found. Here we give the solutions on a
general semigroup. The solutions are expressed in terms of multiplicative
functions, the solutions of special cases of the sine addition law with one
function multiplicative, and the solutions of special cases of the cosine–
sine equation with g multiplicative. This gives a complete description
since the solutions of the aforementioned special cases are known. The
continuous solutions on topological semigroups are also given.
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1. Introduction

In this paper S denotes a semigroup. If S is a topological semigroup then C(S)
denotes the algebra of continuous functions mapping S into C. In general
we give the continuous solutions of our functional equations on topological
semigroups, but the discrete topology is allowed.

A function A : S → C is said to be additive if A(xy) = A(x) + A(y) for
all x, y ∈ S, and M : S → C is called multiplicative if M(xy) = M(x)M(y) for
all x, y ∈ S. If M is multiplicative and M �= 0 then we call M an exponential.
Additive functions and multiplicative functions are considered to be funda-
mental as they are homomorphisms of S into (C,+) and (C, ·), respectively.
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They are used routinely to describe solutions of other functional equations.
Here we take a similar view of solutions σ, κ : S → C of the sine addition law

σ(xy) = σ(x)κ(y) + κ(x)σ(y), for all x, y ∈ S, (1)

for κ multiplicative, and we use them to describe solutions of other functional
equations on semigroups. We shall refer to a pair (σ, κ) satisfying (1) as a sine
pair.

Our main objective is to solve the cosine–sine functional equation

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), for all x, y ∈ S, (2)

where f, g, h : S → C. This equation was solved by Chung, Kannappan, and
Ng [2] for the case that S is a group. In that setting all solutions can be
expressed in terms of additive functions and multiplicative functions. Their
result was extended by Ajebbar and Elqorachi [1] to semigroups generated by
their squares, and by the author [3] to a larger class of semigroups. In the
setting of semigroups there exist solutions that cannot be described using only
additive and multiplicative functions.

In [3] we found that a critical role is played by the functional equation

ψ(xy) = ψ(x)M(y) + M(x)ψ(y) + σ(x)σ(y), x, y ∈ S, (3)

for ψ,M, σ : S → C, where M is multiplicative and (σ,M) is a sine pair.
Clearly (3) is a special case of (2). The ability to solve (3) when M is multi-
plicative and (σ,M) is a sine pair allows us to find the solution of (2) on all
semigroups.

The outline of the paper is as follows. The next section lays some pre-
liminary groundwork, including the solutions of (1) and (3) on semigroups
(Proposition 2.2, resp. Proposition 2.4 and Lemma 2.5). Section 3 contains
further lemmas to support the solution of (2) on a general semigroup. The
final section contains the main result – Theorem 4.1 – and an example illus-
trating some new types of solutions on a semigroup that is not covered by
previous results.

2. Preliminaries

Some inspiration for this article comes from a pair of papers by Henrik Stetkær
in which he described the solutions of two functional equations in terms of mul-
tiplicative functions and solutions of the sine addition law (1). In [7, Theorem
6.1] he took this approach for the cosine addition law

g(xy) = g(x)g(y) − f(x)f(y), x, y ∈ S.

(At the time of publication the general solution of (1) on semigroups was not
yet known.) In [8, Theorem 5.1] he took the same approach for the functional
equation

f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y), x, y ∈ S.
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Now the solution of (1) is known and is described in the next proposition.
For any subset T ⊆ S let T 2 := {xy | x, y ∈ T}. For any multiplicative function
M : S → C, let

IM := {x ∈ S | M(x) = 0},

PM := {p ∈ IM \ I2M | up, pv, upv ∈ IM \ I2M for all u, v ∈ S \ IM}.

Remark 2.1. Note that if u ∈ S \ IM and p ∈ PM , then up, pu ∈ PM .

Let C
∗ := C \ {0}. The following is [4, Theorem 3.1]. It omits the trivial

observation that if σ = 0 in (1) then κ is arbitrary.

Proposition 2.2. Let S be a topological semigroup, and let (σ, κ) be a sine pair
on S with σ ∈ C(S) and σ �= 0. Then κ ∈ C(S) and we have one of the
following cases, where M1,M2 ∈ C(S) are multiplicative functions such that
κ = (M1 + M2)/2.
(A) For M1 �= M2 and c ∈ C

∗ we have σ = c(M1 − M2).
(B) For M1 = M2 �= 0 we define M := M1 = M2. Then κ = M and there

exist an additive function A ∈ C(S\IM ) and a function σP ∈ C(PM )
with either A �= 0 or σP �= 0 such that

σ(x) =

⎧
⎪⎨

⎪⎩

A(x)M(x) for x ∈ S \ IM

σP (x) for x ∈ PM

0 for x ∈ IM \ PM

and such that the following statements (i) and (ii) hold.
(i) σ(qu) = σ(uq) = 0 for all q ∈ IM\PM and u ∈ S\IM .
(ii) If x ∈ {up, pv, upv} for p ∈ PM and u, v ∈ S\IM , then we have

respectively σP (x) = σP (p)M(u), σP (x) = σP (p)M(v), or σP (x) =
σP (p)M(uv).

(C) For M1 = M2 = 0 we have κ = 0, S �= S2, and σ has the form

σ(x) =

{
σ0(x) for x ∈ S \ S2

0 for x ∈ S2
(4)

for some nonzero σ0 ∈ C(S \ S2).
Conversely, in each case (σ, κ) is a sine pair with σ �= 0.

Clearly there is a lot of information packed into this result, especially in
case (B). As observed in [4], σP may take arbitrary values at some, none, or all
points of PM , depending on S and M . So although Proposition 2.2 describes
the solutions of (1) in detail, the complexity of the description suggests that it
may be desirable to have a short way to refer to such functions. Furthermore,
although case (C) may seem to be rather degenerate, such solutions exist on
many semigroups. A simple example is S = (N,+), where the element 1 cannot
be written as the sum of two elements so S �= S2 (here S2 = S + S). Defining
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σ(1) to be any nonzero complex number and σ(n) = 0 for all n ≥ 2, we have
a solution of (1) with M = 0 but σ �= 0.

That motivates the following definitions.

Definition 2.3. (a) If (σ,M) is a sine pair on S with σ �= 0 and M exponen-
tial, then we say that (σ,M) is a sine-exponential pair on S. Such pairs
are described in Proposition 2.2 (B).

(b) If (σ, 0) is a sine pair on S with σ �= 0, then we say that σ is a quasi-
trivial sine function on S. The form of such functions is described in
Proposition 2.2 (C). (Clearly such functions exist only if S �= S2.)

Next we turn our attention to (3). For any exponential M : S → C we
define

JM := IM (IM \ PM ) ∪ (IM \ PM )IM ,

KM := {x ∈ IM \ PM | ux, xv, uxv ∈ IM \ JM for all u, v ∈ S \ IM}.

The following is [6, Proposition 2.3].

Proposition 2.4. Let S be a topological semigroup, let M ∈ C(S) be an expo-
nential, and let (σ,M) be a continuous sine-exponential pair on S. If ψ ∈ C(S)
is a solution of (3), then there exist an additive B ∈ C(S\IM ) and functions
ψP ∈ C(PM ), ψK ∈ C(KM ) such that

ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[B(x) + 1
2A2(x)]M(x) for x ∈ S \ IM

ψP (x) for x ∈ PM

ψK(x) for x ∈ KM

0 for x ∈ IM \ (PM ∪ KM )

(5)

and the following conditions (i)–(iv) hold.
(i) For all u ∈ S \ IM and x ∈ PM we have ψP (ux) = ψP (xu) = [ψP (x) +

σ(x)A(u)]M(u).
(ii) For all u ∈ S \ IM and x ∈ KM we have ψ(xu) = ψ(ux) = ψK(x)M(u).
(iii) For all u ∈ S \ IM and x ∈ IM\(PM ∪ KM ) we have ψ(xu) = ψ(ux) = 0.
(iv) For all x, y ∈ PM we have ψ(xy) = ψ(yx) = σ(x)σ(y).

Conversely, if ψ : S → C has the form (5) with additive B : S \ IM → C

and conditions (i)–(iv) hold, then ψ satisfies (3).

Here the description of solutions is even more complicated than that of
sine-exponential pairs. Again there is the possibility that parts of the solution
(namely ψP and ψK) may take arbitrary values at some, none, or all points of
their respective domains.

Now we complete the discussion of (3) for M multiplicative and (σ,M)
a sine pair. Proposition 2.4 covers the case that M is exponential. The case
ψ = 0 is trivial, since then σ = 0 and M is an arbitrary multiplicative function.
What remains is the case M = 0 and ψ �= 0.
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Lemma 2.5. Suppose ψ, σ : S → C satisfy (3) with M = 0, where ψ �= 0 and
(σ, 0) is a sine pair.
(A) If σ = 0 then ψ is a quasi-trivial sine function.
(B) If σ �= 0 (i.e. σ is a quasi-trivial sine function), then

ψ(x) =

⎧
⎪⎨

⎪⎩

ψ0(x) for x ∈ S \ S2

σ(s)σ(t) for x = st with s, t ∈ S \ S2

0 for x = stu with s, t, u ∈ S

(6)

for an arbitrary ψ0 : S \ S2 → C.
We observe that S �= S2 in both cases.

Proof. (A) If σ = 0 then (3) reduces to ψ(xy) = 0 for all x, y ∈ S. Since ψ �= 0
we see that ψ is a quasi-trivial sine function. (B) Suppose σ �= 0, so σ is a quasi-
trivial sine function. If x ∈ S \S2 then (3) gives no information about ψ(x), so
we have the first case of (6) for an arbitrary ψ0 : S\S2 → C. Secondly, if x = st
with s, t ∈ S \ S2 then (3) immediately gives the second case of (6). Finally, if
x = stu for some s, t, u ∈ S, then by (3) we have ψ(x) = σ(s)σ(tu) = 0 since
tu ∈ S2. That completes (6). �

We introduce the following definitions.

Definition 2.6. (a) If ψ,M, σ : S → C satisfy (3) where (σ,M) is a sine-
exponential pair, then we say that (ψ,M, σ) is a cosine–sine-exponential
triple on S. The forms of such triples are described in Proposition 2.4.

(b) Suppose ψ,M, σ : S → C satisfy (3) where M = 0, σ is a quasi-trivial sine
function, and ψ �= 0. Then we say that (ψ, σ) is a quasi-trivial cosine–sine
pair on S. The forms of such pairs are described in Lemma 2.5 (B).

3. Preparations for the Solution of (2)

This section contains some lemmas to be used in the solution of (2). We start
with the following, which is part of [2, Lemma 4] (though stated for groups
the same proof works for semigroups).

Lemma 3.1. If f, h : S → C satisfy

f(xy) = f(x)f(y) + h(x)h(y), x, y ∈ S,

then there exists α ∈ C for which

h(xy) = h(x)f(y) + f(x)h(y) + αh(x)h(y), x, y ∈ S.

We will need some linear independence facts.

Lemma 3.2. Let S be a semigroup.
(a) The set of exponentials on S is linearly independent.
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(b) Suppose M,M ′ : S → C are distinct exponentials and (ψ,M, σ) is a
cosine–sine-exponential triple on S. Then {M ′,M, σ} and {M,σ, ψ} are
linearly independent.

(c) Suppose M ′ : S → C is an exponential and (ψ, σ) is a quasi-trivial cosine–
sine pair on S. Then {M ′, ψ, σ} is linearly independent.

Proof. For (a) and (b) see [5, Lemma 4.2].
For (c) suppose M ′ is an exponential, (ψ, σ) is a quasi-trivial cosine–sine

pair, and there exist constants a, b, c ∈ C such that aM ′ + bψ + cσ = 0. (Recall
that such pairs (ψ, σ) satisfy (3) with M = 0 and ψ �= 0 �= σ.) Then for all
x, y ∈ S we have

0 = aM ′(xy) + bψ(xy) + cσ(xy)

= aM ′(x)M ′(y) + bσ(x)σ(y), (7)

using (3) and σ(xy) = 0. Putting x = uv for u, v ∈ S in the preceding equation
we get

0 = aM ′(uv)M ′(y) + bσ(uv)σ(y) = aM ′(u)M ′(v)M ′(y), u, v, y ∈ S,

since σ(uv) = 0. Thus a = 0 since M ′ �= 0. From (7) we now get b = 0 because
σ �= 0. Therefore c = 0 too. �

The next lemma generalizes [3, Lemma 4.9] and plays a key role in the
process of solving (2).

Lemma 3.3. Let S be a topological semigroup, let M ∈ C(S) be multiplicative,
let δ ∈ C, and suppose f, h ∈ C(S) satisfy

f(xy) = f(x)M(y) + M(x)f(y) + h(x)h(y), x, y ∈ S, (8)

where (h,M + δ
2h) is a sine pair and {f, h} is linearly independent.

If δ �= 0 then there exists a multiplicative M ′ ∈ C(S) with M ′ �= M such
that

h = δ−1(M ′ − M), f = σ + δ−2(M ′ − M). (9)

In this case if M �= 0 then (σ,M) is a sine-exponential pair, and if M = 0
then σ is a quasi-trivial sine function.

If δ = 0 then there are again two possibilities. If M �= 0 then (h,M)
is a sine-exponential pair and (f,M, h) is a cosine–sine-exponential triple. If
M = 0 then h is a quasi-trivial sine function and (f, h) is a quasi-trivial
cosine–sine pair.

Proof. Since {f, h} is linearly independent we have f �= 0 and h �= 0. We
divide the proof into two parts: δ �= 0 and δ = 0. In each part we apply
Proposition 2.2 to the sine pair (h,M + δ

2h) and consider the resulting cases
(A), (B), (C).
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Part 1: Suppose δ �= 0. In case (A) we have h = c(M1 − M2) and M +
δ
2h = 1

2 (M1 + M2), for distinct multiplicative M1,M2 ∈ C(S) and c ∈ C
∗.

Eliminating h from these two equations we find that

0 = M +
cδ − 1

2
M1 − cδ + 1

2
M2.

By Lemma 3.2(a) this implies that cδ = ±1 and either M1 or M2 coincides
with M . Without loss of generality suppose cδ = 1 and M2 = M . By (8) we
have

f(xy) = f(x)M(y) + M(x)f(y) + δ−2(M1 − M)(x)(M1 − M)(y),

and defining M ′ := M1 we can write this as

f(xy) − δ−2M ′(xy) + δ−2M(xy)

= [f(x) − δ−2M ′(x) + δ−2M(x)]M(y) + M(x)[f(y)

− δ−2M ′(y) + δ−2M(y)]

for all x, y ∈ S. Thus (f − δ−2(M ′ − M),M) is a sine pair. Moreover f −
δ−2(M ′ − M) �= 0 by the independence of {f, h}, since h = δ−1(M ′ − M).
Defining σ := f − δ−2(M ′ − M) we have (9) with σ �= 0. For the sine pair
(σ,M) we have two possibilities. If M �= 0 then (σ,M) is a sine-exponential
pair, and if M = 0 then σ is a quasi-trivial sine function.

In case (B) we have M + δ
2h = M ′ for some exponential M ′ ∈ C(S), and

(h,M ′) is a sine-exponential pair. Putting c := 2/δ we have h = c(M ′ − M),
so

c(M ′ − M)(xy) = c(M ′ − M)(x)M ′(y) + M ′(x)c(M ′ − M)(y)

= 2cM ′(xy) − cM(x)M ′(y) − cM ′(x)M(y)

for all x, y ∈ S. That is,

0 = c[M ′(x) − M(x)][M ′(y) − M(y)], x, y ∈ S,

which is impossible since c �= 0 and M ′ �= M . Therefore this case is excluded.
In case (C) we have M + δ

2h = 0 and h is a quasi-trivial sine function.
From 0 = (M + δ

2h)(xy) = M(xy) = M(x)M(y) for all x, y ∈ S we get M = 0,
and since δ �= 0 and h �= 0 this case is impossible.

Part 2: Suppose δ = 0, so (h,M) is a sine pair. If M �= 0 then (h,M) is a sine-
exponential pair and (f,M, h) is a cosine–sine-exponential triple. If M = 0
then h is a quasi-trivial sine function and (8) reduces to f(xy) = h(x)h(y) for
all x, y ∈ S. Thus (f, h) is a quasi-trivial cosine–sine pair. �

Most of the solution families that we will see in the main result are verified
in the following lemma. We omit the proof since it is just a translation of [3,
Lemma 4.10] into the terminology introduced in the present article.
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Lemma 3.4. Let S be a semigroup, let Mj ,M,M ′ : S → C be multiplicative
functions, let (σ,M) be a sine-exponential pair on S, let (ψ,M, σ) be a cosine–
sine-exponential triple on S, and let f, g, h : S → C be a solution of (2) such
that f, g, h belong to one of the following linear spaces V .

(a) If V = span{M1,M2,M3}, then there exist aj , bj , cj ∈ C satisfying
⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠

⎛

⎝
b1 b2 b3
a1 a2 a3

c1 c2 c3

⎞

⎠ =

⎛

⎝
a1 0 0
0 a2 0
0 0 a3

⎞

⎠ (10)

such that

f =
3∑

i=1

aiMi, g =
3∑

i=1

biMi, h =
3∑

i=1

ciMi.

(b) If V = span{M ′,M, σ}, then there exist aj , bj , cj ∈ C satisfying
⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠

⎛

⎝
b1 b2 b3
a1 a2 a3

c1 c2 c3

⎞

⎠ =

⎛

⎝
a1 0 0
0 a2 a3

0 a3 0

⎞

⎠ (11)

such that

f = a1M
′ + a2M + a3σ, g = b1M

′ + b2M + b3σ, h = c1M
′ + c2M + c3σ.

(c) If V = span{M,σ, ψ}, then there exist aj , bj , cj ∈ C satisfying
⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠

⎛

⎝
b1 b2 b3
a1 a2 a3

c1 c2 c3

⎞

⎠ =

⎛

⎝
a1 a2 a3

a2 a3 0
a3 0 0

⎞

⎠ (12)

such that

f = a1M + a2σ + a3ψ, g = b1M + b2σ + b3ψ, h = c1M + c2σ + c3ψ.

Moreover if any of f, g, h is zero then the corresponding coefficients in each
case can be chosen to be zero.

Conversely, in each case if f, g, h is such a linear combination with coef-
ficients satisfying the stated condition, then the functions satisfy (2).

The next lemma verifies the remaining solution family we will encounter
in Theorem 4.1.

Lemma 3.5. Let S be a semigroup, let M : S → C be multiplicative, let (ψ, σ)
be a quasi-trivial cosine–sine pair on S, and let f, g, h : S → C be a solution
of (2). If f, g, h ∈ span{M,ψ, σ}, then there exist aj , bj , cj ∈ C satisfying

⎛

⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞

⎠

⎛

⎝
b1 b2 b3
a1 a2 a3

c1 c2 c3

⎞

⎠ =

⎛

⎝
a1 0 0
0 0 0
0 0 a2

⎞

⎠ (13)
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such that

f = a1M + a2ψ + a3σ, g = b1M + b2ψ + b3σ, h = c1M + c2ψ + c3σ.
(14)

Furthermore if any of f, g, h is zero then the corresponding coefficients can be
chosen to be zero.

Conversely any f, g, h of the form (14) with coefficients fulfilling (13)
satisfy (2).

Proof. Define γ1 := M , γ2 := ψ, γ3 := σ, and let E ⊆ {1, 2, 3} be chosen so
that {γi | i ∈ E} is a basis for the vector space V = span{M,ψ, σ}. There is
a unique representation of f, g, h in the form (14) with ak = bk = ck = 0 for
all k /∈ E. Inserting these forms into (2) we find after some calculation that

0 = (2a1b1 + c21 − a1)M(x)M(y) + (a1b2 + b1a2 + c1c2)[M(x)ψ(y) + ψ(x)M(y)]

+ (a1b3 + b1a3 + c1c3)[M(x)σ(y) + σ(x)M(y)] + (2a2b2 + c22)ψ(x)ψ(y)

+ (a2b3 + b2a3 + c2c3)[ψ(x)σ(y) + σ(x)ψ(y)] + (2a3b3 + c23 − a2)σ(x)σ(y),

for all x, y ∈ S, since σ(xy) = 0 and ψ(xy) = σ(x)σ(y). By the linear indepen-
dence of basis elements, the coefficients of all nonzero terms vanish. Combining
this with ak = bk = ck = 0 for all k /∈ E, we have (13).

It can be seen from the proof that if any of f, g, or h is zero then the
corresponding coefficients can be chosen to be zero.

The converse is easily verified by substitution. �

4. The Main Result

Now we are ready to solve (2). As in [3] we follow the general outline of the
proof used in [2, Theorem]. Note that if f = 0 in (2), then h = 0 and g is an
arbitrary function. We omit this trivial case from the theorem statement.

Theorem 4.1. Let S be a topological semigroup, and suppose f, g, h ∈ C(S) sat-
isfy (2) with f �= 0. The solutions are the following families, where Mj ,M,M ′ ∈
C(S) are multiplicative, (σ,M) is a continuous sine-exponential pair on S,
(ψ,M, σ) is a continuous cosine–sine-exponential triple on S, τ ∈ C(S) is a
quasi-trivial sine function, and either ω = 0 or (ω, τ) is a continuous quasi-
trivial cosine–sine pair on S. In each family we can choose a basis B for V
and coefficients aj , bj , cj so that the coefficients are equal to 0 for each term
not appearing in B.
(a) f, g, h ∈ V = span{M1,M2,M3}, namely

f =
3∑

j=1

ajMj , g =
3∑

j=1

bjMj , h =
3∑

j=1

cjMj

with aj , bj , cj ∈ C satisfying (10).
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(b) f, g, h ∈ V = span{M ′,M, σ}, namely

f = a1M
′ + a2M + a3σ, g = b1M

′ + b2M + b3σ, h = c1M
′ + c2M + c3σ

with aj , bj , cj ∈ C satisfying (11).
(c) f, g, h ∈ V = span{M,σ, ψ}, namely

f = a1M + a2σ + a3ψ,

g = b1M + b2σ + b3ψ,

h = c1M + c2σ + c3ψ,

with aj , bj , cj ∈ C satisfying (12).
(d) For S �= S2 we have f, g, h ∈ V = span{M,ω, τ}, namely

f = a1M + a2ω + a3τ, g = b1M + b2ω + b3τ, h = c1M + c2ω + c3τ,

with aj , bj , cj ∈ C satisfying (13).
Conversely, the functions in each family satisfy (2).

Proof. Let f, g, h ∈ C(S) be a solution of (2) with f �= 0. First suppose {f, h}
is linearly dependent. With h = bf for some b ∈ C, (2) can be written as

f(xy) = f(x)
(

g +
b2

2
f

)

(y) +
(

g +
b2

2
f

)

(x)f(y), x, y ∈ S,

so (f, g + b2

2 f) is a sine pair. We consider cases (A), (B), (C) from Proposi-
tion 2.2. In case (A) we have f = c(M1 − M2) and g + b2

2 f = 1
2 (M1 + M2) for

distinct multiplicative functions M1,M2 ∈ C(S) and c ∈ C
∗. Thus f, g, h ∈

span{M1,M2} and we are in family (a) by Lemma 3.5 (a) with M3 := 0. In
case (B) we have g + b2

2 f = M for an exponential M ∈ C(S), and σ := f
where (σ,M) is a sine-exponential pair. Thus f, g, h ∈ span{σ,M} and we are
in family (b) with M ′ := 0. In case (C) we have g + b2

2 f = 0 where f is a
quasi-trivial sine function. Hence f, g, h ∈ span{f} and we are in family (d)
with M := 0, ω := 0, and τ := f .

From here on we assume that {f, h} is linearly independent, so in partic-
ular h �= 0.

Computing f((xy)z) and f(x(yz)) using (2), equating the results and
using the linear independence of {f, h}, we get from [2, section 3, pp. 267–268]
for all x, y ∈ S that

g(xy) = g(x)g(y) + αf(x)f(y) + β[f(x)h(y) + h(x)f(y)] + γh(x)h(y), (15)

h(xy) = h(x)g(y) + g(x)h(y) + βf(x)f(y) + γ[f(x)h(y)

+ h(x)f(y)] + δh(x)h(y), (16)

for some constants α, β, γ, δ ∈ C. Next computing g(x(yz)) and g((xy)z) using
equations (15), (16), (2), a comparison of the results brings us (again by linear
independence) to the conclusion that

α + βδ − γ2 = 0. (17)
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Now using (2), (15), and the linear independence of {f, h}, we find that

(λf + g)(xy) = (λf + g)(x)(λf + g)(y) + (μf + νh)(x)(μf + νh)(y) (18)

holds for all x, y ∈ S if and only if the constants λ, μ, ν ∈ C satisfy

λ2 + μ2 = α, μν = β, and ν2 = λ + γ. (19)

Here the proof divides into two main cases.

Case 1: Suppose β = 0. Now from (17) we have α = γ2, and the choice
(λ, μ, ν) = (−γ, 0, 0) yields a solution of (19). Therefore by (18) we have

g = M + γf (20)

for some multiplicative M ∈ C(S). Using this to eliminate g from (2) and (16),
we arrive at the pair of functional equations

f(xy) = 2γf(x)f(y) + f(x)M(y) + M(x)f(y) + h(x)h(y), (21)

h(xy) = h(x)
(
M + 2γf +

δ

2
h
)
(y) +

(
M + 2γf +

δ

2
h
)
(x)h(y). (22)

Here we subdivide the proof again.

Subcase 1a: Suppose γ = 0. Now (21), (22) reduce to the system

f(xy) = f(x)M(y) + M(x)f(y) + h(x)h(y),

h(xy) = h(x)
(

M +
δ

2
h

)

(y) +
(

M +
δ

2
h

)

(x)h(y),

which is solved in Lemma 3.3. If δ �= 0 then we have h = δ−1(M ′ − M) and
f = σ +δ−2(M ′ −M), where M ′ ∈ C(S) is multiplicative, M �= M ′, and there
are two alternatives. The first is that M �= 0 and (σ,M) is a sine-exponential
pair. In this event by (20) we have g = M , hence f, g, h ∈ span{M ′,M, σ} and
we are in solution family (b). The alternative is that M = 0 and σ is a quasi-
trivial sine function. In that case (since g = 0) we have f, g, h ∈ span{M ′, σ}
with M ′ �= 0. Thus we are in family (d) with ω := 0, τ := σ, and a new
M := M ′.

If δ = 0 there are again two possibilities. If M �= 0 then (h,M) is a
sine-exponential pair and (f,M, h) is a cosine–sine-exponential triple. In this
case by (20) we are in family (c) with σ := h and ψ := f . On the other
hand if M = 0 then (f, h) is a quasi-trivial cosine–sine pair. By (20) we have
f, g, h ∈ span{f, h}, so we are in family (d) with M := 0, ω := f , and τ := h.

Subcase 1b: Suppose γ �= 0. Applying Proposition 2.2 to (22), we consider the
cases (A), (B), (C) in turn. Case (A) yields h = c(M1−M2) and M+2γf+ δ

2h =
1
2 (M1 + M2) for distinct multiplicative M1,M2 ∈ C(S) and c ∈ C

∗. Hence
f, h ∈ span{M1,M2,M}. Defining M3 := M and recalling (20), we are in
solution family (a).
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In case (B) we have h = σ and M +2γf + δ
2h = M ′ for some exponential

M ′ ∈ C(S), where (σ,M ′) is a sine-exponential pair. Exchanging M ′ with M
and referring to (20) we are in family (b).

In case (C), h is a quasi-trivial sine function and M +2γf + δ
2h = 0. Thus

f ∈ span{h,M}. By (20) we have also g ∈ span{h,M}, so we are in family
(d) with τ := h and ω := 0.

This completes Case 1.

Case 2: Suppose β �= 0. Here we proceed exactly as in the proof of [3, Theorem
5.1], except that we use our Lemma 3.1 in place of [3, Lemma 4.1]. The con-
clusion is that the solution functions f, g, h again belong to one of the families
(a)–(d).

The converse is established by Lemmas 3.4 and 3.5. �

We conclude with an example on a semigroup not covered by previous
results.

Example 4.2. Let S = (N,+) with the discrete topology. Here (2) takes the
form

f(x + y) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ N.

The exponentials on S are the functions of the form M(x) = bx for all x ∈ N,
where b ∈ C

∗. The additive functions are the functions of the form A(x) = cx
for all x ∈ N, where c ∈ C. Since the exponentials vanish nowhere, the sine-
exponential pairs are the pairs of the form (AM,M) and the cosine–sine-
exponential triples are the triples of the form ((B + 1

2A2)M,M,AM) with M
exponential, A and B additive, and A �= 0.

The quasi-trivial cosine–sine pairs (ω, τ) on S (so τ is necessarily a quasi-
trivial sine function) are the pairs of functions of the form

τ(x) :=

{
a for x = 1
0 for x ≥ 2

, ω(x) :=

⎧
⎪⎨

⎪⎩

b for x = 1
a2 for x = 2
0 for x ≥ 3

,

where a, b ∈ C with a �= 0. Examples of solution triples (f, g, h) of (2) be-
longing to family (d) of Theorem 4.1 are (τ,− c2

2 τ, cτ), (τ + c2 M, 0, cM),
(−M + iτ, 1

2 (M + iτ), τ), and (ω + cτ, 0, τ), for any c ∈ C.
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