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Abstract. Let A and B be positive semidefinite matrices. For t ∈ [
3
4
, 1

]

and for every unitarily invariant norm, it is shown that
∣∣∣∣∣∣AtB1−t + BtA1−t

∣∣∣∣∣∣ ≤ 22(t− 3
4 )|||A + B|||

and for t ∈ [
0, 1

4

]
,

∣∣∣∣∣∣AtB1−t + BtA1−t
∣∣∣∣∣∣ ≤ 22( 1

4−t)|||A + B|||.
These norm inequalities are sharper than an earlier norm inequality due to
Alakhrass and closely related to an open question of Bourin. In fact, they
lead to an affirmative solution of Bourin’s question for t = 1

4
and 3

4
, which

is a result due to Hayajneh and Kittaneh (Int J Math 32 (2150043):7,
2021).
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1. Introduction

Throughout this paper, all matrices are assumed to be complex square matrices
of the same size. Let A and B be positive semidefinite matrices. For t ∈ [0, 1],
let

bt = AtB1−t + BtA1−t.

In this paper, |||.||| denotes any unitarily invariant norm on the space of matri-
ces. Among the most important unitarily invariant norms are the usual opera-
tor (or the spectral) norm ‖.‖∞ and the Schatten p−norm ‖.‖p for 1 ≤ p < ∞.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-01870-1&domain=pdf
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In [10], and in his work on the subadditivity of concave functions of
positive semidefinite matrices, J.C. Bourin asked the following question.

Question 1.1. Let A and B be any two positive semidefinite matrices, and let
t ∈ [0, 1]. Is it true that

|||bt||| ≤ |||A + B|||?
Question 1.1 has been answered for the Hilbert-Schmidt norm under the

condition t ∈ [
1
4 , 3

4

]
, see [5,19], and [21].

In [13], Hayajneh and Kittaneh proved the following norm inequality for
all unitarily invariant norms:

|||bt||| ≤ |||A||| + |||B|||,
where A and B are positive semidefinite matrices and t ∈ [0, 1]. Consequently,

‖bt‖1 ≤ ‖A + B‖1
for t ∈ [0, 1]. This gives an affirmative answer to Question 1.1 for the trace
norm.

In [18], the authors proved the following stronger norm inequality for all
unitarily invariant norms:

|||bt||| ≤
√

|||A + B||| (|||A||| + |||B|||),
where A and B are positive semidefinite matrices and t ∈ [0, 1].

They also gave an affirmative answer to Question 1.1 in the case of t = 1
4

and t = 3
4 for all unitarily invariant norms. Clearly, Question 1.1 is true for

t = 0 and t = 1.
Moreover, a partial answer to this question in the wider class of unitarily

invariant norms has been given in [13] by proving that

|||Re bt||| ≤ |||A + B|||
and

|||Im bt||| ≤ |||A + B|||.
In [1], Alakhrass proved the following norm inequality for all unitarily

invariant norms:

|||bt||| ≤ 2| 1
2−t||||A + B|||, (1.1)

where A and B are positive semidefinite matrices and t ∈ [0, 1].
In [20], and in order to study Question 1.1, the authors proved the fol-

lowing inequality:

‖bt‖p ≤ 2
1
2− 1

2p ‖A + B‖p , (1.2)

where A and B are positive semidefinite matrices, t ∈ [0, 1], and p ≥ 1. In
particular,

‖bt‖∞ ≤ 2
1
2 ‖A + B‖∞ .
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Note that for the trace norm, the inequality (1.2) is sharper than the
inequality (1.1) for all t ∈ [0, 1]. For the Hilbert-Schmidt norm, the inequality
(1.2) is sharper than the inequality (1.1) for t ∈ [0, 1

4 ] and t ∈ [ 34 , 1]. However,
the inequality (1.1) is sharper than the inequality (1.2) for t ∈ [14 , 3

4 ]. But
we already know that Bourin’s question is true for t ∈ [14 , 3

4 ] for the Hilbert-
Schmidt norm.

In [12], and in order to try to answer Question 1.1, the authors proved
the following inequality involving the spectral radius r (.):

|||bt||| ≤ |||A + B|||
√

max (r (B2t−1A1−2t) , r (A2t−1B1−2t)),

where A and B are positive definite matrices and t ∈ [0, 1].
Consequently, the authors proved that if B ≤ A ≤ (1 + ε)2 B, then

|||bt||| ≤ (1 + ε) |||A + B|||
for t ∈ [0, 1] , ε > 0, and for every unitarily invariant norm. Equivalently, if
α ≥ 1 and if the spectrum of AB−1 lies in the interval [1, α], then

|||bt||| ≤ √
α|||A + B|||.

For a comprehensive account on related trace and norm inequalities, we
refer to [2,3,7–18,20–22,25–28], and references therein.

In Section 2, we introduce a new way of proving the inequality (1.1)
without using the notion of majorization.

In Section 2, we will prove the following norm inequalities for all unitarily
invariant norms:

|||bt||| ≤ 22(t−
3
4 )|||A + B|||,

where A and B are positive semidefinite matrices and t ∈ [
3
4 , 1

]
, and

|||bt||| ≤ 22(
1
4−t)|||A + B|||,

where A and B are positive semidefinite matrices and t ∈ [
0, 1

4

]
. These norm

inequalities are sharper than the norm inequality (1.1) and closely related to
Question 1.1. In fact, they lead to solve Question 1.1 in the case of t = 3

4 and
t = 1

4 for all unitarily invariant norms, which is a result due to Hayajneh and
Kittaneh [18].

2. Main Result

We begin with the following lemmas that will be used in proving our main
result.

The following lemma can be found in [4, p. 95]. It contains the celebrated
Hölder inequality for all unitarily invariant norms.
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Lemma 2.1. Let A and B be any two matrices, p > 1, and 1
p + 1

q = 1. Then
for every unitarily invariant norm, we have

|||AB||| ≤ ||||A|p||| 1
p ||||B|q||| 1

q .

The following lemma, concerning the convexity and concavity of the
power functions of positive semidefinite matrices, can be found in [23].

Lemma 2.2. Let A and B be any two positive semidefinite matrices. Then for
every unitarily invariant norm, we have

|||(A + B)r||| ≤ 2r−1|||Ar + Br||| for r ≥ 1

and

|||(A + B)r||| ≤ |||Ar + Br||| for 0 ≤ r ≤ 1.

The following lemma can be found in [4, p. 258].

Lemma 2.3. Let A and B be any two matrices. Then for every unitarily in-
variant norm, we have

|||(ABA)r||| ≤ |||ArBrAr||| for r ≥ 1.

The following lemma can be found in [4, p. 253].

Lemma 2.4. Let A and B be any two matrices such that the product AB is
normal. Then for every unitarily invariant norm, we have

|||AB||| ≤ |||BA|||.
The following lemma can be found in [6]. It contains the celebrated Heinz

inequalities for all unitarily invariant norms.

Lemma 2.5. Let A and B be positive semidefinite matrices. Then for t ∈ [0, 1]
and for every unitarily invariant norm, we have

2
∣
∣
∣
∣
∣
∣
∣
∣
∣A

1
2 B

1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤ ∣

∣
∣
∣
∣
∣AtB1−t + A1−tBt

∣
∣
∣
∣
∣
∣ ≤ |||A + B|||.

Convention 2.6. For any matrix T and for every unitarily invariant norm, we
have

|||T ⊕ 0||| = |||T |||.
In the following theorem, we introduce a new way of proving the inequal-

ity (1.1) without using the notion of majorization.

Theorem 2.7. Let A and B be positive semidefinite matrices, and let t ∈ [0, 1].
Then for every unitarily invariant norm, we have

|||bt||| ≤ 2| 1
2−t||||A + B|||.
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Proof. For the end points t = 0 and t = 1, the result is obvious.

Case 1: t ∈ (
0, 1

2

]
. In this case, let

X =
[

At Bt

0 0

]
, Y =

[
B1−t 0
A1−t 0

]
.

For the partition 1
p + 1

q = t+(1 − t) = 1 and noting that p
2 = 1

2t ≥ 1 and
q
2 = 1

2(1−t) ≤ 1, we have

|||bt||| = |||bt ⊕ 0|||
=

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

[
At Bt

0 0

] [
B1−t 0
A1−t 0

]∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

= |||XY |||
≤ ||||X|p||| 1

p ||||Y |q||| 1
q (by Lemma 2.1)

=
∣
∣
∣
∣
∣
∣
∣
∣
∣(X∗X)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p
∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
q

=
∣
∣
∣
∣
∣
∣
∣
∣
∣(XX∗)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p
∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
q

=
∣
∣
∣
∣
∣
∣
∣
∣
∣
(
A2t + B2t

) p
2 ⊕ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
A2(1−t) + B2(1−t)

) q
2 ⊕ 0

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

1
q

=
∣
∣
∣
∣
∣
∣
∣
∣
∣
(
A2t + B2t

) p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
A2(1−t) + B2(1−t)

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

1
q

≤
(
2

p
2 −1

) 1
p ∣

∣
∣
∣
∣
∣Apt + Bpt

∣
∣
∣
∣
∣
∣
1
p

∣
∣
∣
∣
∣
∣
∣
∣
∣Aq(1−t) + Bq(1−t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
q

(by Lemma 2.2)

= 2
1
2−t|||A + B||| 1

p+
1
q

= 2
1
2−t|||A + B|||.

Case 2: t ∈ [
1
2 , 1

)
. In this case,

|||bt||| = |||b∗
t |||

= |||b1−t||| ( because b∗
t = b1−t)

≤ 2t−
1
2 |||A + B|||

(
since 1 − t ∈

[
0,

1
2

]
and by using Case 1

)
.

This completes the proof. �

To prove our main result, we state and prove the following lemma.

Lemma 2.8. Let A and B be positive semidefinite matrices, and let t ∈ [
3
4 , 1

)
.

Let

X =
[

A2t−1 B2t−1

0 0

]
, Y =

[
A1−tB1−t 0
B1−tA1−t 0

]
.
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Then for every unitarily invariant norm and for p = 1
2t−1 and q = 1

2(1−t) ,
we have

∣
∣
∣
∣
∣
∣
∣
∣
∣(XX∗)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤ |||A + B||| and

∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤ 2q(

1
2− 1

q )|||A + B|||.

Proof. Since t ∈ [
3
4 , 1

)
, it follows that p

2 ≤ 1 and q
2 ≥ 1. In fact,

t ≥ 3
4

⇐⇒ 2 (2t − 1) ≥ 1 ⇐⇒ 2
p

≥ 1 ⇐⇒ p

2
≤ 1

and

t ≥ 3
4

⇐⇒ 4 (1 − t) ≤ 1 ⇐⇒ 2
q

≤ 1 ⇐⇒ q

2
≥ 1.

Now,
∣
∣
∣
∣
∣
∣
∣
∣
∣(XX∗)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
((

A2(2t−1) + B2(2t−1)
)

⊕ 0
) p

2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
A2(2t−1) + B2(2t−1)

) p
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
A

2
p + B

2
p

) p
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
∣
∣
∣A

2
p

p
2 + B

2
p

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ (by Lemma 2.2)

= |||A + B|||.
Also,

∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
((

B1−tA2(1−t)B1−t + A1−tB2(1−t)A1−t
)

⊕ 0
) q

2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
B1−tA2(1−t)B1−t + A1−tB2(1−t)A1−t

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
B

1
2q A

1
q B

1
2q + A

1
2q B

1
q A

1
2q

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

≤ 2
q
2 −1

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
B

1
2q A

1
q B

1
2q

) q
2

+
(
A

1
2q B

1
q A

1
2q

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣ (by Lemma 2.2)

≤ 2
q
2 −1

(∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
B

1
2q A

1
q B

1
2q

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣ +

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
(
A

1
2q B

1
q A

1
2q

) q
2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

)

≤ 2
q
2 −1

(∣
∣
∣
∣
∣
∣
∣
∣
∣B

1
4 A

1
2 B

1
4

∣
∣
∣
∣
∣
∣
∣
∣
∣ +

∣
∣
∣
∣
∣
∣
∣
∣
∣A

1
4 B

1
2 A

1
4

∣
∣
∣
∣
∣
∣
∣
∣
∣
)

(by Lemma 2.3)

≤ 2
q
2 −1

(
2
∣
∣
∣
∣
∣
∣
∣
∣
∣A

1
2 B

1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
)

(by Lemma 2.4)

≤ 2
q
2 −1|||A + B||| (by Lemma 2.5)

= 2q(
1
2− 1

q )|||A + B|||.
This completes the proof. �
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Now, we are in a position to state and prove our main result.

Theorem 2.9. Let A and B be positive semidefinite matrices, and let t ∈ [
3
4 , 1

]
.

Then for every unitarily invariant norm, we have

|||bt||| ≤ 22(t−
3
4 )|||A + B|||. (2.1)

Proof. The result is obvious for t = 1. Now, for t ∈ [
3
4 , 1

)
, let

X =
[

A2t−1 B2t−1

0 0

]
, Y =

[
A1−tB1−t 0
B1−tA1−t 0

]
.

For the partition 1
p + 1

q = (2t − 1) + 2 (1 − t) = 1, noting that 1 ≤ p ≤ 2
and 2 ≤ q < ∞, we have

|||bt||| = |||bt ⊕ 0|||
=

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

[
A2t−1 B2t−1

0 0

] [
A1−tB1−t 0
B1−tA1−t 0

]∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

= |||XY |||
≤ ||||X|p||| 1

p ||||Y |q||| 1
q (by Lemma 2.1)

=
∣
∣
∣
∣
∣
∣
∣
∣
∣(X∗X)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p
∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
q

=
∣
∣
∣
∣
∣
∣
∣
∣
∣(XX∗)

p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
p
∣
∣
∣
∣
∣
∣
∣
∣
∣(Y ∗Y )

q
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
1
q

≤
(
|||A + B||| 1

p

) (
2

1
2− 1

q |||A + B||| 1
q

)
(by Lemma 2.8)

= 2
1
2− 1

q |||A + B||| 1
p+

1
q

= 2
1
2− 1

q |||A + B|||
= 2

1
2−2(1−t)|||A + B|||

= 22(t−
3
4 )|||A + B|||.

This completes the proof. �
Based on Theorem 2.9, we have the following theorem.

Theorem 2.10. Let A and B be positive semidefinite matrices, and let t ∈[
0, 1

4

]
. Then for every unitarily invariant norm, we have

|||bt||| ≤ 22(
1
4−t)|||A + B|||. (2.2)

Proof. We have

|||bt||| = |||b∗
t |||

= |||b1−t||| (because b∗
t = b1−t)

≤ 22(
1
4−t)|||A + B|||

(
since 1 − t ∈

[
3
4
, 1

]
and by using Theorem 2.9

)
.

This completes the proof. �
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Remark 2.11. The inequality (2.1) is sharper than the inequality (1.1) for t ∈[
3
4 , 1

]
, and the inequality (2.2) is sharper than the inequality (1.1) for t ∈[

0, 1
4

]
. In fact, for t ∈ [

3
4 , 1

]
, we have 2

(
t − 3

4

) ≤ t − 1
2 ⇐⇒ t ≤ 1, and for

t ∈ [
0, 1

4

]
, we have 2

(
1
4 − t

) ≤ 1
2 − t ⇐⇒ 0 ≤ t.

Remark 2.12. Theorem 2.9 and Theorem 2.10 lead to an affirmative solution
of Question 1.1 in the case of t = 3

4 and t = 1
4 for all unitarily invariant norms,

which is a result due to Hayajneh and Kittaneh [18].
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