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Abstract. In this paper, by using variational methods we investigate the
existence of solutions for the following system of elliptic equations

⎧
⎨

⎩

−Δgu + a(x)u + b(x)v =
α

2∗ f(x)u|u|α−2|v|β in M,

−Δgv + b(x)u + c(x)v =
β

2∗ f(x)v|v|β−2|u|α in M,

where (M, g) is a smooth closed Riemannian manifold of dimension n ≥
3, Δg is the Laplace–Beltrami operator, a, b and c are functions Hölder
continuous in M, f is a smooth function and α > 1, β > 1 are two real
numbers such that α+β = 2∗, where 2∗ = 2n/(n−2) denotes the critical
Sobolev exponent. We get these results by assuming sufficient conditions

on the function h = α
2∗ a + 2

√
αβ

2∗ b + β
2∗ c related to the linear geometric

potential n−2
4(n−1)

Rg, where Rg is the scalar curvature associated to the

metric g.
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1. Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n ≥ 3. We
are concerned with the existence of solutions of the following system:
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⎧
⎪⎨

⎪⎩

−Δgu + a(x)u + b(x)v =
α

2∗ f(x)u|u|α−2|v|β in M,

−Δgv + b(x)u + c(x)v =
β

2∗ f(x)v|v|β−2|u|α in M,
(1.1)

where Δg is the Laplace–Beltrami operator, a, b and c are functions Hölder
continuous in M,f is a smooth function, and α > 1, β > 1 are real constants
satisfying α + β = 2∗, where 2∗ = 2n/(n − 2) is the critical Sobolev exponent.

Coupled systems of nonlinear equations like (1.1) are now parts of several
important branches of mathematical physics. They appear in the Hartree-
Fock theory for Bose–Einstein double condensates, in fiber-optic theory, in the
theory of Langmuir waves in plasma physics, and in the behavior of deep water
waves and freak waves in the ocean. A general reference in book form on such
systems and their role in physics is by Ablowitz et al. [1].

Motivated by the varied applications the existence of solutions and their
qualitative properties have been the object of study by many researchers, see
for instance, [2,6,7,21] for problems in Euclidean domains and [10,11,18,20]
in Riemannian context.

Next, we would like to mention some works that are strongly related
to the system we propose to study. We begin with work due to Alves et al.
[2], which the authors looked for positive solutions of the elliptic differential
system

⎧
⎪⎨

⎪⎩

−Δu + τu + σv =
α

2∗ u|u|α−2|v|β in Ω,

−Δv + σu + μv =
β

2∗ v|v|β−2|u|α in Ω,

where Ω is a bounded domain in R
n, n ≥ 3, with smooth boundary and Dirich-

let homogeneous boundary conditions. The main point is to compare the value
of α+β with the Sobolev critical exponent. Depending on how the parameters
τ, μ, σ ∈ R relate to λ1 (the first eigenvalue of the Laplacian operator), exis-
tence and nonexistence results are provided and compared with the classical
result of Brezis and Nirenberg concerning elliptic differential equations with
Sobolev critical exponent. The second paper is due to Hebey [18], which the
author considers elliptic systems of Yamabe-type equations

−Δgui +
p∑

j=1

Aij(x)uj = ui|ui|2∗−2 in M, i = 1, · · ·, p,

where A = (Aij) : M → Mp is a smooth function, p ∈ Z, p ≥ 1, and Ms
p (R)

denotes the vector space of symmetric p× p real matrices. Assuming sufficient
conditions on the matrix A related to the linear geometric potential n−2

4(n−1)Rg,
the author studies the existence of minimizing solutions for this system, the
existence of high-energy solutions, blow-up theory and its compactness prop-
erties.
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The system (1.1) is strongly related to the equation

−Δgu + a(x)u = f(x)|u|2∗−2u in M,

which has been intensively studied in literature, see for instance, Druet [8] and
Vétois [27]. When we have a = n−2

4(n−1)Rg in the equation above, we obtain the
prescribe scalar curvature equation

− Δgu +
n − 2

4(n − 1)
Rgu = f(x)|u|2∗−2u, in M, (1.2)

which is a generalization of the well-known Yamabe equation (when f is con-
stant) whose positive solutions are such that the scalar curvature of the con-
formal metric g̃ = u2∗−2g is constant. The Eq. (1.2) has been studied, for
example, by Aubin [3], Aubin and Hebey [5], Escobar and Schoen [13], Hebey
and Vaugon [16,17], Schoen [24], Trudinger [26] and Yamabe [28]. The study of
this equation both in the classical form as in the prescribed form, motivated us
in this research about the existence of solutions for system (1.1) in a compact
Riemannian manifold.

Before presenting our main results, we need to introduce some notations
and definitions. Throughout this work, we will denote by H1(M) the Sobolev
space of all functions in L2(M) with one derivative (in the weak sense) in
L2(M). We equip H1(M) with the standard ‖ · ‖H1−norm, that is, ‖u‖2

H1 =
‖∇u‖2

2 + ‖u‖2
2, where ‖ · ‖q denotes the norm of the Lebesgue space Lq(M),

whenever q ≥ 1. The norm of Lq(M) × Lq(M) will be defined by ‖(u, v)‖q =
(‖u‖q

q + ‖v‖q

)1/q
.

We shall work with the space H = H1(M) × H1(M) endowed with the
norm

‖(u, v)‖ =
(‖u‖2

H1 + ‖v‖2
H1

)1/2
.

In this context, we say that a pair of functions (u, v) ∈ H is a weak
solution of (1.1), if for all (ϕ,ψ) ∈ H, it holds

∫

M

(〈∇u,∇ϕ〉g + 〈∇v,∇ψ〉g + a(x)uϕ + b(x)[uψ + vϕ] + c(x)vψ) dvg

=
∫

M

α

2∗ f(x)|u|α−2|v|βuϕdvg +
∫

M

β

2∗ f(x)|v|β−2|u|αvψdvg.

By elliptic regularity theory (for example, see Lee and Parker [23, Theo-
rem 4.1]), any weak solution (u, v) of (1.1), is in C2 × C2 when a, b and c are
Hölder continuous, and is in C∞ × C∞ when a, b and c are smooth functions.

An important relation obtained by Alves et al. [2] that we will use in this
work is the following:

S(α,β) =

[(
α

β

)β/α+β

+
(

β

α

)α/α+β
]

Sα+β , (1.3)
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whenever α + β ≤ 2∗, where Sα+β is the best Sobolev constant defined by

Sα+β = inf
u∈H1

0 (Rn)\{0}

∫

Rn |∇u|2dx
(∫

Rn |u|α+βdx
)2/α+β

,

and S(α,β) is defined by

S(α,β) = inf
(u,v)∈[H1

0 (Rn)]2\{0}

∫

Rn

(|∇u|2 + |∇v|2) dx
(∫

Rn |u|α|v|βdx
)2/α+β

. (1.4)

When α + β = 2∗, we denote by S2∗ = K−2
n and S(α,β) = S∗, where Kn is the

sharp constant for the embedding of H1(Rn) into L2∗
(Rn).

Throughout this work we assume some very general hypotheses on the
functions a, b, c and f that will allow us to obtain some existence results for sys-
tem (1.1) through variational methods. Precisely, we assume that the function
f satisfies

max
M

f > 0 (1.5)

and the functions a, b and c satisfy the following coercivity condition: there
exists C0 > 0 such that

∫

M

(|∇gu|2 + |∇gv|2 + a(x)u2 + 2b(x)uv + c(x)v2)dvg

≥ C0‖(u, v)‖2, ∀ (u, v) ∈ H. (1.6)

Our first result in this work can be stated as follows:

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
Let α, β > 1 be two real numbers such that α + β = 2∗, and let a, b and c be
functions Hölder continuous in M , and f ∈ C∞, with a, b and c satisfying
(1.6) and f satisfying (1.5), writing h = α

2∗ a + 2
√

αβ
2∗ b + β

2∗ c. Let x0 be some
point in M such that f(x0) = maxM f . If, in addition, we assume that

(i) h(x0) < n−2
4(n−1)Rg(x0) + (n−4)(n−2)

8(n−1)
Δgf(x0)

f(x0)
, if n ≥ 4,

(ii) h(x0) < 1
8Rg(x0) and h ≤ 1

8Rg in M, if n = 3.
(1.7)

Then, system (1.1) has a nontrivial solution.

Theorem 1.1 will be proved using the Mountain Pass Theorem without
the Palais-Smale compactness condition. A delicate part is the estimating the
minimax level in order to overcome the lack of compactness of the functional
associated to system (1.1) caused by the critical growth of the nonlinearities.
We achieve this objective following some ideas developed in [3,4,9]. Here we
face some extra difficulties due to the tight coupling of the system.

As a consequence of Theorem 1.1, we prove the following results.
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Corollary 1.2. Suppose the same assumptions of Theorem 1.1. Let x0 be some
point in M such that f(x0) = maxM f . If, in addition, we assume b ≤ 0 and

(i) α
2∗ a(x0) + β

2∗ c(x0) < n−2
4(n−1)Rg(x0) + (n−4)(n−2)

8(n−1)
Δgf(x0)

f(x0)
, if n ≥ 4,

(ii) α
2∗ a(x0) + β

2∗ c(x0) < 1
8Rg(x0) and α

2∗ a + β
2∗ c ≤ 1

8Rg in M, if n = 3.

(1.8)

Then, system (1.1) has a pair of positive solutions.

Corollary 1.3. Suppose the same assumptions of Theorem 1.1 and that f is
constant and positive. Let x0 be some point in M such that

(i) h(x0) < n−2
4(n−1)Rg(x0), if n ≥ 4,

(ii) h(x0) < 1
8Rg(x0) and h ≤ 1

8Rg in M, if n = 3.
(1.9)

Then, system (1.1) has a nontrivial solution.

For the next results, consider the functional Eh : H → R given by

Eh(u, v) =
∫

M

(|∇u|2g + |∇v|2g
)
dvg +

∫

M

(
au2 + 2buv + cv2

)
dvg (1.10)

and let

S
(α,β)
f,h = inf

{

Eh(u, v) : u, v ∈ H1(M) and
∫

M

f(x)|u|α|v|βdvg = 1
}

.

(1.11)

Define

λf (M, g) = inf
{∫

M

(|∇u|2g +
n − 2

4(n − 1)
Rgu

2)dvg :
∫

M

f(x)|u|2∗
dvg = 1

}

.

(1.12)

Remark 1.4. When f is constant and equal to 1, λf (M, g) is called of Yamabe
invariant of the manifold (M, g), and is usually denoted by λ(M, g). In the
particular case of the unit n−sphere S

n with the standard metric is denoted
by λ(Sn). It is well known that when λf (M, g) < λ(Sn)

(maxM f)2/2∗ , there exists

ϕ ∈ C∞(M) with ϕ > 0 and
∫

M
fϕ2∗

dvg = 1 such that

− Δgϕ +
n − 2

4(n − 1)
Rgϕ = λf (M, g)fϕ

n+2
n−2 , (1.13)

with λf (M, g) =
∫

M

(
|∇ϕ|2g + n−2

4(n−1)Rgϕ
2
)

dvg. It is also known that λ(Sn) =

K−2
n , with

Kn =

√
4

n(n − 2)ω2/n
n

,

where ωn is the volume of the unit n−sphere (see [3,8,9]).
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In the next results we deal with the case where the functions a, b and c
satisfy the condition:

α

2∗ a(x) +
2
√

αβ

2∗ b(x) +
β

2∗ c(x) ≤ n − 2
4(n − 1)

Rg(x), ∀x ∈ M. (1.14)

Remark 1.5. The coercivity condition (1.6) and (1.14) imply that given ψ ∈
H1(M) and ξ, ζ > 0 such that

(
ξ
ζ

)2

= α
β , then

C0(ξ2 + ζ2)‖ψ‖2
H1 ≤ (ξ2 + ζ2)‖∇ψ‖2

2 +
∫

M

(aξ2 + 2bξζ + cζ2)ψ2dvg

= (ξ2 + ζ2)
{

‖∇ψ‖2
2 +

∫

M

(
α

2∗ a +
2
√

αβ

2∗ b +
β

2∗ c

)

ψ2dvg

}

≤ (ξ2 + ζ2)
{

‖∇ψ‖2
2 +

n − 2
4(n − 1)

∫

M

Rgψ
2dvg

}

.

Therefore, −Δg + n−2
4(n−1)Rg is also coercive. In particular we are dealing with

the case where the Yamabe invariant is positive.

We can state the following result.

Theorem 1.6. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
Let α, β > 1 be two real numbers such that α + β = 2∗, and let a, b and c be
functions Hölder continuous in M , and f ∈ C∞, with a, b and c satisfying
(1.6) and (1.14), and f satisfying (1.5). Let x0 be some point in M such that
f(x0) = maxM f . If S

(α,β)
f,h < S∗

f(x0)2/2∗ , where S∗ is defined in (1.4). Then,
system (1.1) has a nontrivial solution.

Complementing Theorem 1.6 and inspired by [5,13,17], we prove the
following theorems:

Theorem 1.7. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
Let a, b and c be functions Hölder continuous in M satisfying (1.6) and (1.14).
Assume that n ≥ 6 and M is not locally conformally flat. If at a point x0

where f(x0) = maxM f is such that the Weyl tensor is nonvanishing (that is,
|Wg(x0)| �= 0). If we assume that

(i) if Δgf(x0) = 0 when n = 6, or

(ii) if Δgf(x0) = 0 and
∣
∣Δ2

gf(x0)
∣
∣
/
f(x0) is small enough, when n > 6.

Then, S
(α,β)
f,h < S∗

f(x0)2/2∗ . Consequently, system (1.1) has a nontrivial solution.

Theorem 1.8. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
Let a, b and c be functions Hölder continuous in M satisfying (1.6) and (1.14).
Assume that n = 3, 4 or 5, or M is locally conformally flat, when n ≥ 6. Let
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x0 ∈ M be a point such that f(x0) = maxM f > 0. We have the following
cases:

(i) if n = 3 or, if Δgf(x0) = 0 when n = 4, 5;

(ii) if Δgf(x0) = Δ2
gf(x0) = 0,when n = 6, 7;

(iii) if Δgf(x0) = Δ2
gf(x0) = 0 and

Δ3
gf(x0) = 0 or |∇Wg(x0)| = 0, when n = 8.

Then, S
(α,β)
f,h < S∗

f(x0)2/2∗ unless M is conformal to the standard S
n. Conse-

quently, system (1.1) has a nontrivial solution. When n > 8 the same con-
clusion holds if |∇Wg(x0)| �= 0 and Δ3

gf(x0) = 0 or when |∇Wg(x0)| = 0 if
|∇2Wg(x0)| �= 0 and Δ3

gf(x0) = Δ4
gf(x0) = 0, or when all derivatives of Wg

vanish at x0 if Δm
g f(x0) = 0 for all 1 ≤ m ≤ n

2 − 1.

Corollary 1.9. Suppose the same assumptions of Theorems 1.7 or 1.8. In ad-
dition, if b ≤ 0 and the functions a and c satisfy

α

2∗ a(x) +
β

2∗ c(x) ≤ n − 2
4(n − 1)

Rg(x), ∀x ∈ M. (1.15)

Then, system (1.1) has a pair of positive solutions.

Corollary 1.10. Suppose the same assumptions of Theorems 1.7 or 1.8. In ad-
dition, if we assume that f ≥ 0, b = 0 and a = c = n−2

4(n−1)Rg. Then, system
(1.1) has a nontrivial solution. Moreover, we have that

S
(α,β)
f,h (M) =

[(
α

β

)β/α+β

+
(

β

α

)α/α+β
]

λf (M, g). (1.16)

Therefore, the pair (ξϕ, ζϕ) (up to rescaling) is solution for the system, for any

positive solution ϕ ∈ C∞ of (1.13), where
∫

M
fϕ2∗

dvg = 1 and ξ
ζ =

(
α
β

)1/2

.

A special case is when we consider the unit n−sphere S
n with the stan-

dard metric g0, that is, the scalar curvature is Rg0 = n(n − 1). Note that this
case is included in Theorem 1.1 when we assume the same hypotheses. There-
fore the following theorem is a case special of Theorem 1.8, when M = S

n/Γ.

Theorem 1.11. Let Γ be a nontrivial finite group of isometries of S
n acting

without fixed point on S
n. Write M = S

n/Γ, and let a, b, c and f be functions
invariant under Γ and satisfying the same assumptions of Theorem 1.8. Then
S

(α,β)
f,h (Sn/Γ) < S∗

f(x0)2/2∗ , and therefore, system (1.1) has a nontrivial solution
on S

n.

Remark 1.12. Note that from [13], when f is invariant under Γ and λf (Sn/Γ) <
λ(Sn)

(maxM f)2/2∗ , there is a positive solution ϕ ∈ C∞(Sn) to the equation

− Δg0u +
n(n − 2)

4
u = fu2∗−1 in S

n, (1.17)
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where
∫

Sn fϕ2∗
dvg0 = 1.

Corollary 1.13. Suppose the same assumptions of Theorem 1.11. In addition,
if we assume that b = 0, a = c = n(n−2)

4 and f ≥ 0. Then, system (1.1) has a
nontrival solution. Moreover, we have

S
(α,β)
f,h (Sn) =

[(
α

β

)β/α+β

+
(

β

α

)α/α+β
]

λf (Sn, g0). (1.18)

Therefore, the pair (ξϕ, ζϕ) (up to rescaling) is solution for system (1.1), where
ϕ ∈ C∞ is a positive solution of Eq. (1.17).

Corollary 1.14. Suppose the same assumptions of Theorem 1.11. In addition, if
we assume that b = 0, f = 1 and a = c = n(n−2)

4 then we get that S(α,β)(Sn) =
S∗ and system (1.1) has infinitely many pair of positive solutions. Moreover,
if (u, v) is a minimizer for S(α,β)(Sn) with u, v > 0, then up to rescaling u and
v will have the following forms:

u(x) = ξ1(ρ0 − cos r)
2−n

2 and v(x) = ζ1(ρ0 − cos r)
2−n

2 (1.19)

where x ∈ S
n, r = dg0(x, x), ξ1, ζ1 > 0, ρ0 > 1 and ξ1

ζ1
=
(

α
β

)1/2

.

Corollary 1.15. Suppose the same assumptions of Theorem 1.11. In addition,
if b ≤ 0 and the functions a and c satisfy the following hypothesis

α

2∗ a(x) +
β

2∗ c(x) ≤ n(n − 2)
4

, ∀x ∈ M. (1.20)

Then, system (1.1) has a pair of positive solutions on S
n.

The paper is organized as follows. In Sect. 2 we prove an essential Sobolev
inequality to prove the main results. In Sect. 3 we prove Theorem 1.1 and its
consequences. In Sect. 4 we prove Theorems 1.6, 1.7 and 1.8. We dedicate
Sect. 5 for the case of the sphere S

n.

2. Some Preliminary Results

In [19], Hebey and Vaugon have established that the best constant for the
Sobolev inequality is K2

n. Precisely, they proved that there is a positive con-
stant B such that

‖u‖2
2∗ ≤ K2

n‖∇u‖2
2 + B‖u‖2

2, (2.1)

for all u ∈ H1(M). Moreover, if ‖u‖2
2∗ ≤ K‖∇u‖2

2 +C‖u‖2
2 for all u ∈ H1(M),

where K and C are positive constants, then K ≥ K2
n.

Initially, we establish an inequality that will be used in the proof of the
main results.
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Lemma 2.1. Let S∗ be the constant defined in (1.4) when α + β = 2∗. Then,
there is a positive constant B0 such that

(∫

M

|u|α|v|βdvg

)2/2∗

≤ S−1
∗ ‖(|∇u|, |∇v|)‖2

2 + B0‖(u, v)‖2
2, (2.2)

for all (u, v) ∈ H. Moreover, (S∗)
−1 is the best constant such that the inequality

holds.

Proof. Given u, v ∈ H1(M), since α
2∗ + β

2∗ = 1, by Hölder’s inequality,
∫

M

|u|α|v|βdvg ≤
(∫

M

|u|2∗
dvg

)α/2∗ (∫

M

|v|2∗
dvg

)β/2∗

,

that is,
(∫

M

|u|α|v|βdvg

)2/2∗

≤ (‖u‖2
2∗
)α/2∗ (‖v‖2

2∗
)β/2∗

.

On the other hand, by Young’s inequality,

(‖u‖2
2∗
)α/2∗ (‖v‖2

2∗
)β/2∗

=
(
ε‖u‖2

2∗
)α/2∗

(‖v‖2
2∗
)β/2∗

εα/2∗

=
(
ε‖u‖2

2∗
)α/2∗ (

‖v‖2
2∗ε−α/β

)β/2∗

≤ α

2∗ ε‖u‖2
2∗ +

β

2∗ ε−α/β‖v‖2
2∗ .

Choosing ε =
[(

α
β

)β/2∗

+
(

β
α

)α/2∗]−1
2∗
α , by a straightforward calculation,

we get

α

2∗ ε =
β

2∗ ε−α/β =

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]−1

,

and consequently,
(∫

M

|u|α|v|βdvg

)2/2∗

≤
[(

α

β

)β/2∗

+
(

β

α

)α/2∗]−1
(‖u‖2

2∗ + ‖v‖2
2∗
)
.

(2.3)

Using (2.3) and the Sobolev inequality (2.1), we can find B > 0 such that
(∫

M

|u|α|v|βdvg

)2/2∗

≤
[(

α

β

)β/2∗

+
(

β

α

)α/2∗]−1
(
K2

n‖(|∇u|, |∇v|)‖2
2 + B‖(u, v)||22

)
.
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Therefore, we get that
(∫

M

|u|α|v|βdvg

)2/2∗

≤ S−1
∗ ‖(|∇u|, |∇v|)‖2

2 + B0‖(u, v)||22

for all (u, v) ∈ H, where B0 = B

[(
α
β

)β/2∗

+
(

β
α

)α/2∗]−1

.

Finally, if S0 is a positive constant such that
(∫

M

|u|α|v|βdvg

)2/2∗

≤ S0‖(|∇u|, |∇v|)‖2
2 + B1‖(u, v)||22, (2.4)

for all (u, v) ∈ H, where B1 is some positive constant. We claim that S0 ≥ S−1
∗ .

Indeed, given ϕ ∈ H1(M) and writing u = α1/2ϕ and v = β1/2ϕ, by (2.4) we
have

(
αα/2ββ/2

)2/2∗ (∫

M

|ϕ|2∗
dvg

)2/2∗

≤ 2∗ [S0‖∇ϕ‖2
2 + B1‖ϕ‖2

2

]
,

which gives us
(∫

M

|ϕ|2∗
dvg

)2/2∗

≤ 2∗

αα/2∗ββ/2∗
[
S0‖∇ϕ‖2

2 + B1‖ϕ‖2
2

]

=
[

α

αα/2∗ββ/2∗ +
β

αα/2∗ββ/2∗

]
(
S0‖∇ϕ‖2

2 + B1‖ϕ‖2
2

)

=

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]

S0‖∇ϕ‖2
2 + B2‖ϕ‖2

2,

for some B2 > 0. Since K−2
n is the best constant in the Sobolev embedding

theorem (see [4,19]), we reach that
[(

α

β

)β/2∗

+
(

β

α

)α/2∗]

S0 ≥ K2
n,

and since S∗ =
[(

α
β

)β/2∗

+
(

β
α

)α/2∗]

K−2
n , we conclude the proof of the

Lemma. �

An immediate consequence this result is the following inequality.

Corollary 2.2. Let C = max{S−1
∗ , B0}, then we have

(∫

M

|u|α|v|βdvg

)2/(α+β)

≤ C‖(u, v)‖2.

Another result that will be important later on is the following Brezis-Lieb
type lemma.
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Lemma 2.3. Let um ⇀ u and vm ⇀ v in H1(M) and let � ∈ L∞(M). Then
we have

∫

M

�(x)|um|α|vm|βdvg =
∫

M

�(x)|u|α|v|βdvg

+
∫

M

�(x)|um − u|α|vm − v|βdvg + om(1),

where om(1) → 0 as m → ∞.

Proof. The proof is similar to [6, Lemma 2.1] and we omit it. �

3. Proof of Theorem 1.1

We begin this section by introducing some notations and definitions. First,
consider the functional I : H → R associated to system (1.1) given by

I(u, v) =
1
2

∫

M

[|∇u|2g + |∇v|2g + a(x)u2 + 2b(x)uv + c(x)v2
]
dvg

− 1
2∗

∫

M

f(x)|u|α|v|βdvg.

Since the functions a, b and c are Hölder continuous and f is a smooth
function, we have that I is well defined and by standard arguments I ∈
C1(H,R) with

I ′(u, v) · (ϕ,ψ) =
∫

M

(〈∇u,∇ϕ〉g + 〈∇v,∇ψ〉g

+ a(x)uϕ + b(x)[uψ + vϕ] + c(x)vψ) dvg

−
∫

M

(
α

2∗ f(x)|u|α−2|v|βuϕ +
β

2∗ f(x)|v|β−2|u|αvψ

)

dvg.

Hence, a critical point of I is a weak solution of system (1.1) and re-
ciprocally. Moreover, by the coercivity condition (1.6), it is easy to see that
I satisfies the geometry of the Mountain Pass Theorem, that is, there exist
ρ > 0 and R > 0 such that

I(u, v) ≥ ρ whenever ‖(u, v)‖ = R, (3.1)

and there exists some (ũ, ṽ) ∈ H with ‖(ũ, ṽ)‖ > R and such that I(ũ, ṽ) < 0.
Now, for some pair (ũ, ṽ) satisfying the second condition above, we con-

sider the set Γ = {γ ∈ C([0, 1],H) : γ(0) = 0 and γ(1) = (ũ, ṽ)}, and so we
can define the minimax level

c := inf
γ∈Γ

sup
0≤t≤1

I(γ(t)) ≥ ρ. (3.2)

Next, we will estimate the level c. This will be a very delicate result.
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Lemma 3.1. Suppose that (1.7) holds, then

0 < c <
Sn/2

∗
nf(x0)(n−2)/2

, (3.3)

for some par (ũ, ṽ) ∈ H, where c is defined in (3.2).

Proof. Initially, we will verify that there exists (u, v) ∈ H such that

Q(u, v) <
S∗

(maxM f)2/2∗ , (3.4)

where Q is defined by

Q(u, v) :=

∫

M

(|∇u|2g + |∇v|2g
)
dvg +

∫

M

(
a(x)u2 + 2b(x)uv + c(x)v2

)
dvg

(∫

M
f(x)|u|α|v|βdvg

)2/2∗

for (u, v) ∈ H with
∫

M
f(x)|u|α|v|βdvg > 0.

The proof will be done considering the cases n ≥ 4 and n = 3.
Let x0 ∈ M be a point such that f(x0) = max{f(x) : x ∈ M}. We denote

by Bδ(x0) the geodesic ball of center x0 and radius δ, with δ ∈ (0, ig), where
ig is the injective radius of (M, g). We choose δ enough small if necessary such
that f(x) > 0 on B2δ(x0). In normal coordinates we can write the following
expansions

h(x)η(r)2 = h(x0) + rθO(1),

f(x)η(r)2
∗

= f(x0) +
1
2
∂ijf(x0)xixj + r3O(1),

∫

Sn−1

√
det(g)dσ = ωn−1

(

1 − Rg(x0)
6n

r2 + r4O(1)
)

,

(3.5)

where det(g) is the determinant of the components of the metric g and h =
α
2∗ a+ 2

√
αβ

2∗ b+ β
2∗ c, with θ ∈ (0, 1) such that h ∈ C0,θ(M), and η ∈ C∞

0 ([−2δ, 2δ]),
with η = 1 in [−δ, δ] and 0 ≤ η ≤ 1.

Now, for n ≥ 4 and ε > 0, we consider the following sequence of functions

uε(x) =
η(dg(x, x0))

(ε + dg(x, x0)2)(n−2)/2
. (3.6)

For 0 < p, q < ∞, we put Ip
q :=

∫ ∞

0

tp(1 + t)−qdt, and then it holds that

n − 2
n

In/2
n = I(n−2)/2

n =
ωn

2n−1ωn−1
,

(n − 2)2

2
ωn−1I

n/2
n = K−2

n

(
n − 2
2n

ωn−1I
n/2
n

)2/2∗

.

(3.7)
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When n = 4, from [3,4], we get
∫

M

|∇uε(x)|2gdvg = 2ω3ε
−1

(

I2
4 +

1
24

Rg(x0)ε ln ε + o(ε ln ε)
)

,

∫

M

h(x)uε(x)2dvg = −ω3

2
h(x0) ln ε + o(ln ε),

∫

M

f(x)uε(x)4dvg =
ω3

2
f(x0)I1

4 ε−2

(

1 − 1
12

Rg(x0)ε + o(ε)
)

.

(3.8)

Now considering ξ, ζ > 0 such that ξ
ζ =

√
α
β , we obtain

Q(ξuε, ζuε) =
(ξ2 + ζ2)

∫

M
|∇uε|2gdvg +

∫

M

[
ξ2a(x) + 2ξζb(x) + ζ2c(x)

]
u2

εdvg

(ξαζβ)2/2∗ (∫

M
f(x)u2∗

ε dvg

)2/2∗ .

=
(ξ2 + ζ2)

(ξαζβ)2/2∗

∫

M
|∇uε|2gdvg +

∫

M
h(x)u2

εdvg
(∫

M
f(x)u2∗

ε dvg

)2/2∗ .

Then, by (3.8) and (3.7), it follows that (for ε enough small):

Q(ξuε, ζuε)

=
(ξ2 + ζ2)

(ξαζβ)1/2

[
ω3I2

4 + ω3
12 ε ln ε (Rg(x0) − 6h(x0)) + o(ε ln ε)

]

[
ω3
2 f(x0)I1

4 (1 − 1
12Rg(x)ε + o(ε))

]1/2

=
κ(α, β)

f(x0)1/2

[
2ω3I2

4 + ω3
12 ε ln ε (Rg(x0) − 6h(x0)) + o(ε ln ε)

]

K2
42ω3I2

4

[
1 − 1

24Rg(x)ε + o(ε)
]

=
κ(α, β)

f(x0)1/2

{

K−2
4 +

ω3
12 ε ln ε (Rg(x0) − 6h(x0)) + o(ε ln ε) + 1

24Rg(x0)ε + o(ε)

K2
42ω3I2

4

[
1 − 1

24Rg(x)ε + o(ε)
]

}

=
κ(α, β)

f(x0)1/2

{

K−2
4 +

ω3
12 ε ln ε (Rg(x0) − 6h(x0)) + o(ε ln ε)

K2
42ω3I2

4

[
1 − 1

24Rg(x)ε + o(ε)
]

}

=
κ(α, β)

f(x0)1/2

{

K−2
4 +

K−2
4

24I2
4

ε ln ε (Rg(x0) − 6h(x0))

+
o(ε ln ε)

K2
42ω3I2

4

[
1 − 1

24Rg(x)ε + o(ε)
]

}

,

where κ(α, β) =
[(

α
β

)β/2∗

+
(

β
α

)α/2∗]

. Consequently, as I2
4 =

∫∞
0

t2

(1+t)4 dt =
1
3 we reach

Q(ξuε, ζuε) ≤ S∗
f(x0)1/2

+
S∗

8f(x0)1/2
ε ln ε (Rg(x0) − 6h(x0)) + o(ε ln ε).

(3.9)
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For n > 4, from [3,4], we have
∫

M

|∇uε|2gdvg =
(n − 2)2

2
In/2
n ωn−1ε

(2−n)/2

(

1 − n + 2
6n(n − 4)

Rg(x0)ε + o(ε)
)

,

∫

M

h(x)u2
εdvg =

2(n − 2)(n − 1)
n(n − 4)

ωn−1I
n/2
n h(x0)ε(4−n)/2 + o(ε(4−n)/2),

∫

M

f(x)u2∗
ε dvg =

ωn−1

2
f(x0)I(n−2)/2

n ε−n/2 (1

− 1
2(n − 2)

(

−Δgf(x0)
f(x0)

+
Rg(x0)

3

)

ε + o(ε)
)

.

Thus, similarly to what we did above, we find that

Q(ξuε, ζuε) ≤ S∗
f(x0)2/2∗ − S∗

(n − 4)nf(x0)2/2∗

×
(

(n − 4)
2

Δgf(x0)
f(x0)

+ Rg(x0) − 4(n − 1)
(n − 2)

h(x0)
)

ε

+o(ε). (3.10)

Now, we recall, by (1.7), that

h(x0) <
n − 2

4(n − 1)
Rg(x0) +

(n − 4)(n − 2)
8(n − 1)

Δgf(x0)
f(x0)

,

for n ≥ 4. Then, by (3.9) and (3.10), it follows, for ε sufficient small, that (3.4)
holds.

Now, we consider the case n = 3. As a, b and c satisfy the condition
(1.6), it follows that −Δg + h is a coercive operator. Then we can consider
Gx0 : M\{x0} −→ R the Green function this operator, that is,

−ΔgGx0 + hGx0 = δx0 ,

where δx0 is the Dirac mass at x0. It is well known that for x close to x0 we
can write

Gx0(x) =
1

ω2dg(x, x0)
+ m(x0) + o(1).

Next, we will use Druet’s idea [9]. By using the cut-off function η, we can
write Gx0 as follows:

ω2Gx0(x) =
η(dg(x, x0))
dg(x, x0)

+ wh(x), (3.11)

where wh ∈ C∞
loc(M\{x0}). In M\Bδ(x0), we have

− Δgwh + hwh = Δg

(
η

dg(x, x0)

)

− h
η

dg(x, x0)
. (3.12)
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And, in Bδ(x0), we write in normal coordinates

− Δgwh + hwh = −∂r(ln(det(g)))
2dg(x, x0)2

− h
1

dg(x, x0)
. (3.13)

In particular, we have that the right side of the above equation is in Ls(M)
for all 1 < s < 3, so by standard elliptic theory, wh ∈ C0(M) ∩ H1(M) and
moreover wh(x0) = ω2m(x0) (for more details see Druet [9]).

As we have assumed that h ≤ 1
8Rg (see (1.7)), there exists Gx0 the Green

function of −Δg + 1
8Rg, and as above we can write

ω2Gx0(x) =
η(dg(x, x0))
dg(x, x0)

+ w(x). (3.14)

Now, note that

−Δg(w − wh) +
1
8
Rg(w − wh) = − ω2Δg(Gx0 − Gx0) + ω2

1
8
Rg(Gx0 − Gx0)

=
(

h − 1
8
Rg

)

ω2Gx0 ≤ 0.

Green’s Formula and the hypothesis h ≤ 1
8Rg (but not equal) gives us

(w − wh)(y) =
∫

M

Gy(x)
(

h(x) − 1
8
Rg(x)

)

ω2Gx0(x)dvg < 0, (3.15)

so, w(y) < wh(y), for all y ∈ M , in particular, as w(x0) = ω2m(x0) ≥ 0 it
follows that wh(x0) > 0 (here m(x0) is given by the expansion of Gx0 in a
neighborhood of x0, and the positive mass theorem garantee that m(x0) ≥ 0,
see [24,25].

For ε > 0 and x ∈ M , we define the function

vε(x) = ε1/4(uε(x) + wh(x)),

where uε is the test-function defined as (3.6).
As we did in case n ≥ 4, we estimate Q(ξvε, ζvε). For this we will estimate∫

M
(|∇vε|2g + hv2

ε )dg and
∫

M
f(x)v6

ε dvg. First, note that
∫

M

(|∇vε|2g + hv2
ε )dg =

∫

M

[vε(−Δgvε) + hvε]dvg

= ε1/2

∫

M

[U2
ε η(−Δgη) − η〈∇η,∇U2

ε 〉g + hη2U2
ε ]dvg

+ ε1/2

∫

M

η2Uε(−ΔgUε)dvg + ε1/2

∫

M

(−Δgwh + hwh)(wh + 2ηUε)dvg,

(3.16)

where Uε(x) = 1
(ε+dg(x,x0)2)1/2 .
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Note that we can write

U2
ε (x) =

1
dg(x, x0)2

− ε

dg(x, x0)2(ε + dg(x, x0)2)
. (3.17)

With that we calculate:

ε1/2

∫

M

U2
ε η(−Δgη)dvg = ε1/2

∫

M

η(−Δgη)
dg(x, x0)2

dvg + o(ε1/2), (3.18)

ε1/2

∫

M

η〈∇η,∇U2
ε 〉gdvg = ε1/2

∫

M

η

〈

∇η,∇
(

1
dg(x, x0)2

)〉

g

dvg + o(ε1/2),

(3.19)

ε1/2

∫

M

hη2U2
ε dvg = ε1/2

∫

M

h
η2

dg(x, x0)2
dvg + o(ε1/2). (3.20)

Now, as in normal coordinates the Laplacian of a radial function F can be
written as follows −ΔgF = 1

rn−1
√

det(g)
∂r(rn−1

√
det(g)∂rF ), we have

− ΔgUε = −ΔUε − ∂r(ln
√

det(g))∂rUε, (3.21)

where −Δ is the Euclidian Laplacian. Since −ΔUε = 3εU5
ε , and using (3.17),

we get that
∫

Bδ(x0)

η2Uε(−ΔgUε)dvg

=
∫

Bδ(0)

Uε(−ΔUε − ∂r(ln
√

det(g))∂rUε)
√

det(g)dx

= 3ε

∫

Bδ(0)

U6
ε dx + O(ε1/2) +

∫

Bδ(x0)

∂r(ln det(g))∂r(U2
ε )

4
dvg

= 3ε−1/2ω2

∫ ∞

0

s2

(1 + s2)3
ds +

∫

Bδ(x0)

∂r(ln det(g))
2dg(x, x0)3

dvg + O(ε1/2).

So,
∫

Bδ(x0)

η2Uε(−ΔgUε)dvg

=
3
2
ω2I

1/2
3 ε−1/2 +

∫

Bδ(x0)

∂r(ln det(g))
2dg(x, x0)3

dvg + O(ε1/2). (3.22)

Now, writing that

Uε(x) =
1

dg(x, x0)

− ε

dg(x, x0)(ε + dg(x, x0)2)1/2[dg(x, x0) + (ε + dg(x, x0)2)1/2]
,

(3.23)



Vol. 78 (2023) On Solutions for Strongly Coupled Critical Elliptic Systems Page 17 of 34 91

we have
∫

M\Bδ(x0)

η2Uε(−ΔgUε)dvg

= −
∫

M\Bδ(x0)

η2

dg(x, x0)
Δg

(
1

dg(x, x0)

)

dvg + O(ε1/2). (3.24)

So, we get that

ε1/2

∫

M

η2Uε(−ΔgUε)dvg =
3
2
ω2I

1/2
3 + ε1/2

∫

Bδ(x0)

∂r(ln det(g))
2dg(x, x0)3

dvg

−ε1/2

∫

M\Bδ(x0)

η2

dg(x, x0)
Δg

(
1

dg(x, x0)

)

dvg + o(ε1/2). (3.25)

Finally, we calculate
∫

M

(−Δgwh + hwh)(wh + 2ηUε)dvg

=
∫

M

(−Δgwh + hwh)
(

wh +
2η

d(x, x0)

)

dvg

+
∫

M

(−Δgwh + hwh)
(

wh +
2η

dg(x, x0)(ε + dg(x, x0)2)1/2[dg(x, x0) + (ε + dx,x0)1/2]

)

dvg,

first, by (3.11), we have
∫

M

(−Δgwh + hwh)
(

wh +
η

d(x, x0)

)

dvg

=
∫

M

(−Δgwh + hwh)ω2Gx0dvg = ω2wh(x0). (3.26)

Second, we get from Eqs. (3.12) and (3.13) that
∫

M

(−Δgwh + hwh)
(

η

d(x, x0)

)

dvg

= −
∫

Bδ(x0)

(
∂r(ln(det(g)))
2dg(x, x0)2

+
h

dg(x, x0)

)

(
1

d(x, x0)

)

dvg

+
∫

M\Bδ(x0)

(

Δg

(
η

dg(x, x0)

)

− hη

dg(x, x0)

)(
η

d(x, x0)

)

dvg,
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so, we have
∫

M

(−Δgwh + hwh)
(

η

d(x, x0)

)

dvg

= −
∫

M

hη2

dg(x, x0)2
−
∫

Bδ(x0)

(
∂r(ln(det(g)))
2dg(x, x0)3

)

dvg

+
∫

M\Bδ(x0)

[
η2

dg(x, x0)
Δg

(
1

d(x, x0)

)

+
η

dg(x, x0)2
Δgη

]

dvg

+
∫

M\Bδ(x0)

η

〈

∇η,∇
(

1
dg(x, x0)2

)〉

g

dvg

(3.27)

Now, using the obtained in (3.18), (3.19), (3.20), (3.25) and (3.27) in the
Eq. (3.16), gives us the following estimate

∫

M

(|∇gvε|2g + hv2
ε )dvg =

3
2
ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2). (3.28)

Now, we estimate
∫

M
f(x)v6

ε dvg.
∫

M

f(x)v6
ε dvg = ε3/2

∫

M

f(x)[u6
ε + 6u5

εwh + 15u4
εw

2
h + 20u3

εw
3
h + 15u2

εw
4
h

+ 6uεw
5
h + w6

h]dvg

= ε3/2

∫

M

f(x)[u6
ε + 6u5

εwh + 15u4
εw

2
h]dvg + o(ε1/2).

(3.29)

Using the expansion (3.5) in normal coordinate,
∫

M

f(x)u6
εdvg = f(x0)

∫

Bδ(x0)

U6
ε dx + O(1)

∫

Bδ(x0)

U6
ε r2dx

+
∫

B2δ(x0)\Bδ(x0)

f(x)u6
εdvg

=
ω2

2
f(x0)ε−3/2I

1/2
3 + O(ε−1/2) + O(1),

so, we have
∫

M

f(x)u6
εdvg =

ω2

2
f(x0)ε−3/2I

1/2
3 + O(ε−1/2). (3.30)

Similarly, we get
∫

M

6f(x)u5
εwhdvg = 3ω2f(x0)wh(x0)ε−1I

1/2
5/2 + o(ε−1/2). (3.31)

Also, we calculate
∫

M

15f(x)u4
εw

2
hdvg = 15ω2f(x0)wh(x0)2ε−1/2I

1/2
2 + o(ε−1/2). (3.32)
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From what was obtained in (3.30)–(3.32) and the fact that ω2I
1/2
5/2 = 2

∫

Rn U5
1 dx

= 2
∫

Rn(−ΔU1)dx = 2
3ω2, we have that

∫

M

f(x)v6
ε dvg =

ω2

2
f(x0)I

1/2
3 + 2ω2wh(x0)f(x0)ε1/2 + o(ε1/2). (3.33)

Now, we can calculate Q(ξvε, ζvε) for ε enough small, by the Eqs. (3.28)
and (3.33),
∫

M
(|∇vε|2g + hv2

ε )dg
(∫

M
f(x)v6

ε dvg

)1/3
=

3
2ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2)

(
ω2
2 f(x0)I

1/2
3 + 2ω2wh(x0)f(x0)ε1/2 + o(ε1/2)

)1/3

=
3
2ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2)

f(x0)1/3
(

ω2
2 I

1/2
3

)1/3 (
1 + 4wh(x0)

3I
1/2
3

ε1/2 + o(ε1/2)
) ,

as I
1/2
3 = 1

3I
3/2
3 and

(
1
6ω2I

3/2
3

)1/3

= K2
3

2 ω2I
3/2
3 (see (3.7)), we get that

∫

M
(|∇vε|2g + hv2

ε )dg
(∫

M
f(x)v6

ε dvg

)1/3
=

K−2
3

f(x0)1/3
− ω2wh(x0)ε1/2

ω2
2 I

3/2
3 + 2ω2wh(x0)ε1/2 + o(ε1/2)

.

As wh(x0) > 0, then

Q(ξvε, ζvε) <

[(
α

β

)β/6

+
(

β

α

)α/6
]

K−2
3

f(x0)1/3
. (3.34)

Therefore, we obtain (3.4), when n = 3.
Now, in order to prove (3.3), we define for any t > 0 the following func-

tional:

Φ(t) =

{
I (tξuε, tζuε) , when n ≥ 4

I (tξvε, tζvε) , when n = 3

=

⎧
⎨

⎩

t2

2 Xuε
− t2

∗

2∗ Yuε
, when n ≥ 4

t2

2 Xvε
− t2

∗

2∗ Yvε
, when n = 3,

where Xu = (ξ2 + ζ2)
∫

M
|∇u|2gdvg +

∫

M

[
ξ2a + 2ξζb + ζ2c

]
u2dvg and Yu =

ξαζβ
∫

M
f(x)u2∗

dvg.
We want to find t0 > 0 such that Φ′(t0) = 0, that is, such that t0X −

t2
∗−1

0 Y = 0. Hence,

t0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
Xuε

Yε

)(n−2)/4

, when n ≥ 4
(

Xvε

Yvε

)1/4

, when n = 3.
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Therefore, t0 is the only critical point of Φ and since Φ(t) → −∞ as t → ∞,
then t0 is a maximum point for Φ.

Note that, by the above calculations, we get

Φ(t0) =

⎧
⎨

⎩

1
n (Q(ξuε(x), ζuε(x)))n/2

, when n ≥ 4

1
3 (Q(ξvε, ζvε))

3/2
, when n = 3

<
Sn/2

∗
nf(x0)(n−2)/2

.

Choose t1 > t0 large such that Φ(t1) < 0 and write ũ = t1ξuε(x) and ṽ =
t1ζuε(x) when n ≥ 4 (and ũ = t1ξvε and ṽ = t1ζvε when n = 3). So,

0 < c = inf
γ∈Γ

sup
0�t≤1

I(γ(t)) ≤ sup
0�t≤1

I (tt1ξuε(x), tt1ζuε(x)) (we use vε if n = 3)

= sup
0<t≤1

Φ(tt1).

≤ Φ(t0),

which proves (3.3). This completes the proof. �

We now have the tools for the proof of Theorem 1.1.

Proof of the Theorem 1.1. By Ekeland Variational Principle, there is a se-
quence {(um, vm)} in H such that

I(um, vm) → c and I ′(um, vm) → 0. (3.35)

Now note that

I(um, vm) − 1
2∗ I ′(um, vm) · (um, vm)

=
1
n

∫

M

[|∇um|2g + |∇vm|2g + a(x)u2
m + 2b(x)umvm + c(x)v2

m

]
dvg.

Thus, by the coercivity hypothesis (1.6), we obtain that {(um, vm)} is bounded
in H. Hence, there exists (u0, v0) in H such that, up to a subsequence,

(um, vm) ⇀ (u0, v0) in H;
(um, vm) → (u0, v0) in L2(M) × L2(M);
(um(x), vm(x)) → (u0(x), v0(x)) a.e in M. (3.36)

It is easy to see that f(x)|um|α−2um|vm|β is an uniformly bounded sequence in
L2∗/(2∗−1)(M) and converges pointwisely to f(x)|u0|α−2u0|v0|β , from Lemma
4.8 in [22], we have

f(x)|um|α−2um|vm|β ⇀ f(x)|u0|α−2u0|v0|β in L2∗/(2∗−1)(M).
(3.37)

Similarly we obtain the same for the sequence f(x)|um|αvm|vm|β−2. As I ′(um,
vm) · (ϕ,ψ) = om(1), for all (ϕ,ψ) ∈ H, by using (3.36), (3.37) and letting
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m → ∞, we reach that I ′(u0, v0) = 0, that is, (u0, v0) is a weak solution of
(1.1).

The next step is to prove that u0 �= 0 and v0 �= 0.
First, let us see that u0 = 0, if and only if, v0 = 0. Indeed, if u0 = 0, then

−Δgv0 + c(x)v0 = 0 in M . So by coercivity hypothesis (1.6), we have that
v0 = 0.

If u0 = 0 and v0 = 0, we write τ = lim
m−→0

∫

M

(|∇um|2g + |∇vm|2g
)
dvg.

Since I ′(um, vm) · (um, vm) = om(1), then we get

lim
m→∞

∫

M

f(x)|um|α|vm|βdvg = lim
m→∞

∫

M

(|∇um|2g + |∇vm|2g
)
dvg = τ.

On the other hand, since I(um, vm) = c + om(1), then we get τ = nc.
Now, by Lemma 2.1, we know that there is a positive constant B0 such

that

(∫

M

f(x)|um|α|vm|βdvg

)2/2∗

≤ f(x0)(n−2)/n
[S−1

∗
(‖∇um‖2

2 + ‖∇vm‖2
2

)
+ B0‖(um, vm)‖2

2

]
.

Thus, passing to the limit in the inequality above and using (3.36), we get
(nc)2/2∗ ≤ f(x0)(n−2)/nS−1

∗ nc. Hence,

c ≥ Sn/2
∗

nf(x0)(n−2)/2
.

But, this contradicts the estimate obtained for the level c in Lemma 3.1. There-
fore, u0 �= 0 and v0 �= 0. Thus, we conclude the proof of Theorem 1.1. �

Proof of Corollary 1.2. Consider the functional J : H → R defined by

J(u, v) =
1
2

∫

M

[|∇u|2g + |∇v|2g + a(x)u2 + 2b(x)uv + c(x)v2
]
dvg

− 1
2∗

∫

M

f(x)(u+)α(v+)βdvg.

This functional satisfies the same properties of I. Using the same test functions
to estimate the minimax level and using the same steps as in the previous
proof, one obtains that there exists (u0, v0) ∈ H a nontrivial critical point of
the functional J . Now, we will prove that u0 and v0 are positive solutions. First,
we denote by u+ = max{u, 0} and u− = min{u, 0}. Then, since J ′(u0, v0) ·
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(u−
0 , v−

0 ) = 0, we get

0 =
∫

M

[|∇u−
0 |2g + |∇v−

0 |2g + a(x)(u−
0 )2 + b(x)[u0v

−
0 + u−

0 v0] + c(x)(v−
0 )2

]
dvg

−
∫

M

f(x)
[
α(u+

0 )α−1(v+
0 )βu+

0 u−
0 + β(u+)α(v+)β−1v+

0 v−
0

]
dvg

=
∫

M

[|∇u−
0 |2g + |∇v−

0 |2g + a(x)(u−
0 )2 + b(x)[u0v

−
0 + u−

0 v0] + c(x)(v−
0 )2

]
dvg

=
∫

M

[|∇u−
0 |2g + |∇v−

0 |2g + a(x)(u−
0 )2 + 2b(x)u−

0 v−
0 + c(x)(v−

0 )2
]
dvg

+
∫

M

b(x)[u+
0 v−

0 + u−
0 v+

0 ]dvg.

As b ≤ 0 and u+
0 v−

0 + u−
0 v+

0 ≤ 0, we deduce that
∫

M

[|∇u−
0 |2g + |∇v−

0 |2g + a(x)(u−
0 )2 + 2b(x)u−

0 v−
0 + c(x)(v−

0 )2
]
dvg ≤ 0,

and consequently by (1.6), we reach u−
0 = 0 and v−

0 = 0. Therefore, u0 ≥ 0
and v0 ≥ 0. By elliptic regularity theory and maximum principle follows that
u0 > 0 and v0 > 0. �

4. Proof of Theorems 1.6, 1.7 and 1.8

In this section, we will study the case where the combination h = α
2∗ a +

2
√

αβ
2∗ b+ β

2∗ c is less than or equal to n−2
4(n−1)Rg. We will begin by recalling some

notations and definitions. Considering the functional Eh : H → R given by

Eh(u, v) =
∫

M

(|∇u|2g + |∇v|2g
)
dvg +

∫

M

(
au2 + 2buv + cv2

)
dvg.

and constraint set Λα,β
f :=

{
(u, v) ∈ H :

∫

M
f(x)|u|α|v|βdvg = 1

}
.

Note that Eh is bounded from below on Λα,β
f . Indeed, by the coercivity

condition (1.6) and Corollary 2.2, we have

Eh(u, v) ≥ C0‖(u, v)‖2 ≥ C

(∫

M

|u|α|v|βdvg

)2/2∗

≥ C

f(x0)2/2∗ ,

for all (u, v) ∈ Λα,β
f . Thus, we can consider

S
(α,β)
f,h = inf

(u,v)∈Λα,β
f

Eh(u, v). (4.1)
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If there exists (u, v) ∈ Λα,β
f which achieves the infimum S

(α,β)
f,h , it turns

out that (u, v) will be a weak solution of the following system
⎧
⎪⎨

⎪⎩

−Δgu + a(x)u + b(x)v = S
(α,β)
f,h

2α

2∗ f(x)u|u|α−2|v|β in M,

−Δgv + b(x)u + c(x)v = S
(α,β)
f,h

2β

2∗ f(x)v|v|β−2|u|α in M.

(4.2)

In order to achieve the existence result we need to recall some results
due to Escobar–Schoen [13], Aubin–Hebey [5] and Hebey–Vaugon [17] for Pre-
scribe scalar curvature problem, which prove that f is the scalar curvature of
a conformal metric (see also [4]).

Before, let us remember that, when maxM f > 0 it is known that λf (M, g)
≤ λ(Sn)

(maxM f)2/2∗ , where λf (M, g) is defined in (1.12), and if λf (M, g) <
λ(Sn)

(maxM f)2/2∗ , then there is ϕ ∈ C∞ with ϕ > 0,
∫

M
f(x)ϕ2∗

dvg = 1, and
such that

λf (M, g) =
∫

M

(

|∇ϕ|2g +
n − 2

4(n − 1)
Rgϕ

2

)

dvg,

that is, ϕ is a positive solution of the equation −Δgu + n−2
4(n−1)Rgu

= λf (M, g)fu2∗−1. Therefore, ĝ = ϕ2∗−2g is a conformal metric to g, where
f = Rĝ is the scalar curvature of the metric ĝ, and moreover, λf (M, ĝ) =
λf (M, g).

Theorem A (Escobar–Schoen [13]). Let f be a C∞ function with maxM f > 0
on a compact riemannian manifold (M, g) not conformal to the sphere with
the standard metric. Then if n = 3,

λf (M, g) <
λ(Sn)

(maxM f)2/2∗ ,

and consequently f is the scalar curvature of a conformal metric. The same
conclusion holds for the locally conformally flat manifolds when n ≥ 4 if at a
point x0 where f is maximal, all its derivatives up to order n − 2 vanish.

Theorem B (Aubin–Hebey [5]). Assume that n ≥ 6 and (M, g) is not locally
conformally flat. Let f be a smooth function with maxM f > 0. If at a point
x0 where f(x0) = maxM f is such that the Weyl tensor is nonvanishing (that
is, |Wg(x0)| �= 0) and Δgf(x0) = 0, then if n = 6,

λf (M, g) <
λ(Sn)

(maxM f)2/2∗ ,

and consequently f is the scalar curvature of a conformal metric. When n > 6
the same conclusion holds. If in addition

∣
∣Δ2

gf(x0)
∣
∣
/
f(x0) is small enough.
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Theorem C (Hebey–Vaugon [17]). Let f be a C∞ function satisfying maxM f >
0 and Δgf(x0) = 0 at a point x0 where f is maximum. Then

λf (M, g) <
λ(Sn)

(maxM f)2/2∗ ,

and consequently f is the scalar curvature of a conformal metric when n = 4
or 5, unless M is conformal to the standard S

n. When n ≥ 6 we suppose that
|Wg(x0)| = 0. The same conclusion holds if Δ2

gf(x0) = 0, when n = 6 or
n = 7, and when n = 8 if in addition Δ3

gf(x0) = 0 or |∇Wg(x0)| �= 0. When
n > 8 the same conclusion holds if |∇Wg(x0)| �= 0 and Δ3

gf(x0) = 0 or when
|∇Wg(x0)| = 0 if |∇2Wg(x0)| �= 0 and Δ3

gf(x0) = Δ4
gf(x0) = 0, or when all

derivatives of Wg vanish at x0 if Δm
g f(x0) = 0 for all 1 ≤ m ≤ n

2 − 1.

The next result is the first step to prove Theorems 1.7 and 1.8.

Lemma 4.1. If λf (M, g) < λ(Sn)

f(x0)2/2∗ , then S
(α,β)
f,h <

S∗
f(x0)2/2∗ , where S∗ is

given in (1.4).

Proof. Since λf (M, g) < λ(Sn)

f(x0)2/2∗ , from theorems A, B and C, there exists

ϕ ∈ C∞(M) with ϕ > 0,
∫

M
f(x)ϕ2∗

dvg = 1 and such that

λf (M, g) =
∫

M

(

|∇ϕ|2g +
n − 2

4(n − 1)
Rgϕ

2

)

dvg <
λ(Sn)

f(x0)2/2∗ . (4.3)

Now, consider the following pair of functions (w1, w2) ∈ Λα,β
f , where w1 =

ξ
(
ξαζβ

)−1/2∗
ϕ and w2 = ζ

(
ξαζβ

)−1/2∗
ϕ, with ξ

ζ =
√

α
β , thus

S
(α,β)
f,h ≤ Eh(w1, w2)

=
(ξ2 + ζ2)

∫

M
|∇ϕ|2gdvg +

∫

M
(ξ2a(x) + 2ξζb(x) + ζ2c(x)) ϕ2dvg

(ξαζβ)2/2∗

=
(ξ2 + ζ2)

(ξαζβ)2/2∗

{∫

M

|∇ϕ|2gdvg +

∫

M

(
α

2∗ a(x) +
2
√

αβ

2∗ b(x) +
β

2∗ c(x)

)

ϕ2dvg

}

.

As h = α
2∗ a + 2

√
αβ

2∗ b + β
2∗ c ≤ n−2

4(n−1)Rg, it follows that

S
(α,β)
f,h ≤

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]

λf (M, g). (4.4)

Consequently,

S
(α,β)
f,h <

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]
λ(Sn)

f(x0)2/2∗ ,

hence S
(α,β)
f,h < S∗

f(x0)2/2∗ as desired. Finishing the proof. �

We will now prove the second auxiliary result of this section.
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Lemma 4.2. If S
(α,β)
f,h <

S∗
f(x0)2/2∗ , then there exists (u, v) in Λα,β

f such that

Eh(u, v) = S
(α,β)
f,h .

Proof. Let {(um, vm)} ⊂ Λα,β
f be a minimizing sequence for S

(α,β)
f,h , that is,

Eh(um, vm) = ‖(|∇um|, |∇vm|)‖2
2

+
∫

M

(au2
m + 2bumvm + cv2

m)dvg = S
(α,β)
f,h + om(1), (4.5)

where om(1) → 0 as m → ∞. By the coercivity hypothesis (1.6), it follows that
{(um, vm)} is bounded in H. Thus, there exists (u, v) in H such that, up to
a subsequence, (um, vm) ⇀ (u, v) in H, (um, vm) → (u, v) in L2(M) × L2(M),
and (um(x), vm(x)) → (u(x), v(x)) a.e in M . From Lemma 2.1 and (4.5), we
get

1 =
(∫

M

f(x)|um|α|vm|βdvg

)2/2∗

≤ f(x0)2/2∗S−1
∗ ‖(|∇um|, |∇vm|)‖2

2 + f(x0)2/2∗
B0||(um, vm)||22

≤ f(x0)2/2∗S−1
∗ S

(α,β)
f,h + f(x0)2/2∗

B1‖(um, vm)‖2
2

− f(x0)2/2∗S−1
∗

∫

M

(au2
m + 2bumvm

+ cv2
m)dvg + om(1),

where B0 > 0. Letting m → ∞, we obtain that

1 ≤ f(x0)2/2∗S−1
∗ S

(α,β)
f,h + f(x0)2/2∗

B0‖(u, v)‖2
2 − f(x0)2/2∗S−1

∗
∫

M

(au2 + 2buv + cv2)dvg.

Then, since S
(α,β)
f,h <

S∗
f(x0)2/2∗ , we find that 0 < ‖(u, v)‖2

2, and consequently,

u �= 0 or v �= 0.
We claim that u �= 0 and v �= 0. Moreover, (u, v) ∈ Λα,β

f is a minimizing

for S
(α,β)
f,h . Indeed, rewriting (4.5), we have

Eh(u, v) + ‖(|∇(um − u)|, |∇(vm − v)|)‖2
2 = S

(α,β)
f,h + om(1). (4.6)

On the other hand, since 1 =
∫

M
f(x)|um|α|vm|βdvg, Lemma 2.3 gives us

1 =
(∫

M

f(x)|u|α|v|βdvg +
∫

M

f(x)|um − u|α|vm − v|βdvg + om(1)
)2/2∗

.

(4.7)
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Now, note that
∫

M
f(x)|u|α|v|βdvg > 0, otherwise, by (4.7) and Lemma 2.1,

we would have

1 ≤
(∫

M

f(x)|um − u|α|vm − v|βdvg

)2/2∗

+ om(1)

≤ f(x0)2/2∗S−1
∗ ‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1),

hence,

S
(α,β)
f,h ≤ f(x0)2/2∗S−1

∗ S
(α,β)
f,h ‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1).

But, using the inequality above in (4.6), we get

Eh(u, v) = S
(α,β)
f,h − ‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1)

≤ (f(x0)2/2∗S−1
∗ S

(α,β)
f,h − 1)‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

again as S
(α,β)
f,h < S∗

f(x0)2/2∗ , we reach that Eh(u, v) ≤ 0, and so u = v = 0,
which is a contradiction. Therefore,

∫

M
f(x)|u|α|v|βdvg > 0.

Now, returning to (4.7) we get

1 =

(∫

M

f(x)|u|α|v|βdvg +

∫

M

f(x)|um − u|α|vm − v|βdvg + om(1)

)2/2∗

≤
(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ f(x0)2/2∗
(∫

M

|um − u|α|vm − v|βdvg

)2/2∗

+ om(1)

≤
(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ f(x0)2/2∗S−1
∗ ‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

as S
(α,β)
f,h > 0, then

S
(α,β)
f,h ≤ S

(α,β)
f,h

(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ S
(α,β)
f,h f(x0)2/2∗S−1

∗ ‖(|∇(um − u)|,
|∇(vm − v)|)‖2

2 + om(1).

(4.8)

By using (4.6), it follows that

Eh(u, v) ≤ S
(α,β)
f,h

(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ (S(α,β)
f,h f(x0)2/2∗S−1

∗ − 1)‖(|∇g(um − u)|, |∇g(vm − v)|)‖2
2 + om(1).

Since S
(α,β)
f,h f(x0)2/2∗S−1

∗ − 1 < 0, we have

Eh(u, v) ≤ S
(α,β)
f,h

(∫

M

f(x)|u|α|v|βdvg

)2/2∗

.
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The lower semicontinuity of Eh implies Eh(u, v) ≤ lim inf Eh(um, vm) = S
(α,β)
f,h ,

and hence 0 < τ =
∫

M
f(x)|u|α|v|βdvg ≤ 1, now writing u0 = τ−1/2∗

u and
v0 = τ−1/2∗

v, we have

Eh(u0, v0) =
Eh(u, v)

(∫

M
f(x)|u|α|v|βdvg

)2/2∗ ≤ S
(α,β)
f,h ,

with (u0, v0) ∈ Λα,β
f . By definition of S

(α,β)
f,h it follows that Eh(u0, v0) = S

(α,β)
f,h ,

so we prove that Eh(u, v) = S
(α,β)
f,h τ2/2∗

.
Finally, we can check that τ =

∫

M
f(x)|u|α|v|βdvg = 1, for this, we return

to (4.6) and (4.8). Then

1 ≤
(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ f(x0)2/2∗S−1
∗

[
S

(α,β)
f,h − Eh(u, v)

]

=

(∫

M

f(x)|u|α|v|βdvg

)2/2∗

+ f(x0)2/2∗S−1
∗ S

(α,β)
f,h

[

1 −
(∫

M

f(x)|u|α|v|βdvg

)2/2∗]

.

Hence,

0 ≤ −
[

1 −
(∫

M

f(x)|u|α|v|βdvg

)2/2∗]

+f(x0)2/2∗S−1
∗ S

(α,β)
f,h

[

1 −
(∫

M

f(x)|u|α|v|βdvg

)2/2∗]

=
(
−1 + f(x0)2/2∗S−1

∗ S
(α,β)
f,h

)
[

1 −
(∫

M

f(x)|u|α|v|βdvg

)2/2∗]

As f(x0)2/2∗
S

(α,β)
f,h < S∗, then

∫

M
f(x)|u|α|v|βdvg = 1.

Consequenlty, we get that (u, v) ∈ Λα,β
f , which proves that (u, v) is a

minimizer for S
(α,β)
f,h . �

Now we can prove the main results of this section.

Proof of Theorem 1.6. Since S
(α,β)
f,h < S∗

f(x0)2/2∗ , by Lemma 4.2 there exists

(u0, v0) ∈ Λα,β
f such that Eh(u0, v0) = S

(α,β)
f,h . Denote by G(u, v) =

∫

M
f(x)

|u|α|v|βdvg − 1, where (u, v) ∈ H. Then, there is a Lagrange multiplier λ that
satisfies

E′
h(u0, v0) · (ϕ,ψ) − λG′(u0, v0) · (ϕ,ψ) = 0, for all (ϕ,ψ) ∈ H. (4.9)

Taking ϕ = u0 and ψ = v0 above, we have that 2Eh(u0, v0) = 2∗λ, hence
λ = 2

2∗ S
(α,β)
f,h > 0. Therefore, by (4.9), we have that (u0, v0) is a weak solution
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of the following system
⎧
⎨

⎩

−Δgu + au + bv = S
(α,β)
f,h

2α
2∗ f(x)u|u|α−2|v|β in M,

−Δgv + bu + cv = S
(α,β)
f,h

2β
2∗ f(x)v|v|β−2|u|α in M.

(4.10)

It is easy to see that the pair ((2S
(α,β)
f,h )1/(2∗−2)u0, (2S

(α,β)
f,h )1/(2∗−2)v0) is a

weak solution of system 1.1. This completes the proof of the theorem. �

Proof of Theorems 1.7 and 1.8. From Theorem B and Theorem C together
with Lemma 4.1, it follows that S

(α,β)
f,h < S∗

f(x0)2/2∗ . Thus the proof follows
similar to Theorem 1.6. �

Let us introduce some notations before of the proof of Corollary 1.9. Let

Λα,β
f,+ :=

{

(u, v) ∈ H :

∫

M

f(x)(u+)α(v+)βdvg = 1

}

and S
(α,β)
f,h,+

:= inf
(u,v)∈Λα,β

f,+

Eh(u, v).

Then, if b ≤ 0 in M , it is easy to see that Eh(|u|, |v|) ≤ Eh(u, v), so if
(u, v) ∈ Λα,β

f then (|u|, |v|) ∈ Λα,β
f,+, and therefore, we deduce that S

(α,β)
f,h,+ ≤

S
(α,β)
f,h . Then, by Lemma 4.1, we have S

(α,β)
f,h,+ < S∗

f(x0)2/2∗ . Moreover, we claim

that S
(α,β)
f,h > 0, indeed,

Eh(u, v) ≥ C0||(u, v)||2H ≥ C

(∫

M

|u|α|v|βdvg

)2/2∗

≥ C

(∫

M

(u+)α(v+)βdvg

)2/2∗

≥ C

f(x0)2/2∗ ,

for all (u, v) ∈ Λα,β
f,+.

Proof of Corollary 1.9. Let {(um, vm)} ⊂ Λα,β
f,+ be a minimizing sequence for

S
(α,β)
f,h,+. Arguing similarly to Lemma 4.2, we obtain a pair (u, v) ∈ Λα,β

f,+ such

that Eh(u, v) = S
(α,β)
f,h,+, with u �= 0 and v �= 0, where um ⇀ u and vm ⇀ v

in H1(M). Now, we claim that u ≥ 0 and v ≥ 0 in M . Indeed, if we consider
G+(u, v) =

∫

M
f(x)(u+)α(v+)βdvg − 1, there is a Lagrange multiplier λ such

that

E′
h(u, v) · (ϕ,ψ) − λG′

+(u, v) · (ϕ,ψ) = 0, for all (ϕ,ψ) ∈ H. (4.11)

Taking ϕ = u− and ψ = v− as test functions above, we have

2Eh(u−, v−) + 2
∫

M

b(u+v− + u−v+)dvg = 0.

Since b ≤ 0, it follows that Eh(u−, v−) ≤ 0, hence u− = v− = 0. Thus, we
conclude that u ≥ 0 and v ≥ 0. Considering ϕ = u and ψ = v as test functions
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in (4.11), we get 2Eh(u, v) = 2∗λ > 0, and consequently λ = 2
2∗ S

(α,β)
f,A,+ > 0.

Therefore, ((2S(α,β)
f,h,+)1/(2∗−2)u, (2S

(α,β)
f,h,+)1/(2∗−2)v) is a weak positive solution

of system (1.1), because the elliptic regularity theory gives us u > 0 and v > 0
in M . �

Proof of Corollary 1.10. Here, we assume that b = 0, a = c = (n−2)
4(n−1)Rg and

f ≥ 0. We claim that

S
(α,β)
f,h =

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]

λf (M, g).

Indeed, from of the proof of Lemma 4.1 (see (4.4)), it is sufficient to prove
that

S
(α,β)
f,h ≥

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]

λf (M, g).

In order to achieve this goal, let {(um, vm)} ⊂ Λα,β
f be a minimizing sequence

for S
(α,β)
f,h , that is,

∫

M

(

|∇gum|2g + |∇gvm|2g +
n − 2

4(n − 1)
Rg

(
u2

m + v2
m

)
)

dvg

= S
(α,β)
f,h + om(1). (4.12)

Define wm = tmvm, where tm > 0 is chosen so that
∫

M

f(x)|um|2∗
dvg =

∫

M

f(x)|wm|2∗
dvg.

By Young’s inequality, we get that

tβ
m =

∫

M

f(x)|um|α|wm|βdvg ≤ α

2∗

∫

M

f(x)|um|2∗
dvg +

β

2∗

∫

M

f(x)|wm|2∗
dvg

=

∫

M

f(x)|um|2∗
dvg =

∫

M

f(x)|wm|2∗
dvg.

(4.13)

Using (4.13) in (4.12), we have

S
(α,β)
f,h + om(1) = t2β/2∗

m

∫

M

(|∇um|2g + |∇vm|2g
)
dvg +

∫

M
n−2

4(n−1)
Rg

(
u2

m + v2
m

)
dvg

(∫

M
f(x)|um|α|wm|βdvg

)2/2∗

≥ t2β/2∗
m

∫

M

(
|∇um|2g + n−2

4(n−1)
Rgu2

m

)
dvg

(∫

M
f(x)|um|2∗dvg

)2/2∗

+ t(2β/2∗)−2
m

∫

M

(
|∇wm|2g + n−2

4(n−1)
Rgw2

m

)
dvg

(∫

M
f(x)|wm|2∗dvg

)2
2∗

≥ (t2β/2∗
m + t(2β/2∗)−2

m )λf (M, g).
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On the other hand, it is easy to see that t2β/2∗
+ t(2β/2∗)−2 ≥

(√
α
β

)2β/2∗

+
(√

β
α

)2α/2∗

, for all t > 0. Therefore,

S
(α,β)
f,h ≥

[(
α

β

)β/2∗

+
(

β

α

)α/2∗]

λf (M, g).

Thus, Corollary 1.10 follows by Lemma 4.2. �

5. Case S
n

Let (Sn, g0) be the n−sphere, where g0 is standard metric of Sn. Due to the
argument of Escobar and Schoen in [13] we can prove:

Lemma 5.1. Let Γ be a nontrivial finite group of isometries of Sn acting with-
out a fixed point on S

n. Write (M = S
n/Γ, g), where g is the metric induced by

π : Sn −→ S
n/Γ covering map. Let a, b, c and f be functions in M satisfying

the same assumptions of Theorem 1.8. Then we have that

S
(α,β)

f,h
(Sn/Γ) <

S∗
f(x0)2/2∗ .

Proof. By hypotheses about Γ it is known that M = S
n/Γ is a compact Rie-

mannian manifold locally conformally flat, which is not conformally diffeo-
morphic to S

n. From Theorem C, we have λf (M, g) < λ(Sn)/f(x0)2/2∗
, and

consequently

S
(α,β)

f,h
(Sn/Γ) <

S∗
f(x0)2/2∗

as desired. �

Proof of Theorem 1.11. By Lemma 4.2 and Lemma 5.1, it follows that there
exists (u0, v0) ∈ H weak solution of system (1.1) for (M = S

n/Γ, g). Since
a, b, c and f are invariant under Γ (and recall that π∗g = g0 and Δg0(u ◦ π) =
(Δgu) ◦ π, for u ∈ C2(M)), then writing u0 = u0 ◦ π and v0 = v0 ◦ π we have
that (u0, v0) ∈ H1(Sn) × H1(Sn) is a weak solution of the system

⎧
⎪⎨

⎪⎩

−Δg0u + au + bv =
α

2∗ f(x)u|u|α−2|v|β in S
n,

−Δg0v + bu + cv =
β

2∗ f(x)v|v|β−2|u|α in S
n,

(5.1)

which ends the proof of the theorem. �
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Proof of Corollary 1.14. As a consequence of the assumptions, from corollary
1.13 we immediately have that S(α,β)(Sn) = S∗. Let ϕ ∈ C∞(Sn) be a min-
imizer for λ(Sn), we can to see that (ξϕ, ζϕ) is a minimizer for S(α,β)(Sn).
Indeed, notice that

Q(ξϕ, ζϕ)
(∫

Sn |ξϕ|α|ζϕ|βdvg0

)2/2∗ =
(ξ2 + ζ2)

(ξαζβ)2/2∗

(
‖∇g0ϕ‖2

2 + n(n−2)
4 ‖ϕ‖2

2

)

‖ϕ‖2
2∗

= S∗.

(5.2)

So, (ξϕ, ζϕ) is a solution of the system
⎧
⎪⎨

⎪⎩

−Δg0u + n(n−2)
4 u = S(α,β)(Sn)

α

2∗ u|u|α−2|v|β in S
n,

−Δg0v + n(n−2)
4 v = S(α,β)(Sn)

β

2∗ v|v|β−2|u|α in S
n.

(5.3)

Hence the rescaling ((S(α,β)(Sn))1/(2∗−2)ξϕ, (S(α,β)(Sn))1/(2∗−2)ζϕ) is solution
of system (1.1). Therefore, we have infinite positive solutions for system (1.1),
because for x0 ∈ S

n fixed, and any ρ > 1, the functions

ϕρ,x0(x) = (ρ − cos r)
2−n

2 (5.4)

are minimizer for λ(Sn), with r = dg0(x, x0) (for more details see Theorem 5.1
in [15]).

On the other hand, if (u, v) is a minimizer for S(α,β)(Sn), with u, v ∈ C∞,
u, v > 0 and

∫

Sn uαvβdg0 = 1. Let σ : Sn\{PN} −→ R
n be the stereographic

projection, where PN is the north pole of Sn, since (σ−1)∗(g0) = U4/(n−2)ge,

where U(y) =
(

2
1+|y|2

)(2−n)/2

and ge is the Euclidian metric. So, we have

S∗ =
∫

Sn

[

|∇u|2g0
+ |∇v|2g0

+
n(n − 2)

4
(u2 + v2)

]

dvg0

=
∫

Rn

[|∇[(u ◦ σ−1)U ]|2 + |∇[(v ◦ σ−1)U ]|2] dvge

(5.5)

and
∫

Sn

uαvβdvg0 =
∫

Rn

[(u ◦ σ−1)U ]α[(v ◦ σ−1)U ]βdvge
= 1. (5.6)

Consequently, (u, v) is a minimizer for S∗, where u = (u ◦ σ−1)U and v =
(v ◦ σ−1)U , that is,

⎧
⎪⎨

⎪⎩

−Δu = S∗
α

2∗ uα−1vβ in R
n,

−Δv = S∗
β

2∗ uαvβ−1 in R
n.

(5.7)
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From Theorem 1.3 in [12], it follows that

u(y) = ξ1

(
ε0

ε2
0 + |y − y0|2

)(n−2)/2

and v(y) = ζ1

(
ε0

ε2
0 + |y − y0|2

)(n−2)/2

,

(5.8)

where y0 ∈ R
n, ε0 > 0 and ξ1, ζ1 > 0 satisfying

ξ1n(n − 2) = S∗
α

2∗ ξα−1
1 ζβ

1 ,

ζ1n(n − 2) = S∗
β

2∗ ξα
1 ζβ−1

1 ,

ξα
1 ζβ

1 =
[
n(n − 2)
λ(Sn)

]n
2

,

so, a simple calculation gives us

ξ2
1 =

(
α

β

)β/2∗ [
n(n − 2)
λ(Sn)

](n−2)/2

,

ζ2
1 =

(
β

α

)α/2∗ [
n(n − 2)
λ(Sn)

](n−2)/2

,

u =
ξ1

ζ1
v =

(
α

β

) 1
2

v.

Therefore, by definition of u and v we get that u = ξ1
ζ1

v. Then ξ−1
1 u is positive

solution (up to a rescaling) of the equation −Δg0w + n(n−2)
4 w = w2∗−1 in

S
n. From Theorem 5.1 in [15] then up to a constant scale factor, u is of the

following form, u(x) = ξ1(ρ0 − cos r)
2−n

2 , so, v(x) = ζ1(ρ0 − cos r)
2−n

2 , where
r = dg0(x, x0) and ρ0 > 1. This complete the proof. �
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