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Abstract. We establish a pointwise estimate of |A| along the mean cur-
vature flow in terms of the initial geometry and the |HA| bound. As
corollaries we obtain the blowup rate estimate of |HA| and an extension
theorem with respect to |HA|.
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1. Introduction

Let xp : ¥" — R""! be a complete smooth immersed hypersurface without
boundary and a family of immersions x(z,t) : X" x [0,7) — R"*! be a solution
to the equation

Ox = —Hn, x(0)=x,

which is called a mean curvature flow with the singular time T'. If ¥ is a closed
embedded hypersurface, then the flow develops a singularity at T < oo and
supy, |A| — oo as t — T" according to Huisken [1].

Since the finite-time singularity for a compact mean curvature flow is
characterized by the blowup of the second fundamental form, it is of great
interest to express this criterion in terms of some simpler quantity. A natural
conjecture is the blowup of the mean curvature H, which is proposed as an
open problem in [2]. The case of n = 2 was confirmed by Li-Wang [3]. However,
in [4] Stolarski showed that for general cases n > 7 the mean curvature does
not necessarily blow up at the finite singular time.

Hence we turn to consider some alternative conditions for general dimen-
sions n > 2 which may be stronger than the mean curvature bound. In [5]
Cooper proved the HA tensor also blows up at time 7. In [5-7], Cooper and
Le-Sesum proved that the mean curvature blows up under the assumption of
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some slow blowup rate of the second fundamental form. Some extension results
under integral conditions also can be seen in Le-Sesum [8] and Xu-Ye-Zhao
[9].

Note that similar blowup and extension results have been studied for
Ricci flow as well. In [10] Hamilton proved that the Riemann curvature ten-
sor blows up at the finite singular time. In [11] Sesum proved the blowup of
the Ricci curvature. In [12-14], Wang, Chen-Wang and Kotschwar-Munteanu-
Wang arrived at estimates on curvature growth in terms of the Ricci curvature.

The explict local estimate in Kotschwar-Munteanu—Wang [14] has some
precedent on a gradient shrinking soliton in [15] that a bound on Ric implies
a polynomial growth bound on Rm. The feasibility lies in the observation that
the second order derivatives of Ric appear as time-derivative of Rm, i.e.,

9, Rm = ¢V?Ric,

which helps to yield a differential inequality on integrations. This equation
follows from the fact that Ric describes the metric evolution along a Ricci flow.
In a similar way H A describes the metric evolution of the mean curvature flow
and plays the role of Ric by

AP =2(V?H - A+ H - tr(A?)).

In the present paper, we follow the techniques on integration estimates from
[14] and establish the following local L°° estimate of A in terms of the initial
geometry and the |H A| bound along the flow.

Theorem 1.1. Fiz v € R"™! and r > 0. Let x : X" X [to,t1] — R"T! be a
complete smooth mean curvature flow satisfying the uniform bound
sup |HA|(-,t) < K(t), VtEe [to,t1].
B(xo,r)NZ
Then for any q > n+2 there exist positive constants C = C(n,r,t;—to, q, K (to))
and ¢ = ¢(n, q) such that for any t € [to, t1]

sp  |4]
B(xo,r/2)N3

t c
C C s K
= C(l + HAH%LI(B($O72T)OEtO)) (1 + VOlg(to)(BQT,t)> (/t elio® d5> )
0
where Bayy = B(xg, 2r + nt/4 ftto VEK)NE,,.

This local estimate provides a new proof of the blowup of |[HA| in [5]
and extends the estimates for the Ricci flow in terms of Ric in [12-14] to an
estimate for the mean curvature flow in terms of |[HA].

One of its direct corollaries is the following extension theorem as well as a
blowup estimate of | H A| at the first finite singular time. This result generalizes
Theorem 1.2 of [7] and Theorem 5.1 of [5] and can be seen as another version
of Theorem 1.1 of [12] and Theorem 2 of [14].
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Theorem 1.2. There exists a positive constant ¢ = €(n) satisfying the following
properties. Let x : X" x [0,T) — R"*! be a complete smooth mean curvature
Sflow with T' < co. Suppose each time slice ¥y has bounded second fundamental
form. If

€
HA| < ——, Ytel0,T),
Sgtpl <7 [0,T)

then

limsupsup |A|(-,t) < C(n,T, %) < oo,
t—T P
which implies the flow can be extended past time T. Conversely, if the flow
blows up at time T, then

lim sup ((T —t)sup \HA|) > €.
t—T P

The organization of this paper is as follows. In Sect. 2 we recall some
basic results on mean curvature flow. In Sect. 3 we develop LP estimate in
terms of initial data and |H A| bound, following the argument in [14]. In Sect.
4 we establish the L*™ estimate by Moser iteration as in [8] and finish the
extension theorem. In Sect. 5 we estimate the blowup rate of |H A|, using the
L estimate and the blowup estimate of |A|.

2. Preliminaries

Let x(p,t) : " — R"! be a family of smooth immersions. {(X",x(-,1)),0 <
t < T} is called a mean curvature flow if x satisfies

Ox=—Hn, VYte|0,T), (2.1)

where we denote by A = (h;;) the second fundamental form and by H = g/ h;;
the mean curvature. Sometimes we also write ¥, as x(t) for short.

Some equations are listed here for later calculations. See [1] or [2] for
details.

Lemma 2.1 (Sect. 3 of [1]). Along the mean curvature flow,

Ovdp = —H?dp,
AP =2(Ve,Ve,H - Aij + HAp At A, (2.2)
2/VH|? = (A — 8,)H? + 2H?| A%, .
2VAP = (A —0)|AP +2|A]". (2.4)

By maximum principle the second fundamental form blows up at least at
a rate of 1/2, which holds for noncompat cases as well.
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Lemma 2.2 (Proposition 2.4.6 of [2]). Suppose the flow (2.1) blows up at the
finite singular time T and each time slice ¥y has bounded second fundamtental
form. Then

1
sup |[4| > ——.
oM 2(T —t)

On a hypersurface we also have the Sobolev inequality, i.e., the Michael-
Simon inequality. See [1,16].

Lemma 2.3 (Lemma 5.7 of [1]). Let f be a nonnegative Lipschitz function with
compact support on a hypersurface X" C R"T1. Then there exists a positive
constant ¢ = c¢(n) such that

( / fwdu)" < o (V51 + 1AL )i
b >

From LP estimate to L™ estimate we require the process of Moser it-
eration which depends on the Michael-Simon inequality, i.e, Lemma 2.3. We
conclude the following result from Lemma 5.2 in [8].

Lemma 2.4 (Moser iteration). Let x : " x [to,t1] — R"*! be a smooth mean
curvature flow. Consider the differential inequality

(0 — A)v < fu, v>0.

Fiz xg € R" andr > 0. For any ¢ > n+2 and (3 > 2 there exists a constant
C =C(n,r t1 —to,q, ) such that for any t € [to, t1]

HUHLDC(D;_,)

an?

qn3
< C(l + ||fHLL1/2(DM)) Bla—n—2) (1 + ||H||ZI~%2(DM)) B(nT2)(q—n—2) HUHLB(D”)a

where

Dy, = U (B(foﬂ") N Zs)v

togsgt

Di,:= |J  (Bor/2)n5,).
(to+1t)/2<s<t
Proof. Without loss of generality, we assume tg =0, ¢t =1 and r = 1. Set
_ _ 2 S B n+2
Co= 1+ Wl Co= (U 5, )75 v= g

where ¢ > 242, According to the proof of Lemma 5.2 of [8] we have for 8 > 2,

[vlle=(p;.,) < CollvllLs(p, )
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where
2

9 1+v %
Cb - Cb(n7Q75700701) = <4 <n + > Czﬁl-‘rV) )
n

C., =C.(n,q,Cy,C1) =16 - 100" "¢, C,.

According to the proof of Lemma 4.1 of [8] we have
Ca = Ca(”a q, 007 Cl) = (26”0001)14,-1).

As a conclusion,

2

(C(n,q,8)C.) 7 = (C(n,q,8)C ) 5 = O, g, 8)(CoCh)

2gn3
= O )1+ 1 lpe(Duy) T (1 [ H T, ) T o,

n (1+u)

3. LP estimate

Throughout this section we use ¢ to denote a nonnegative constant depending
only on n and p and we use ¢, to denote a nonnegative constant depending
only on n, which may change from line to line.

Theorem 3.1. Fiz 7o € R"™ and r > 0. Let x : X" X [to,t1] — R" ™! be a
complete smooth mean curvature flow satisfying the bound

sup |HA|(-,t) < K(t), VtEeE [to,t1],
B(xo,r)N3y

where K (t) is nondecreasing. Then for any p > 2 there exist positive constants
¢ = c(n,p) such that for any t € [to, t1],

/ AP < [ K(to) ! / AP (1) + ¢ / AP (to)
B(zg,r/2)NX: B(zo,m)NXt, B(zo,m)NZy¢,

t

—|—K(t0)71r7(p+2) Volg(to)(B,«,t)> - eleo CK,

where B,.; = B(xg,r +n'/* ftz VE)NY,,.

Proof. Let ¢(x,t) be a nonnegative smooth function with compact support
which will be determined later. Note that |H||4| < K. By Eq. (2.2) we have

[AlP¢
=,

< [ alaps+ / APaL

P PN
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=p [ |AP26(Ve,Ve,H  Ajj + HAp Ay Api) + |A|PO, ¢
I P

<e / AP VH|| VA6 + ¢ / APV H|[V6| + ¢ / ||| AP+
I poM PP

4 / APa,6
pI

< = | JAPIVHP¢ + cK / AP VARG + ek [ AP
K P PP PN

oK / AP~261 VP + / APBL6.
P pa
By Eq. (2.3) we have
APIVH 2
pIM
- / APG(A —a)H2 + [ H2APT2
2 PN 3¢
<e / \H|| AP~V H||[V Al + ¢ / H|| APV H|[V |
N P
1 1
Lo [ mPape st / H20,(|AP) + / H2|AP* 2
2 3 2 P pm
—c / H|| AP~ |V H|[VAlg + ¢ / \H|| APV H|[V |
pI 3¢
_%at/ H2|A|p¢+c/ H2| AP 2(Ve, Vo, H - Ay + H Ay Avn A )
=, =
+1 / H2 AP0 + / H2 AP
2 Js, =,
<c / \H|AP~ [V H||[V Al + ¢ / H|| APV H|[V |
3y 3¢
e / H|APVH + ¢ / H2 AP~V H|[V Al + ¢ / P AP
>, 3 P

50 [ HAPo g [ mharas e [ HAPt
2 s, 2 Js, s,
<e / H|| AP~ |V H|[VAlg + ¢ / \H|| APV H|[V |

Zy P

1 1
Lo [ m2apes ! / H2| A9, + / H?|A[P+25,
2 2 =, =,

P
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By Cauchy’s inequality we have

[ 1arwaps
2y
1
<5 [ 1arIvEPo v [ AP EVARo e [ HE Ao VoP
Zt Et Zt

30 [ mApo g [ AP se [ H APt
2 2 I P

P

g—%at H2|A|P¢>+CK2/ |A|p_4|VA\2¢>+cK2/ |A[P¢
I P

b

1 1
1 / APIVH P + ek / A2~ VP + 1 / A9,
2 M P 2 P

and then

C
— [ |APIVH?
i | vt

HAPo + oK [ AP VAo + ok [ |aps
3¢

c
< —-—0
Kt b

2y

+CK/ AP~ 297 Vol + £/ H?|A[P9,0.
N K Jx,
By Eq. (2.4) we have for p > 4,

APV AP

¢

1
5 [ 1ar-a—aniapo [ lars

1 1

=5 [ varto)viap -5 [ jap-is-aap+ [ japs

Xy PR PP
<-0-1) [ AP UTIAPe+ [ 1APalvY

PN pa
~edr [ lapone [ lapos [ laps

)N I PN

<

1
by / P29+ L / AP VAP + / AP 26 |Vo2
Et 2 Zt Et

e / AP 20,6+ / AP,
P pa
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and then

K | JAPTHVAPe
P

< —cKo, [ AP+ 2K / AP + cK / AP26~1 Vg2
PN P PN

+cK [ |APT20,¢.
¢

Combining the results above together we have for p > 4,

o [ 1are
p
g—iat H2|A|p¢—|—cK/ |A\P—4|VA|2¢+CK/ |A[P o
K s, =, =,

+cK |A\p_2q§_1|v¢|2+£/ H2|A\P6t(b+/ |A|P O
S K Js, =,
<-Z208, | HYAPS - cKat/ |AP~2¢ + cK/ |AP¢
K pIP PN P
vk [ AP VP + [ |aPiaol + ek [ |aP2ial.
3y 3t 3¢
(3.1)
Consider a smooth decreasing function 7, which equals 1 on [0,7/2] and

vanishes on [r, 00), satisfying || < 3/r. For any 0 < § < 1 we set ¢ := n'/?
such that

’ 3 1-6
< — .
Wl < S
Now we choose ¢ := ¥ (|z — z¢]). Then
_ - 9 -
oIV < v < 56t

/ / 3 _
06| = [/110: (] — o )| < [W'[|H| < | H|o' .

Take § = -. By Young’s inequality we have

/ AP VP < er™? / AP~2615 < o / AP + ¢ /
> S = 3,NSUpp¢

<c |AlPp + er~PVoly (B(:z:o, r) N Et),
¢
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and

/'Alp‘2|3t¢lécr‘l/ \Al”%“%gc/ |A|”¢+c/ o
pIP P pIM %, NSUppPe

< c/ |A[P¢ + cr =P Vol (B(zo, ) N X4),
P
and

/ |Al"10r] < cr_l/ ‘H|‘A|p¢17% <er 'K |A‘P—1¢1*%
oM < .,

< cK [ |A]P¢+ cKr PVolyy (B(zo, ) N 3y).
¢

Back to (3.1), we obtain
[ 1apo s o [ mRAps + ek [ jap-s
5 5 5
<cK |A[P¢ + cKr~PVoly (B(zo, ) N S4). (3.2)

¢

If we set
Ut = [ 1aro+ 1 [ #Plaps ek [ ap-t,
3 K I PN
then actually it becomes
U < ——/ H2\A|P¢>+CK'/ |A[P~ 2¢+CK/ |AP¢

+cKr~ pVOlg(t)( (xo,7) N Et)
< (K'/K + cK)U + cKr~PVoly) (B(zo,r) N 5¢).

Since
Oylz — x| < |H| < nV/*VK
and
Opdp = —H?dp,
we know

t
B(zo,7)NY; C B (xo,r+n1/4/ JE) NY4, = By,
to

VOIQ(S) (B(xm 7") N ZS) < VOlg(to)(B’r‘7t)7 Vs e [to, t].
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Then for any s € [to, ],
0. (e_ j’t;(K’/K+cK)U(S))

< cKe Jo (K//K+CK)7"7PV019(150) (Byt)

< (cK 4 K'/K)e” o E K4 myg) (B,

=0, ( —e -fﬂ;(K//KJrCK))r_pVolg(to)(B,.7t)7
ie.,
0, (e oI (1 () 4 1P Vol 4 (Bya)) ) 0,
which implies
U(s) < fia 1K) (U(to) +T_pV019(to)(Br,t))

— K(s) /K(to)(U(to) + r—onlg(to)(Bm))ef% K Vs e totl.
(3.3)

In particular, we focus on the third term of U to see that for p > 4,

CK (1) / A2
B(zo,r/2)N%

< K(0)/Kto) ( o 1A +eK ) | AP ~2(t0)

B(xo,r)NZ4,
+ 77 PVoly) (Br,t)> ol e

In other words, for p > 2,

/ AP < (Ko [ AP to) +c [ AP t)
B(zo,r/2)NX: B(zo,r)NXt, B(xo,r)NE4,
+K(to)_lr_(p+2)VOIg(to)(Br,t)> -efttg K

Similarly, we can focus on the first term instead to see that for p > 4,

/ AP < (Ko [ AP (to) +c [ APt
B(zo,r/2)NX: B(zo,r)NX4, B(xo,r)NE4,

+ K (to) "' PVoly () (Bm)> K (t)elo K (3.4)

0
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4. L°° estimate and extension theorem

Combining Theorem 3.1 and Lemma 2.4 we obtain the following local estimate.

Theorem 4.1 (L estimate). Fir xo € R**! andr > 0. Let x : X" x [to, t1] —
R™ be a complete smooth mean curvature flow satisfying the bound

sup |HA|(-,t) < K(t), VtE [to,t1],
B(xo,r)N3

where K (t) is nondecreasing. Then for any q¢ > n + 2 there exist positive
constants C = C(n,r,t1 — to,q, K(to)) and ¢ = ¢(n,q) such that for any t €
[to. ta],

c c t s . ¢
sup 4] < C (1 4+ Al ov(pan 2nmiy)) (1 Vol (Bor)) ( = de) :
0

where Boyy = B(xg, 2r + nt/4 f; \/I?) N Xy,
Proof. Take g = ”T‘LQ Applying Lemma 2.4 to
(0 — A)A]? = =2|VA]® +2|A]* <24 - AP
yields
sup |A|
D!,

3

q
<1+ [Alucp, )@ (1+HAuzrfzwt,,))W““M*H) lAllz2s(o,..

14——am®
< O(14 MAlrcp,) T (14 1Al sncp, )

3
11N 14—1
<C(1+ | AllLa(p,,y) " sy —2)( + lAll La(p, ) Vol(Dy, ) w2 q> o=
T 14—an®
< C(1+|AllLs(p, ) 20 (1+ Al Lo(p, )) ey
11 1+L
(1+vo1(Dt,T),.,+2 ) e
1+ _qn? aa,
C(l + HA“L‘I(D\‘ r)) q—n—2 (1 +V019(t0)(B21',t)> 1( 1+2) | (n+2)2 7 (41)

where
C= C(n,’l",tl - th Q)v

t
Vol(Dy ) : = / Voly ) (B(zo,7) N Xs)ds,
to

t
Bay.t = B(wo,2r + 711/4/ VE) N2y,
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It is derived from Theorem 3.1 that for ¢ > n + 2
1 +2
1A aip, ) < (K o) AN a0y + IAN e (a0 2myome )

t
—|—K(to)_l(27")_(q+2)V019(t0)(B2r,t)) / efto chs,
to

where ¢ = ¢(n, ¢). Note that
1 +2
K(to)™ ||A||%q+2(3 (20,2r) NS¢, + CHAH%Q(B(;C(),QT)OZH])
+ K (to) "1 (2r) " Vol ;) (Bart)
_ +2 _2
S K(to) 1 HA||%‘1+2(B(IO72"")HEtO) + C||A||%q+2(B(a:o,2'r')ﬂEtO)VOlg(to)(BQT#t) q+2
+ K(to)_l (QT)_(Q+2)Volg(tO) (BZn:t)
q+2
< C(n, 1,0, K () (14 [ Allas2(sa 2momey)) - (1+ Volyteo) (Bart))-

The final coefficient is

)(Q+2)(§+q,"n,2)

C- (1 + [[All La+2(B(z0,2r)n50)

1 n? g—n—2 n3
) atnmtam T i
b

(1 -+ VOlg(to)(BQT,t)
where C' = C(n,r,t; — to,q,K(to)). Back to (4.1), we have the local L*>

estimate
C c t s ¢
sup 4] < C (14 [ Allz0v2(p0.200m,)) (14 Volyceo (Bar)) < eFo chs) |

t,r to

O

As an application of the local estimate above, one immediately gets the
following extension theorem about H A.

Corollary 4.2. Let x : X" x [0,T) — R™" be a complete smooth mean curva-
ture flow. Suppose each time slice ¥y has bounded |H A|. There exists a positive
constant C = C(n, T, K,V, E,q) such that if

(1) |HA| satisfies

sup sup|HA|(-,1) < K < o0;
tel0,T) Xt

(2) the initial data satisfies a uniform volume bound

sup Volyo)(B(z,1 +nATVE)N3) <V < o0;
SO

(8) the initial data satisfies an integral bound
Sug | Al Lat2(B(z,1)n5e) < B < 00

TE2Q

for some ¢ > n + 2,
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then

lim supsup |4|(+,t) < C < 0.
t—T pIP

In particular, the flow can be extended past time T'.

Proof. 1t suffices to use By, ¢ C By, 1 and take r = 1 in Theorem 4.1. O

5. Blowup estimate of |H A|

In this section we derive a blowup estimate of |[HA| from Theorem 4.1 and
Lemma 2.2, which also implies a blowup estimate of mean curvature.

Theorem 5.1 (HA-blowup). There exists a positive constant e = e(n) satisfying
the following properties. Let x : £ x[0,T) — R™! be a complete smooth mean
curvature flow with T < oo. Suppose each time slice ¥y has bounded second
Sfundamental form. If the flow blows up at time T, then

lim sup ((T —t)sup \HA|> > e
t—T P

Conversely, if

€
HA| < ——, Vtelo,T),
Sg})l <7 €10,7)

then

limsupsup |4|(-, t) < C(n, T, Xg) < 00,
t-T %,

which implies the flow can be extended past time T.

Proof. Assume that the flow blows up at time T and there exist to € [0,7)
and € > 0 such that

€
HA| < ——, Vte[t,T).
S;})I <7 [to. T')

Actually we find a smooth mean curvature flow x : X" x [tg, T') — R"*! with
a |[HA| bound

For t close to T,

t tocne T —to
K = = cpel )
/toc /tOTfsds ceog<T7t>

t . t _ Cn€ _ Cp€
ejfo cans _ / (T tO) ds — (T tO) ((T _ to)l—cne _ (T— t)l—cne>'
to

to T—s 1 —cne

On the other hand, by Lemma 2.2 we know

1 1
sup |A| > — (T —t)" 2.
(4] > o (T 1)
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Note that 3;, has bounded geometry. If ¢,,e < 1, then the integral ftto elio K g5
is bounded and the flow can be extended past time T' by Theorem 4.1. This
actually proves the second part. If 1 < ¢ e < 3, then

(T —1)"2 > C(n,T, %y, €)(T —t)(ene)

as t — T. In a word, the choice of € < e(n) causes a contradiction. This
completes the proof of the first part. O

Remark that Theorem 5.1 certainly works for the closed cases. The type-
I blowup is optimal since the standard sphere S — R"*! satisfies |HA| =

2(7?4) :

Corollary 5.2 (H-blowup). Let x : X" x [0,T) — R™*! be a complete smooth
mean curvature flow with a finite singular time T'. Suppose each time slice ¥
has bounded second fundamental form. If

lim sup ((T — 1) sup |A\) < 00
t—T ¢

for some X\ € [%, 1), then we have the blowup estimate of mean curvature

lim sup ((T — ) sup |H|) > 0.
t—T P

Proof. For otherwise for any € > 0 one finds ¢, such that

sup |[H| < (T —t)*1, Vte|t,T).
pp

By the assumption there exist nonnegative constants ¢, € [0,7) and

C :=limsup ((T — 1) sup \A|) < o0
t—T P

such that
sup |[A| < C(T — )=, Vte[t,T).
P

Hence we have

sup |HA| < Ce(T — )™, Vit e [max{t.,t,},T).
Py

Note the constant ¢ = e(n) in Theorem 5.1. Choosing € such that Ce < €
causes a contradiction according to Theorem 5.1. O

Remark that by Theorem 5.1 of [5] Cooper proved the blowup of mean
curvature under the same assumption in Corollary 5.2 and by Theorem 1.2 of
[7] Le-Sesum proved the case of A = 1. Hence Theorem 5.1 and Corollary 5.2
can be seen as generalizations of these results.
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Corollary 5.3. Let x : X" x [0,T) — R™" be a complete smooth mean curva-
ture flow with a finite singular time T'. Suppose each time slice ¥; has bounded
second fundamental form. If

lim sup ((T —t) sup \H|> < 00
t—T 3¢

for some A € [0, %), then we have the blowup estimate
lim sup ((T — 1)1 A sup |A|) > 0.
t—T P

In particular, t =T is a type-II singularity.

Proof. By the same argument used in the proof of Corollary 5.2 we obtain the
result. g
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