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Abstract. In this paper, the Cauchy problem for linear and nonlinear
wave equations is studied.The equation involves an abstract operator A
in a Hilbert space H and a convolution term. Here, assuming sufficient
smoothness on the initial data and on coefficients, the existence, unique-
ness, regularity properties, and blow-up of solutions are established in
terms of fractional powers of a given sectorial operator A. We obtain the
regularity properties of a wide class of wave equations by choosing a space
H and an operator A that appear in the field of physics.
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The main objective of this article is to study the existence, uniqueness, regular-
ity, and blow-up properties of the initial value problem (IVP) for the abstract
wave equatıon (WE)

utt − a ∗ Δu + Au = f (u) , (x, t) ∈ R
n
T = R

n × (0, T ) , (1.1)
u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) for a.e. x ∈ R

n, (1.2)

where T ∈ (0, ∞], A is a linear and f(u) is a nonlinear operator in a Hilbert
space H, a is a complex-valued function on R

n, and ∗ denotes convolution.
Here, ϕ (x) and ψ (x) are the given H-valued initial functions.

The qualitative behaviours of a wide class of wave equations can be found,
e.g. in [2,4–10], [17–19] and [29–32]. Wave-type equations occur in a wide
variety of physical systems, such as the propagation of waves in elastic rods,
hydro-dynamical processes in plasma, and in materials science, which describes
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spinodal decomposition and the absence of mechanical stresses (see [1,11,14,
19–21,24]). Note that abstract hyperbolic equations were studied, e.g., in [2,
12,22,23].

Unlike these studies, in this paper both linear and nonlinear abstract
wave equations are considered. The Lp-well-posedness of the Cauchy problem
(1.1)–(1.2) depends crucially on the presence of the linear operator A and
nonlinear function f (u). We determine the class of operator A and function
f to guarantee the existence, uniqueness, regularity properties, and blow up
of solutions (1.1)–(1.2) in terms of fractional powers of the operator A. By
assigning a concrete space for H and an appropriate operator A we can obtain
a variety of wave equations that occur in applications. As an example, we can
let H = l2 and choose A1 as a matrix of finite or infinite dimension, i.e.,

A1 = [aij ] , i, j = 1, 2, ..., N , N ∈ N, D (A) = lσ2

=

⎧
⎪⎨

⎪⎩
u = {uj} , j = 1, 2, ...,∞, ‖u‖lσ2

=

⎛

⎝
∞∑

j=1

2σj |uj |2
⎞

⎠

1
2

< ∞

⎫
⎪⎬

⎪⎭

for N = ∞, (1.3)

where N denotes the set of natural numbers and aij are real numbers (see,
e.g., [27, §1.18] for the space lσ2 ). Therefore, as a corollary of our main result,
we obtain the existence, uniqueness, regularity properties, and blow-up of the
following IVP:

∂2
t u − a ∗ Δu + (A2

1 + ω)u = f (u) , (x,t) ∈ R
n
T , i = 1, 2, .., N,

ui (x, 0) = ϕi (x) , ∂tui (x, 0) = ψi (x) for a.e. x ∈ R
n (1.4)

in mixed Lp (Rn
T ; l2) , where p = (p, p, 2) .

As a second example we can choose H = L2 (0, 1) and A2 a degenerate
differential operator in L2 (0, 1) with nonlocal boundary conditions

D (A2) =
{

u ∈ W [2],2
γ (0, 1) , αku[νk] (0) + βku[νk] (1) = 0, k = 1, 2

}
,

A2u = b1 (y)u[2] + b2 (y)u[1], x ∈ R
n, y ∈ (0, 1) , νk ∈ {0, 1} , (1.5)

where u[i] =
(
yγ d

dy

)i

u for 0 ≤ γ < 1
2 , b1 = b1 (y) is a contınous function,

b2 = b2 (y) is a bounded function in y ∈ [0, 1] for a.e. x ∈ R
n, αk, βk are

complex numbers, and W
[2],2
γ (0, 1) is a weighted Sobolev space defined by

W [2],2
γ (0, 1) = { u : u ∈ L2 (0, 1) , u[2] ∈ L2 (0, 1) ,

‖u‖
W

[2],2
γ

= ‖u‖L2 +
∥
∥
∥u[2]

∥
∥
∥

L2
< ∞.

Moreover, our main result implies the Lp (Ω) -regularity property of a nonlocal
mixed problem for the degenerate PDE
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∂2
t u − a ∗ Δu + (A2

2 + ω)u = f (u) , (x, t) ∈ R
n
T , (1.6)

αku[νk] (x, 0, t) + βku[νk] (x, 1, t) = 0, k = 1, 2, (1.7)
u (x, y, 0) = ϕ (x, y) , ut (x, y, 0) = ψ (x, y) ,
(x, y) ∈ R

n × (0, 1) , t ∈ (0, T ) , u = u (x, y, t) , (1.8)

where the mixed norm is defined as

‖f‖Lp(�) =

⎛

⎜
⎝

∫

Rn

T∫

0

⎛

⎝

1∫

0

|f (x, y, t)|2 dy

⎞

⎠

p
2

dx dt

⎞

⎟
⎠

1
p

< ∞.

Note that if we let H = C and let the operator A be a complex-valued function,
then one can obtain the previous results in the literature.

The traditional methods of the classical theory for wave equations is very
limited in its ability to handle abstract wave equations. Here, a Lp -estimate
containing fractional degrees of A is shown for the solution. Therefore, to over-
come these difficulties we implement more powerful tools of abstract harmonic
analysis, operator theory, interpolation of Banach spaces, and embedding the-
orems of Sobolev-Lions spaces.

1. Definitions and Background

In order to state our results precisely, we introduce some notation and some
function spaces.

Let E be a Banach space and let Lp (Ω;E) denote the space of strongly
measurable E-valued functions that are defined on a measurable subset Ω ⊂ R

n

with the norm

‖f‖p = ‖f‖Lp(Ω;E) =

⎛

⎝

∫

Ω

‖f (x)‖p
E dx

⎞

⎠

1
p

, 1 ≤ p < ∞,

‖f‖L∞(Ω;E) = ess sup
x∈Ω

‖f (x)‖E .

Let E1 and E2 be two Banach spaces, and let (E1, E2)θ,p for θ ∈ (0, 1),
p ∈ [1,∞] denote the real interpolation spaces defined by the K-method [27,
§1.3.2.], Let E1 and E2 be two Banach spaces, and B (E1, E2) denote the space
of all bounded linear operators from E1 to E2. For E1 = E2 = E that space
will be denoted by B (E) .

Here,

Sψ = {λ ∈ C, |arg λ| ≤ φ, 0 ≤ φ < π} .
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A closed linear operator A is said to be ψ-sectorial in a Banach space E
with bound M > 0 if D (A) and R (A) are dense on E, N (A) = {0} and

∥
∥
∥(A + λI)−1

∥
∥
∥

B(E)
≤ M |λ|−1

for all λ ∈ Sφ, 0 ≤ φ < π, where I is the identity operator in E, and D (A)
and R (A) denote the domain and range of the operator A, respectively. It
is known that (see, e.g., [27, §1.15.1] ) there exist fractional powers Aθ of a
sectorial operator A. Let E

(
Aθ
)

denote the space D
(
Aθ
)

with the graphical
norm

‖u‖E(Aθ) =
(
‖u‖p +

∥
∥Aθu

∥
∥p
) 1

p

, 1 ≤ p < ∞, 0 < θ < ∞.

A sectorial operator A (ξ) is said to be uniformly sectorial in E for ξ ∈ R
n, if

D (A (ξ)) is independent of ξ and the following uniform estimate
∥
∥
∥(A + λI)−1

∥
∥
∥

B(E)
≤ M |λ|−1

holds for all λ ∈ Sφ.
A linear operator A = A (ξ) belongs to σ (M0, ω, E) (see [23, § 11.2]) if

D (A), R (A) are dense on E, N (A) = {0}, D (A (ξ)) is independent of ξ ∈ R
n

and for Reλ > ω the uniform estimate holds
∥
∥
∥
(
A (ξ) − λ2I

)−1
∥
∥
∥

B(E)
≤ M0 |Reλ − ω|−1 .

Remark 1.1. It is known (see, e.g., [22, § 1.6], Theorem 6.3) that if A ∈
σ (M0, ω, E) and 0 ≤ α < 1, then A generates a bounded group operator
UA (t) satisfying

‖UA (t)‖B(E) ≤ Meω|t|, ‖AαUA (t)‖B(E) ≤ M |t|−α , t ∈ [0, T ] . (2.1)

Let 1 ≤ p ≤ q < ∞. A function Ψ ∈ L∞(Rn) is called a Fourier multiplier
from Lp(Rn;E) to Lq(Rn;E) if the map P : u → F

−1Ψ(ξ)Fu for u ∈ S(Rn;E)
is well defined and extends to a bounded linear operator

P : Lp(Rn;E) → Lq(Rn;E).

Let E be a Banach space and let S = S(Rn;E) denote E-valued Schwartz
class, i.e., the space of all E-valued rapidly decreasing smooth functions on R

n

equipped with its usual topology generated by seminorms. Let S(Rn; C) be
denoted by S. Let S′(Rn;E) denote the space of all continuous linear functions
from S into E equipped with the bounded convergence topology. Recall that
S(Rn;E) is norm dense in Lp(Rn;E) when 1 ≤ p < ∞.

The Fourier transformation of the operator function B (x) with domain
D (B) independent on x ∈ R

n is a generalized function defined as

Â (ξ) u (ϕ) = A (x) u (ϕ̂) for u ∈ S′ (Rn;E (B)) , ϕ ∈ S (Rn) .

(For details see, e.g., [2, Section 3].)



Vol. 77 (2022) The Regularity Properties and Blow-up of Solutions Page 5 of 33 229

Definition 1.1. Let U be an open set in a Banach space X, and let Y be a
Banach space. A function f : U → Y is called (Fr échet) differentiable at x
∈ U if there is a bounded linear operator Df(x) : X → Y , called the derivative
of f at a, such that

lim
h→0

‖f (x + h) − f (x) − Df (x) h‖Y

‖h‖X

= 0.

If f is differentiable at each x ∈ U , then f is said to be differentiable. This
function may also have a derivative, the second-order derivative of f , which,
by the definition of derivative, will be a map

D2f : U → L (X,L (X,Y )) .

Let m be a positive integer, and let Wm,p (Ω;E) denote an E−valued Sobolev
space of all functions u ∈ Lp (Ω;E) that have the generalized derivatives ∂mu

∂xm
k

∈
Lp (Ω;E) with the norm

‖u‖W m,p(Ω;E) = ‖u‖Lp(Ω;E) +
n∑

k=1

∥
∥
∥
∥

∂mu

∂xm
k

∥
∥
∥
∥

Lp(Ω;E)

< ∞.

Let W s,p (Rn;E) denote the fractional Sobolev space of order s ∈ R, defined
as

W s,p (E) = W s,p (Rn;E) =

{

u ∈ S′(Rn;E),

‖u‖W s,p(E) =
∥
∥
∥
∥F

−1
(
I + |ξ|2

) s
2

û

∥
∥
∥
∥

Lp(Rn;E)

< ∞
}

.

It is clear that W 0,p (Rn;E) = Lp (Rn;E). Let E0 and E be two Banach spaces
and let E0 be continuously and densely embedded into E. Here, W s,p (Rn;E0, E)
denotes a Sobolev- Lions- type space, i.e.,

W s,p (Rn;E0, E) = {u ∈ W s,p (Rn;E) ∩ Lp (Rn;E0) ,

‖u‖W s,p(Rn;E0,E) = ‖u‖Lp(Rn;E0)
+ ‖u‖W s,p(Rn;E) < ∞

}
.

In a similar way, we define the following Sobolev- Lions- type space:

W 2,s,p (Rn
T ;E0, E) =

{

u ∈ Lp (Rn
T ;E0) ,∂2

t u ∈ Lp (Rn
T ;E) ,

F
−1
x

(
I + |ξ|2

) s
2

û ∈ Lp (Rn
T ;E) , ‖u‖W 2,s,p(Rn

T ;E0,E)

= ‖u‖Lp(Rn
T ;E0)

+
∥
∥∂2

t u
∥
∥

Lp(Rn
T ;E)

+
∥
∥
∥
∥F

−1
x

(
I + |ξ|2

) s
2

û

∥
∥
∥
∥

Lp(Rn
T ;E)

< ∞
}

.
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Let L∗
q (E) denote the space of all E-valued function space such that

‖u‖L∗
q(E) =

⎛

⎝

∞∫

0

‖u (t)‖q
E

dt

t

⎞

⎠

1
q

< ∞, 1 ≤ q < ∞, ‖u‖L∗∞(E) = sup
0<t<∞

‖u (t)‖E .

Let s > 0. The Fourier-analytic representation of an E-valued Besov space on
R

n is defined as

Bs
p,q (Rn;E) =

{
u ∈ S

′
(Rn;E) ,

‖u‖Bs
p,q(Rn;E) =

∥
∥
∥
∥
∥
F

−1
n∑

k=1

tκ−s
(
1 + |ξ|2

)κ

2
e−t|ξ|2

Fu

∥
∥
∥
∥
∥

L∗
q(Lp(Rn;E))

,

p ∈ (1,∞) , q ∈ [1,∞] , κ > s} .

It should be note that the norm of a Besov space does not depend on κ (see,
e.g., [27, § 2.3] for the case E = C).

Let

Xp = Lp (Rn;H) , Xp (Aγ) = Lp (Rn;H (Aγ)) , 1 ≤ p, q ≤ ∞,

Y s,p = Y s,p (H) = W s,p (Rn;H) , Y s,p
q (H) = Y s,p (H) ∩ Xq,

‖u‖Y s,p
q

= ‖u‖W s,p(Rn;H) + ‖u‖Xq
< ∞,

W s,p (Aγ) = W s,p (Rn;H (Aγ)) , 0 < γ ≤ 1,

Y s,p = Y s,p (A,H) = W s,p (Rn;H (A) ,H) , Y 2,s,p = Y 2,s,p (A,H)
= W 2,s,p (Rn

T ;H (A) ,H) , Y s,p
q (A;H) = Y s,p (H) ∩ Xq (A) ,

‖u‖Y s,p
q (A,H) = ‖u‖Y s,p(H) + ‖u‖Xq(A) < ∞,

Definition 1.1. For all T > 0, the function u ∈ C2
(
[0, T ] ;Y 2,s,p

∞ (A,H)
)

that
satisfies the equation (1.1)−−(1.2) a.e. in R

n
T is called the continuous solution

or the strong solution of the problem (1.1) − −(1.2). If T < ∞, then u (x, t)
is called the local strong solution of the problem (1.1) − (1.2). If T = ∞, then
u (x, t) is called the global strong solution of (1.1)–(1.2).

Sometimes we use one and the same symbol C without distinction to
denote various positive constants that may differ from each other even in a
single context. When we want to specify the dependence of such a constant on
a parameter, say α, we write Cα. Moreover, for u, υ,> 0 the relations u � υ,
u ≈ υ mean that there exist positive constants C, C1, C2 independent of u
and υ such that, respectively,

u ≤ Cυ, C1υ ≤ u ≤ C2υ.

The paper is organized as follows: In Sect. 2, some definitions and back-
ground are given. In Sect. 2, we obtain the existence of a unique solution and
a priori estimates for the solution of the linearized problem (1.1)–(1.2). In
Sect. 3, we show the existence and uniqueness of a local strong solution of
the problem (1.1)–(1.2). In Sect. 4, the existence and uniqueness of a global
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strong solution of the problem (1.1)–(1.2) is derived. Section 5 is devoted to
the blow-up property of the solution of (1.1)–(1.2) . In Sect. 6, we show some
applications of the problem (1.1)–(1.2).

2. Estimates for the Linearized Equation

In this section, we make necessary estimates for solutions of the Cauchy prob-
lem for the nonlocal linear WE

utt − a ∗ Δu + Au = g (x, t) , x ∈ R
n, t ∈ (0, T ) , T ∈ (0, ∞] , (2.1)

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) for a.e. x ∈ R
n, (2.2)

where A is a linear operator in a Hilbert space H and a is a complex-valued
function on R

n. Let

H0p = (Y s,p (A,H) ,Xp) 1
2p ,p , H1p = (Y s,p (A,H) ,Xp) 1+p

2p ,p ,

where (Y s,p,Xp)θ,p denotes the real interpolation space between Y s,p and Xp

for θ ∈ (0, 1), p ∈ [1,∞] (see, e.g., [27, §1.3]).

Remark 2.1. By properties of real interpolation of Banach spaces and inter-
polation of the intersection of spaces (see, e.g., [27, §1.3]), we obtain

H0p = (Y s,p (A,H) ∩ Xp,Xp) 1
2p ,p = (Y s,p (H) ,Xp) 1

2p ,p ∩ (Xp (A) ,Xp) 1
2p ,p

= W s(1− 1
2p ),p (Rn;H) ∩ Lp

(
R

n; (H (A) ,H) 1
2p ,p

)

= W s(1− 1
2p ),p

(
R

n; (H (A) ,H) 1
2p ,p ,H

)
.

In a similar way, we have

H1p = (Y s,p (A,H) ∩ Xp,Xp) 1+p
2p ,p = W

s(p−1)
2p ,p

(
R

n; (H (A) ,H) 1+p
2p ,p ,H

)
.

Remark 2.2. Let A be a densely defined operator on a Banach space. Let A
be a sectorial operator in a Hilbert space H. In view of interpolation by the
domain of sectorial operators (see, e.g., [27, §1.8.2]) we have the following
relation:

H
(
A1−θ+ε

) ⊂ (H (A) ,H)θ,p ⊂ H
(
A1−θ−ε

)

for 0 < θ < 1 and 0 < ε < 1 − θ.
Note that from the result of J. Lions - J.Peetre result (see, e.g., [27,

§1.8.2], we obtain the following result:

Lemma A1. The trace operator u → ∂iu
∂ti (x, t) is bounded and continuous from

Y 2,s,p (A,H) onto

(Y s,p (A,H) ,Xp)θj ,p , θj =
1 + jp

2p
, j = 0, 1.
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Let

Aξ =
[
â (ξ) |ξ|2 + A

] 1
2

.

Let A be a generator of the strongly continuous cosine operator-function
in H defined by formula

C (t) = CA (t) =
1
2

(

eitA
1
2 + e−itA

1
2

)

(see, e.g., [3, §3, 12, §11]). Then, from the definition of the sine operator-
function S (t) , we have

S (t) = SA (t) =

t∫

0

C (σ) dσ, i.e., S (t) =
1
2i

A− 1
2

(

eitA
1
2 − e−itA

1
2

)

.

Remark 2.3. Let A be a densely defined operator in a Hilbert space H. By
virtue of [3, Theorem 3.15.3.] , if A is a generator of a cosine function C (t),
i.e.,

R
(
λ2, A

)
=

1
λ

∞∫

0

e−λtC (t) dt for λ > ω,

then there exist ω, M ≥ 0 such that A ∈ σ (M0, ω,H).

Condition 2.1. Assume the following: (1) there exists â ∈ C(m) (Rn) such that

â (ξ) |ξ|2 ∈ Sψ1 ,
(
1 + |ξ|2

)−( s
2−2) ∣

∣Dβ â (ξ)
∣
∣ ≤ C0,

m = |β| > 1 +
n

p
, p ∈ (1,∞) for all ξ ∈ R

n;

(2) A is ψ-sectorial in H for ψ < π − ψ1 and A is a generator of the cosine
function; (3) Aξ �= 0 for all ξ ∈ R

n.
In view of Condition 2.1 and by virtue of [3, § 3] (or [12, §11]) we obtain

that Aξ is a generator of the strongly continuous cosine and sine operator
function defined by

η± (ξ) = eitAξ ± e−itAξ , C (t) = C (ξ, t) =
η+ (ξ)

2
,

S (t) = S (ξ, t) = A−1
ξ

η− (ξ)
2i

. (2.3)

First we need the following lemmas:

Lemma 2.1. Let Condition 2.1 hold. Then problem (2.1)–(2.2) has a strong
solution.
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Proof. Using the Fourier transform, we get from (2.1)-(2.2)

ûtt (ξ, t) + Aξû (ξ, t) = ĝ (ξ, t) ,

û (ξ, 0) = ϕ̂ (ξ) , ût (ξ, 0) = ψ̂ (ξ) , (2.4)

where û (ξ, t) is the Fourier transform of u (x, t) in x and ϕ̂ (ξ), ψ̂ (ξ) are the
Fourier transforms of ϕ and ψ, respectively. By virtue of [3, § 3, 12, § 11] we
obtain that Aξ is a generator of a strongly continuous cosine operator function
and that problem (2.4) has a unique solution for all ξ ∈ R

n that can be
expressed as

û (ξ, t) = C (ξ, t) ϕ̂ (ξ) + S (ξ, t) ψ̂ (ξ) +

t∫

0

S (ξ, t − τ) ĝ (ξ, τ) dτ, (2.5)

for all ξ ∈ R
n, i.e., problem (2.1)–(2.2) has a unique solution

u (x, t) = C1 (t)ϕ + S1 (t) ψ + Qg, (2.6)

where C1 (t), S1 (t), Q are linear operator functions defined by

C1 (t)ϕ = F
−1 [C (ξ, t) ϕ̂ (ξ)] , S1 (t) ψ = F

−1
[
S (ξ, t) ψ̂ (ξ)

]
,

Qg = F
−1Q̃ (ξ, t) , Q̃ (ξ, t) =

t∫

0

[S (ξ, t − τ) ĝ (ξ, τ)] dτ.

Now, we can show the main results of this section.

Theorem 2.1. Assume that Condition 2.1 holds and

s >
2p

2p − 1

(
2
q

+
1
p

)

n (2.7)

for p ∈ [1,∞] and some q ∈ [1, 2]. Let 0 ≤ α < 1− 1
2p . Then for ϕ ∈ X1 (Aα) ∩

H0p, ψ ∈ X1 (Aα) ∩ H1p, g (., t) ∈ Y s,p
1 , t ∈ [0, T ] , and g (x, .) ∈ L1 (0, T ;Y s,p

1 ),
x ∈ R

n, problem (2.1) − (2.2) has a unique solution u(x, t) ∈ C2 ([0, T ] ;X∞) ,
and the following uniform estimate holds:

‖Aαu‖X∞ ≤ C0

[
‖ϕ‖H0p

+ ‖Aαϕ‖X1
+

‖ψ‖H1p
+ ‖Aαψ‖X1

+

t∫

0

(
‖g (., τ)‖Y s,p

1
+ ‖g (., τ)‖X1

)
dτ

⎤

⎦ ; (2.8)

moreover, for ϕ ∈ X1

(
A

1
2+α

)
∩ H0p, ψ ∈ X1

(
A

1
2+α

)
∩ H1p and g (., t) ∈

Y s,p
1

(
A

1
2

)
we have

‖Aαut‖X∞ ≤ C0

[

‖ϕ‖H0p
+
∥
∥
∥A

1
2+αϕ

∥
∥
∥

X1
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+ ‖ψ‖E1p
+
∥
∥
∥A

1
2+αψ

∥
∥
∥

X1

+

t∫

0

(∥
∥
∥A

1
2 g (., τ)

∥
∥
∥

Y s,p
1

+
∥
∥
∥A

1
2 g (., τ)

∥
∥
∥

X1

)

dτ

⎤

⎦ ,

uniformly in t ∈ [0, T ], where the constant C0 > 0 depends only on A, H, and
initial data.

Proof. By Lemma 2.1, the problem (2.1)–(2.2) has a solution u(x, t) ∈ C2 ([0, T ] ;
Y s,p (A;H)) for ϕ ∈ X1 (Aα), ψ ∈ H1p , g (., t) ∈ Y s,p

1 , and g (x, .) ∈ L1

(0, T ;Y s,p
1 ). Let N ∈ N and

ΠN = {ξ : ξ ∈ R
n, |ξ| ≤ N} , Π′

N = {ξ : ξ ∈ R
n, |ξ| ≥ N} .

From (2.6) we deduce that

‖Aαu‖X∞ �
∥
∥F

−1C (ξ, t) Aαϕ̂ (ξ)
∥
∥

L∞(ΠN )

+
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞(ΠN )
+
∥
∥F

−1C (ξ, t) Aαϕ̂ (ξ)
∥
∥

L∞(Π′
N )

+
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞(Π′
N )

+
1
2

∥
∥
∥F

−1AαQ̃ (ξ, t) ĝ (ξ, τ)
∥
∥
∥

L∞(ΠN )

+
1
2

∥
∥
∥F

−1AαQ̃ (ξ, t) ĝ (ξ, τ)
∥
∥
∥

L∞(Π′
N )

. (2.9)

By virtue of Remarks 2.1, 2.2 and the properties of sectorial operators,
we get the following uniform estimate

∥
∥
∥F

−1AαQ̃ (ξ, t) ĝ (ξ, τ)
∥
∥
∥

L∞(ΠN )
≤ C ‖g‖X1

.

Hence, due to the uniform boundedness of operator functions C (ξ, t),
S (ξ, t), in view of (2.3) , and by Minkowski’s inequality for integrals, we get
the uniform estimate

∥
∥F

−1C (ξ, t) Aαϕ̂ (ξ)
∥
∥

L∞(ΠN )
+
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞(ΠN )

�
[‖Aαϕ‖X1

+ ‖Aαψ‖X1
+ ‖g‖X1

]
.

Let

l < s

(

1 − 1
2p

)

.

Moreover, from (2.6) we deduce that
∥
∥F

−1C (ξ, t) Aαϕ̂ (ξ)
∥
∥

L∞(Π′
N )

+
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞

�
∥
∥F

−1C (ξ, t) Aαϕ̂ (ξ)
∥
∥

L∞ +
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞

+
∥
∥
∥F

−1S (ξ, t) AαQ̃ (ξ, t) ĝ (ξ, τ)
∥
∥
∥

L∞

�
∥
∥
∥
∥F

−1
(
1 + |ξ|2

)− l
2

C (ξ, t)
(
1 + |ξ|2

) l
2

Aαϕ̂ (ξ)
∥
∥
∥
∥

L∞
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+
∥
∥
∥
∥F

−1
(
1 + |ξ|2

)− l
2

S (ξ, t)
(
1 + |ξ|2

) l
2

Aαψ̂ (ξ)
∥
∥
∥
∥

L∞

+
∥
∥
∥
∥F

−1
(
1 + |ξ|2

)− l
2

S (ξ, t)
(
1 + |ξ|2

) l
2

AαQ̃ (ξ, t) ĝ (ξ, τ)
∥
∥
∥
∥

L∞
,

(2.10)

where here the space L∞ (Ω;H) is denoted by L∞. It is clear that

∂
∂ξk

[(
1 + |ξ|2

)− l
2

AαC (ξ, t) Φ0 (ξ)
]

=
(
1 + |ξ|2

)− l
2
[
it
(
â (ξ) ξk + ∂â

∂ξk
|ξ|2

)
Φ0 (ξ) η− (ξ)

Aα
[
â (ξ) |ξ|2 + A

]− 1
2
]

+
(
1 + |ξ|2

)− l
2

C (ξ, t) AαΦ01 (ξ) − lξk

(
1 + |ξ|2

)− l
2−1

AαC (ξ, t) Φ0 (ξ) ,

∂
∂ξk

[(
1 + |ξ|2

)− l
2

AαS (ξ, t) Φ1 (ξ)
]

=
(
1 + |ξ|2

)− l
2
[

1
2A−−1

ξ it
(
âξk + ∂â

∂ξk
|ξ|2

)

[
A

− 1
2

ξ η− (ξ) + tη+ (ξ)
]
AαΦ1 (ξ)

]

−lξk

(
1 + |ξ|2

)− l
2−1

AαS (ξ, t) Φ11 (ξ) , (2.11)

where

Φ0 (ξ) =
[

A1− 1
2p −ε0 +

(
1 + |ξ|2

)s(1− 1
2p )−ε0

]−1

, 0 < ε0 < 1 − 1
2p

,

Φ1 (ξ) =
[

A
1
2− 1

2p −ε +
(
1 + |ξ|2

)s( 1
2− 1

2p )−ε1
]−1

, 0 < ε1 <
1
2

− 1
2p

,

Φ01 (ξ) = 2ξks

(

1 − 1
2p

− ε0

)[(
1 + |ξ|2

)s(1− 1
2p )−ε0−1

]

×
[

A1− 1
2p −ε0 +

(
1 + |ξ|2

)s(1− 1
2p )−ε0

]−2

,

Φ11 (ξ) = 2ξks

(

s

(
1
2

− 1
2p

)

− ε1

)[(
1 + |ξ|2

)s( 1
2− 1

2p )−ε1−1
]

×
[

A
1
2− 1

2p −ε +
(
1 + |ξ|2

)s( 1
2− 1

2p )−ε1
]−2

. (2.12)
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Using the resolvent properties of sectorial operators, we have
∥
∥
∥
∥

(
1 + |ξ|2

) l
2

Φi (ξ)
∥
∥
∥
∥

B(H)

≤ C, i = 1, 2,

‖AαC (ξ, t) Φ0 (ξ)‖B(H) ≤ C
∥
∥
∥AαA−(1− 1

2p −ε0) (ξ)
∥
∥
∥

B(H)
≤ C0,

‖AαS (ξ, t) Φ1 (ξ)‖B(H) ≤
∥
∥
∥A

1
2 η−1 (ξ)

∥
∥
∥

B(H)

∥
∥
∥AαA− 1

2 Φ1 (ξ)
∥
∥
∥

B(H)

≤ C
∥
∥
∥AαA−(1− 1

2p −ε0) (ξ)
∥
∥
∥

B(H)
≤ C1. (2.13)

Then by calculating ∂
∂ξk

Φ0 (ξ), ∂
∂ξk

Φ1 (ξ) , we obtain

Aα ∂

∂ξk
Φ0 (ξ) ∈ B (H) , Aα ∂

∂ξk
Φ1 (ξ) ∈ B (H) .

Let us show that Gi (., t) ∈ B
n( 1

q + 1
p )

q,1 (Rn;B (H)) for some q ∈ (1, 2) and
for all t ∈ [0, T ], where

Gi (ξ, t) =
(
1 + |ξ|2

)− l
2

AαC (ξ, t) Φi (ξ) , i = 0, 1.

By the embedding properties of Sobolev and Besov spaces it sufficient to derive
that Gi ∈ W σ

q (Rn;B (H)) for some σ > n
(

1
q + 1

p

)
. Indeed, by contraction,

Condition 2.1, and by (2.12) we get Gi ∈ Lq (Rn;B (H)). For deriving the
embedding relations Gi ∈ W σ

q (Rn;B (H)), it suffices to show that
(
1 + |ξ|2

)σ
2

Gi (., t) ∈ Lσ (Rn) for all t ∈ [0, T ] .

Indeed, in view of (2.12),
(
1 + |ξ|2

)σ
2

Φi (ξ) are uniformly bounded for ξ ∈ R
n.

By virtue of (2.3), (2.13), by assumption (2.7) , and in view of Remark 2.3, we
have

∫

Rn

(
1 + |ξ|2

)σ
2 q

|Gi (ξ, t)|q dξ

=
∫

Rn

(
1 + |ξ|2

)σ−l
2 q

‖C (ξ, t)‖q ‖AαΦi (ξ)‖q
B(H) dξ

�
∫

Rn

(
1 + |ξ|2

)σ−l
2 q

|ξ|−εq
dξ �

∫

Rn

(
1 + |ξ|2

)−( l−σ
2 )q

dξ < ∞

for

s > n

(
3
q

+
1
p

)
2p

2p − 1
.
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Hence by the Fourier multiplier theorems (see, e.g., [13, Theorem 4.3]) we
get that the functions Gi (ξ, t) are Fourier multipliers from Lp (Rn;H) to
L∞ (Rn;H). In a similar way we obtain that

(
1 + |ξ|2

)− s
2

S (ξ, t)
(
1 + |ξ|2

) s
2

Aαψ̂ (ξ) ,

(
1 + |ξ|2

)− s
2

S (ξ, t)
(
1 + |ξ|2

) s
2

AαQ̃ (ξ, t) ĝ (ξ, τ)

are Lp (Rn;H) → L∞ (Rn;H) Fourier multipliers. Then by Minkowski’s in-
equality for integrals, from (2.3), (2.10) -(2.12) and by Remark 2.3 we have

∥
∥F−1C (ξ, t) Aαϕ̂ (ξ)

∥
∥

L∞ +
∥
∥
∥F

−1S (ξ, t) Aαψ̂ (ξ)
∥
∥
∥

L∞

�
∥
∥F−1C (ξ, t) η−2ϕ̂

∥
∥

L∞ +
∥
∥
∥F

−1S (ξ, t) η−1ψ̂
∥
∥
∥

L∞

�
[
‖ϕ‖H0p

+ ‖ψ‖H1p
+ ‖g‖W s,p

]
. (2.14)

Moreover, by virtue of Remark 2.1–2.3 and by reasoning as above, we have the
following estimate:

∥
∥
∥F−1AαQ̃ (ξ, t)

∥
∥
∥

X∞
≤ C

t∫

0

(‖g (., τ)‖W s,p + ‖g (., τ)‖X1

)
dτ (2.15)

uniformly in t ∈ [0, T ]. Thus, from (2.6), (2.14) , and (2.15) we obtain

‖Aαu‖X∞ ≤ C
[
‖ϕ‖E0p

+ ‖Aαϕ‖X1

+ ‖ψ‖H1p
+ ‖Aαψ‖X1

+

t∫

0

(‖g (., τ)‖Y s,p + ‖g (., τ)‖X1

)
dτ

⎤

⎦ . (2.16)

By differentiating (2.6) in a similar way, we get the second inequality

‖Aαut‖X∞ ≤ C
[
‖ϕ‖H0p

+ ‖Aαϕ‖X1

+ ‖Aαψ‖H1p
+ ‖Aαψ‖X1

+

t∫

0

(‖g (., τ)‖Y s,p + ‖g (., τ)‖X1

)
dτ

⎤

⎦ .

(2.17)

Then from (2.16) and (2.17), in view of Remarks 2.1, 2.2, we obtain the
estimate (2.8).

Let us now show that problem (2.1)–(2.2) has a unique solution u ∈
C(1) ([0, T ] ;Y s,p) . Suppose that the problem (2.1)−(2.2) has two solutions u1,
u2 ∈ C(1) ([0, T ] ;Y s,p). Then by the linearity of (2.1), we get that υ = u1 −u2

is also a solution of the corresponding homogenous equation

utt − a ∗ Δu + Au = 0, υ (x, 0) = 0, υt (x, 0) = 0, x ∈ R
n, t ∈ (0, T ) .
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Moreover, by (2.16) we have the following estimate
∥
∥‖Aαu‖X∞

∥
∥

X∞
≤ 0.

Since N (A) = {0}, the above estimate implies that υ = 0, i.e., u1 = u2.

Theorem 2.2. Assume that Condition 2.1 and (2.7) are satisfied. Let 0 ≤
α < 1 − 1

2p . Then for ϕ, ψ ∈ Y s,p (Aα), g (., t) ∈ Y s,p, t ∈ [0, T ] , and
g (., t) ∈ L1 (0, T ;Y s,p), x ∈ R

n, problem (2.1)–(2.2) has a unique solution
u ∈ C2 ([0, T ] ;Y s,p) and the following uniform estimate holds:

‖Aαu‖Y s,p

≤ C0

⎡

⎣‖Aαϕ‖Y s,p + ‖Aαψ‖Y s,p +

t∫

0

‖g (., τ)‖Y s,p dτ

⎤

⎦ , (2.18)

Moreover, for ϕ, ψ ∈ Y s,p
(
Aα+ 1

2

)
and g (x, t) ∈ Y s,p

(
A

1
2

)
we have the

following estimate

‖Aαut‖Y s,p ≤

C0

⎡

⎣
∥
∥
∥A

1
2+αϕ

∥
∥
∥

Y s,p
+
∥
∥
∥A

1
2+αψ

∥
∥
∥

Y s,p
+

t∫

0

∥
∥
∥A

1
2 g (., τ)

∥
∥
∥

Y s,p
dτ

⎤

⎦

for all t ∈ [0, T ] .

Proof. From (2.5) and (2.11) we get the following uniform estimate:

(∥
∥
∥F−1 (1 + |ξ|2) s

2 Aαû
∥
∥
∥

Xp

+
∥
∥
∥F−1 (1 + |ξ|2) s

2 Aαût

∥
∥
∥

Xp

)

≤ C

{∥
∥
∥F−1 (1 + |ξ|2) s

2 C (ξ, t)A
1
2
+αϕ̂

∥
∥
∥

Xp

+
∥
∥
∥F−1 (1 + |ξ|2) s

2 A
1
2
+αS (ξ, t) ψ̂

∥
∥
∥

Xp

t∫

0

∥
∥
∥
(
1 + |ξ|2) s

2 A
1
2
+αQ̃ (ξ, t) ĝ (ξ, τ)

∥
∥
∥

Xp

dτ

⎫
⎬

⎭
. (2.19)

Using the Fourier multiplier theorem [13, Theorem 4.3] and reasoning

as in Theorem 2.1 we get that
(
1 + |ξ|2

)− s
2

C (ξ, t),
(
1 + |ξ|2

)− s
2

S (ξ, t) and
(
1 + |ξ|2

)− s
2

AαS (ξ, t) are Fourier multipliers in Lp (Rn;H) uniformly with
respect to t ∈ [0, T ]. So, the estimate (2.19) by using the Minkowski’s inequality
for integrals implies (2.18) .

The uniqueness of (2.1)–(2.2) is obtained by reasoning as in Theorem 2.1.
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3. Local Well Posedness of IVP for Nonlinear WE

In this section, we will show the local existence and uniqueness of a solution
of the nonlinear problem (1.1)–(1.2).

For this we need the following lemmas. Reasoning as in [5,15,31], we
prove the following lemmas concerning the behaviour of the nonlinear term in
the E-valued space Y s,p. Here, let H be a Banach algebra.

Lemma 3.1. Let s ≥ 0, f ∈ C [s]+1 (H;H) with f(0) = 0. Then for all u ∈
Y s,p ∩L∞, we have f(u) (.) ∈ Y s,p ∩X∞. Moreover, there is a constant A(M)
depending on M such that for all u ∈ Y s,p ∩ L∞ with ‖u‖X∞ ≤ M,

‖f(u)‖Y s,p ≤ C (M) ‖u)‖Y s,p . (3.1)

Using Lemma 3.1 and properties of convolution operators we obtain the fol-
lowing corollary:

Corollary 3.1. Let s ≥ 0, f ∈ C [s]+1 (R;H) with f(0) = 0. Moreover, assume
Φ ∈ L∞ (Rn;B (H)). Then for all u ∈ Y s,p ∩ L∞ we have, f(u) ∈ Y s,p ∩ X∞.
Moreover, there is a constant A(M) depending on M such that for all u ∈
Y s,p ∩ L∞ with ‖u‖X∞ ≤ M,

‖Φ ∗ f(u)‖Y s,p ≤ C (M) ‖u)‖Y s,p .

Lemma 3.2. Let s ≥ 0, f ∈ C [s]+1 (R;H). Then for every M there is a constant
K(M) depending on M such that for all u, υ ∈ Y s,p ∩ X∞ with ‖u‖X∞ ≤ M ,
‖υ‖X∞ ≤ M , ‖u‖Y s,p ≤ M , ‖υ‖Y s,p ≤ M,

‖f(u) − f(υ‖Y s,p ≤ K (M) ‖u − υ‖Y s,p , ‖f(u) − f(υ‖X∞ ≤ K (M) ‖u − υ‖X∞ .

Reasoning as in [30, Lemma 3.4] and [15, Lemma X 4] we have, respec-
tively:

Corollary 3.2. Let s > n
2 , f ∈ C [s]+1 (R;H). Then for every positive M there is

a constant K(M) depending on M such that for all u, υ ∈ Y s,p with ‖u‖Y s,p ≤
M , ‖υ‖Y s,p ≤ M,

‖f(u) − f(υ‖Y s,p ≤ K (M) ‖u − υ‖Y s,p .

Lemma 3.3. If s > 0, then Y s,p
∞ is an algebra. Moreover, for f , g ∈ Y s,p

∞ ,

‖fg‖Y s,p ≤ C
[‖f‖X∞ + ‖g‖Y s,p + ‖f‖Y s,p + ‖g‖X∞

]
.

Using Corollary 3.1 and Lemma 3.3 we obtain the following results:

Lemma 3.4. Let s ≥ 0, f ∈ C [s]+1 (R;H) , and f (u) = O
(
|u|γ+1

)
for u → 0,

γ ≥ 1 a positive integer. If u ∈ Y s,p
∞ and ‖u‖X∞ ≤ M , then

‖f(u)‖Y s,p ≤ C (M)
[‖u‖Y s,p ‖u‖γ

X∞

]
,

‖f(u)‖X1
≤ C (M) ‖u‖p

Xp
‖u‖γ−1

X∞ .
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Corollary 3.3. Let s ≥ 0, f ∈ C [s]+1 (R;H) , and f (u) = O
(
|u|γ+1

)
for u →

0, γ ≥ 1 a positive integer. Moreover, assume Φ ∈ L∞ (Rn;B (H)). If u ∈ Y s,p
∞

and ‖u‖X∞ ≤ M , then

‖Φ ∗ f(u)‖Y s,p ≤ C (M)
[‖u‖Y s,p ‖u‖γ

X∞

]
,

‖Φ ∗ f(u)‖X1
≤ C (M) ‖u‖p

Xp
‖u‖γ−1

X∞ .

Lemma 3.5. Let s ≥ 0, f ∈ C [s]+1 (R;H) , and f (u) = O
(
|u|γ+1

)
for u → 0.

Moreover, let γ ≥ 0 be a positive integer. If u, υ ∈ Y s,p
∞ , ‖u‖Y s,p ≤ M ,

‖υ‖Y s,p ≤ M and ‖u‖X∞ ≤ M , ‖υ‖X∞ ≤ M , then

‖f(u) − f(υ)‖Y s,p ≤ C (M)
[(‖u‖X∞ − ‖υ‖X∞

)
(‖u‖Y s,p + ‖υ‖Y s,p)

(‖u‖X∞ + ‖υ‖X∞

)γ−1
,

‖f(u) − f(υ‖X1
≤ C (M)

(‖u‖X∞ + ‖υ‖X∞

)γ−1
(
‖u‖Xp

+ ‖υ‖Xp

)
‖u − υ‖Xp

.

Let H0 denote the real interpolation space between Y s,p (A,H) and Xp

with θ = 1
2p , i.e.,

H0p = (Y s,p (A,H) ,Xp) 1
2p ,p .

Remark 3.0. Let u ∈ Y 2,s,p = W 2,s,p (Rn
T ;H (A) ,H). Then by a result of J.

Lions and J. Peetre (see e.g. [27, §1.8.2] the trace operator u → ∂iu
∂ti (x, t) is

bounded from Y 2,s,p to C
(
R

n; (Y s,p,Xp)θj ,p

)
, where

Xp = Lp (Rn;H) , Y s,p = W s,p (Rn;H (A) ,H) , θj =
1 + jp

2p
, j = 0, 1.

Moreover, if u (x, .) ∈ (Y s,p,Xp)θj ,p, then under some assumptions that will
be stated in Sect. 3, f (u) ∈ H for all x, t ∈ R

n
T and the map u → f (u) is

bounded from (Y s,p,Xp, ) 1
2p ,p into H. Hence, the nonlinear equation (1.1) is

satisfied in the Banach space H. Here, H (A) denotes a domain of A equipped
with the graphical norm, (Y s,p,Xp)θ,p is a real interpolation space between
Y s,p and Xp for θ ∈ (0, 1), p ∈ [1,∞] (see, e.g., [27, §1.3]).

Remark 3.1. Using a result of J. Lions-I. Petree (see, e.g., [27, § 1.8]) we ob-
tain that the map u → u (t0), t0 ∈ [0, T ] is continuous and surjective from
Y 2,s,p (A,H) onto H0p and there is a constant C1 such that

‖u (t0)‖H0p
≤ C1 ‖u‖Y 2,s,p(A,H) , 1 ≤ p ≤ ∞. (3.6)

Let

C2 (Y s,p
1 (A)) = C(2) ([0, T ] ;Y s,p

1 (A,H)) , C2,s (A,H)

= C(2) ([0, T ] ;Y s,p (A,H)) .

Condition 3.1. Assume the following:
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(1) Condition 2.1 holds, 0 ≤ α < 1 − 1
2p and

s >
2p

2p − 1

(
2n

q
+

1
p

)

, q ∈ [1, 2] , p ∈ [1,∞] ;

(2) the function u → f (u) is continuous from u ∈ H0p into E, f ∈ Ck (H;H)

with k an integer, k ≥ s > n
p , and f (u) = O

(
|u|γ+1

)
for u → 0, where

γ ≥ 1 is a positive integer.
Let

Y s,p
1 (Aα;H) = Y s,p (Aα;H) ∩ X1 (Aα) , Y s,p (Aα;H) =

{

u ∈ Y s,p (Aα;H) ,

‖u‖Y s,p(Aα;H) = ‖Aαu‖Xp
+
∥
∥
∥
∥F

−1
(
1 + |ξ|2

) s
2

û

∥
∥
∥
∥

Xp

< ∞
}

.

The main aim of this section is to prove the following results:

Theorem 3.1. Let Condition 3.1 hold. Then there exists a constant δ > 0 such
that for all ϕ ∈ Y0 (Aα) and ψ ∈ Y1 (Aα) satisfying

‖ϕ‖H0p
+ ‖Aαϕ‖X1

+ ‖ψ‖H1p
+ ‖Aαψ‖X1

≤ δ, (3.7)

problem (1.1)–(1.2) has a unique local strong solution u ∈ C2 (Y s,p
1 (A)). More-

over,

sup
t∈[0,T ]

(
‖u (., t)‖Y s,p

1 (Aα,H) + ‖ut (., t)‖Y s,p
1 (Aα;E)

)
≤ Cδ, (3.8)

where the constant C depends only on A, H, g, f, and initial values.

Proof. By (2.5), (2.6), the problem of finding a solution u of (1.1)–(1.2) is
equivalent to finding a fixed point of the mapping

G (u) = C1 (t)ϕ (x) + S1 (t) ψ (x) + Q (u) , (3.9)

where C1 (t), S1 (t) are defined by (2.6) and Q (u) is the map defined by

Q (u) = −
t∫

0

F
−1
[
U (ξ, t − τ) f̂ (u) (ξ, τ)

]
dτ.

We define the metric space

C (T,A) = C2
δ (Y s,p

1 (A)) =
{

u ∈ C2,s (A,H) , ‖u‖C2,s,p(T,A) ≤ 5C0δ
}

equipped with the norm defined by

‖u‖C(T,A) = sup
t∈[0,T ]

[‖Aαu (., t)‖X∞ + ‖u (., t)‖Y s,p +

‖Aαut (., t)‖X∞ + ‖ut (., t)‖Y s,p

]
,

where δ > 0 satisfies (3.7) and C0 is the constant in Theorems 2.1 and 2.2. It
is easy to prove that C (T,A) is a complete metric space. From embedding of
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the Sobolev–Lions space Y s,p (A,H) (see, e.g., [30], Theorem 1) and the trace
result (3.6) we obtain that ‖u‖X∞ ≤ 1 if we take δ small enough. For ϕ ∈
Y0 (Aα) and ψ ∈ Y1 (Aα), let

‖ϕ‖H0p
+ ‖Aαϕ‖X1

+ ‖ψ‖H1p
+ ‖Aαψ‖X1

= δ.

We will find T and M that G is a contraction in C2,s,p (T,A). By Theorems
2.1, 2.2 and Corollary 3.3 f (u) ∈ Y s,p

1 . So, problem (1.1)–(1.2) has a solution
satisfying

G (u) (x, t) = C1 (t)ϕ + S1 (t) ψ + Q (u) , (3.10)

where C1 (t), S1 (t) are defined by (2.5) and (2.6). By our assumptions, it is
easy to see that the map G is well defined for f ∈ C [s]+1 (H0p;H). First, let
us prove that the map G has a unique fixed point in C (T,A). For this, it is
sufficient to show that the operator G maps C (T,A) into C (T,A) and G is
strictly contractive if δ is sufficiently small. In fact, by (2.7) in Theorem 2.1,
Corollary 3.3, and in view of (3.7), we have

‖AαG (u)‖X∞ + ‖AαGt (u)‖X∞ ≤ 2C0

⎡

⎣ ‖ϕ‖Y α
0 (Aα)

+ ‖ψ‖Y α
1 (Aα) +

t∫

0

(∥
∥
∥f̂ ((u))

∥
∥
∥

Y s,p
+
∥
∥
∥f̂ ((u))

∥
∥
∥

X1

)

dτ

⎤

⎦

≤ 2C0δ + C

t∫

0

(
‖u (τ)‖Y s,p ‖u (τ)‖γ

X∞ + ‖u (τ)‖p
Xp

‖u (τ)‖γ−1
X∞

)
dτ

≤ 2C0δ + C ‖u‖γ+1
C2,s,p(T,A) . (3.11)

On the other hand, by (2.17), Corollary 3.3, and (3.7), we get

(‖AαG (u)‖Y s,p + ‖AαGt (u)‖Y s,p)

≤ 2C0

⎛

⎝‖ϕ‖E0p
+ ‖ψ‖E1p

+

t∫

0

∥
∥
∥f̂ ((u))

∥
∥
∥

Y s,p
dτ

⎞

⎠

≤ 2C0δ +

t∫

0

[‖u (τ)‖Y s,p ‖u (τ)‖γ
X∞

]
dτ ≤ 2C0δ + C ‖u‖γ+1

C2,s,p(T,A) .

(3.12)

Hence combining (3.11) with (3.12), we obtain

‖AαG (u)‖Y s,p∞ + ‖AαGt (u)‖Y s,p∞ ≤ 4C0δ + C ‖u‖γ+1
C2,s,p(T,A) . (3.13)
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So taking δ small enough that C (5C8δ)
γ

< 1
5 , by Theorems 2.1, 2.2 and (3.13),

G maps C (T,A) into C (T,A).
Now we are going to prove that the map G is strictly contractive. Let u1,

u2 ∈ C (T,A) be given. From (3.10) we get

G (u1) − G (u2)

=

t∫

0

[
S (x, t − τ)

(
f̂ (u1) (τ) − f̂ (u2) (τ)

)]
dτ , t ∈ (0, T ) .

By (2.7) in Theorem 2.1 and Corollary 3.3, we have

‖Aα [G (u1) − G (u2)]‖X∞ + ‖Aα [G (u1) − G (u2)]t‖X∞

≤
t∫

0

(∥
∥
∥

[
f̂ (u1) − f̂ (u2)

]∥
∥
∥

Y s,p
+
∥
∥
∥

[
f̂ (u1) − f̂ (u2)

]∥
∥
∥

X1

)

dτ

≤
t∫

0

{
‖u1 − u2‖X∞ (‖u1‖Y s,p + ‖u2‖Y s,p)

(‖u1‖X∞ + ‖u2‖X∞

)γ−1

+ ‖u1 − u2‖Y s,p

(‖u1‖X∞ + ‖u2‖X∞

)γ

+
(‖u1‖X∞ + ‖u2‖X∞

)γ−1 ‖u1 + u2‖Xp
‖u1 − u2‖Xp

}

≤ C
(
‖u1‖C(T,A) + ‖u2‖C(T,A)

)γ

‖u1 − u2‖C(T,A) . (3.14)

On the other hand, by (2.17) in Theorem 2.2, Corollary 3.3, and (3.7),
we get
(‖Aα [G (u1) − G (u2)]‖Y s,p + ‖Aα [G (u1) − G (u2)]t‖Y s,p

)

≤ C

t∫

0

∥
∥
∥f̂ (u1) (τ) − f̂ (u2) (τ)

∥
∥
∥

Y s,p
dτ

≤ C

t∫

0

{
‖u1 − u2‖X∞ (‖u1‖Y s,p + ‖u2‖Y s,p)

(‖u1‖X∞ + ‖u2‖X∞

)γ−1

+ ‖u1 − u2‖Y s,p

(‖u1‖X∞ + ‖u2‖X∞

)γ
}

dτ

≤ C
(
‖u1‖C(T,A) + ‖u2‖C(T,A)

)γ

‖u1 − u2‖C(T,A) . (3.15)

Combining (3.14) with (3.15) yields

‖G (u1) − G (u2)‖C(T,A)

≤ C
(
‖u1‖C(T,A) + ‖u2‖C(T,A)

)γ

‖u1 − u2‖C(T,A) . (3.16)
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Taking δ small enough, from (3.16) we obtain that G is strictly contractive
in C (T,A). Using the contraction mapping principle, we get that G (u) has a
unique fixed point u (x, t) ∈ C (T,A) and u (x, t) is the solution of (1.1)–(1.2).

Let us show that this solution is unique in C2,s (A,H). Let u1, u2 ∈
C2,s (A,H) be two solutions of (1.1)–(1.2). Then for u = u1 − u2, we have

utt − a ∗ Δu + Au = [f (u1) − f (u2)] . (3.17)

Hence by Minkowski’s inequality for integrals and by Theorem 2.2, from (3.17)
we obtain

‖u1 − u2‖Y s,p ≤ C2 (T )

t∫

0

‖u1 − u2‖Y s,p dτ. (3.18)

From (3.18) and Gronwall’s inequality, we have ‖u1 − u2‖Y s,p = 0, i.e., prob-
lem (1.1)–(1.2) has a unique solution in C2,s (A,H).

Consider the problem (1.1)–(1.2) when ϕ ∈ H0p and ψ ∈ H1p. Let

C(i)
(
Y s,2

)
= C(i)([0,∞);Y s,2 (A,H)), i = 0, 1, 2.

Condition 3.2. Assume the following: (1) Condition 2.1 holds; (2) 0 ≤ α <
1 − 1

2p , ϕ ∈ H0p, ψ ∈ H1p, and

s >
2p

2p − 1

(
2
q

+
1
p

)

n, q ∈ [1, 2] , p ∈ (1,∞) ;

(3) f ∈ C [s]+1 (H;H) with f(0) = 0.
Reasoning as in Theorem 3.1 and [13, Theorem 1.1] , we have the follow-

ing:

Theorem 3.2. Let Condition 3.2 hold. Then there exists a constant δ > 0 such
that for all ϕ ∈ H0p, ψ ∈ H1p satisfying

‖ϕ‖H0p
+ ‖ψ‖H1p

≤ δ, (3.19)

problem (1.1)–(1.2) has a unique local strong solution u ∈ C(2) (Y s,p). More-
over,

sup
t∈[0,T ]

(
‖u (., t)‖Y s,p(Aα,H) + ‖ut (., t)‖Y s,p(Aα;H)

)
≤ Cδ, (3.20)

where the constant C depends only on f and initial data.

Proof. Consider the metric space defined by

W s,p
0 =

{
u ∈ C(2) (Y s,p) , ‖u‖Y s,p ≤ 3C0δ

}
,

equipped with the norm

‖u‖W s,p
0

= sup
t∈[0,T ]

(
‖u‖Y s,p(Aα;H) + ‖ut‖Y s,p(Aα;H)

)
,
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where δ > 0 satisfies (3.19) and C0 is the constant in Theorem 2.1. It is
easy to prove that W s,p

0 is a complete metric space. From Sobolev embedding
theorem we know that ‖u‖∞ ≤ 1 if we take δ small enough. By Theorem
2.2 and Corollary 3.1, f (u) ∈ Y s,p. Thus problem (1.1) –(1.2) has a unique
solution, which can be written as (3.9). We should prove that the operator
G (u) defined by (3.9) is strictly contractive if δ is sufficiently small. In fact,
by (2.17) in Theorem 2.2 and Lemma 3.1, we get

‖AαG (u)‖Y s,p + ‖AαGt (u)‖Y s,p

≤ C0

⎡

⎣
[
‖ϕ‖E0p

+ ‖ψ‖E1p
+

t∫

0

‖K (u) (., τ)‖Y s,p dτ

⎤

⎦

≤ C0δ + C0

t∫

0

‖K (u) (., τ)‖Y s,p dτ

≤ C0δ + C

t∫

0

‖u (τ)‖Y s,p dτ ≤ C0δ + C ‖u‖Y s,p , (3.21)

where

K (u) (., τ) = S (x, t − τ) f (u) (x, τ) .

Therefore, from (3.20) we have

‖G (u)‖Y s,p ≤ 2C0δ + C ‖u‖Y s,p . (3.22)

Taking δ small enough that C (3C0δ)
α

< 1/3, from (3.22) and from Theorems
2.1, 2.2 we get that G maps W s,p

0 into W s,p
0 . Then reasoning as in Theorem 3.1,

we obtain that G : W s,p
0 → W s,p

0 is strictly contractive. Using the contraction
mapping principle, we know that G(u) has a unique fixed point u ∈ C(2)

(
Y s,2

)

and u(x, t) is the solution of problem (1.1) − (1.2). Moreover, by virtue of
Theorem 2.1, from (3.19) we obtain (3.20) .

We claim that the solution of (1.1)-(1.2) is also unique in C(1)
(
Y s,2

)
.

In fact, let u1 and u2 be two solutions of the problem (1.1)–(1.2) and u1,
u2 ∈ C(2)

(
Y s,2

)
. Using the contraction mapping principle, we know that G(u)

has a unique fixed point u ∈ C(2)
(
Y s,2

)
. Let u = u1 − u2. Then

utt − a ∗ Δu + Au = f (u1) − f (u2) .

This fact is derived in a similar way to what was done in Theorem 3.1,
using Theorems 2.1, 2.2 and Gronwall’s inequality.

Let

C(2,s) (Y s,p) = C(2) ([0, T ] ;Y s,p (A;H)) .



229 Page 22 of 33 V. Shakhmurov, R. Shahmurov Results Math

Theorem 3.3. Let Condition 3.2 hold. Then there exist T > 0 such that prob-
lem (1.1)–(1.2) is well posed with solution in C1 ([0, T ] ;Y s,p (A,H)) for initial
data ϕ ∈ H0p and ψ ∈ H1p.

Proof. Consider the operator u → f (u). By Corollary 3.1, f (u) is locally
Lipschitz on Y s,p. Then reasoning as in Theorem 3.2 and [13, Theorem 1.1],
we obtain that G: W s,p

0 → W s,p
0 is strictly contractive. Using the contraction

mapping principle, we get that the operator G(u) defined by (3.5) has a unique
fixed point u(x, t) ∈ C(2) (Y s,p) and u(x, t) is the solution of the problem
(1.1)− (1.2). Moreover, we show that the solution u(x, t) of (1.1)− (1.2) is also
unique in C(2) (Y s,p). In fact, let u1 and u2 be two solutions of the problem
(1.1) − (1.2) and u1, u2 ∈ C(2) (Y s,p). Let u = u1 − u2. Then

utt − a ∗ Δu + Au = f (u1) − f (u2) .

This fact is derived in a similar way to what was done in Theorem 3.2, by
using Theorems 2.1, 2.2 and Gronwall’s inequality.

The solution in Theorems 3.2–3.3 can be extended to a maximal interval
[0, Tmax), where finite Tmax is characterized by the blow-up condition

lim sup
T→Tmax

‖u‖Y s,p(Aα;H) = ∞.

Lemma 3.8. Let Condition 3.2 hold and u be a solution of (1.1) − (1.2). Then
there is a global solution if for all T < ∞, we have

sup
t∈[0,T ]

(
‖u‖Y s,p(Aα;H) + ‖ut‖Y s,p(Aα;H)

)
< ∞. (3.24)

Proof. Indeed, reasoning as in the second part of the proof of Theorem 3.1,
using a continuation of the local solution of (1.1)−(1.2), and assuming contrary
that (3.24) holds and T0 < ∞, we obtain a contradiction, i.e., we get T0 =
Tmax = ∞.

4. Conservation of Energy and Global Existence

In this section, we prove the existence and uniqueness of the global strong
solution for the problem (1.1) − (1.2). For this purpose, we are going to make
a priori estimates of the strong solution of (1.1)−(1.2). Here, the scalar product
of u, υ ∈ X2 will be denoted just by (u, υ). Moreover, the norm of u ∈ X2 will
be denoted by ‖u‖.

Let

C(1) (Xp) = C(1) ([0, T ) ;Xp) , C(2,s) (A,H) = C(2) ([0, T ] ;Y s,p (A;H)) ,

where Y s,p (A;H) is as defined in Sect. 2.
First, we prove the following lemma:
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Lemma 4.1. Let Condition 3.2 hold and 0 ≤ α < 1 − 1
2p . Assume there exist

a solution u ∈ C(2,s) (A,H) of (1.1)–(1.2). Then

Aαu,Aαut ∈ C(1) (Xp) .

Proof. By Lemma 2.1, problem (1.1)–(1.2) is equivalent to the integral equa-
tion,

u (x, t) = C1 (t) ϕ + S1 (t) ψ + Q (f) , (4.1)

where C1 (t), S1 (t) are operator functions defined by (2.5) and (2.6), g replaced
by f (u) , and

Q (f) =

t∫

0

F
−1
[
S (ξ, t − τ) f̂ (u) (ξ)

]
dτ. (4.2)

From (4.1) we get that

ut (x, t) =
d

dt
C1 (t) ϕ +

d

dt
S1 (t) ψ

+

t∫

0

F
−1
[
C (ξ, t − τ) f̂ ((u) (ξ))

]
dτ. (4.3)

Since C1 (t) , S1 (t) , and d
dtS (ξ, t) are uniformly bounded operators in E for

fixed t, by (4.2) and Fourier multiplier results in Xp spaces (see, e.g., [12,
Theorem 4.3]), we have

‖AαC1 (t) ϕ‖Xp =
∥
∥F

−1 [AαC (ξ, t) ϕ̂]
∥
∥

Xp � ‖ϕ‖H0p
< ∞,

∥
∥
∥ÂαS1 (t) ϕ

∥
∥
∥

Xp
=
∥
∥
∥F

−1
[
ÂαS (ξ, t) ψ̂

]∥
∥
∥

Xp
� ‖ψ‖H1p

< ∞. (4.4)

By differentiating (2.3), in a similar way we have
∥
∥
∥
∥A

α d

dt
C1 (t) ϕ

∥
∥
∥
∥

Xp

=
∥
∥
∥
∥F

−1

[

Aα d

dt
C (ξ, t) ϕ̂

]∥
∥
∥
∥

Xp

� ‖ϕ‖H0p
< ∞,

∥
∥
∥
∥A

α d

dt
S1 (t) ϕ

∥
∥
∥
∥

Xp

=
∥
∥
∥
∥F

−1

[

Aα d

dt
S (ξ, t) ψ̂

]∥
∥
∥
∥

Xp

� ‖ψ‖H1p
< ∞. (4.5)

For fixed t, we have f(u) ∈ Y s,p. Moreover, by the assumption on A we have
the uniform estimate

∥
∥
∥AαA−1

ξ

∥
∥
∥

B(H)
≤ CA.
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Due to s + r ≥ 1, from (4.2) and Fourier multiplier results in Xp we get

‖AαQ (f)‖Xp ≤
∥
∥
∥
∥
∥
∥
F

−1

⎡

⎣Aα

t∫

0

S (ξ, t − τ) f̂ (u) (ξ) dτ

⎤

⎦

∥
∥
∥
∥
∥
∥

Xp

� CA ‖f (u)‖Y s,p < ∞. (4.6)

Then from (4.1) and (4.3)–(4.6) we obtain the assertion.

Lemma 4.2. Assume Condition 3.2 holds with a = 0. Suppose a solution of
(1.1) − (1.2) exists in C(2,s)(A,H). If ψ ∈ Xp, then ut ∈ C(1)(Xp). Moreover,
if ϕ ∈ Xp, then u ∈ C(1)(Xp).

Proof. Integrating equation (1.1) for a = 0 twice and calculating the resulting
double integral as an iterated integral, we have

u (x, t) = ϕ (x) + tψ (x)

−
t∫

0

(t − τ) (Au) (x, τ) dτ +

t∫

0

(t − τ) f (u) (x, τ) dτ, (4.7)

ut (x, t) = ψ (x) −
t∫

0

(Au) (x, τ) dτ +

t∫

0

f (u) (x, τ) dτ. (4.8)

From (4.8), for fixed t and τ we get f (u) ∈ Y s,p for all t. Also

‖f (u) (.)‖Xp �
∥
∥
∥F

−1f̂ (u) (ξ)
∥
∥
∥

Xp
. (4.9)

Then from (4.7)–(4.9) we obtain

‖ut (., t)‖X2 ≤ ‖ψ (.)‖X2

+

t∫

0

‖(Au) (., τ)‖Xp d +

t∫

0

‖f (u) (., τ)‖Xp dτ.

By the assumption on A, g and for fixed τ we have ut ∈ C(1) (Xp) ,

‖Au (.)‖Xp �
∥
∥F

−1û (ξ, τ)
∥
∥

Xp � ‖u (., τ)‖Y s,p(A) .

Moreover, by Lemma 3.3 we have ut ∈ C(1) (Xp). The second statement follows
similarly from (4.7).

Let

Φ (σ) =

σ∫

0

f (τ) dτ. (4.10)

Condition 3.3. Assume that Condition 3.2 hold and A is a symmetric operator
in H. Suppose that s+ r ≥ 1 and a (x) = a (−x). Let ϕ, ψ ∈ Y s,2 (A,H)∩X∞
and Φ (.) ∈ L1
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Lemma 4.3. Let Condition 3.3 hold and let u ∈ C(2,s) (A,H) be a solution of
(1.1)–(1.2) for any t ∈ [0, T ). Then the energy

E (t) = ‖ut‖2 + (a ∗ Δu, u) + (Au, u) − 2
∫

Rn

Φ(u) dx (4.11)

is constant.

Proof. By assumptions Φ (.) ∈ L1 and Au, Aut ∈ X2. Due to a (x) = a (−x) ,
we have

((a ∗ (Δu)t) , u) = (a ∗ Δu, ut) , (Aut, u) = (Au, ut) . (4.12)

Hence from (4.12) we obtain

d

dt
E (t) = 2 (utt, ut) + 2 (a ∗ Δu, ut) + 2 (Au, ut) + 2

∫

Rn

Φt (u) utdx =

2 (utt, ut) − 2 (a ∗ Δu, ut) + 2 (Au, ut) + 2 (f (u) , ut)
= 2 ([utt − a ∗ Δu + Au − f (u)] , ut) = 0,

where (u, υ) denotes the inner product in X2. Hence, we obtain the assertion.

5. Blow-Up in Finite Time

In this section we prove the following result:

Theorem 5.1. Let Condition 3.3 hold and let u ∈ C(2,s) (A,H) be a solution of
(1.1) –(1.2) for any t ∈ [0, T ). If there exist positive numbers ν and t0 such
that

σf (σ) ≤ 2 (1 + 2ν) Φ (σ) for all σ ∈ R, (5.1)

and

E (0) = ‖ut‖2 + (u, a ∗ Δu) + (u,Au) − 2
∫

Rn

Φ(u) dx < 0, (5.2)

then the solution u blows up in finite time.

Proof. Assume that there is a global solution. Then u, ut ∈ X2 for all t > 0.
Let

H (t) = ‖u (t)‖2 + b (t + t0)
2

for some b and t0 that will be determined later. We have

H(1) (t) = 2 (u, ut) + 2b (t + t0) ,

H(2) (t) = 2 ‖ut‖2 + 2 (u, utt) + 2b. (5.3)

From (1.1), (5.1) , and (5.2) we get
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(u, utt) = (u, [a ∗ Δu − Au + f (u)])
= [(u, a ∗ Δu) − (u,Au) − (u, f (u))]

≥ (u, a ∗ Δu) − (u,Au) − 2 (1 + 2ν)
∫

Rn

Φ(u) dx

≥ (u, a ∗ Δu) − (u,Au)

+ (1 + 2ν)
[
‖ut‖2 + (u, a ∗ Δu) + (u, (Au)) − E (0)

]
=

(1 + 2ν)
[
‖ut‖2 − E (0)

]
+ 2ν [(u, a ∗ Δu) + (u,Au)] . (5.4)

Let b be a real number such that b ≤ −E (0) and

4ν (a ∗ Δu, u) + 4ν (u,Au) ≤ − [b + E (0)] . (5.5)

From (5.3) and (5.5), we obtain

H(2) (t) ≥ 4 (1 + ν) ‖ut‖2 + 4ν
[
a ‖∇u‖2 + (u,Au)

]

−2 (1 + 2ν) E (0) + 2b. (5.6)

On the other hand, in view of the Cauchy-Schwarz inequality, we have
(
H(1) (t)

)2

= [2 (u, ut) + 2b (t + t0)]
2

≤ 4
[
‖u‖2 ‖ut‖2 + b (t + t0)

2
(
‖u‖2 + ‖ut‖2

)]

+4b2 (t + t0)
2
. (5.7)

Hence, by (5.3), (5.5) , and (5.7) , we obtain

H(2)H − (1 + ν)
(
H(1)

)2

≥
[
4 (1 + ν) ‖ut‖2 + 4ν

(
a ‖∇u‖2 + (u,Au)

)
+ 2b

− 2 (1 + 2ν) E (0)]
[
‖u‖2 + b (t + t0)

2
]

− 4 (1 + ν) b2 (t + t0)
2

−4 (1 + ν)
[
‖u‖2 ‖ut‖2 + b2 (t + t0)

2
(
‖u‖2 + ‖ut‖2

)]

= 4ν
(
a ‖∇u‖2 + (u,Au)

)
H (t) + 2bH (t) − 2 (1 + 2ν) E (0) H (t)

−4b (1 + ν) H (t) − 4b2 (1 + ν) (t + t0)
2 ‖But‖2

= −2 (1 + 2ν) [b + E (0)] + 4νa ‖∇u‖2 + 4ν (u,Au) ≥ 0

when

[b + E (0)] + 4νa ‖∇u‖2 + 4ν (u,Au) ≤ 0,
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i.e., if assumption (5.2) holds. Moreover,

H(1) (0) = 2 (ϕ,ψ) + 2b (t0) ≥ 0,

for sufficiently large t0. Then reasoning as in the proof of [16, Theorem1] , we
get that that H(t), and thus ‖u (t)‖2 blows up in finite time, contradicting the
assumption that a global solution exists.

6. Applications

6.1. The Cauchy Problem for Infinite System of WEs

Consider problem (1.4). Let

l2 =

⎧
⎪⎨

⎪⎩
u = {uj} , j = 1, 2, ...N , ‖u‖l2

=

⎛

⎝
N∑

j=1

|uj |2
⎞

⎠

1
2

< ∞

⎫
⎪⎬

⎪⎭
,

(see [27, § 1.18]). Let A1 be the operator in l2 defined by

A1 = [ajm] , ajm = bj2σm, m, j = 1, 2, ..., N , D (A1) = lσ2

=

⎧
⎪⎨

⎪⎩
u = {uj} , j = 1, 2, ..., N , ‖u‖lσ2

=

⎛

⎝
N∑

j=1

2σj |uj |2
⎞

⎠

1
2

< ∞

⎫
⎪⎬

⎪⎭
,

N ∈ N, bj ∈ R, σ > 0.

Let

Y s,p,σ = W s,p (Rn; l2) ∩ Lp (Rn; lσ2 ) ,

W0 (l2) = W s(1− 1
2p ),p (Rn; l2) ∩ Lp

(

R
n; l

σ(1− 1
2p )

2

)

.

Let f = {fm}, m = 1, 2, ...,∞ and

η1 = η1 (ξ) =
[
a |ξ|2 + A1

] 1
2

.

Here

Eip (l2) = W s(1−θi),p (Rn; l2) ∩ Lp
(
R

n; lσ(1−θi)
2

)
,

where

θj =
1 + ip

2p
, i = 0, 1.

From Theorem 3.1 we obtain the following result:
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Theorem 6.1. Assume the following: (1) assumption (2.7) holds, 0 ≤ α <
1− 1

2p , ϕ ∈ H0p (l2), ψ ∈ H1p (l2) for p ∈ [1,∞]; (2) a ≥ 0, bj are nonnegatıve
bounded numbers, â (ξ) + bj > 0 for ξ ∈ R

n, and the following estimate hold
∞∑

j=1

[
â |ξ|2 + bj

]−1

≤ M for all ξ ∈ R
n;

(3) the function

u → f (x, t, u) : R
n × [0, T ] × W0 (l2) → l2

is measurable in (x, t) ∈ R
n × [0, T ] for u ∈ W0 (l2). Moreover, f (x, t, u) is

continuous in u ∈ W0 (l2) and f ∈ C [s]+1 (W0 (l2) ; l2) uniformly in x ∈ R
n,

t ∈ [0, T ]. Then problem (1.3) has a unique local strong solution

u ∈ C(2) ([0, T0) ;Y s,p
∞ (A1, l2)) ,

where T0 is a maximal time interval that is appropriately small relative to M .
Moreover, if

sup
t∈[0, T0)

(
‖u‖Y s,p∞ (Aα

1 ;l2)
+ ‖ut‖Y s,p∞ (Aα

1 ;l2)

)
< ∞,

then T0 = ∞.

Proof. It is known that Lp (Rn; l2) is a UMD space for p ∈ (1,∞) (se,e e.g.,
[25]). By Remark 2.1, the definition of W s,p (A1, l2) and real interpolation of
Banach spaces (see, e.g., [27, § 1.3, 1.18]), we have

Hip =
(
W s,,p (Rn; lσ2 , l2) , Lp (Rn; l2)θi,p

)
= W s(1−θi),p

(
R

n; lσ(1−θi)
2 , l2

)

= W s(1−θi),p (Rn; l2) ∩ Lp
(
R

n; lσ(1−θi)
2

)
= H0i (l2) , i = 0, 1.

By assumptions (1), (2) we obtain that A1 is sectorial in l2, and by virtue of
[3, § 3.14, 3.16], the operator A2

1 +μ is a generator of bounded cosine function
in l2. Hence, by (4), (5), all conditions of Theorem 3.2 are satisfied, i.e., we
get the conclusion.

Theorem 6.2. Assume: (h1) assumptions (1)-(3) of Theorem 6.1 are satisfied
for p = 2; (h2) fm ∈ C [s] (R; l2) with f(0) = 0 and

∞∑

m=1

fm (u) < ∞ for all u = {um} ∈ C(2)
(
[0, ∞) ;Y s,2

∞ (A1; l2)
)
;

(h3) Bϕ, Bψ ∈ L2 (Rn; l2) and Φ(ϕ) ∈ L2 (Rn; l2); (h4) there is some
k > 0 so that

Φ(σ) ≥ −k |σ|2 for all σ ∈ R and t ∈ [0, T ] .

Then: (a); there exists T > 0 such that problem (1.4) has a global solution

u ∈ C(2)
(
[0, ∞) ;Y s,2

∞ (A1; l2)
)
;
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(b) if assumption 5.1 of Theorem 5.1 also holds for H = l2, then the
solution of (1.4) blows up in finite time.

Proof. From assumptions (h1), (h2) it is clear to that Condition 4.1 holds for
H = l2 and r > 2 + n

2 . By (h3), all other assumptions of Theorem 4.1 are
satisfied. Hence, we obtain the assertion.

6.2. The Mixed Problem for Degenerate WE

Consider the problem (1.5)–(1.7). Let

Y s,p,2 = W s,p
(
R

n;L2 (0, 1)
) ∩ Lp

(
R

n;W [2],2 (0, 1)
)

, 1 ≤ p ≤ ∞.

Let A2 be the operator in L2 (0, 1) defined by (1.6)–(1.8) and let

η2 = η2 (ξ) =
[
a |ξ|2 + Â2 (ξ)

] 1
2

.

Here

Hip

(
L2
)

= W [s(1−θi)],p
(
R

n;L2 (0, 1)
) ∩ Lp

(
R

n;W [2(1−θi)],2 (0, 1)
)

,

where

θi =
1 + ip

2p
, i = 0, 1.

Now we present the following result:

Condition 6.1. Assume;
(1) assumption (2.7) holds, 0 ≤ γ < 1

2 , and α1β2 − α2β1 �= 0;
(2) 0 ≤ α < 1 − 1

2p , ϕ ∈ H0p

(
L2
)
, ψ ∈ H1p

(
L2
)

for p ∈ [1,∞];
(2) b1 and b2 are complex valued functions on (0, 1) . Moreover, b1 ∈

C [0, 1] , b1 (0) = b1 (1), b2 ∈ L∞ (0, 1) , and |b2 (x)| ≤ C
∣
∣
∣b

1
2−μ
1 (x)

∣
∣
∣ for 0 < μ <

1
2 and for a.a. x ∈ (0, 1) ;

(3) a ≥ 0 and η2 (ξ) �= 0 for all ξ ∈ R
n;

(4) the function

u → f (x, t, u) : R
n × [0, T ] × W0

(
L2 (0, 1)

) → L2 (0, 1)

is measurable in (x, t) ∈ R
n×[0, T ] for u ∈ W0

(
L2 (0, 1)

)
; f (x, t, u). Moreover,

f (x, t, u) is continuous in u ∈ W0

(
L2 (0, 1)

)
and

f (x, t, u) ∈ C [s]+1
(
W0

(
L2 (0, 1)

)
;L2 (0, 1)

)

uniformly with respect to x ∈ R
n, t ∈ [0, T ] .

Theorem 6.3. Assume that Condition 6.1 is satisfied. Then problem (1.6)–
(1.8) has a unique local strong solution

u ∈ C(2)
(
[0, T0) ;Y s,p

∞
(
A2, L

2 (0, 1)
))

,

where T0 is a maximal time interval that is appropriately small relative to M .
Moreover, if
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sup
t∈[0, T0)

(
‖u‖Y s,p∞ (Aα

2 ;L2(0,1)) + ‖ut‖Y s,p∞ (Aα
2 ;L2(0,1))

)
< ∞,

then T0 = ∞.

Proof. It is known (see, e.g., [13]) that L2 (0, 1) , is a UMD space for p1 ∈
(1,∞). By definition, W s,p

(
A2, L

2 (0, 1)
)
, and by real interpolation of Banach

spaces (see, e.g., [27, §1.3.2.]) we have

Hip = W s,,p
(
R

n;W [2],,2 (0, 1) , Lp1 (0, 1) , Lp
(
R

n;L2 (0, 1)
))

θi,p

= W s(1−θi),p
(
R

n;W [2(1−θi)],2 (0, 1) , L2 (0, 1)
)

= Hip

(
L2
)
.

In view of [26, Theorem 4.1], we obtain that the operator A2 defined by (2.5) is
uniformly sectorial in L2 (0, 1) , and by virtue of [3, § 3.14, 3.16], the operator
A2

2 + μ is a generator of the bounded cosine function in L2 (0, 1). Moreover,
using assumptions (1), (2), we deduce that η2 (ξ) �= 0 for all ξ ∈ R

n. Hence by
hypotheses (3), (4) of Condition 5.1, we get that all, hypotheses of Theorem
3.2 hold, i.e., we obtain the conclusion.

Theorem 6.4. Assume Condition 6.1 is satisfied for p1 = 2. Suppose f ∈
C [s](R;L2((0, 1))) with f(0) = 0. Moreover, let Bϕ, Bψ, Φ(ϕ) ∈ L2(Rn ×
(0, 1)) and there exists k > 0 such that

Φ(σ) ≥ −k |σ|2 for σ ∈ R, t ∈ [0, T ] .

Then:
(a) there exists T > 0 such that problem (1.5)−(1.7) has a global solution

u ∈ C2
(
[0, ∞) ;Y s,2

∞
)
;

(b) if assumption (5.1) of the Theorem 5.1 also holds for H = L2 (0, 1),
then the solution of (1.6) − (1.8) blows up in finite time.

Proof. Indeed, by assumption, all conditions of Theorem 4.1 are satisfied for
H = L2 (0, 1), i.e., we obtain the assertion.
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