
Results Math (2022) 77:210

c© 2022 The Author(s), under exclusive licence to

Springer Nature Switzerland AG

1422-6383/22/050001-11
published online September 3, 2022
https://doi.org/10.1007/s00025-022-01740-2 Results in Mathematics

Generic Versions of a Result in the Theory
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Abstract. We show generic existence of functions f in the Hardy space
Hp(0 < p < 1) on the open unit disc whose primitive F (f) satisfies the

following. For every a >
p

1 − p
and every A, B ∈ R, A < B it holds

sup
0<r<1

∫ B

A

|F (f)(reiθ)|adθ = +∞.

Results of similar nature are valid when the space Hp is replaced by
localized versions of it, 0 < p < 1, or intersections of such spaces.
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1. Introduction

If there exists an object with a “bad” property, then a general principle is that
there are many such objects and their set is big in various senses. For instance
the set of irrational real numbers is uncountable while the set of rationals Q is
countable. Also R � Q is bigger than Q with respect to measure or category.

A classical result in the theory of Hardy spaces in the unit disc states
that if 0 < p < 1 and f ∈ Hp then its primitive F (f) belongs to Hq where
q =

p

1 − p
. Furthermore, if a > q, then there exists g ∈ Hp such that F (g) /∈

Ha. According to the previously mentioned general principle we show that
there are a lot of functions g ∈ Hp with F (g) /∈ Ha and that their set is a
Gδ and dense subset of Hp. Furthermore we show that the function g may be
chosen independently of a (a > q) and that generically their primitives do not
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belong, even not locally, to Hardy spaces of higher order a > q. We also obtain
similar results when Hp, 0 < p < 1, is replaced by localized versions of it, or
intersections of such spaces.

In order to prove the above results we use a result of M. Siskaki which
roughly speaking states that under some assumptions, if an unbounded func-
tion exists, then their set is Gδ and dense in a topological vector space, not
necessarily complete. Thus, our first result does not use the completeness of
the Hardy spaces. However, more advanced results make use of Baire’s theo-
rem and we need the completeness of the space. Those results are results of
topological genericity. We also prove a result of algebraic genericity; that is we
show that the set of g ∈ Hp (0 < p < 1) such that for a precise a > q =

p

1 − p
the primitive F (g) does not belong to Ha, contains a vector subspace except
0 dense in Hp. We have not been able to obtain spaceability; that is whether
the set of g ∈ Hp, 0 < p < 1 such that for a precise a > q =

p

1 − p
the

primitive F (a) does not belong to Ha, contains a closed infinite dimensional
vector space except 0 in Hp.

The organization of the paper is as follows, Sect. 2 contains all preliminary
results needed for the proofs of our results, which are contained in Sect. 3.

For the use of Baire’s theorem in mathematical analysis we refer to [4,6].
For algebraic genericity and spaceability we refer to [1,2].

2. Preliminaries

Let D = {z ∈ C : |z| < 1} be the open unit disc. A holomorphic function f :

D → C belongs to the Hardy space Hp (0 < p < +∞) if sup
0<r<1

1
2π

∫ 2π

0

|f(reiθ)|p

dθ < +∞. It belongs to the Hardy space H∞ if sup
|z|<1

|f(z)| < +∞. The space

H∞ endowed with the supremum norm on D is a Banach space, but polyno-
mials are not dense in this space. For 1 ≤ p < +∞ the space Hp endowed with
the norm

‖f‖p = sup
0<r<1

{
1
2π

∫ 2π

0

|f(reiθ)|pdθ

}1/p

is also a Banach space. Then for f, g ∈ Hp their distance is

dp(f, g) = sup
0<r<1

{
1
2π

∫ 2π

0

|f(reiθ) − g(reiθ)|pdθ

}1/p

, 1 ≤ p < +∞.

For 0 < p < 1 we endow Hp with the metric

dp(f, g) = sup
0<r<1

1
2π

∫ 2π

0

|f(reiθ) − g(reiθ)|pdθ, f, g ∈ Hp, 0 < p < 1
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and then Hp becomes a topological vector space endowed with a metric invari-
ant by translation which is complete (F -space). For 0 < p < +∞ polynomials
are dense in Hp. Also convergence in Hp, 0 < p ≤ +∞ implies uniform conver-
gence on each compact subset of D. All above is well known; see for example
[3,8].

For a, b ∈ (0,+∞], a < b we have Hb ⊂ Ha and the injection map is
continuous. Jensen’s inequality implies that the map

a → sup
0<r<1

{ 1
2π

∫ 2π

0

|f(reiθ)|adθ
}1/a

is increasing. Obviously we also have

sup
0<r<1

{ 1
2π

∫ 2π

0

|f(reiθ)|pdθ
}1/p

≤ sup
|z|<1

|f(z)|.

Next for 0 < a ≤ +∞ we consider the intersection
⋂

p<a Hp.
Convergence in this space is equivalent with convergence in all spaces Hp,

p < a. Equivalently, we consider a strictly increasing sequence pn converging
to a and the metric in

⋂
p<a Hp is defined by

d(f, g) =
∞∑

n=1

1
2n

dpn
(f, g)

1 + dpn
(f, g)

, f, g ∈
⋂
p<a

Hp.

This space is also complete, in fact an F -space. Obviously convergence in⋂
p<a Hp implies uniform convergence on each compact subset of D.

Proposition 2.1. Polynomials are dense in
⋂

p<a Hp, for every a, 0 < a ≤ +∞.

For the proof it suffices for f ∈ ⋂
p<a Hp to control dpn

(f, P ), for n =
1, . . . , N for any finite N . Because of the monotonicity of the map p →
sup

0<r<1

{ 1
2π

∫ 2π

0

|f(reiθ)−P (reiθ)|pdθ
}1/p

is suffices to control dpN
(f, P ). But

this is possible, because polynomials are dense in HpN since pN < +∞. Thus
Proposition 2.1 holds.

Next we present localized versions of the previous spaces ( [9,10]).
Let 0 < p < +∞ and A,B ∈ R, A < B. Then a holomorphic function

f : D → C belongs to Hp
[A,B] if sup

0<r<1

∫ B

A

|f(reiθ)|p dθ

B − A
< +∞ and to

H∞
[A,B] if sup

0<r<1
sup

A≤θ≤B
|f(reiθ)| < +∞. Because of the monotonicity of the

function a → sup
0<r<1

{∫ B

A

|f(reiθ)|a dθ

B − A

}1/a

it follows Hb
[A,B] ⊂ Ha

[A,B] for

0 < a < b ≤ +∞.
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Convergence in Hp
[A,B] of a sequence fn towards f where fn, f ∈ Hp

[A,B]

is equivalent to uniform convergence on all compact subsets of D and

sup
0<r<1

{ ∫ B

A

|fn(reiθ) − f(reiθ)|p dθ

B − A

}1/p
n → +∞−−−−−−→ 0 for 0 < p < +∞

and sup
0<r<1

sup
A≤θ≤B

|fn(reiθ) − f(reiθ)| n → +∞−−−−−−→ 0 for p = +∞.

The metric giving this topology in Hp
[A,B] is defined by

dp,[A,B](f, g) = sup
0<r<1

{ ∫ B

A

|fn(reiθ) − g(reiθ)|p · dθ

B − A

}1/p

+
∞∑

n=2

1
2n

sup
|z|≤1− 1

n

|f(z) − g(z)|

1 + sup
|z|≤1− 1

n

|f(z) − g(z)| for 1 ≤ p < +∞

dp,[A,B](f, g) = sup
0<r<1

∫ B

A

|f(reiθ) − g(reiθ)|p dθ

B − A

+
∞∑

n=2

1
2n

sup
|z|≤1− 1

n

|f(z) − g(z)|

1 + sup
|z|≤1− 1

n

|f(z) − g(z)| for 0 < p < 1 and

d∞,[A,B](f, g) = sup
0<r<1

sup
A≤θ≤B

|f(z) − g(z)|

+
∞∑

n=2

1
2n

sup
|z|≤1− 1

n

|f(z) − g(z)|

1 + sup
|z|≤1− 1

n

|f(z) − g(z)| for p = +∞.

Obviously, convergence in Hp
[A,B] implies uniform convergence on all compact

subsets of D. Also for 0 < a < b ≤ +∞ the injection map Hb
[A,B] ⊂ Ha

[A,B] is
continuous. Finally these spaces are complete, in fact F -spaces and Hp

[A,B] =
Hp when B − A ≥ 2π and in general Hp ⊂ Hp

[A,B], provided A < B.
Let 0 < a ≤ +∞. Convergence in the space

⋂
p<a Hp

[A,B] is equivalent to
convergence in all Hp

[A,B] for p < a. A metric in
⋂

p<a Hp
[A,B] compatible with

this topology is given by

d(f, g) =
∞∑

n=1

1
2n

dpn,[A,B](f, g)
1 + dpn,[A,B](f, g)

where pn is any strictly increasing sequence converging to a. This space is
complete, in fact an F -space. Obviously convergence in

⋂
p<a Hp

[A,B] implies
uniform convergence on all compact subsets of D.



Vol. 77 (2022) Generic Versions of a Result in the Theory of Hardy Spaces Page 5 of 11 210

Consider the function
1

(1 − z)
. It is well known that for p > 0, this

function belongs to Hp if and only if p < 1; see for example [3]. The same

holds for
1

eiω − z
for any ω ∈ R. If f is holomorphic on the open unit disc we

denote by F (f) its primitive vanishing at 0; that is F (f)(z) =
∫ z

0

f(ζ)dζ. The

primitive of the function
1

eiω − z
is − log(eiω − z) which belongs to Hp for all

p ∈ (0,+∞), but not to H∞. Consider the function
1

(eiω − z)γ
, γ > 0. If p > 0,

this function belongs to Hp, if and only if p <
1
γ

. For γ = 1 we mentioned

that the primitive belongs to all Hp, 0 < p < +∞ but not to H∞. For γ < 1

the function
1

(eiω − z)γ
belongs to H1; hence, according to Hardy’s inequality

[3], its primitive has an absolutely convergent Taylor series on the closed unit

disc and therefore, it is in H∞. For 1 < γ the function
1

(eiω − z)γ
, belongs to

Hδ(0 < δ) if and only if 0 < δ <
1
γ

and the essential part of its primitive is

1
(eiω − z)γ−1

. This primitive belongs to Hβ if and only if β(γ − 1) < 1, which

is equivalent to β <
1

γ − 1
=

1
γ

1 − 1
γ

.

Thus, if the function
1

(eiω − z)γ
, (1 < γ) belongs to an Hδ (which implies

0 < δ <
1
γ

), its primitive belongs to H
δ

1−δ because
δ

1 − δ
<

1
γ

1 − 1
γ

. This is a

particular case of the following more general result.

Theorem 2.2. ([3] Theorem 5.12). Let 0 < p < 1 and f ∈ Hp. Then its
primitive F (f) belongs to Hq, where q =

p

1 − p
. Furthermore, for every a > q

there is a function g in Hp so that F (g) /∈ Ha. Moreover, for every A,B ∈ R

and A < B we can choose g ∈ Hp so that F (g) /∈ Ha
[A,B].

According to the previous discussion, it suffices to set g(z) =
1

(eiω − z)γ

with A < ω < B and γ ∈
[
1 +

1
a
,
1
p

)
; the last interval is non-void because

a > q =
p

1 − p
and 0 < p < 1.

Theorem 2.2 implies easily the following.
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Proposition 2.3. a) Let 0 < p < 1 and f ∈ ⋂
β<p Hβ. Then F (f) ∈ ⋂

γ<q Hγ ,

where q =
p

1 − p
. Furthermore, if A < B, there is a function g ∈ ⋂

β<p Hβ

such that F (g) /∈ Hq
[A,B].

b) If f ∈ ⋂
β<1 Hβ, then F (f) ∈ ⋂

γ<+∞ Hγ .

For part a) it suffices to set g(z) =
1

(eiω − z)1/p
with A < ω < B.

In Section 3 we will show that the function g in Proposition 2.3 a) can
be chosen independently of A,B but it will depend on p, 0 < p < 1. In order
to show that the set of these functions g is big we will use a version of a result
of M. Siskaki ([11]).

Proposition 2.4. Let V be a topological vector space over the field R or C. Let
X be a non void set and CX the set of complex functions defined on X.

Let T : V → CX be a linear map such that for every x ∈ X the function
V 	 f → T (f)(x) ∈ C is continuous. Let S = {f ∈ V : T (f) is unbounded
on X}. Then, either S = ∅ or S is a Gδ and dense subset of V .

In [5] it was noticed that the previous result holds even if T is not linear
but it satisfies

|T (f + g)(x)| ≤ |T (f)(x)| + |T (g)(x)| and |T (λf)(x)| = |λ| |T (f)(x)|
for every scalar λ, every f, g ∈ V and every x ∈ X.

The version that we will use is the following.

Proposition 2.5. Let V be a topological vector space over the field R or C. Let
X be a non empty set and CX the set of complex functions defined on X. Let
T : V → CX be such that

1) For every x ∈ X the function V 	 f → T (f)(x) ∈ C is continuous.
2) |T (f − g)(x)| ≤ |T (f)(x)| + |T (g)(x)| for all f, g ∈ V and x ∈ X.
3) For every f ∈ V , if T (f) is unbounded on X, then there is a sequence

(λn)n of numbers in R or in C, respectively, with λn → 0 as n → ∞ such
that T (λnf) is unbounded on X for every n ≥ 1.

We set S = {f ∈ V : T (f) is unbounded on X}. Then, either S = ∅ or S
is a Gδ and dense subset of V .

Proof. The proof that S is a Gδ is omitted, because it follows simply from 1)
and is similar to the proof in [11].

Suppose S �= ∅ and let f ∈ S. Thus, T (f) is unbounded on X. If S is not
dense, then there exist g ∈ V so that g /∈ S. Then T (g) is bounded on X.

Since V is a topological vector space it holds g+λnf → g as n → +∞.
According to our assumptions we have

|T (λnf)(x)| = |T (g + λnf − g)(x)| ≤ |T (g + λnf)(x)| + |T (g)(x)|
≤ |T (g + λnf)(x)| + M
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for all x ∈ X where M < +∞ is independent of x.
Then for every n ≥ 1 it follows that T (g + λnf) is unbounded on X. Then it
is deduced that g belongs to the closure of S, which is a contradiction. �

We close this section mentioning that a complex function defined on the
open unit disc D of C is called totally unbounded ( [5,7,9,10]) if it is unbounded
on D∩D(ζ0, r) for every r > 0 and ζ0 ∈ ∂D where D(ζ0, r) = {z ∈ C : |z−ζ0|<
r}. If g is continuous on D, this is equivalent to sup

0<r<1
sup

θ∈[A,B]

|g(reiθ)| = +∞
for every A,B ∈ R, A < B. If g is holomorphic on D and totally unbounded,
then g is non-extendable ( [9,10]).

3. The Results

It is a general principle that if there exists an object with a “bad” property,
then most of the objects have this property. In Theorem 2.2 we saw that for
0 < p < 1 and a > q =

p

1 − p
there exists a function g ∈ Hp such that its

primitive F (g) does not belong to Ha. We will show that the set of all such
functions g in Hp is a Gδ and dense subset of Hp; that is, we have topological
genericity.

Proposition 3.1. Let 0 < p < 1, a > q =
p

1 − p
, A < B and W < Y . Then the

set {f ∈ Hp
[W,Y ] : F (f) /∈ Ha

[A,B]} is a Gδ and dense subject of Hp
[W,Y ].

Proof of Prop. 3.1. Let V = Hp
[W,Y ], X = (0, 1) and T : V ×X → C be given

by

T (f, r) =
∫ B

A

|F (f)(reiθ)|a dθ

B − A
, f ∈ V, r ∈ X if 0 < a < 1

and by

T (f, r) =
{ ∫ B

A

|F (f)(reiθ)|a dθ

B − A

}1/a

f ∈ V, r ∈ X, if a ≥ 1.

Let 0 < r < 1 and z ∈ C with |z| = r. Then F (f)(z) =
∫ z

0

f(ζ)dζ, where

the integral is over the segment [0, z] which is subset of the compact disc {z ∈
C : |z| ≤ r} ⊂ D. Because convergence in Hp

[W,Y ] implies uniform convergence
on each compact subset of D, one easily can check that the assumptions of
Proposition 2.5 are satisfied. Furthermore, according to Theorem 2.2 there
exists g ∈ V , such that, sup

r∈X
|T (g, r)| = +∞. It follows that the set {f ∈ V :

sup
r∈X

|T (f, r)| = +∞} is a Gδ and dense subset of V . The proof is completed.
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Proposition 3.2. Let 0 < p < 1, q =
p

1 − p
, W < Y and A < B. Then the

set {f ∈ Hp
[W,Y ]: for every a > q it holds F (f) /∈ Ha

[A,B]} is a Gδ and dense
subject of Hp

[W,Y ].

Proof. Because of the monotonicity of the function

a → sup
0<r<1

{∫ B

A

∣∣∣∣F (f)(reiθ)
∣∣∣∣
a

dθ

B − A

}1/a

the assertion that for every a > q it holds F (f) /∈ Ha
[A,B] is equivalent to the

assertion that for every n ≥ 1 it holds F (f) /∈ H
q+ 1

n

[A,B].
Thus, the set of Proposition 3.2 is equal to the denumerable intersection

for all n ≥ 1 of the sets {f ∈ Hp
[W,Y ] : F (f) /∈ H

q+ 1
n

[A,B]}. According to Propo-
sition 3.1 these sets are Gδ and dense in Hp

[W,Y ]. Baire’s theorem implies the
result. �
Theorem 3.3. Let 0 < p < 1 and q =

p

1 − p
and W < Y . Then the set {f ∈

Hp
[W,Y ]: for every a > q and every A,B ∈ R, A < B it holds F (f) /∈ Ha

[A,B]}
is a Gδ and dense subset of Hp

[W,Y ].

Proof. The set of Theorem 3.3 is equal to the intersection of the sets of Propo-
sition 3.2 for all rational numbers A,B, A > B. Since these sets are Gδ and
dense in the complete space Hp

[W,Y ] and the intersection is denumerable, Baire’s
theorem yields the result. �

If W − Y ≥ 2π, then Hp
[W,Y ] = Hp. Thus, Theorem 3.3 implies the

following.

Theorem 3.4. Let 0 < p < 1 and q =
p

1 − p
. Then there is a function f in Hp

such that its primitive F (f) satisfies the following.
For every a > q and A,B ∈ R, A < B it holds

sup
0<r<1

∫ B

A

|F (f)(reiθ)|adθ = +∞.

Furthermore, the set of such functions f is a Gδ and dense subset of Hp.

We remind that for every f ∈ Hp with 0 < p < 1 the primitive F (f)

satisfies sup
0<r<1

∫ 2π

0

|F (f)(reiθ)|qdθ < +∞ with q =
p

1 − p
.

Next we replace the space Hp
[W,Y ] by the space

⋂
β<p Hβ

[W,Y ], 0 < p ≤
1. Then, Theorem 2.2 implies that if f ∈ ⋂

β<p Hβ then F (f) ∈ ⋂
γ<q Hγ

with q =
p

1 − p
. Let A,B,A < B be given and consider the function g =

1
(eiω − z)1/p

where A < ω < B. Then g ∈ ⋂
β<p Hβ ⊂ ⋂

β<p Hβ
[W,Y ] and



Vol. 77 (2022) Generic Versions of a Result in the Theory of Hardy Spaces Page 9 of 11 210

F (g) /∈ Hq
[A,B]. Thus, all the previous results, extend to this case. The analogue

of Theorem 3.3 is the following.

Theorem 3.5. Let 0 < p ≤ 1, q =
p

1 − p
and W,Y ∈ R with W < Y . Then the

set
{

f ∈ ⋂
β<p Hβ

[W,Y ]: for every A < B it holds F (f) /∈ Hq
[A,B]

}
is a Gδ and

dense subset of the space
⋂

β<p Hβ
[W,Y ].

Remark 3.6. If W − Y ≥ 2π and f ∈
⋂
β<p

Hβ
[W,Y ] then automatically F (f) ∈

⋂
γ<q Hγ according to Proposition 2.3.

Remark 3.7. If p = 1 and W −Y ≥ 2π, then Theorem 3.5 takes the form “The
set

{
f ∈ ⋂

β<1 Hβ : F (f) is totally unbounded on the open unit disc
}

is a Gδ

and dense subset of the space
⋂

β<1 Hβ”. This is in contrast with the situation
in H1, where for every f ∈ H1 the primitive F (f) is bounded on the open unit
disc, as it follows from Hardy’s inequality ( [3], [8]).

We close with an algebraic genericity result.

Theorem 3.8. Let 0 < p < 1, a > q =
p

1 − p
and A < B. Then the set

{f ∈ Hp : F (f) /∈ Ha
[A,B]} contains a dense vector subspace of Hp except zero.

Proof. Let fj , j = 1, 2, . . . be an enumeration of all polynomials with coeffi-
cients with rational real and imaginary parts. The sequence fj , j = 1, 2, . . .

is dense in Hp [3]. Let A < ωj < ωj+1 <
A + B

2
, be a sequence converging

to
A + B

2
. We also assume that

A + B

2
− 2π < ω1. Let ϕj , j = 1, 2, . . . be a

function of the form ϕj =
1

(eiωj − z)γ
, where the exponent γ > 0 is such that

ϕj ∈ Hp and F (ϕj) /∈ Ha.

Let cj �= 0 be close enough to 0, so that d(cjϕj , 0) <
1
j

where d is the

metric in Hp. Then the sequence cjϕj +fj , j = 1, 2, . . . is dense in Hp, because
Hp does not contain isolated points.

Let F be the linear span of the sequence cjϕj + fj , j = 1, 2, . . . . Then F
is a dense vector subspace of Hp. It remains to show that for every non zero
element f of F we have F (f) �∈ Ha

[A,B].
Let f = β1(c1ϕ1 + f1) + · · · + βm(cmϕm + fm) with βm �= 0. Let I be a

closed interval centered at ωm which is not a singleton and not containing any

other ωj , j �= m. Then for j �= m we have sup
0<r<1

∫
I

|F (cjϕj + fj)(reiθ)|adθ <

+∞ while sup
0<r<1

∫
I

|F (cmϕm + fm)(reiθ)|adθ = +∞. It follows that F (f) /∈
Ha

[A,B]. This completes the proof. �
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In a similar way one can prove the following, because polynomials are
dense in

⋂
β<p

Hβ (see Proposition 2.1).

Theorem 3.9. Let 0 < p ≤ 1, q =
p

1 − p
and A < B. Then the set

{
f ∈

⋂
β<p Hβ : F (f) /∈ Hq

[A,B]

}
contains a dense vector subspace of

⋂
β<p Hβ

except zero.

Question. We have not be able to obtain any result of spaceability; that is,
whether the set of g ∈ Hp, 0 < p < 1 such that for a precise a > q =

p

1 − p
the

primitive F (g) does not belong to Ha, contains a closed infinite dimensional
vector space except 0 in Hp.
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