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Abstract. A convex set in the n-dimensional vector space is called bound-
edly polyhedral provided its intersection with every polytope is a polytope
(possibly empty). We refine existing results on bounded polyhedrality of
line-free closed convex sets in terms of local conicity and local polyhe-
drality at their extreme points and halflines.
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1. Introduction

Following Klee [14], we say that a convex set K in the n-dimensional Euclidean
space R

n is boundedly polyhedral provided its intersection with every polytope
is again a polytope (possibly empty). Other terms are quasi-polyhedral set
[1,2] and generalized polyhedron [3,11]. Boundedly polyhedral sets are viewed
as generalizations of polyhedra and often are interpreted as solution sets of
locally finite systems of linear inequalities (see, e. g., [1,2,12,13,17]). Bounded
polyhedrality plays an important role in the study of upper semi-continuity of
convex functions [7–9], Lipschitzian properties of affine transformations [23],
and sharp continuity of metric projections [10].

There are various characterizations of boundedly polyhedral sets in terms
of local polyhedrality and local conicity. In Sect. 2 we provide a summary of
existing and new results on local conicity of convex sets. Furthermore, we
refine some known characteristic properties of boundedly polyhedral sets by
reducing the sets of points to be tested for local polyhedrality or local conicity
(see Sect. 3).
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We conclude this section with necessary definitions, notation, and results
on convex sets in the n-dimensional Euclidean space R

n (see, e. g., [18] for
details). By an r-dimensional plane L in R

n, where 0 ≤ r ≤ n, we mean
a translate of a suitable r-dimensional subspace S of R

n: L = c + S, where
c ∈ R

n. Given distinct points u, v ∈ R
n, we denote by [u, v] and (u, v) the closed

segment and the open segment with endpoints u and v, and [u, v〉 stands for
the closed halfline through v with endpoint u.

The closed and open balls with center x ∈ R
n and radius ρ > 0 are

denoted by Bρ(x) and Uρ(x), respectively. As usual, clX and intX stand for
the closure and interior of a set X ⊂ R

n. The convex hull and affine span
of X are denoted by conv X and aff X, respectively, and dim X is defined as
the dimension of the plane aff X. We say that a point x ∈ X is isolated in
X provided there is an open ball Uρ(x) ⊂ R

n such that X ∩ Uρ(x) = ∅.
Furthermore, a set X ⊂ R

n is called discrete if every point x ∈ X is isolated
in X.

In what follows, K denotes a proper convex set in R
n (that is, ∅ �= K �=

R
n), and rintK and rbdK mean its relative interior and relative boundary

(while rintK �= ∅, the set rbdK is nonempty if and only if K is not a plane).
An extreme face of K is a nonempty convex subset F of K such that, for

any points x, y ∈ K and a scalar λ ∈ (0, 1), the inclusion (1 − λ)x + λy ∈ F
is possible only if x, y ∈ F . For a given point u ∈ K, there is the smallest
extreme face of K, denoted Fu, which contains u. Furthermore, Fu ⊂ rbdK
provided u ∈ rbdK. The extreme face Fu is the largest convex subset of K
containing u in its relative interior. If Fu �= {u}, then Fu is the union of all
segments [v, w] ⊂ K satisfying the condition u ∈ (v, w).

Zero-dimensional extreme faces of K are called extreme points of K, and
their union is denoted extK. The union of extreme halflines of K is denoted
extr K, while the union of all extreme faces of K of dimension at most one
(which includes points, segments, halflines, and lines) is denoted ext1K. A
closed convex set K ⊂ R

n which does not contain lines (and thus is called
line-free) is expressible as the convex hull of its extreme points and extreme
halflines:

K = conv (ext K ∪ extr K). (1)

The lineality space of a closed convex set K ⊂ R
n, denoted linK, is the

largest subspace T ⊂ R
n such that K = K + T . If the subspace S is the

orthogonal complement of lin K in R
n, then

K = (K ∩ S) + linK, (2)

where K ∩S is a line-free closed convex set. Consequently, any extreme face F
of K can be expressed as F = G+linK, where G is an extreme face of K ∩S.
In particular, any planar extreme face F of K has the form F = x + lin K,
where x ∈ ext (K ∩ S).
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By a convex cone with apex u we mean a convex set C ⊂ R
n such that

u + λ(x − u) ∈ C for all λ ≥ 0 and x ∈ C (obviously, this definition implies
that u ∈ C, although a stronger condition λ > 0 can be beneficial; see, e. g.,
[15]). It is known that an apex u of C belongs to rbdC if and only if C is not
a plane. Furthermore, clC is a convex cone with apex u. The cone C is called
pointed if it has a unique apex. We will need the following simple lemma.

Lemma 1. If a closed convex cone C ⊂ R
n with apex u is contained in another

closed convex cone D ⊂ R
n with apex v, then (v − u) + C ⊂ D. Furthermore,

C ⊂ rint D provided u ∈ rintD. �

Given a convex set K ⊂ R
n and a point u ∈ R

n, the cone with apex u
generated by K is defined by

Cu(K) = {u + λ(x − u) : λ ≥ 0, x ∈ K}.

In other words, Cu(K) is the smallest convex cone with apex u containing K.
We observe that Cu(K) may be nonclosed even if K is a closed set. For any
point u ∈ K and an open ball Uρ(u) ⊂ R

n, one has

Cu(K) = Cu(K ∩ Uρ(u)). (3)

Furthermore, aff Cu(K) = aff K for all u ∈ K, and Cu(K) = aff K if and only
if u ∈ rintK. For a point u ∈ K, the cone Cu(K) is pointed if and only if
u ∈ ext K.

A polyhedron is the intersection of finitely many closed halfspaces of R
n.

Bounded polyhedra are called polytopes. A line-free closed convex set in R
n is

a polyhedron if and only if it has finitely many extreme points and extreme
halflines. If P ⊂ R

n is a polyhedron and u ∈ P , then the generated cone Cu(P )
is polyhedral.

2. Local Conicity and Polyhedrality

Bounded polyhedrality of a convex set K ⊂ R
n is related to three local prop-

erties of K: polyhedrality, conicity, and closedness of generated cones Cx(K).
Following [14], we say that K is polyhedral at a point x ∈ K if there is a
polyhedral neighborhood of x in K. We recall that a polyhedron Q ⊂ K is a
polyhedral neighborhood of x in K provided there is an open ball Uρ(x) ⊂ R

n

such that K ∩ Uρ(x) ⊂ Q. Obviously, here Uρ(x) can be replaced with the
respective closed ball Bρ(x). The following criterion of local polyhedrality is
obtained in [14, Corollary 3.3].

Lemma 2. ([14]). A convex set K ⊂ R
n is polyhedral at a point x ∈ K if and

only if the generated cone Cx(K) is polyhedral. �

A criterion of local non-polyhedrality is proved in [7]: A convex set K ⊂
R

n is not polyhedral at a point x ∈ K if and only if there is a closed convex set



188 Page 4 of 13 V. Soltan Results Math

M ⊂ R
n containing x such that x ∈ cl (K \ M), yet [x, z] �⊂ K \ M whenever

z ∈ K \ M .
In a standard way, a convex set K ⊂ R

n is called conic at a point x ∈ K
provided there is a convex cone C ⊂ R

n with apex x and an open ball Uρ(x) ⊂
R

n such that

K ∩ Uρ(x) = C ∩ Uρ(x). (4)

An elementary geometric argument implies the following lemma (see,
e. g., [1,16,22]).

Lemma 3. If a convex set K ⊂ R
n is polyhedral at a point x ∈ K, then K is

conic at x. �
It is possible to show (see, e. g., [18, Theorem 7.6]) that the cone C in (4)

is uniquely determined and

cl K ∩ Uρ(x) = cl C ∩ Uρ(x). (5)

The same reference implies the lemma below.

Lemma 4. A convex set K ⊂ R
n is conic at a point x ∈ K if and only if there

is an open ball Uρ(x) ⊂ R
n such that

K ∩ Uρ(x) = Cx(K) ∩ Uρ(x), (6)

where Cx(K) denotes the cone with apex x generated by K. �
A combination of the equalities (5) and (6) implies the following corollary.

Corollary 1. If a closed convex set K ⊂ R
n is conic at a point x ∈ K, then

the cone Cx(K) is closed. �
The example below illustrates the fact that the closedness of Cx(K) does

not imply the conicity of K at x. Similar examples can be found in [16,18,22],
and some others.

Example 1. Let Γ be the quarter arc of the unit circle in the yz-coordinate
plane of R

3, as depicted in Fig. 1.
Denote by c and e the endpoints of Γ . Choose a nonzero point u on the

x-axis, and consider the cone C = Cu(conv (Γ ∪ {o})). Obviously, C is closed
and convex. Denote by Λ a smooth curve with endpoints u and c which lies
on the boundary of C such that the closed segment [u, e] is tangent to Λ and
meets Λ at u only. The set K = conv ([e, o] ∪ Λ) is compact and convex. Also,
C = Cu(K). At the same time, K is not conic at u because

K ∩ Uρ(u) �= Cu(K) ∩ Uρ(u) for all ρ > 0.

We observe that a convex set K ⊂ R
n is conic at every point x ∈ rint K.

Indeed, by the definition of rintK, there is an open ball Uρ(x) ⊂ R
n such

that aff K ∩Uρ(x) ⊂ K. Furthermore, Cx(K) = aff K, which gives the desired
equality (6). The following two lemmas characterize those points from rbdK
and ext K, respectively, at which K is conic.
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Figure 1. Non-conic point u with closed generated cone
Cu(K)

Lemma 5. ([19]). Let K ⊂ R
n be a closed convex set, with dim K ≥ 2, and let

x ∈ rbdK. Then K is conic at x if and only if there is an open ball Uρ(x) ⊂ R
n

such that [x, z] ⊂ rbdK whenever z ∈ rbdK ∩ Uρ(x). �
Corollary 2. ([19]). A line-free closed convex set K ⊂ R

n is conic at a point
x ∈ ext K if and only if x is an isolated point in ext K. �

The assertion of Corollary 2 does not hold if the point x is not in ext K.
Indeed, let K ⊂ R

3 be the bounded circular cylinder given by

K = {(x, y, z) : x2 + y2 ≤ 1, 0 ≤ z ≤ 1}.

The boundary point u = (1, 0, 0.5) of K is at distance 0.5 from ext K, while
K is not conic at u.

The next theorem generalizes Corollary 2 to the case of arbitrary points
in rbdK. Denote by E(x) the union of all extreme faces of a closed convex set
K which do not contain a given point x ∈ rbdK (we observe that E(x) = ∅ if
and only if K is a closed convex cone with apex x, see [18, Corollary 11.35]).

Theorem 1. A closed convex set K ⊂ R
n is conic at a point x ∈ rbdK if and

only if x /∈ cl E(x).

Proof. Assume first that K is conic at x. By Lemma 5, there is an open ball
Uρ(x) ⊂ R

n such that [x, z] ⊂ rbdK whenever z ∈ rbdK ∩Uρ(x). Choose any
extreme face G of K which does not contain x. Clearly, G ⊂ rbdK (otherwise,
x ∈ K = G). We assert that G ∩ Uρ(x) = ∅. Indeed, assume for a moment
the existence of a point z ∈ G ∩ Uρ(x). Then z ∈ rbdK ∩ Uρ(x) due to
G ⊂ rbdK. By the choice of Uρ(x), there is a point u ∈ rbdK ∩ Uρ(x)
such that z ∈ (x, u) ⊂ rbdK. Denote by Fz the smallest extreme face of K
containing z. Then z ∈ [v, w] ⊂ Fz ⊂ G, contrary to the choice of G. Summing
up, G ∩ Uρ(x) = ∅. The above argument implies that x is at a distance ρ or
more from any extreme face of K. Thus, x /∈ cl E(x).

Conversely, assume that x /∈ cl E(x). Equivalently, there is a scalar ρ > 0
such that E(x) ∩ Uρ(x) = ∅. We assert that [x, z] ⊂ rbdK whenever z ∈
rbdK ∩ Uρ(x). Indeed, assume for a moment the existence of a point u ∈
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rbdK ∩ Uρ(x) such that [x, u] �⊂ rbdK. Then (x, u) ⊂ rint K. Denote by
Fu the smallest extreme face of K containing u. Clearly, x /∈ Fu (otherwise
[x, u] ⊂ Fu ⊂ rbdK). Hence Fu ⊂ E(x), which gives

∅ �= Fu ∩ Uρ(x) ⊂ E(x) ∩ Uρ(x),

a contradiction with the choice of Uρ(x). �

One more characteristic property of points of local conicity follows the
method of proof of Theorem 1 from [6]. In a standard way, the cone Tx(K) =
cl Cx(K) is called the tangent cone of K with apex x ∈ K.

Theorem 2. Given a closed convex set K ⊂ R
n and a point x ∈ K, the

conditions below are equivalent:
(a) K is conic at x,
(b) there is an open ball Uρ(x) ⊂ R

n such that Cx(K) ⊂ Cz(K) whenever
z ∈ K ∩ Uρ(x).

(c) there is an open ball Uρ(x) ⊂ R
n such that Tx(K) ⊂ Tz(K) whenever

z ∈ K ∩ Uρ(x).

Proof. (a) ⇒ (b) Choose an open ball Uρ(x) ⊂ R
n satisfying the equality

(6), and let z ∈ K ∩ Uρ(x). It is easy to see that, given a positive scalar
δ ≤ ρ−‖x−z‖, the open ball Uδ(z) ⊂ R

n satisfies the inclusion Uδ(z) ⊂ Uρ(x).
Consequently, based on (3) and (6), we conclude:

Cx(K) ⊂ Cz(Cx(K))

= Cz(Cx(K) ∩ Uδ(z))

= Cz(Cx(K) ∩ Uδ(z) ∩ Uρ(x))

= Cz((Cx(K) ∩ Uρ(x)) ∩ Uδ(z))

= Cz((K ∩ Uρ(x)) ∩ Uδ(z))

= Cz(K ∩ Uδ(z)) = Cz(K).

(b) ⇒ (c) Choose a an open ball Uρ(x) satisfying condition (b). Then

Tx(K) = cl Cx(K) ⊂ cl Cz(K) = Tz(K) whenever z ∈ K ∩ Uρ(x).

(c) ⇒ (a) Since K is conic at any point from rintK, we may assume
that x ∈ rbdK. Let an open ball Uρ(x) ⊂ R

n satisfy condition (c). Chose any
point z ∈ rbdK ∩ Uρ(x). Then Tz(K) �= aff K, implying that z, as an apex
of Tz(K), belongs to rbdTz(K). We assert that x ∈ rbdTz(K). Indeed, if x
belonged to rintTz(K), then, by Lemma 1, z ∈ K ⊂ Tx(K) ⊂ rintTz(K), in
contradiction with the inclusion z ∈ rbdTz(K). Therefore, [x, z] ⊂ rbdTz(K),
which gives the inclusion [x, z] ⊂ rbdK (otherwise (x, z) ⊂ rintK, again
implying the impossible inclusion x ∈ rintTz(K)). Since z is an arbitrary
point in rbdK ∩ Uρ(x), Lemma 5 shows that K is conic at x. �

The sets of points of polyhedrality or conicity of a given convex set are
studied in the papers [14,21,22].
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3. Boundedly Polyhedral Sets

Various parts of the following Theorem 3 were proved by Bastiani (see [4,5]
for the case of convex cones and [3] for arbitrary convex sets) and Klee [14].
Similar proofs are given in [1,11] (see also [20]).

Theorem 3. A closed convex set K ⊂ R
n is boundedly polyhedral if and only

if any of the conditions below holds:
(a) K is polyhedral at all points x ∈ K,
(b) K is conic at all points x ∈ K,
(c) all generated cones Cx(K), x ∈ K, are closed. �

A refinement of the above condition (a) was obtained in [14]: If X is
a subset of a closed convex set K ⊂ R

n such that K = conv X, then K is
boundedly polyhedral if and only if K is polyhedral at all points of X. This
assertion, combined with (1), implies the following corollary.

Corollary 3. A line-free closed convex set K ⊂ R
n is boundedly polyhedral if

and only if it is polyhedral at all points of ext K ∪ extr K. �
Our Theorem 4 further refines Corollary 3 and sharpens Theorem 3.6

from [19] by dropping the condition on discreteness of extK.

Theorem 4. A line-free closed convex set K ⊂ R
n is boundedly polyhedral if

and only if it is polyhedral at all points x ∈ ext K.

Proof. The case dim K ≤ 1 is trivial (K is either a singleton, a closed segment,
or a closed halfline). Hence we may assume that dim K ≥ 2. Since the “only
if” part is obvious, it remains to prove the “if” part.

So, let K ⊂ R
n be a line-free closed convex set which is polyhedral at all

points x ∈ ext K. Due to Corollary 3, it suffices to prove that K is polyhedral
at all points of the set extr K \ ext K. Let u ∈ extr K \ ext K and denote by
h0 the extreme halfline of K which contains u. Let v be the endpoint of h0.
Choose a point z0 ∈ h0 such that u ∈ (v, z0). Since v ∈ ext K, the set K is
polyhedral at v by the assumption. As stated in Lemma 2, the generated cone
Cv(K) is polyhedral. Obviously, h0 is an extreme halfline of Cv(K). Denote
by h0, h1, . . . , hr all extreme halflines of Cv(K). A combination of Lemmas 3
and 4 implies the existence of an open ball Uρ(v) ⊂ R

n such that

K ∩ Uρ(v) = Cv(K) ∩ Uρ(v).

Denote by Ii the semiopen segment hi ∩ Uρ(v), 1 ≤ i ≤ r.
The polyhedrality of Cv(K) implies that all its extreme halflines h0, h1,

. . . , hr are exposed. In other words, there are hyperplanes H0, . . . , Hr ⊂ R
n

such that

K ∩ Hi = hi for all 0 ≤ i ≤ r.

Let L be an (n − 2)-dimensional plane in H0 such that L ∩ h0 = {z0} (H0 is
the line containing h0 and L = {z0} if n = 2). A continuity argument shows
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that H0 can be slightly rotated about L such that its new position, say H ′
0,

meets every segment Ii at a point zi, 1 ≤ i ≤ r. By the convexity of K, the
polytope Q = conv {v, z0, z1, . . . , zr} is contained in K.

Let V be the closed halfspace determined by H ′
0 and containing v. Then

hi ∩ V = [v, zi] for all 0 ≤ i ≤ r,

which gives the equality Q = Cv(K) ∩ V . Therefore,

Cv(K) ∩ V = Q ⊂ K ∩ V ⊂ Cv(K) ∩ V,

which gives the equality Q = K ∩ V . Since u ∈ intV , there is an open ball
Uδ(u) ⊂ V . Thus

K ∩ Uδ(u) ⊂ K ∩ V = Q,

which shows that Q is a polyhedral neighborhood of u in K. So, K is polyhedral
at u, as desired. �

A combination of Lemma 3 and Corollary 2 implies that the set of ex-
treme points of a boundedly polyhedral set is discrete and closed (this fact
was already observed in [1,3]). The following example shows that a line-free
closed convex set K ⊂ R

n with discrete and closed set ext K is not necessarily
boundedly polyhedral.

Example 2. On the circle D = {(x, y, 0) : (x − 1)2 + y2 = 1} of the xy-plane
of R

3, choose the points a = (0, 0, 1) and

ur = (1/r, λr, 0), vr = (1/r,−λr, 0), where λr =
√

1 − (1 − 1/r)2,

br = a + r(ui − a), cr = a + r(vr − a), r ≥ 1.

Finally, let E = {b1, c1, b2, c2, . . . } and K = conv ({a}∪E)+h, where h is the
non-positive halfline of the z axis. It is easy to see that K is a closed convex
set, with ext K = {a}∪E. Clearly, extK is a closed discrete set. Furthermore,
K is conic but not polyhedral at a, while it is polyhedral at all points of E.

Our next result expands Theorem 4 to the case of convex sets with non-
trivial lineality. We need the following lemma.

Lemma 6. Let a closed convex set K ⊂ R
n be expressed as K = (K∩S)+lin K,

where S is the orthogonal complement of lin K. Then K is boundedly polyhedral
if and only if K ∩ S is boundedly polyhedral.

Proof. Assume first that K is boundedly polyhedral, and let P ⊂ R
n be a

polytope. By the assumption, the set K ∩P is polytope. Consequently, the set
(K∩P )∩S is a polytope (possibly empty). Therefore, the equality (K∩S)∩P =
(K ∩ P ) ∩ S implies that the intersection of K ∩ S and P is a polytope. Hence
K ∩ S is boundedly polyhedral.

Conversely, assume that K ∩ S is boundedly polyhedral and choose a
polytope P ⊂ R

n. Denote by Q the orthogonal projection of P on S. Clearly,
Q is a polytope and the set P ′ = Q + lin K is a polyhedron satisfying the
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inclusion P ⊂ P ′. By the assumption, (K∩S)∩Q is a polytope. This argument
and the equality

K ∩ P ′ = ((K ∩ S) + lin K) ∩ (Q + linK) = ((K ∩ S) ∩ Q) + linK

imply that K ∩ P ′ is a polyhedron. Consequently, K ∩ P = (K ∩ P ′) ∩ P is a
polytope. Hence K is boundedly polyhedral. �

Theorem 5. Let K ⊂ R
n be a closed convex set and X be a subset of K which

meets every planar extreme face of K. Then K is boundedly polyhedral if and
only K is polyhedral at all points of X.

Proof. Since the “only if” part obvious, it remains to prove the “if” part. So,
let K be polyhedral at all points of X. If K is line-free, then all planar extreme
faces of K are just its extreme points. In this case, ext K ⊂ X and the “if”
part follows from Theorem 4.

Suppose that linK �= {o} and express K in the form (2), where K∩S is a
line-free closed convex set. Choose any point u ∈ ext (K ∩ S) and consider the
planar extreme face F = u+linK of K. By the assumption, there is a point v ∈
F ∩X such that K is polyhedral at v. Let Q be a polyhedral neighborhood of v
in K. Choose an open ball Uρ(v) ⊂ R

n satisfying the condition K ∩Uρ(v) ⊂ Q.
Put Q′ = Q+(u−v). Since u−v ∈ lin K, one has K = K +(u−v). Therefore,

Q′ = Q + (u − v) ⊂ K + (u − v) = K.

This argument and the inclusion

K ∩ Uρ(u) = (K + (u − v)) ∩ (Uρ(v) + (u − v))

= K ∩ Uρ(v) + (u − v)

⊂ Q + (u − v) = Q′

imply that Q′ is a polyhedral neighborhood of K at u. Consequently,

(K ∩ S) ∩ Uρ(u) ⊂ Q′ ∩ S,

which shows that Q′ ∩ S is a polyhedral neighborhood of K ∩ S at u. Hence
K ∩ S is polyhedral at u.

By Theorem 4, the set K ∩S is boundedly polyhedral. Finally, Lemma 6
implies that the set K is boundedly polyhedral. �

We will need one more lemma, which is similar in spirit to Lemma 3.2
from [1]. We recall that the union of all extreme faces of K of dimension at
most one (which includes points, segments, halflines, and lines) is denoted
ext1K. Obviously, ext1K ⊂ rbdK provided dimK ≥ 2.

Lemma 7. Let a line-free closed convex set K ⊂ R
n be conic but not polyhedral

at a point x ∈ ext K. Then there is a line segment [x, z] ⊂ cl (ext1K) such that
K is not conic at any point v ∈ (x, z).



188 Page 10 of 13 V. Soltan Results Math

Proof. Because K is conic but not polyhedral at x, one has dim K ≥ 2 (oth-
erwise K would be polyhedral at x). Since K is conic at x, there is an open
ball Uρ(x) ⊂ R

n such that [x, z] ⊂ rbdK whenever z ∈ rbdK ∩ Uρ(x) (see
Lemma 5). Consequently, the equality (6) holds. Corollary 1 shows that the
line-free convex cone Cx(K) is closed, and Lemma 2 implies that Cx(K) is not
polyhedral. So, Cx(K) has infinitely many extreme halflines, say h1, h2, . . . ,
with common endpoint x. Clearly, all intersections K ∩ hi, i ≥ 1, are 1-
dimensional extreme faces of K, which are either segments or halflines (in-
deed, if K ∩ hi = {x}, then hi �⊂ Cx(K)). Let [x, zi) = hi ∩ Uρ(x), i ≥ 1.
Then [x, zi] ⊂ ext1K for all i ≥ 1. Furthermore, ‖x − zi‖ = ρ, i ≥ 1, by the
choice of Uρ(x). A compactness argument implies the existence of a subse-
quence of z1, z2, . . . converging to a point z ∈ K. Without loss of generality,
we may assume that zi → z. By a continuity argument, [x, z] ⊂ cl (ext1K) and
‖x − z‖ = ρ.

Choose any point v ∈ (x, z) and denote by H the hyperplane through v
orthogonal to (x, z). Since ‖x−v‖ < ‖x−z‖, there is an index r ≥ 1 such that
every segment [x, zi], i ≥ r, meets H at a point, say vi. Since ‖v−vi‖ < ‖z−zi‖,
we conclude that vi → v as i → ∞.

Next, let δ > 0. By the above argument, there is an index s ≥ r such
that ‖v − vt‖ < δ for all t ≥ s. We assert that K ∩ [v, vt〉 = [v, vt] whenever
t ≥ s. Indeed, assume the existence of an integer t ≥ s and a point u ∈
(K∩ [v, vt〉)\ [v, vt]. Then vt belongs to the relative interior of the quadrilateral
Q = conv {x, v, u, zt} ⊂ K. Consequently, the extreme face of K generated by
vt should contain Q. The latter is impossible because of the choice of vt in the
1-dimensional extreme face K ∩ [x, zt〉 of K. Hence K ∩ [v, vt〉 = [v, vt] for all
t ≥ s.

Finally, choose a point w ∈ [v, vt〉 \ [v, vt] such that ‖v − w‖ < δ. Then

w ∈ (Cv(K) ∩ Uδ) \ (K ∩ Uδ),

implying that

K ∩ Uδ(v) �= Cv(K) ∩ Uδ(v) for all δ > 0.

Hence K is not conic at v, as desired. �

The next example shows that the conicity of a line-free closed convex set
K ⊂ R

n at every point of extK is not sufficient for its bounded polyhedrality
(compare with Theorem 4).

Example 3. On the circle D = {(x, y, 0) : (x − 1)2 + y2 = 1} of the xy-plane
in R

3, consider the points

ur = (1/r, yr, 0), vr = (1/r,−yr, 0), where yr =
√

1 − (1 − 1/r)2, r ≥ 1.

Let E = {u1, v1, u2, v2, . . . } and K = conv ({a, c} ∪ E), where a = (0, 0, 1)
and c = (0, 0,−1). It is easy to see that K is a convex body, with extK =
{a, c}∪E. The set ext K is not closed because o = (0, 0, 0) ∈ cl (ext K)\ext K.
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Furthermore, K is polyhedral at any point of K \ [a, c] and is conic at any
point of K \ (a, c).

Theorem 6. A line-free closed convex set K ⊂ R
n is boundedly polyhedral if

and only if K is conic at all points of cl (ext1K).

Proof. Since the “only if” part is obvious, it suffices to prove the “if” part. So,
let a line-free closed convex set K ⊂ R

n be conic at all points of cl (ext1K).
Assume, for contradiction, that K is not boundedly polyhedral. According to
Theorem 4, there is a point x ∈ ext K such that K is not polyhedral at x. By
the hypothesis, K is conic at x (because ext K ⊂ ext1K). Lemma 7 implies
the existence of a segment [x, z] ⊂ cl (ext1K) such that K is not conic at any
point v ∈ (x, z), contrary to the assumption. Hence K should be boundedly
polyhedral. �

Corollary 4. A line-free closed convex set K ⊂ R
3 is boundedly polyhedral if

and only if all generated cones Cx(K), x ∈ cl (ext1K), are closed.

Proof. Since the case dim K ≤ 2 is obvious, we may suppose that dimK = 3.
Assuming that K is not boundedly polyhedral and repeating the proof of
Lemma 7, we conclude that every point vi of the closed convex set M = K ∩H
belongs to ext M and vi → v ∈ cl (ext1K) as i → ∞. In this case (since
dim M = 2), the generated cone Cv(M) is not closed, which implies that the
cone Cv(K) is not closed as well. �

Problem 1. Does the assertion of Corollary 4 hold for all n ≥ 3?
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[2] Anderson, E.J., Goberna, M.A., López, M.A.: Simplex-like trajectories on quasi-
polyhedral sets. Math. Oper. Res. 26, 147–162 (2001)
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