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Abstract. In this paper, we study the interesting open problem of classi-
fying the locally strongly convex centroaffine Tchebychev hypersurfaces
in R"™! with constant sectional curvature. First, for arbitrary dimensions
we solve the problem by assuming that the centroaffine shape operator
vanishes. Second, extending the solved cases of n = 2,3, we continue
working with the case n = 4. As the result, we establish a complete clas-
sification of the flat hyperbolic centroaffine Tchebychev hypersurfaces in
R®.
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1. Introduction

Let R"™! be the (n + 1)-dimensional affine space equipped with the standard
flat connection D. For an immersion z : M™ — R"™*! of an n-dimensional
smooth manifold M™, if the position vector z(p) is transversal to x.(T,M")
at each point p € M™, we say that « : M™ — R"t! defines a centroaffine
hypersurface with centroaffine normalization. A centroaffine hypersurface is
associated with the centroaffine metric h, a difference tensor K of type (1,2),
and a Tchebychev vector field defined by T := %tracehK . As is well-known,
(h, K) are centroaffine invariants which determine x up to centroaffine trans-
formations of R**!. In this paper, we study locally strongly convex centroaffine
hypersurfaces, i.e., the centroaffine metric h is definite.
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The centroaffine normalization of every centroaffine hypersurface induces
the identity as the Weingarten operator, from the point of view of relative dif-
ferential geometry any centroaffine hypersurface is a relative hypersphere (see
[20], Sects. 6.3 and 7.2). Thus, in centroaffine differential geometry the usually
induced Weingarten operator contains no further geometric information. In
1994, Wang [24] made a significant contribution by reasonably introducing the
operator 7 := VT as the centroaffine shape operator of the centroaffine hy-
persurface x : M™ — R*T1 where V denotes the Levi-Civita connection with
respect to the centroaffine metric. Then, following [17], a centroaffine hyper-
surface is called a T'chebychev hypersurface if the operator 7 is proportional to
the identity isomorphism id : TM"™ — TM™", i.e., T = H -id. Here, generally
H := (divT)/n is called the centroaffine mean curvature of M™.

As the centroaffine totally umbilical hypersurfaces, Tchebychev hypersur-
faces naturally generalize the notion of affine hyperspheres in equiaffine differ-
ential geometry. Indeed, it is known that both Tchebychev hypersurfaces and
affine hyperspheres have exactly the similar structure equations (cf. e.g. [4,7,
24]). Because of such nice similarity, the Tchebychev hypersurfaces have been
studied extensively. For references, we refer to [1,5,6,9,11,13,15,17,18,21].
Related to this similarity, we would highlight the recent result of Cheng-Hu-
Vrancken [5] which proved that the ellipsoids are the only centroaffine Tcheby-
chev hyperovaloids. Thus, after several preceding partial results of [6,15,17],
it finally solves the longstanding problem of generalizing the well-known the-
orem of Blaschke and Deicke (cf. Theorem 3.35 in [14]) on affine hyperspheres
in equiaffine differential geometry to that in centroaffine differential geometry.

Another interesting problem is the classification of non-degenerate affine
hyperspheres with constant sectional curvature, that had been solved by Li-
Penn [12] and Vrancken-Li-Simon [23] in the locally strongly convex case, and
finally solved by Vrancken [22] in case of non-degenerate affine hyperspheres
with nonzero Pick invariant. Motivated by the above mentioned similarity, we
have the following natural and interesting problem:

Problem Classify all non-degenerate centroaffine Tchebychev hypersurfaces in
R L with constant sectional curvature.

Concerning this problem, there are only some partial results. As an early
result, the flat centroaffine Tchebychev surfaces have been classified by Liu
and Wang (see Theorem 4.2 of [17]). For arbitrary dimensions, Li and Wang
[16] presented a classification of the canonical centroaffine hypersurfaces with
N(h) < 1, where N(h) denotes the dimension of the maximal negative defi-
nite subspace of the centroaffine metric i induced by x. Here, a centroaffine
hypersurface in R"*! is said to be canonical if it has flat centroaffine metric
and parallel cubic form. Then, Cheng-Hu-Moruz [3] (Corollary 1.1 therein)
classified all the locally strongly convex (i.e., N(h) = 0,n cases) canonical
centroaffine hypersurfaces in R" 1. Recently, Lalléchere et al [13] proved that
flat hyperbolic centroaffine Tchebychev hypersurfaces in R* must be canonical
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ones. Then, applying the result of [16], one can obtain a classification of all
flat hyperbolic centroaffine Tchebychev hypersurfaces in R*.

In this paper, we focus on the above problem for locally strongly convex
centroaffine Tchebychev hypersurfaces. First, motivated by Liu and Wang’s
classification theorem for all centroaffine surfaces with vanishing centroaffine
shape operator (see Theorem 4.1 in [17]), we prove the following theorem for
higher dimensions:

Theorem 1.1. Let x : M™ — R"* ! (n > 3) be a locally strongly conver cen-

troaffine hypersurface with constant sectional curvature and vanishing cen-

troaffine shape operator. Then, x(M™) is locally centroaffinely equivalent to

one of the following hypersurfaces:

(i) a hyperquadric of proper affine hyperspheres centered at the origin of

RnJrl’.

(i) @'as? -zt = 1, where either a; > 0 for 1 <i<n+1; ora; >0
for2<j<n+1and o+ -+ aps1 <0;

(iil) z{@s? - an (@2 + 22 ) exp(an4 arctan zﬁl) =1, where a;; < 0
for1<i<n—1anda; + - -+ an_1 + 2, > 0;

(iv) @py1 = ﬁ(aj§+ 2 )—zi(—Inz o, Inz,+- - +a, Inwx,), where
2<v<n+1,a; >0 forv<i<n, and a, + -+ a, < 1.

Remark 1.1. Theorem 1.1 partially generalizes Theorem 1.3 of Li and Wang
[16]. Moreover, by Corollary 1.1 of Cheng-Hu-Moruz [3], the examples (ii), (iii)
and (iv) exhaust all locally strongly convex canonical centroaffine hypersur-
faces of R"*!. The detailed calculations of these canonical hypersurfaces shall
be given in Sect. 3 below.

Next, by definition, a hyperbolic centroaffine hypersurface is locally
strongly convex with N(h) = 0. Then, motivated by that Liu and Wang [17]
have classified all flat centroaffine Tchebychev surfaces in R? and Lalléchere et
al [13] have classified all flat hyperbolic centroaffine Tchebychev hypersurfaces
in R*, as the second main result of this paper, we prove the following classi-
fication theorem for all flat hyperbolic centroaffine Tchebychev hypersurfaces
in R®.

Theorem 1.2. Let x : M* — R® be a flat hyperbolic centroaffine Tchebychev
hypersurface. Then, x(M?) is centroaffinely equivalent to the hypersurfaces
defined by:

@1, o (3 (4, Q5
Ty Xy a3y s =

where a; >0 for 1 <i <5.

Remark 1.2. We would mention that the statement of Theorem 1 in Lalléchere
et al [13] is not correct. Indeed, by Examples 1.1-1.2 and Theorem 1.3 in [16],
all the hypersurfaces described in Theorem 1 of [13] except z{'z5?z53xy* =1

with a; > 0 for 1 <4 < 4 have the property N(h) = 1.
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This paper is organized as follows. In Sect. 2, we first review the ele-
mentary facts of centroaffine hypersurfaces in R"*!, together with recalling
the general property of the Tchebychev hypersurfaces. In Sect. 3, for better
understanding of our results, we give the detailed calculations of the canonical
centroaffine hypersurfaces described in Theorem 1.1. In Sect. 4, we present a
proof of Theorem 1.1. In Sect. 5, we construct a typical orthonormal frame on
the flat hyperbolic centroaffine hypersurfaces in R"*!. Then, by applying the
Codazzi equations and the Tchebychev condition with respect to the above-
mentioned typical orthonormal frame, we derive information of the connection
coefficients and the difference tensor in Sects. 6 and 7, respectively. Finally, in
Sect. 8, we complete the proof of Theorem 1.2.

2. Preliminaries

In this section, we briefly review some basic notions and facts about cen-
troaffine hypersurfaces in R”*!. For more details, we refer to the monographs
[14,19,20] and the references [8,10,24].

Let x : M™ — R"! (n > 2) be a locally strongly convex immersed
centroaffine hypersurface as stated in the Introduction section. Then, for any
vector fields X and Y tangent to M™, we have the centroaffine formula of
Gauss:

Dxz(Y) =2.(VxY) 4+ h(X,Y)(—cx), (2.1)

where € = £1 is chosen such that h is positive definite. Associated with (2.1),
—ex is called the centroaffine normal, V and h are called the induced (cen-
troaffine) connection and centroaffine metric induced by —ex, respectively.
The centroaffine hypersurface is called elliptic type (resp. hyperbolic type) if
e =1 (resp. ¢ = —1). For the geometric interpretation about the type of hy-
persurfaces, see Sect. 2 of [10] for more comments. However, we note that Li
and Wang [16] fixed x to be the centroaffine normal and thus the centroaffine
metric is negative definite for elliptic type centroaffine hypersurfaces.

Denote by V the Levi-Civita connection with respect to the centroaffine
metric h. Then the tensor K, defined by K(X,Y) := KxY := VxY — VxY,
is called difference tensor of the centroaffine hypersurface. K is symmetric
as both connections V and V are torsion free. We also have a totally sym-
metric (0, 3)-type tensor C' := Vh, called the cubic form of the centroaffine
hypersurface. Moreover, K and C are related by

C(X.Y,Z) = —2h(K(X,Y),Z), VX,Y,Z € TM™. (2.2)

Then, associated to a centroaffine hypersurface x : M™ — R™!, we can
define the Tchebychev form T? and the Tchebychev vector field T in implicit
form by

T°(X) = Ltrace,(Kx), h(T,X)=T"(X), VX eTM". (2.3)

T n
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It should be pointed out that if 7" vanishes, or equivalently trace,(Kx) = 0
for any tangent vector X, then = : M™ — R™t! reduces to be the so-called
proper affine hypersphere centered at the origin of R"*1 (cf. p.279 of [14] or
Sect. 1.15.2-1.15.3 therein).

For a centroaffine hypersurface x : M™ — R"*!, the covariant differenti-
ation VT is of deep meaning. Indeed, Wang [24] showed that

WV xT,Y) = h(X,VyT), (2.4)

which implies that the Tchebychev vector field T is a closed vector field, in
the sense that the Tchebychev form T” is a closed form. Furthermore, Wang
[24] considered the homomorphism mapping 7 : TM™ — TM™", defined by

T(X):=VxT, VX € TM". (2.5)

In [17], 7 is called the Tchebychev operator of x : M™ — R™1. Thus, (2.4)
implies that the Tchebychev operator 7 is self-adjoint with respect to the
centroaffine metric h. It is worth mentioning that the geometric properties
derived by Wang [24] allow him to define 7 as the centroaffine shape operator of
x: M™ — R""! and therefore, the well-defined function H := (trace,7)/n =
(divT)/n is called the centroaffine mean curvature of x : M™ — R™H1L,

Denote by R the Riemannian curvature tensor of the centroaffine metric
h. Then the equations of Gauss and Codazzi are given by, respectively,

RX,Y)Z = (h(Y, 2)X — h(X, 2)Y) — [Kx, Ky)Z, (2.6)
Next, we choose an h-orthonormal tangential frame field {eq, . s en } with
dual frame field {w',...,w"} and Levi-Civita connection forms {w; }. We shall

use the convention of indices 1 < i,k 1,m,p,qg < n. We denote by K
h(Ke,ej,ex) and T = Z ; the components of K and T'; and by K’C 1 and

T]2 the components of the covarlant differentiation VK and VT with respect
to {e;}, respectively, defined by

Z ]lw de—FZKlel—FZKLlwl Z wl,
ZTJw’—dTJ—f—ZT ..

Denote by R;jr; the components of the Riemannian curvature tensor of the
centroaffine metric h. Then, (2.6) and (2.7) can be written as:

Rijri = €(0irdj1 — 0udji) + Z (K Ky — KK, (2.8)

m

Kk, =Kk

ig,l — iy (29)
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Taking the contraction of the Gauss equation (2.8) twice, we derive that
1)d;5 —l—ZKm o —nZTmKZL, (2.10)

n(n—l)n:R:n(n—l)(J—l—e)—nQHTHQ, (2.11)

where R;; and R denote the components of the Ricci tensor and the scalar
curvature of the centroaffine metric h, respectively, and that

172 = S22, T = s SR,
i 4,3,k
As usual, J and k are called the centroaffine Pick invariant and the normalized

scalar curvature of the centroaffine hypersurface, respectively.
Similarly, the second covariant derivative K., of K is defined by

ij,lp
Z ij ip® qul+Z ”w
+Zle‘*’J +ZKW p+ZK“wq (2.12)

Then, we have the Ricci 1dent1ty

K?l Jp = qul ,DJ + Z K mijl) + Z K’?m mljp + Z K mqjp- 2 13)
m
As stated in the first section, a centroaffine hypersurface is called Tcheby-
chev if its centroaffine shape operator satisfies 7 = H-id. As an important sub-
class of centroaffine hypersurfaces that we have introduced earlier, Tchebychev
hypersurfaces have remarkable properties. For instance, using the assumption
T = H -id, the equality h(R(X,T)T,T) = 0 and the relation

(VxT)(Y) = (VyT)(X) = R(X, V)T, (2.14)
we derive the following formulas:
V|T|? =2HT, |T|*VH =T(H)T, (2.15)

where V denotes the gradient operator with respect to the centroaffine metric
h. In particular, from the second formula in (2.14) and (2.15), we further obtain
that

IT|2R(X,Y)T = —T(H)(h(T,Y)X — h(T, X)Y). (2.16)

3. Computations on Canonical Centroaffine Hypersurfaces

n [16], Li and Wang have made some calculations about the canonical cen-
troaffine hypersurfaces in R**!. In this section, to get the exact knowledge
about locally strongly convex canonical centroaffine hypersurfaces, we com-
pute their centroaffine invariants with more details. For convenience of the



Vol. 77 (2022) On Centroaffine Tchebychev Hypersurfaces Page 7 of 29 175

calculations, we begin with fixing x to be the centroaffine normal and finally
we decide if it is of hyperbolic type or elliptic type.

Example 3.1. Given o = (a1, . .., 1) € R™! that satisfies either (1) a; > 0
for1<i<mn+1ljor(2)a; >0for2<j<n+landa;+as+-- +a,+1 <0,
we define

MY = {z e R [af1ag? - aptit =1}, (3.1)

Claim 3.1. Mél) is a locally strongly convex canonical centroaffine hypersur-
face in R™*1. Moreover, M is of hyperbolic type in case (1), and of elliptic
type in case (2).

Proof of Claim 3.1. Put 3; = fz—i, 2 < 7 <n+1. Then, M(gl) can be rewritten

as

agral e =, (3.2)

where, in case (1) we have §; < 0 for 2 < j < n + 1; whereas in case (2) we
have B; >0for2<j<n+1land Bo+ -+ Brt1 < L.
Now, taking local coordinates (ug,...,un+1) of MY such that

(eﬁ2u2+53u3+"'+5n+1un+17 el2 6un+1)7

= (T1,T2,. ., Tpt1) =

we have
T, = (Bjel2uatFhusaunis 0 0 e%0,...,0), 2<j<n,
Ty, = (B, ezt Fhnsrunsa 0 00 §;e%,0,...,0), 2<j,k<n.
It follows that

[xu27 T xujuk] _ (_1)n+2(ﬁjﬁk _ 5jkﬂj)e(1+B2)uQ—0—-..—0—(1—0—[371,+1)un,-ﬂ7

n+1

["Euz, e ,xun+l,$:| = ( n+2 ( Z ﬁ > 1+62)u2+'“+(1+5n+1)un+1’

where and later, [-] denotes the standard determinant in R™*1.

By using 2y, = "‘H o Ik @y, + hijr, we have
Topny Tugy -+ vy Laugyqr Lusu, B:0; 0B o
hz‘j:[uw us au+17ou] z]n_:fj7 2§Z,j§n+1. (3.3)
[l’uz,l’us,...,l’un_“,x] 1_2

Thus, the centroaffine metric h is flat. Moreover, from the fact
nd1 nt1 n41 2 p11
(1 - Z ﬂk) Z hijzizj = (Z ﬂi%’) - Z Biz}
k=2 i,j=2 i=2 i=2
n+1 n+1
- (1—Zﬁk> YoBiE— > BiBi(zi— )%
k=2 1=2

2<i<j<n+1
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we see that the matrix (h,;) is positive (resp. negative) definite, or equivalently,

1)

the hypersurface M{" is hyperbolic (resp. elliptic) in case (1) (resp. case (2)).

Next, by definition and (3.3), the difference tensor of MY s given by
[$u27--~,IuiuJ7~--7$un+1,$]
[Tugs ooy Ty Ty s @

where in the numerator x,,; locates in the same position as that of 1, in the
denominator. Then, straightforward calculations give that

BiB; o,
ZMJé_l i # J;
Bi(Bi — 1) .

K} = HZ”(*lﬁl—l i=j=k (3.5)
z 1_1 . .

From (3.3) and (3.5), we get VK = 0. Thus, as claimed, MY s a locally
strongly convex canonical centroaffine hypersurface in R"**! for both cases (1)
and (2). O

Example 3.2. Given a = (aq,...,n41) € R* with a; <0 (1 <i<n—1)
and aq + -+ - + a1 + 20, > 0, we define

M(z)—{xER"H |z ay? (@2 +an ) exp(ay, 4 arctan o )—1}

(3.6)

Claim 3.2. Mc(f) is a locally strongly convex canonical centroaffine hypersur-
face in R™"*! of elliptic type.

Proof of Claim 3.2. Put 3; = _% for 2 < i < n + 1. Then, M,gf) can be
rewritten as
5‘752 " 5 1 ) exp( Iil) = o1,

where 3; <0for2<i<n—1and Bo+ -+ Bh_1+ 206, > 1.
Taking local coordinates (ug,. .., uny1) of M such that

T = eﬂ2"2+"'+6n—1“n—1+25nun+ﬂn+lun+17
ro=e"? xz3=e€e", ..., xp_1=e""t,

Ty = €' sinUpt1, Tpi1 = €™ COSURLT,

we have, letting (-, -) be the usual Euclidean inner product in R"*1,
= (B;e'?: ,0,%,0,...,0,0,0), 2<j<n—1,
= (20, ew “ ., 0,e" sinuy, 41, " coSUpt1),

u Up o}
Lupyr = (6”-"-16 (Bru > 07 s 5076 " COSUR41, —€T" snlun—i—l)v
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where 5 = (62,...,0n-1,20n, Bn+1), u = (ua,...,up+1). Moreover, for 2 <
i, <n-—1,

Ty = (BiBieP™,0,...,0,8;¢",0,...,0,0,0),

Tusun = (20:6,67,0,...,0,0,0), Tyu, iy = (BiBnsr1e??™,0,...,0,0,0),
Ty, = (4ﬁie<ﬁ’“>,0, oo, 0 et sinug gy, €M cos Up ),

B,u Un Un o
Tupunyy = (Qﬁnﬁn+1€<g 2,0,...,0,e"" cos Upt1, —€"" SINUp11),

2 3,u Up o u
Tty yungs = (ﬁnﬂe(ﬁ 2,0,...,0,—e"" sin Upy1, —€"™" COSUpy1).

Thus, by Ty,u, = Zi; Ffjxuk +hi;x, asin (3.3), direct calculations give
that
e BiBj — 0i;3; he 20i5n
iy n—1 5’ in — n—1 ’
1-28, - Zt:Z B 1-26, - Zt:Q Bt
BiBnt1 P 487 — 26,
1—28,— 5055 B L= 26, = 3015 b
2ﬁnﬁn+l - ﬁn+1 o 2ﬂn + 6’]’2L+1
n—1 ) hn+1,n+1 - n—1 ’
1- 2ﬁn - Zt:Q ﬁt 1- 2571 - Zt:2 ﬁt

where 2 <4, j <n — 1. This implies that the centroaffine metric h is flat.

(3.7)

hi,nJrl -

hn,nJrl -

Moreover, putting (h;j)nxn = nxn, We can calculate

S R
1-28,—Y 12, B (Alj)
the leading principal minors {D;}1<i<, of the matrix (A;j)nxn to obtain:

Dy=p5—B2>0, Dy=(1—p—f3)30; >0, ...,

n—1
Dng=(1=P—=Bu1) [[(~8:) >0,
=2
n-t 3.8
anl ZQBn(52+"'+ﬁn71+2ﬂn*1) H(fﬂl) >0> ( )
=2

|
—

n

Dyp= 482+ 2. )(Bo+ -+ Bu1 + 2B, — 1) [ (=8) > 0.

1=2

Hence, the matrix (h;j)nxn is negative definite, or equivalently, M((XZ) is of
elliptic type.

Finally, direct calculations with the use of (3.4) and (3.7) show that all
coefficients K fj of the difference tensor are equal to Ffj which are all constant.

Then, it follows that VK =0 and, as claimed, Mo(,z) is a locally strongly convex
canonical centroaffine hypersurface in R 1. O
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Ezample 3.3. Given 2 < v < n+1 and a(v) = (ay,...,q,) € R* 7T with
ap >0forv<k<nand a,+--+a, <1, we define the graph in R"*! by

v—1 n
Tpy1 = ﬁZx? + x1 (111301 — Zailnxl) , 3<v<m
i=2 i=v
Mf&) : Tpal = T1 <1n x, — Zai In xl> , v=2; (3.9)
i=2

n
xn_‘_l:i g x?+xllnx1, v=mn+1.

23?1
=2

Claim 3.3. M

a(v)
centroaffine hypersurfaces in R™*! of elliptic type.

with 2 < v < n + 1 are locally strongly convex canonical

Proof of Claim 3.3. Because of similarity and simpler, the proof for both

MSEH_I) and Mf(’é) are omitted. Below, we consider the cases 3 < v < n.
With the parameterization (uq, ..., uy), we can express Mfg)) by

v—1 n
r=(e"" e ug, ..., e uy_1,e", ..., e, et u1—|—%g uf — E Uy .
t=2 r=uv

Then, as the preceding examples, by direct calculation of z,,, for 1 <7 <n and

Ty for 1 <4, 5 < n, together with the equation x,,,; = Z:l Ffjxuk +hijz,
we can get
1 — QO
hii1==———, h1;=0, hip = =5———
11 Z::v . — 1 14 9 1k ZZZU g — 17
5. S (3.10)
1,
hij = I hik =0, hy =

ZZ:va3_17 Z?:vas—l’

where 2 <i,j <v—1and v <k, <n. (3.10) implies that the centroaffine
metric h is flat. Moreover, from the fact

(Z oy — 1) Z hijzizy = (1 — Z ozk) zf
k=v k=v

ij=1
v—1 n
—l—Zz?—FZak(zl—zk)Q, (3.11)
=2 k=v

we see that the matrix (hi;)nxr is negative definite, or equivalently, the hy-

persurface Mli‘rz)v) is of elliptic type.
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Moreover, direct calculations show that all Kfj = Ffj are constant, which
satisfy:

K}lzgg—vas S Kl =0, 2<j<0-1,
K}, = ! v<k<n (3.12)

0ii o
ng:KZ?:*ma Kij;=0,2<ij,r<v—1 v<m<n,
Kp=0 2<i<v—1, v<k<n, 1<m<n, (3.13)

0
K,il:K,ZlL:f Ak OKL v<kidl,m<mn, m#k,l,

Z:=v Qs — U

; O
Kj, =0, Kl]jl:ékl_izn ]

It follows from (3.10), (3.12) and (3.13) that VK = 0. Hence, as claimed,

,2<ji<n—-1, v<kl<n.

MS&) is a locally strongly convex canonical centroaffine hypersurface in
R+ O

Before ending this section, we give further remarks concerning the pre-
ceding examples.

Remark 8.1. Given an integer 2 < v < n and real numbers {&; }1<i<y—1 with
a1 < 0, we have the centroaffine transformation of R?*!

Yi

r1 = y17 'r’i = \/T
— Q1
1 v—1 (314)
Tn4+1 = T <yn+1 + Zdzyz> )
1

,2<i<v—-1; xy=y;, v<j<m

=2
under which the locally strongly convex canonical centroaffine hypersurface
MS(’)U), namely

v—1 n
Tpt1 = izﬂf - <—1n$1 + Zak lnxk) ) (3.15)
i=2

k=v
is changed to be Example 1.2 of Li-Wang [16]:

v—1 v—1 n
Yni1 = 3= Y Ui =Y Aigi—yn (@lnyi+ Y a;lny; |, (3.16)
1=2 =2 Jj=v

where &; = —aa;, v < j < n.
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Moreover, corresponding to ay > 0 for v <k <mand o, +-- -+, <1
in (3.15), it holds that ax > 0 for v < k <mand &3 +a, + - -+ @, <0 in
(3.16).

In [16], more information for the canonical centroaffine hypersurface (3.16)
is given. This includes the conclusion that the canonical centroaffine hypersur-
faces (3.16) are of Lorentzian centroaffine metric if &; > 0 for v < j < n and
o1+ 0y + -+ a, >0

Next, we recall Corollary 1.1 of Cheng-Hu-Moruz [3] which shows that
the centroaffine hypersurfaces described by the preceding examples are the
only locally strongly convex canonical centroaffine hypersurfaces in R™*1.

Theorem 3.1 ([3,16]). Let  : M™ — R"! (n > 2) be a locally strongly convex
canonical centroaffine hypersurface. Then it is locally centroaffinely equivalent
to one of the following hypersurfaces:

(i) afag? - a7ty =1, where either o > 0 for 1 < i <n+1; ora; >0
for2<j<n+1ando;+- -+ aps1 <0;
(i) 2Pt @s? - an " (@2 + 22 1) exp(ay4+1 arctan :c:il) =1, where a; <0
for1<i<n—1landa;+---+ a1+ 20, >0;
(iil) @pq1 = i(x%—&- ct22 ) —zi(—Inzy+a, Inz,+- - +a, Inmz,), where

2<v<n+1,a;>0forv<i<nand a,+ - +a, <l1.

Remark 3.2. Theorem 3.1 complements Theorem 1.1 of [16] by giving all ex-
amples with N(h) = n. Since a complete proof of Theorem 3.1 is omitted
in [3], hereby we would give an outline: By Theorem 6.1 in [3], all locally
strongly convex canonical centroaffine surfaces in R?® are given by (ii) ~ (v)
therein. Then, from the conclusions of Theorem 1.1, Propositions 3.1 and
3.2 of [3], we see that all higher dimensional locally strongly convex canon-
ical centroaffine hypersurfaces but that z,,; = ﬁ(x% +o 4 22) +alna
can be produced by the Calabi products of either two lower dimensional lo-
cally strongly convex canonical centroaffine hypersurfaces, or one lower di-
mensional locally strongly convex canonical centroaffine hypersurface with a
point, defined by (1.3) and (1.4) of [3], respectively, depending on a parameter
A. Then, by using Theorem 1.1 of [3] again, noting that as building blocks
of the Calabi products, the standard immersions of the symmetric spaces
SL(m,R)/SO(m), SL(m,C)/SU(m), SU*(2m)/Sp(m) and Eg_s4)/F4 are
not of flat centroaffine metric (cf. [2]), we can finally achieve the conclusion of
Theorem 3.1.

4. Proof of Theorem 1.1
First of all, from (2.15) and (2.16), we immediately get the following lemma.
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Lemma 4.1. Let  : M"™ — R™! be a locally strongly convex centroaffine
Tchebychev hypersurface with constant sectional curvature c. Then it holds
that

IVH|? = &||T]1, (4.1)

where V and || -|| denote the gradient operator and the tensorial norm with re-
spect to the centroaffine metric h, respectively. In particular, if the centroaffine
metric is flat, i.e., ¢ = 0, the centroaffine mean curvature H is a constant.

Next, before completing the proof of Theorem 1.1, with the notations of
the second section and the indices convention, we are going to calculate the
Laplacian AJ of the centroaffine Pick invariant .J.

Lemma 4.2. Let x : M"™ — R"! be a locally strongly convex centroaffine
hypersurface. Then, with respect to a local h-orthonormal frame {e1,...,e,}
of M™, it holds that

%n(n —1HAJ = Z l]l Z kL) 24 Z ) (n+ 1R

1,5,k,L i,7,k,1

+n Y KERTV +n) Kfjr’;j.
1,3,k i,k

(4.2)

Proof. By definition, we have

mn—DAT = JA D (KE)? | = D (K5 + > KEKS . (4.3)

.3,k ,9,k,0 1,9,k

By using (2.9) and (2.13), we have the calculations

Z K j” = Z szjKikl,lj + Z KijvlfmlRmijl

,5,k,1 1,5,k,1 i,5,k,l,m
+ KEKE R+ KEKDT R
ij T imAtmljl ij 4xal flmkjl
1,5,k,l,m 1,5,k,l,m
k ok k gk (4.4)
:”E K155 + E K5 K Rmiji
1,5,k ,5,k,l,m
- KEKE R+ KEKD Rk
ij P imAtmg ijthal Flmkgl-
i,5,k.m i,3,k,l,m
Now, from the fact
k gm _ k gom )
> KEKG Ruwi=— Y K5K R
i,5,k,l,m i,3,k,l,m
(4.5)

Z Kk K Roniji,

7,k,l,m

YLD
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and (2.8), we obtain

> KEKERyi+ > KEKRpgg

©,3,k,l,m ©,5,k,l,m

(4.6)
= > (K5Kg = KiK})Rmii = Y (Rinj)® — 22R.
i,9,k,l,m i,7,l,m
Moreover, by using (2.10), we get
> KEKE R =Y (Ry)*+n> KER;TF —e(n—1R. (4.7)
ig,km i, ig.k
From the above calculations, we conclude that
DOKEEE = > (Ranp)® + Z i)’ —e(n+1)R
i,7,k,l i,5,l,m (48)
+n Z KZ-Rika +n Z KZTZ
i3,k i3,k
The assertion of the lemma then follows from (4.3) and (4.8). O

Completion of the Proof of Theorem 1.1.

Let  : M™ — R™! be a locally strongly convex centroaffine hypersurface
with constant sectional curvature ¢ and vanishing centroaffine shape operator
T = VT =0. Thus, H = 0 and ||T| is a constant.

If T = 0, then 2 is an equiaffine normal, thus « : M™ — R**! is a proper
affine hypersphere centered at the origin O € R"*!. By the Main theorem of
Vrancken-Li-Simon [23], we conclude that z(M™) is centroaffinely equivalent
to either a hyperquadric of proper affine hyperspheres centered at the origin
or the hypersurface z;29 - - - 2,41 = 1 in R*H1L,

If T # 0, it is seen from Lemma 4.1 and the fact H = 0 that ¢ = 0,
ie, (M™ h) is flat. It follows from (2.11) that J is a constant, and applying
Lemma 4.2, we obtain

O:%n(n_l)A']: Z z]l +nZszjjj,]z€]: Z(Kz]l) )
i,7,k,l i,7,k i,7,k,l

and therefore, z : M™ — R™*! is of parallel difference tensor.

Hence, z : M™ — R™*! is a locally strongly convex canonical centroaffine
hypersurface. Now, combining with Theorem 3.1, we have completed the proof
of Theorem 1.1. O

5. Construction of a Typical h-orthonormal Frame

From now on, we assume that = : M"™ — R™*! is a flat hyperbolic centroaffine
hypersurface. Then, from (2.11), for any point p € M™, we have K(p) # 0.
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In this section, we will construct a typical h-orthonormal frame field on
M™ that should be of independent meaning. First of all, we fix an arbitrary
p € M™ and construct a canonical basis of T, M".

Lemma 5.1. Let z : M™ — R"*! (n > 2) be a flat hyperbolic centroaffine hy-
persurface. Then, at any p € M™, there exists an h-orthonormal basis {e;}7,
of T,M™ such that the difference tensor K takes the following form at p:
Ke1€1 = Aey, Kelek = 1€k,
Kepep = pier + -+ pp—1ep—1 + Agey, (5.1)
Keej=pie;, 2<i<j<n, 2<k<n,

where the coefficients satisfy the following relations:

,Ufl;(Al\/m)’ Ak >0, ,u'k#oa I1<k<n-1,
(5.2)
W:%()\g—\/)\§+4(1+u%+-“+/ﬁ?71))7 2<f<n-—1

Proof. The argument is now standard, for readers not familiar are referred to
[4,23].

Denote by Uy M™ = {u € T,M" | h(u,u) = 1} which is a compact set.
Define a continuous function f!(u) = h(K,u,u) on U} M™. Since K(p) # 0,
the function f! attains an absolute maximum at some e; € U;M ™ such that
A1 := fl(e1) > 0. This implies that K., e; = Aje;. Then, considering the self-
adjoint map K., : T,M™ — T,M™, we obtain an h-orthonormal basis {e;}?" ;
of T, M™, consisting of the eigenvectors of K., with associated eigenvalues A
and A1 (2 < j < n) satisfying

K. e1 = Mer, Keej=Ajje;, A >2X5, 2<j5<n.
Then, taking in (2.6) X =e,Y =Z =¢; for j > 2, as e = —1, we can get
AL = A —1=0, 2<j<n.
Given that Ay > 2A;;, we have Ajg = -+ = Ay, = %()\1—\/)\% +4) =:u1 #0.
Next, denote TﬁM" = Span{es,...,e,} and UgM" = {u € TgM”|
h(u,u) = 1}. Then, the function f?(u) = h(K,u,u) defined on U M™ attains
at an element ey € USM” so that the absolute maximum My := f2(es) > 0.

This implies that K.,ea = pi1e; + Aqgea.
Consider now the self-adjoint operator Bs : TZ?M " TZ?M " defined by

By X =K., X — h(Ke,X,e1)er, X € T/M™.

We can choose an h-orthonormal basis of {e1, s}, still denoted {e;}? 5, con-
sisting of eigenvectors of By with associated eigenvalues {Az;}7 5 satisfying

Kc,e2 = pier + Aqgea, Ke26j = )\2j€j7 3<j<n, A> 2)\2]‘, 2<j53<n.
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Then, taking in (2.6) X =e,Y = Z =, for j > 3, we get
A5j — Agjra — (1+p7) =0, 3<j<m,
which implies Ay > 0 (if otherwise Ao = 0, then A\y; = h(K,,e;,e;) = 0 which
gives a contradiction to the above equation). Therefore, as Ay > 2X9;, the above
equation implies that Aoz = -+ = Aoy = 2 (Ao — /A2 +4(1 + p3) ) =: po # 0.
Repeating the above procedure inductively, we then construct an h-

orthonormal basis {e;}?_; of T, M" for which K takes the form (5.1) with
coefficients satisfying (5.2). O

Next, we are going to extend the above h-orthonormal basis {e;}} ; of
T,M" to alocal h-orthonormal frame field {E;}}_; on a neighbourhood U of
peM™

Lemma 5.2. Let x : M™ — R"*! be a flat hyperbolic centroaffine hypersurface.
Forp € M™, there exists a local h-orthonormal frame field {E;}7_, on a neigh-
bourhood U of p € M™ such that the difference tensor K takes the following
form:

Kgp By = fiE\, Kg B, = gLy,
Kg, Ex =gB1+ -+ gr1Er1 + fruEk, (5.3)
KElEj:glEja 2§z<]§n, 2§k§n,

where, the functions {fi,gr} satisfy the relations:

91:;<f1_\/m>7 fk>07 gk#oa 1§]€§7L—1,
(5.4)
ge=%(fe—\/f3+4(1+g%+-~-+g§,1)), 2<0<n—1.

Proof. We divided the proof process into three steps.

Step 1. There exists a unit vector field E1 on some neighborhood U’ of p such
that

Kp By = fLE1, KgY =qY, VY € {B1}F, (5.5)
where f1 >0, g1 = %(fl —\/f} —|—4).

For the h-orthonormal basis {e;}? ; of T, M"™ as described in Lemma 5.1,
we choose an arbitrary local differentiable h-orthonormal frame field
{E\,...,E,} on a neighborhood U of p such that E;(p) = e; for 1 < i < n.
Then, we define a mapping

0 R" x U—R" by p(ai,az,...,an,q) = (b1,bay ..., by),
where
b= Y aiajh(Kg Ej Ey) — \jag, 1<k<n, (5.6)
ij=1

are regarded as functions on R™ x U : by, = bi(ay,az,. .., an,q).
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It is easily checked from (5.1) that bx(1,0,...,0,p) = 0 for 1 < k < n,
and

P )\1 > 07 k :] = ]-7
9br, % —M#£0, 2<k=j<n, (5.7)
Oa; 1(1,0,...,0,p) .

0, k # j.

Thus, (a—a’;) at the point (1,0,...,0,p) € R” x U is invertible. By the implicit
function theorem there exist dlfferentiable functions {a;(¢)}1<i<n, defined on
a neighborhood U’ C U of p such that ai(p) = 1, aj(p) = 0 for 2 < j < n,
and

bi(ai(q),a2(q), ... an(q),q) =0, 1<k<n, YVqgelU. (5.8)

Put V =" a;E;. Then V(p) = ey, (5.6) and (5.8) imply that KyV =
MV

Since |V (p)|| = VRV (p),V(p)) = 1, there exists a neighborhood U’ C

U’ of p such that V # 0 on U’. Hence, the unit vector field Ey := V/||V|| on
U’ with Ei(p) = ey satisfies

KE1E1 = flE17 fl = ”>{/1H (59)

(5.9) implies that the distribution {F;}* orthogonal to Span{F;} is Kg,-
invariant on U’. For any q € U’, let {X;}a<;<n C {F1(g)}* be the orthnormal
eigenvectors of Kp, () with associated eigenvalues {a;}locj<n: Kpg,(qX; =
a;X; for 2 < j < n. Then, by using R(X;, E1(q))E1(g) = 0, the Gauss equa-
tion (2.6) and € = —1, we derive

af = filg)a; —1=0, 2<j<n. (5.10)

It follows that Kg, (¢) has at most three distinct eigenvalues as below:

Hiw-R@+1). nw. §(nw+F@+1).

On the other hand, by Lemma 5.1 and the continuity of the eigenvalue
functions of Kg,, we see that (f1(¢) ++/f£(g) +4) can not be attained. We
have got the conclusion of Step 1.

Step 2. There exists a unit vector field Es € {E1}* on some neighborhood
U c U of p such that

Kp, By = g1E1 + foFs, Kg,Y = gY, VY € {E, Ey}*, (5.11)

where go = (fo =/ f3 +4(1+g?)).

Similar to Step 1, we begin with choosing an arbitrarily h-orthonormal
vector fields {E}, ..., E!} of {E;} on some neighborhood of p, still denoted
by U’, such that E‘; (p) = e; for 2 < j < n. Then, we define a mapping

@RI U - R by @(ag,as,...,an,G) = (by, b3, ..., by),
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where
~ n ~ ~
b= Y aiah(Kg Ej, Ep) — Mg, 2<k<n, (5.12)
i,j=2
are regarded as functions on R™ ! x U’ : by, = Bk(&2763, cey Oy Q).

As E;(p) = e;, from (5.1), we see that Ek(l,O, .,0p)=0for2<k<n
and

- Ay > 0, k =7= 2,
Ot — o £0, 3<k=j<n, (5.13)
6aj (1,0,...,0,p) 0 i 7&‘7
Thus, (gg’;) at the point (1,0,...,0,p) € R*~ x U’ is invertible. By the

implicit function theorem, there exist differentiable functions {a;(§)}e<j<n
defined on a neighborhood U’ C U’ of p such that as(p) = 1, a.(p) = 0 for
3<r<nand

bi(a2(q),...,an(4),4) =0, 2<k<n, YqeU'. (5.14)
Put V =", a;E). Then V(p) = e5. From (5.5), (5.12) and (5.14) we
obtain
KoV =XV +gih(V,V)E;.
As |V (p)|| = 1, there exists a neighborhood U € U’ of p such that V # 0

on U. Then FEy := V/||V| defines a unit vector field over U with Es(p) = ey
which satisfies
Kp, By = g1 Ex + foEa, fo = HA72” (5.15)

At any point ¢ € U, we then consider Bs(q) : {F1(q)}* — {E1(q)}*,
defined by

B (q)X = Kp, ()X — MK g, X, E1(0))E1(q), X € {Ei(q)},

which is a self-adjoint transformation. Besides Es, let X, be the other unit
eigenvectors of By(q) corresponding to eigenvalues &, (3 < r < n). Then, it
holds at ¢:

Kp, By = g1 By + faEs, Kp, X, =a,X,, 3<7r<n.

Now, using R(X,, E>(q))E2(q) = 0 and the Gauss equation (2.6) with & = —1,
we get

&2 — 28, — (144} =0, 3<r<n. (5.16)

This shows that B5(g) has at most three distinct eigenvalues

é(fz— f22+4(1+9%))> fa, ;(f2+\/f22+4(1+g%)>-
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On the other hand, from (5.1) and (5.2) that A2 > 2us at p, and by

continuity of the eigenvalue functions of Bs(q) for ¢ € U, we see that %( fo+

f2+4(1+g})) can not be attained. Thus, for any Y € {E1, Eo}* over U,
it holds

KoY = oY, go—1 (fz /i +g%>) . (5.17)

This completes the proof of Step 2.

Step 3. The completion of Lemma 5.2°s proof.

After the construction of F; and Es, satisfying (5.5) and (5.11) in the
preceding two Steps, we can inductively prove the existence of {E; }3<;<, such
that (5.3) and (5.4) hold.

Indeed, for any 2 < j < n — 2, after having h-orthonormal vector fields
{E1,...,E;} over a neighborhood U of p, which satisfy corresponding rela-
tions in (5.3) and (5.4), we choose an arbitrary h-orthonormal vector fields
{E‘j+1,...,E‘n} of {Eq,.. .,Ej}J- on U such that E;(p) =e; for j+1<i < n.
Then, we define a mapping

@ R"7 x U =R by @(@j11,8542, - ,0n,q) = (bj+1,0j42, .-, bn),

where
by = Z arash(Kp, Es, Ex) = Njiax, j+1<k<n, (5.18)
r,s=j7+1
are regarded as functions on R 7 x U : by, = by, (@j41,0j42,---,08n, Q).

As E;(p) = e;, from (5.1), we see that b(1,0,...,0,p) =0 for j +1 <
k <n and

aB )\j+1>0, k:l:]+1,
=k 2 = A A0, k=1>j+2, (5.19)
0a; 1(1,0,...,0,p)

0, k1.

By the implicit function theorem, there exist differentiable functions
{@;(q)};+1<i<n, defined on a neighborhood U’ C U of p such that a:(p) = 0
for j+2<t<mn,ajy1(p) =1 and
bi(@j41(a), - -, an(q),q) =0, j+1<k<n, VqeU. (5.20)
Put V = D b=t aE). Then V(p) = e;+1. By (5.18) and (5.20), we can
derive that
K(/V = )\j+1‘7 + glh(V, ‘_/)E1 R gjh(V, ‘_/)Ej
Since ||V (p)|| = 1, there exists a neighborhood U C U’ of p such that V # 0 on

U.Then E;;1 := V/||V| defines a unit vector field over U with E;11(p) = e;4+1
which satisfies

A;
Kg,  Eivi=g1E1+- +giE; + firiEjp, fipi= I\J‘;I\l‘ (5.21)
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At any point ¢ € U, we then consider

%]-i-l(q) : {El(q)7 s 7EJ(Q)}J_ - {El(Q)a AR E](q)}J_7
defined by
%j+1(q)X = KEj+1X - h(I(EjJrl)(7 El)E1 — = h(KEj+1X, l?j)fjj7

which is a self-adjoint transformation. Besides E; 1, let X, be the other unit
eigenvectors of B;1(q) corresponding to eigenvalues &; (j+2 <t < n). Then,
it holds at ¢:

Kp, Ejiy1=g1B1 + - + g Ej+ fi1Ejr1, Kpg,, Xe=aXe, j+2<t<n.
Now, using R(X;, Ej11(q))E;11(¢) = 0 and (2.6) with ¢ = —1, we get

aj = fir1oe —(L+gi+---+g7)=0, j+2<t<n (5.22)
From (5.22), we see that B;,1(¢) has at most three distinct eigenvalues

V(=P 40+ gt 4D, Fin

%(fj+1+\/ff+1 +4(1+g%---+gf))-

On the other hand, from (5.1) and (5.2) that A4 > 2p;41 at p, and
by continuity of the eigenvalue functions of B;;1(q) for ¢ € U, we see that
eigenvalues of the first two possibilities can be attained. Thus, for any Y €
{El, “e ,E‘j_i_l}L over U, it holds

Kp,,Y = gjnY, gjt1=3 (fj+1 - \/fj2+1 +4(l+gf+-- +gj2)) '
(5.23)

In summary, by induction, we can extend the vectors {e1,ea,...,en_1}
to the h-orthonormal vector fields {Fi, Es,..., E,_1} which satisfy corre-
sponding relations in (5.3) and (5.4). Finally, we choose a unit vector field
E, € {E\, Es,...,E, 1}* so that {E;}, forms a local h-orthonormal frame
on a neighbourhood U C M™ of p. Obviously, with respect to {E;}!" , the dif-
ference tensor K takes the form in (5.3) and (5.4), where f; >0 (1 <i<n-—1)
follow from its continuity and that f;(p) = \; > 0.

This completes the proof of Lemma 5.2. g

6. Applying the Codazzi Equations

From this section on, we consider the case n = 4 and assume that x : M4 — R®
is a flat hyperbolic centroaffine hypersurface. With respect to the typical h-
orthogonal frame field {E1, Ea, E5, E4}, described in Lemma 5.2, we shall de-
rive by applying the Codazzi equation (2.7) the necessary information on the
derivatives {E;(g;)} and the connection coefficients {T'};} of V. The computa-
tions below are complicated but straightforward.
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Put Vg, Ej = Y _, T By, where T, + T9, =0 for 1 <i,j,k < 4.
Then, taking in (2.7) X = E;, Y = E; and Z = Ej, for 1 <1i,j,k <4, we

get
Vi, K(Ej, By) — K(Vg,Ej, Ex) — K(E;, Vg, Ey) (6.1)
— Vi, K(Ei, By) + K(Vg, Ei, Ey) + K(E;, Vi, Ey) = 0. '

First of all, for (4,7, k) = (1,2,1), we obtain from (6.1) and (5.3) that
(1+93)%91 (1 TT1 + Ea(1) Ex
= [91 (g + DT31 + 95 (97 + DTT; — goI'51 + Bi(g1)] Be
+ [92T%) — 07 (1L + g1)T51] B + 92Ty — g7 (1 + 7)1 ] By = 0.
Hence, we get
I = (9192) 7 (1 +g9)T5, Th = (9192) ' (1 + 97)T1,
Ei(g1) = —g7 (g + DT31 — g5 (g7 + DI'T; + 2Ty, Ealgn) = —oiTHy
(6.2)
Similarly, letting (7, j, k) = (1,2,2) in (6.1), and taking account of (6.2),

we obtain

Fgl = F?Qa Fgl = FZ112a Ei(g2) = _291F%1 - 92F§17 (6.3)

whereas letting (4,7,k) = (1,3,1) in (6.1), and taking account of (6.2), we
obtain

I3 = (9293) " [93(01T31 + 92T51) — (L + g7 + 95 — 93)15,]
F%l = F%p 92F§1 = QSF%D E3(91) = *92_1(1 + gf)F%.

Letting (i,7,k) = (1,3,4) in (6.1), and taking account of (6.2)—(6.4), we
obtain

(6.4)

Er(gs) = =95 " [9195T%1 + 9205051 + (1 + 98 + 95 + ¢T3 . (6.5)

Letting (i, 7,k) = (1,4,1) in (6.1), and taking account of (6.2), we obtain
Ty =131 + 95 (91TT + 931%,) + g5 ' fal'ls,

I3 =T, 9305, = 921#1137 Ey(g1) = -1},

Letting (4,7, k) = (1,4,4) in (6.1), taking account of (6.2), (6.3) and (6.6),
we get

(6.6)

Ey(fa) = falga TR + 992531 +937%)
6.7)

_(fE A0+ gi + 93+ 935
g3
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Letting (¢,7,k) = (2,3,2) in (6.1), taking account of (6.3) and (6.4), we
get

3 = (9293) " [(1 497 + 93)T52 — 192T13] , Es(g2) = —g2l'3 — 201135,
Bx(g2) = —(9293) " [91(1 + g7 + 95 — g3)T5 + g2(1 + 95 — 93)T%]  (6.8)
— (g293) 7" [g5(1 + 93)035 + g7 (92135 + gs(—T3, + ng))} .
Letting (¢,7,k) = (2,3,3) in (6.1), taking account of (6.2) and (6.8), we

get
I3y =Tos, Ea(gs) = 20115, — 292155 — gsT3,. (6.9)
Letting (4,7, k) = (2,4,2) in (6.1), taking account of (6.6), we get
{ Ty = g5 (01751 + gaT35 + 935 + fal'3), T =Ty, (6.10)
Ei(g2) = g5 [(1+ 97 + 65 — 93)T% + 919213 + 93135 - .
Letting (4,4, k) = (2,4,4) in (6.1), taking account of (6.10), we get
Es(fa) = —g5 " [fa(q1T3) + 923y + g3T'3)
+(f7 + 41+ gf + g3 + 93))T3] - (6.11)
Letting (4,4, k) = (3,4, 3) in (6.1), taking account of (6.6) and (6.10), we
get
By (gg) = ST 91+ 205018 + 6315, + fu(919>T'ls + 65315 + 92951'53)

9293 (6 12)
— 95 (1497 + g5 + 93)Tis, '

Ey(g3) = 201115 — 29235 — gsl's5.
Finally, letting (7,7, k) = (3,4,4) in (6.1), taking account of (6.6), (6.10)
and (6.12), we get

E3(f1) = —4(g1T'15 + goT'35 + 93T'33) — fal'ls. (6.13)

7. Determining the Connection Coefficients

For the purpose of proving Theorem 1.2, we now assume that = : M* — R® is
a flat hyperbolic centroaffine Tchebychev hypersurface.

In this section, applying for the Tchebychev condition we shall solve the
Egs. (6.2)-(6.13) to express {I'};} and E4(fs) by the coefficients {f;,g;} of
the difference tensor in (5.3). Similar as in the last section, the computations
below are complicated but straightforward.

First of all, by T' = § Z?Zl K(FE;, E;) we express the Tchebychev condi-
tion as

4
Z K(E;,,E;)) —4HE; =0, 1<j<4. (7.1)
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Then, taking j = 1 in (7.1), by calculations with applying (5.3), we can
derive that

0= [Ei(fi +391) + (fo +292)T1 + (f3 + g3)015 + ful'}, — 4H] Ey
+ [B1(f2 +292) + (f1 +391)05, + (f3 + g3) T3 + ful'34] Eo

5 5 5 (7.2)
+ [EA( f3+93 + (f1 +390)T% + (f2 +292)T35 + faT'34] B
+ [Br(fa) + (f1 + 391111 + (f2 +292)T15 + (f3 + 93)F13] Ey.
From (5. ) we have
fit3g=97"Agi — 1), fot+202=g9,"[303 - (1+g7)], 73)
fatgs=95" 205 — (L + g7 +93)] -
From (6.2), (6.3) and (6.6), we get
TP = (g192) (1 + g1)T3,, T = (9193) " (1 + g1)T1s, (7.4)

I'y = —g5 "' g2T'1s.

Then, from (7.2), taking account of (7.3) and (7.4), I‘fj = *ng’ and the
expressions of F1(g1), F1(g2), E1(g3) and F1(f4) in Sect. 6, we can derive a
system of four equations with unknowns I'?;, I'3,, I'}, and I'{;. Solving these
equations, we then obtain

I3 =4Hgigs [(—g7 (1 + g7 +95)° + (=1 — g + 93)g3) (AB) ™"
+ (24491 +g7(6 + f7 + 495 +493)) 7],
I3, = —4Hgig5 [g7(1+ g7 + 95)*(1 + 645 + g7 (6 + [T + 295)
+ g1 (11 +2f 4 693)) + (1 + ¢7)°(1 + (6 + f1)g?
+2(7+ f)gi + 1497) + 297 (1 + 997 + (22 + f1)g!

P0G + 20 TRE + G+ B2
+4(5 + g5 + 4972+ g7 + 93))))g3 + 491 (1 + 297)g5] (AB7) ™",
I3y = 4Hgigags [—(1+ g7 + ¢3) (1 + 291 + g7 3+ f7 + 293))
+2+ g (7 +22+ g7 + 93)))g3 + 49793) (B7) 7,
[y = 4H fag79s7 ",
where
A= (1+4g0)(g% +93),
B=95+gi(1+97 +95)° + (2+9i +95)93), 76)

v=14+gi(fi(l+gi +9i(2+95+93))
+ (34297 + 295 +203)(2 + 291 + 97 (3 + 295 + 243))).

Similarly, we take j = 2 in (7.1). By straightforward calculations with
applying (5.3), we can further use (7.5) to solve the unknowns I's,, '3, and
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['35. Then, we obtain

4Hg3
D3y = el [95(2+ 291 +4gs + g7 (4 + 643)

1956+ f7+493)  —gav T —gi (1 + g7 + g3)87"
+95(2+ 491 + g1 (6 + 7 + 495 +493))7 7],
D% = ey (95971 + g0g2(1+ gf +93)°57"
—(g(L+ g7 +93)((1+91)° + (4 + f7 +497)g5 + 495)
+295(1+ g7 +293)93)¢ "
+9192(=1+ g (= fF(1+ g + 67 (24 ¢3))
—(3+ 297 +293)(2+ 291 + g7 (3 + 293))
—2(1+2g7 + g7 (34 293))g3))7 '],
T3 = 4H fig293 [91° + 95 + 91° (3 + 693) + 9195 (5 + £ + 495 + 4g3)
+919 (495 + 93)> +8(1 + g5 + g3) + fi (1 + g5 + 93))
+97 (341393 + g5 (12 + f7 4+ 493)) + Y (1 + 1293 + g3 (6 + f§ + 493)
+95(17 + 27 +1293))] (vo) ", (7.7)

where
o =(1+g7 +95)2((L+])° + (4+ f7 +497)95 + 495)
+ 9541+ g% + (fF +12(1+ g7))g3 + 895)g3 + 49395,  (7.8)
= (1497 +95)(95 + 93),

Finally, taking in (7.1) j = 3 and j = 4, respectively, by direct calcula-
tions with using (7.5) and (7.7), we can derive

T3y = 4H f4 [9307" + 9893 (ne) " + 9893 (L + gD)n) '],

Ty = 4Hgs [—g3(1+ g7 + 95 +293)07" — g2(1 + g1 + 295
+ 97 (24 393) + 633+ 293)) (nw) ™
—g1 (14297 + g7(3+ 295 + 2¢3))((1 + g1)7) '],

BEy(fa) =4H [2 = (51 + g7 +93)2(2(1 + g1)* + (4 + f7 +497)g3)  (7.9)

+ 95401+ 97)° + (4+ f7 +497)93)95) (nee)
— (U4 g7 +92)° + (1 + g7 +93)(fi +6(1+ g7 +93))g5
F(fE+8(01+9g7 +93))95)0 " = (2+ (A + gD (g +97)°

Fo1(d+ A+ fDeD)gs + 914+ 4+ feDe) (L + )],
where
_ 2 2 2
n=1+g7)1+g7+9),
0=01+gi+93)1+gi+95+95)(1+g7+93)° (7.10)
+ (ff +4(1+ g7 +93))93 + 493).
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8. Completion of Theorem 1.2’s Proof

Let z : M* — R® be a flat hyperbolic centroaffine Tchebychev hypersurface.
In this section, with the materials we derived in preceding sections, we shall
complete the proof of Theorem 1.2. We begin with the equation

E3(E4(91)) — Ea(Es(g1)) = (VE,E4)(91) — (VE,Es)(g1). (8.1)

By using the results in Sects. 6 and 7, we can calculate (8.1) to obtain that

H2f19095 (1 + 91 +93)° — (1 + g3 + 93)(ff +3(1+ g7 + 93))93
+fi95 +4g5] = 0.

From the fact g1 # 0 and g3 # 0, we then obtain
H?fyu =0, (8.2)
where

pi=1+gi+9)° — 1+ +93)(f7
+3(1+ g7 +93))95 + figs + 445 (8.3)

From (8.2), we shall divide the following discussions into three cases:
Case I: H = 0;

Case II: H # 0 and f; = 0;

Case III: H # 0, f4 # 0 and p = 0.

In Case I, we can apply Theorem 1.1. Then, combining with the results in
Sect. 3 and taking into account that x : M* — R® is hyperbolic, we conclude
that x is centroaffinely equivalent to one of the hypersurfaces (cf. Remark 1.2):

(03 [e3 (03 [e3 e -
it eyt rstrtry® =1, a; >0 for 1 <4 <5,

In Case II, substituting f4; = 0 into the expression of Ey(f4) in (7.9), we
obtain that

0=4H [2— (g5(1+ g7 + 93)°(2(1 + g1)* + (4 + 497)93) + g5 (4(1 + g7)*
+(4+499)93)93) () Tt — (1 + 97 + 93)> + (1 + g7 +93)(6(1 + g7 + 93))93
+(8(1+ g7 +93))95)07" — ((2+497) (91 + 97)* + g1 (4 + 491)g5
+91(4+491)g3) (1 + ¢7)y) "] = 4HQ ™,
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where

Q= (1497 +95)°(1+ 497 + 295 + 495 + 297 (5 + 83)
+4g7 (14 g3)(1 + g3 + 293) + g1 (9 + 2295 + 20g3))
+2(1+ g7 + g3)((1+ g7)%(1 + 397 + 8g1) + (1 + ¢7) (3 + 1197 + 3691)g5
+4(2 4 7GT + 1291)g5 + 20g793)95 + 4((1 + ¢7)* (1 + 397 + 5g7)
+ (1+97)(3+ 1297 + 2891)g5 + (5 + 2797 + 41g7)g5 + 189795) g3
+8((g1 +97)* + (1 + 597 +891)93 + T9792)95 + 16979395 > 0,

v=(1+g7+9 +93)(1+gi+95+2935) (1 + g1 + 295 + g7 (2 + 393)
+95(3+293))(1 + 291 + g7 (3 + 295 + 293)) > 0.

This is a contradiction to H # 0. Hence, Case II does not occur.

In Case III, we first see from g3 # 0 and (5.4) that 1 + g7 + g3 — g5 > 0.
Moreover, replacing E4 by —F, if necessary, we can assume f; < 0. Then,
from (8.3), we get

fi=— (1497 +95-293)*(1+97+95+93) (8.4)
93(1+9i+95—93) ’

and that 14 ¢g? + g3 — 2¢3 # 0.
Since x : M* — RS is a Tchebychev hypersurface, from (2.15) we have

Eu(|T|?) = 2HA(T, Ey). (8.5)

However, by Lemma 5.2, it holds that
T = 1[(fi +391)E1 + (fa + 292) B2 + (f3 + 93) B3 + faFE4], (8.6)
IT|1? = 75 [(fr +391)% + (f2 + 292)° + (f3 + 93)* + fi] - (8.7)

Moreover, combining with (7.5), (7.7) and (7.9), we can rewrite E3(g1),
Es(g2), E5(gs) and Es(fs4) in Sect. 6 as
E3(g1) = —4Hg7 (1 + g7)g3 [(—1 — g7 — 63)(1 + 201 + g7 (3 + f7 + 293))
+2+ g7 (7 + 22+ g7 + 63)))g3 + 4g793] (B7) ",
Es(92) = (17285 (920" — (93(2 + 291 + g3 + g7 (4 + 6g3)
+95(6 + fF +493)¢ " + g7 (1 + g7 +93)(2+ 297 +93)87"
—97(2+ 207 + 93)(2 +4gi + g1 (6 + fi + 493 +493)7" '], (88)

and

B3(gs) = ey (29507 + g3((1+ g7 + 63)*(—1 — g7 +23)((1 + 9)?
HA+ 7 +49D)95 +4g3) + 5 (=21 + gD)* + (L + g7) (f7
—2(1+g7))g5 +8(1 + 97)g5 +895)93) (1 + g7 + g7)p) "
+(1+g7)*(—(1+g7+93)° — (1+97 +93)(f7 +3(1+ g5 + 93))95
+(f7 = 2(14+97+93))93)0 " — (97 (1 + g7 + 93)°(—1 — 297 + 247
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+g1(1+293)) — (14 67)° (1 + g1 + 9712+ 93))93)57"
+or (14291 + g7 (1+293) (1 + g7 (fF (1 + gi + 97 (2+ 93))
+(3+ 297 +295)(2+ 291 + 97 (3 + 293)))) + g7 (=2 + g7 (—4 + 647
+fE(+g7) + 897 (g7 +95)(2+ g1 +93))g3 ']
Es(f1) = 4H fags [g5(1 + g7 + g5 —293)0"
—(g3(=1 — g + g5 + g7 (=2 + g3) + 293 (95 + 93))) (o) ™"
+(gt — 297 — g7 (14295 +203) (1 +9D)n) '], (8.9)
where {f3,v, v, ¥, n,0} are defined by (7.6), (7.8) and (7.10), respectively.

Now, combining (7.3), (8.4), (8.6), (8.7), (8.8) and (8.9), we can carry a
straightforward calculation of (8.5) to obtain the following relation:

3g; (1 + 97 +95 —293)H = 0. (8.10)

But this is impossible. Hence, Case III does not occur.
In conclusion, we have completed the proof of Theorem 1.2.
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