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Abstract. In this paper, we study the interesting open problem of classi-
fying the locally strongly convex centroaffine Tchebychev hypersurfaces
in R

n+1 with constant sectional curvature. First, for arbitrary dimensions
we solve the problem by assuming that the centroaffine shape operator
vanishes. Second, extending the solved cases of n = 2, 3, we continue
working with the case n = 4. As the result, we establish a complete clas-
sification of the flat hyperbolic centroaffine Tchebychev hypersurfaces in
R

5.
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1. Introduction

Let R
n+1 be the (n + 1)-dimensional affine space equipped with the standard

flat connection D. For an immersion x : Mn → R
n+1 of an n-dimensional

smooth manifold Mn, if the position vector x(p) is transversal to x∗(TpM
n)

at each point p ∈ Mn, we say that x : Mn → R
n+1 defines a centroaffine

hypersurface with centroaffine normalization. A centroaffine hypersurface is
associated with the centroaffine metric h, a difference tensor K of type (1, 2),
and a Tchebychev vector field defined by T := 1

n tracehK. As is well-known,
(h,K) are centroaffine invariants which determine x up to centroaffine trans-
formations of Rn+1. In this paper, we study locally strongly convex centroaffine
hypersurfaces, i.e., the centroaffine metric h is definite.
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The centroaffine normalization of every centroaffine hypersurface induces
the identity as the Weingarten operator, from the point of view of relative dif-
ferential geometry any centroaffine hypersurface is a relative hypersphere (see
[20], Sects. 6.3 and 7.2). Thus, in centroaffine differential geometry the usually
induced Weingarten operator contains no further geometric information. In
1994, Wang [24] made a significant contribution by reasonably introducing the
operator T := ∇̂T as the centroaffine shape operator of the centroaffine hy-
persurface x : Mn → R

n+1, where ∇̂ denotes the Levi-Civita connection with
respect to the centroaffine metric. Then, following [17], a centroaffine hyper-
surface is called a Tchebychev hypersurface if the operator T is proportional to
the identity isomorphism id : TMn → TMn, i.e., T = H · id. Here, generally
H := (div T )/n is called the centroaffine mean curvature of Mn.

As the centroaffine totally umbilical hypersurfaces, Tchebychev hypersur-
faces naturally generalize the notion of affine hyperspheres in equiaffine differ-
ential geometry. Indeed, it is known that both Tchebychev hypersurfaces and
affine hyperspheres have exactly the similar structure equations (cf. e.g. [4,7,
24]). Because of such nice similarity, the Tchebychev hypersurfaces have been
studied extensively. For references, we refer to [1,5,6,9,11,13,15,17,18,21].
Related to this similarity, we would highlight the recent result of Cheng-Hu-
Vrancken [5] which proved that the ellipsoids are the only centroaffine Tcheby-
chev hyperovaloids. Thus, after several preceding partial results of [6,15,17],
it finally solves the longstanding problem of generalizing the well-known the-
orem of Blaschke and Deicke (cf. Theorem 3.35 in [14]) on affine hyperspheres
in equiaffine differential geometry to that in centroaffine differential geometry.

Another interesting problem is the classification of non-degenerate affine
hyperspheres with constant sectional curvature, that had been solved by Li-
Penn [12] and Vrancken-Li-Simon [23] in the locally strongly convex case, and
finally solved by Vrancken [22] in case of non-degenerate affine hyperspheres
with nonzero Pick invariant. Motivated by the above mentioned similarity, we
have the following natural and interesting problem:

Problem Classify all non-degenerate centroaffine Tchebychev hypersurfaces in
R

n+1 with constant sectional curvature.
Concerning this problem, there are only some partial results. As an early

result, the flat centroaffine Tchebychev surfaces have been classified by Liu
and Wang (see Theorem 4.2 of [17]). For arbitrary dimensions, Li and Wang
[16] presented a classification of the canonical centroaffine hypersurfaces with
N(h) ≤ 1, where N(h) denotes the dimension of the maximal negative defi-
nite subspace of the centroaffine metric h induced by x. Here, a centroaffine
hypersurface in R

n+1 is said to be canonical if it has flat centroaffine metric
and parallel cubic form. Then, Cheng-Hu-Moruz [3] (Corollary 1.1 therein)
classified all the locally strongly convex (i.e., N(h) = 0, n cases) canonical
centroaffine hypersurfaces in R

n+1. Recently, Lalléchère et al [13] proved that
flat hyperbolic centroaffine Tchebychev hypersurfaces in R

4 must be canonical
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ones. Then, applying the result of [16], one can obtain a classification of all
flat hyperbolic centroaffine Tchebychev hypersurfaces in R

4.
In this paper, we focus on the above problem for locally strongly convex

centroaffine Tchebychev hypersurfaces. First, motivated by Liu and Wang’s
classification theorem for all centroaffine surfaces with vanishing centroaffine
shape operator (see Theorem 4.1 in [17]), we prove the following theorem for
higher dimensions:

Theorem 1.1. Let x : Mn → R
n+1 (n ≥ 3) be a locally strongly convex cen-

troaffine hypersurface with constant sectional curvature and vanishing cen-
troaffine shape operator. Then, x(Mn) is locally centroaffinely equivalent to
one of the following hypersurfaces:

(i) a hyperquadric of proper affine hyperspheres centered at the origin of
R

n+1;
(ii) xα1

1 xα2
2 · · · xαn+1

n+1 = 1, where either αi > 0 for 1 ≤ i ≤ n + 1; or αj > 0
for 2 ≤ j ≤ n + 1 and α1 + · · · + αn+1 < 0;

(iii) xα1
1 xα2

2 · · · xαn−1
n−1 (x2

n + x2
n+1)

αn exp(αn+1 arctan xn

xn+1
) = 1, where αi < 0

for 1 ≤ i ≤ n − 1 and α1 + · · · + αn−1 + 2αn > 0;
(iv) xn+1 = 1

2x1
(x2

2+ · · ·+x2
v−1)−x1(− ln x1+αv ln xv + · · ·+αn ln xn), where

2 ≤ v ≤ n + 1, αi > 0 for v ≤ i ≤ n, and αv + · · · + αn < 1.

Remark 1.1. Theorem 1.1 partially generalizes Theorem 1.3 of Li and Wang
[16]. Moreover, by Corollary 1.1 of Cheng-Hu-Moruz [3], the examples (ii), (iii)
and (iv) exhaust all locally strongly convex canonical centroaffine hypersur-
faces of Rn+1. The detailed calculations of these canonical hypersurfaces shall
be given in Sect. 3 below.

Next, by definition, a hyperbolic centroaffine hypersurface is locally
strongly convex with N(h) = 0. Then, motivated by that Liu and Wang [17]
have classified all flat centroaffine Tchebychev surfaces in R

3 and Lalléchère et
al [13] have classified all flat hyperbolic centroaffine Tchebychev hypersurfaces
in R

4, as the second main result of this paper, we prove the following classi-
fication theorem for all flat hyperbolic centroaffine Tchebychev hypersurfaces
in R

5.

Theorem 1.2. Let x : M4 → R
5 be a flat hyperbolic centroaffine Tchebychev

hypersurface. Then, x(M4) is centroaffinely equivalent to the hypersurfaces
defined by:

xα1
1 xα2

2 xα3
3 xα4

4 xα5
5 = 1,

where αi > 0 for 1 ≤ i ≤ 5.

Remark 1.2. We would mention that the statement of Theorem 1 in Lalléchère
et al [13] is not correct. Indeed, by Examples 1.1–1.2 and Theorem 1.3 in [16],
all the hypersurfaces described in Theorem 1 of [13] except xα1

1 xα2
2 xα3

3 xα4
4 = 1

with αi > 0 for 1 ≤ i ≤ 4 have the property N(h) = 1.
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This paper is organized as follows. In Sect. 2, we first review the ele-
mentary facts of centroaffine hypersurfaces in R

n+1, together with recalling
the general property of the Tchebychev hypersurfaces. In Sect. 3, for better
understanding of our results, we give the detailed calculations of the canonical
centroaffine hypersurfaces described in Theorem 1.1. In Sect. 4, we present a
proof of Theorem 1.1. In Sect. 5, we construct a typical orthonormal frame on
the flat hyperbolic centroaffine hypersurfaces in R

n+1. Then, by applying the
Codazzi equations and the Tchebychev condition with respect to the above-
mentioned typical orthonormal frame, we derive information of the connection
coefficients and the difference tensor in Sects. 6 and 7, respectively. Finally, in
Sect. 8, we complete the proof of Theorem 1.2.

2. Preliminaries

In this section, we briefly review some basic notions and facts about cen-
troaffine hypersurfaces in R

n+1. For more details, we refer to the monographs
[14,19,20] and the references [8,10,24].

Let x : Mn → R
n+1 (n ≥ 2) be a locally strongly convex immersed

centroaffine hypersurface as stated in the Introduction section. Then, for any
vector fields X and Y tangent to Mn, we have the centroaffine formula of
Gauss:

DXx∗(Y ) = x∗(∇XY ) + h(X,Y )(−εx), (2.1)

where ε = ±1 is chosen such that h is positive definite. Associated with (2.1),
−εx is called the centroaffine normal, ∇ and h are called the induced (cen-
troaffine) connection and centroaffine metric induced by −εx, respectively.
The centroaffine hypersurface is called elliptic type (resp. hyperbolic type) if
ε = 1 (resp. ε = −1). For the geometric interpretation about the type of hy-
persurfaces, see Sect. 2 of [10] for more comments. However, we note that Li
and Wang [16] fixed x to be the centroaffine normal and thus the centroaffine
metric is negative definite for elliptic type centroaffine hypersurfaces.

Denote by ∇̂ the Levi-Civita connection with respect to the centroaffine
metric h. Then the tensor K, defined by K(X,Y ) := KXY := ∇XY − ∇̂XY ,
is called difference tensor of the centroaffine hypersurface. K is symmetric
as both connections ∇ and ∇̂ are torsion free. We also have a totally sym-
metric (0, 3)-type tensor C := ∇h, called the cubic form of the centroaffine
hypersurface. Moreover, K and C are related by

C(X,Y,Z) = −2h(K(X,Y ), Z), ∀X,Y,Z ∈ TMn. (2.2)

Then, associated to a centroaffine hypersurface x : Mn → R
n+1, we can

define the Tchebychev form T � and the Tchebychev vector field T in implicit
form by

T �(X) = 1
n traceh(KX), h(T,X) = T �(X), ∀X ∈ TMn. (2.3)
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It should be pointed out that if T vanishes, or equivalently traceh(KX) = 0
for any tangent vector X, then x : Mn → R

n+1 reduces to be the so-called
proper affine hypersphere centered at the origin of Rn+1 (cf. p.279 of [14] or
Sect. 1.15.2–1.15.3 therein).

For a centroaffine hypersurface x : Mn → R
n+1, the covariant differenti-

ation ∇̂T is of deep meaning. Indeed, Wang [24] showed that

h(∇̂XT, Y ) = h(X, ∇̂Y T ), (2.4)

which implies that the Tchebychev vector field T is a closed vector field, in
the sense that the Tchebychev form T � is a closed form. Furthermore, Wang
[24] considered the homomorphism mapping T : TMn → TMn, defined by

T (X) := ∇̂XT, ∀X ∈ TMn. (2.5)

In [17], T is called the Tchebychev operator of x : Mn → R
n+1. Thus, (2.4)

implies that the Tchebychev operator T is self-adjoint with respect to the
centroaffine metric h. It is worth mentioning that the geometric properties
derived by Wang [24] allow him to define T as the centroaffine shape operator of
x : Mn → R

n+1, and therefore, the well-defined function H := (tracehT )/n =
(div T )/n is called the centroaffine mean curvature of x : Mn → R

n+1.
Denote by R̂ the Riemannian curvature tensor of the centroaffine metric

h. Then the equations of Gauss and Codazzi are given by, respectively,

R̂(X,Y )Z = ε(h(Y,Z)X − h(X,Z)Y ) − [KX ,KY ]Z, (2.6)

(∇̂ZK)(X,Y ) = (∇̂XK)(Z, Y ). (2.7)

Next, we choose an h-orthonormal tangential frame field {e1, . . . , en} with
dual frame field {ω1, . . . , ωn} and Levi-Civita connection forms {ωj

i }. We shall
use the convention of indices: 1 ≤ i, j, k, l,m, p, q ≤ n. We denote by Kk

ij =
h(Kei

ej , ek) and T i = 1
n

∑
j Ki

jj the components of K and T ; and by Kk
ij,l and

T j
,i the components of the covariant differentiation ∇̂K and ∇̂T with respect

to {ei}, respectively, defined by
∑

l

Kk
ij,lω

l = dKk
ij +

∑

l

Kk
ljω

i
l +

∑

l

Kk
ilω

j
l +

∑

l

Kl
ijω

k
l ,

∑

i

T j
,iω

i = dT j +
∑

i

T iωj
i .

Denote by Rijkl the components of the Riemannian curvature tensor of the
centroaffine metric h. Then, (2.6) and (2.7) can be written as:

Rijkl = ε(δikδjl − δilδjk) +
∑

m

(Km
il Km

jk − Km
ikKm

jl ), (2.8)

Kk
ij,l = Kk

il,j . (2.9)
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Taking the contraction of the Gauss equation (2.8) twice, we derive that

Rij = ε(n − 1)δij +
∑

m,k

Km
ikKm

jk − n
∑

m

TmKm
ij , (2.10)

n(n − 1)κ = R = n(n − 1)(J + ε) − n2‖T‖2, (2.11)

where Rij and R denote the components of the Ricci tensor and the scalar
curvature of the centroaffine metric h, respectively, and that

‖T‖2 :=
∑

i

(T i)2, J := 1
n(n−1)

∑

i,j,k

(Kk
ij)

2.

As usual, J and κ are called the centroaffine Pick invariant and the normalized
scalar curvature of the centroaffine hypersurface, respectively.

Similarly, the second covariant derivative Kq
ij,lp of K is defined by

∑

p

Kq
ij,lpω

p = dKq
ij,l +

∑

p

Kq
pj,lω

i
p

+
∑

p

Kq
ip,lω

j
p +

∑

p

Kq
ij,pω

l
p +

∑

p

Kp
ij,lω

q
p. (2.12)

Then, we have the Ricci identity

Kq
il,jp = Kq

il,pj +
∑

m

Kq
mlRmijp +

∑

m

Kq
imRmljp +

∑

m

Km
il Rmqjp. (2.13)

As stated in the first section, a centroaffine hypersurface is called Tcheby-
chev if its centroaffine shape operator satisfies T = H ·id. As an important sub-
class of centroaffine hypersurfaces that we have introduced earlier, Tchebychev
hypersurfaces have remarkable properties. For instance, using the assumption
T = H · id, the equality h(R̂(X,T )T, T ) = 0 and the relation

(∇̂XT )(Y ) − (∇̂Y T )(X) = R̂(X,Y )T, (2.14)

we derive the following formulas:

∇̂‖T‖2 = 2HT, ‖T‖2∇̂H = T (H)T, (2.15)

where ∇̂ denotes the gradient operator with respect to the centroaffine metric
h. In particular, from the second formula in (2.14) and (2.15), we further obtain
that

‖T‖2R̂(X,Y )T = −T (H)(h(T, Y )X − h(T,X)Y ). (2.16)

3. Computations on Canonical Centroaffine Hypersurfaces

In [16], Li and Wang have made some calculations about the canonical cen-
troaffine hypersurfaces in R

n+1. In this section, to get the exact knowledge
about locally strongly convex canonical centroaffine hypersurfaces, we com-
pute their centroaffine invariants with more details. For convenience of the
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calculations, we begin with fixing x to be the centroaffine normal and finally
we decide if it is of hyperbolic type or elliptic type.

Example 3.1. Given α = (α1, . . . , αn+1) ∈ R
n+1 that satisfies either (1) αi > 0

for 1 ≤ i ≤ n+1; or (2) αj > 0 for 2 ≤ j ≤ n+1 and α1 +α2 + · · ·+αn+1 < 0,
we define

M (1)
α =

{
x ∈ R

n+1 |xα1
1 xα2

2 · · · xαn+1
n+1 =1

}
. (3.1)

Claim 3.1. M
(1)
α is a locally strongly convex canonical centroaffine hypersur-

face in R
n+1. Moreover, M

(1)
α is of hyperbolic type in case (1), and of elliptic

type in case (2).

Proof of Claim 3.1. Put βj = −αj

α1
, 2 ≤ j ≤ n+1. Then, M

(1)
α can be rewritten

as

xβ2
2 xβ3

3 · · · xβn+1
n+1 = x1, (3.2)

where, in case (1) we have βj < 0 for 2 ≤ j ≤ n + 1; whereas in case (2) we
have βj > 0 for 2 ≤ j ≤ n + 1 and β2 + · · · + βn+1 < 1.

Now, taking local coordinates (u2, . . . , un+1) of M
(1)
α such that

x = (x1, x2, . . . , xn+1) := (eβ2u2+β3u3+···+βn+1un+1 , eu2 , . . . , eun+1),

we have

xuj
= (βje

β2u2+...+βn+1un+1 , 0, . . . , 0, euj , 0, . . . , 0), 2 ≤ j ≤ n,

xujuk
= (βjβkeβ2u2+...+βn+1un+1 , 0, . . . , 0, δjkeuj , 0, . . . , 0), 2 ≤ j, k ≤ n.

It follows that
[
xu2 , . . . , xun+1 , xujuk

]
= (−1)n+2(βjβk − δjkβj)e(1+β2)u2+···+(1+βn+1)un+1 ,

[
xu2 , . . . , xun+1 , x

]
= (−1)n+2

(

1 −
n+1∑

i=2

βi

)

e(1+β2)u2+···+(1+βn+1)un+1 ,

where and later, [·] denotes the standard determinant in R
n+1.

By using xuiuj
=

∑n+1
k=2 Γk

ijxuk
+ hijx, we have

hij =

[
xu2 , xu3 , . . . , xun+1 , xuiuj

]

[
xu2 , xu3 , . . . , xun+1 , x

] =
βiβj − δijβj

1 −
∑n+1

k=2 βk

, 2 ≤ i, j ≤ n + 1. (3.3)

Thus, the centroaffine metric h is flat. Moreover, from the fact
(

1 −
n+1∑

k=2

βk

)
n+1∑

i,j=2

hijzizj =

(
n+1∑

i=2

βizi

)2

−
n+1∑

i=2

βiz
2
i

= −
(

1−
n+1∑

k=2

βk

)
n+1∑

i=2

βiz
2
i −

∑

2≤i<j≤n+1

βiβj(zi − zj)
2,
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we see that the matrix (hij) is positive (resp. negative) definite, or equivalently,
the hypersurface M

(1)
α is hyperbolic (resp. elliptic) in case (1) (resp. case (2)).

Next, by definition and (3.3), the difference tensor of M
(1)
α is given by

Kk
ij = Γk

ij =

[
xu2 , . . . , xuiuj

, . . . , xun+1 , x
]

[
xu2 , . . . , xk, . . . , xun+1 , x

] , 2 ≤ i, j, k ≤ n + 1, (3.4)

where in the numerator xuiuj
locates in the same position as that of xk in the

denominator. Then, straightforward calculations give that

Kk
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

βiβj
∑n+1

l=2 βl − 1
, i 	= j;

1 +
βi(βi − 1)

∑n+1
l=2 βl − 1

, i = j = k;

βi(βi − 1)
∑n+1

l=2 βl − 1
, i = j 	= k.

(3.5)

From (3.3) and (3.5), we get ∇̂K = 0. Thus, as claimed, M
(1)
α is a locally

strongly convex canonical centroaffine hypersurface in R
n+1 for both cases (1)

and (2). �

Example 3.2. Given α = (α1, . . . , αn+1) ∈ R
n+1 with αi < 0 (1 ≤ i ≤ n − 1)

and α1 + · · · + αn−1 + 2αn > 0, we define

M (2)
α =

{
x∈R

n+1 |xα1
1 xα2

2 · · · xαn−1
n−1 (x2

n+x2
n+1)

αn exp(αn+1 arctan xn

xn+1
)=1

}
.

(3.6)

Claim 3.2. M
(2)
α is a locally strongly convex canonical centroaffine hypersur-

face in R
n+1 of elliptic type.

Proof of Claim 3.2. Put βi = − αi

α1
for 2 ≤ i ≤ n + 1. Then, M

(2)
α can be

rewritten as

xβ2
2 · · · xβn−1

n−1 (x2
n + x2

n+1)
βn exp(βn+1 arctan xn

xn+1
) = x1,

where βi < 0 for 2 ≤ i ≤ n − 1 and β2 + · · · + βn−1 + 2βn > 1.
Taking local coordinates (u2, . . . , un+1) of M

(2)
α such that

⎧
⎪⎨

⎪⎩

x1 = eβ2u2+···+βn−1un−1+2βnun+βn+1un+1 ,

x2 = eu2 , x3 = eu3 , . . . , xn−1 = eun−1 ,

xn = eun sin un+1, xn+1 = eun cos un+1,

we have, letting 〈·, ·〉 be the usual Euclidean inner product in R
n+1,

⎧
⎪⎪⎨

⎪⎪⎩

xuj
= (βje

〈β̄,u〉, 0, . . . , 0, euj , 0, . . . , 0, 0, 0), 2 ≤ j ≤ n − 1,

xun
= (2βne〈β̄,u〉, 0, . . . , 0, eun sin un+1, e

un cos un+1),

xun+1 = (βn+1e
〈β̄,u〉, 0, . . . , 0, eun cos un+1,−eun sin un+1),
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where β̄ = (β2, . . . , βn−1, 2βn, βn+1), u = (u2, . . . , un+1). Moreover, for 2 ≤
i, j ≤ n − 1,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xuiuj
= (βiβje

〈β̄,u〉, 0, . . . , 0, δije
ui , 0, . . . , 0, 0, 0),

xuiun
= (2βiβne〈β̄,u〉, 0, . . . , 0, 0, 0), xuiun+1 = (βiβn+1e

〈β̄,u〉, 0, . . . , 0, 0, 0),

xunun
= (4β2

ne〈β̄,u〉, 0, . . . , 0, eun sin un+1, e
un cos un+1),

xunun+1 = (2βnβn+1e
〈β̄,u〉, 0, . . . , 0, eun cos un+1,−eun sin un+1),

xun+1un+1 = (β2
n+1e

〈β̄,u〉, 0, . . . , 0,−eun sin un+1,−eun cos un+1).

Thus, by xuiuj
=

∑n+1
k=2 Γk

ijxuk
+hijx, as in (3.3), direct calculations give

that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hij =
βiβj − δijβj

1 − 2βn −
∑n−1

t=2 βt

, hin =
2βiβn

1 − 2βn −
∑n−1

t=2 βt

,

hi,n+1 =
βiβn+1

1 − 2βn −
∑n−1

t=2 βt

, hnn =
4β2

n − 2βn

1 − 2βn −
∑n−1

t=2 βt

,

hn,n+1 =
2βnβn+1 − βn+1

1 − 2βn −
∑n−1

t=2 βt

, hn+1,n+1 =
2βn + β2

n+1

1 − 2βn −
∑n−1

t=2 βt

,

(3.7)

where 2 ≤ i, j ≤ n − 1. This implies that the centroaffine metric h is flat.
Moreover, putting (hij)n×n = 1

1−2βn−∑n−1
t=2 βt

(Aij)n×n, we can calculate
the leading principal minors {Di}1≤i≤n of the matrix (Aij)n×n to obtain:

D1 = β2
2 − β2 > 0, D2 = (1 − β2 − β3)β2β3 > 0, . . . ,

Dn−2 = (1 − β2 − · · · − βn−1)
n−1∏

i=2

(−βi) > 0,

Dn−1 = 2βn(β2 + · · · + βn−1 + 2βn − 1)
n−1∏

i=2

(−βi) > 0,

Dn = (4β2
n + β2

n+1)(β2 + · · · + βn−1 + 2βn − 1)
n−1∏

i=2

(−βi) > 0.

(3.8)

Hence, the matrix (hij)n×n is negative definite, or equivalently, M
(2)
α is of

elliptic type.
Finally, direct calculations with the use of (3.4) and (3.7) show that all

coefficients Kk
ij of the difference tensor are equal to Γk

ij which are all constant.

Then, it follows that ∇̂K = 0 and, as claimed, M
(2)
α is a locally strongly convex

canonical centroaffine hypersurface in R
n+1. �
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Example 3.3. Given 2 ≤ v ≤ n + 1 and α(v) = (αv, . . . , αn) ∈ R
n−v+1, with

αk > 0 for v ≤ k ≤ n and αv + · · · + αn < 1, we define the graph in R
n+1 by

M
(3)
α(v) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = 1
2x1

v−1∑

i=2

x2
i + x1

(

lnx1 −
n∑

i=v

αi ln xi

)

, 3 ≤ v ≤ n;

xn+1 = x1

(

ln x1 −
n∑

i=2

αi ln xi

)

, v = 2;

xn+1 = 1
2x1

n∑

i=2

x2
i + x1 ln x1, v = n + 1.

(3.9)

Claim 3.3. M
(3)
α(v) with 2 ≤ v ≤ n + 1 are locally strongly convex canonical

centroaffine hypersurfaces in R
n+1 of elliptic type.

Proof of Claim 3.3. Because of similarity and simpler, the proof for both
M

(3)
α(n+1) and M

(3)
α(2) are omitted. Below, we consider the cases 3 ≤ v ≤ n.

With the parameterization (u1, . . . , un), we can express M
(3)
α(v) by

x =

(

eu1 , eu1u2, . . . , e
u1uv−1, e

uv , . . . , eun , eu1

(

u1 + 1
2

v−1∑

t=2

u2
t −

n∑

r=v

αrur

))

.

Then, as the preceding examples, by direct calculation of xui
for 1 ≤ i ≤ n and

xuiuj
for 1 ≤ i, j ≤ n, together with the equation xuiuj

=
∑n

k=1 Γk
ijxuk

+hijx,
we can get

⎧
⎪⎪⎨

⎪⎪⎩

h11 =
1

∑n
s=v αs − 1

, h1i = 0, h1k =
−αk∑n

s=v αs − 1
,

hij =
δij∑n

s=v αs − 1
, hik = 0, hkl =

δklαk∑n
s=v αs − 1

,

(3.10)

where 2 ≤ i, j ≤ v − 1 and v ≤ k, l ≤ n. (3.10) implies that the centroaffine
metric h is flat. Moreover, from the fact

(
n∑

k=v

αk − 1

)
n∑

i,j=1

hijzizj =

(

1 −
n∑

k=v

αk

)

z2
1

+
v−1∑

i=2

z2
i +

n∑

k=v

αk(z1 − zk)2, (3.11)

we see that the matrix (hij)n×n is negative definite, or equivalently, the hy-
persurface M

(3)
α(v) is of elliptic type.
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Moreover, direct calculations show that all Kk
ij = Γk

ij are constant, which
satisfy:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K1
11 =

∑n
s=v αs − 2

∑n
s=v αs − 1

, Kj
11 = 0, 2 ≤ j ≤ v − 1,

Kk
11 = − 1

∑n
s=v αs − 1

, v ≤ k ≤ n,

Km
1j = δjm, 2 ≤ j ≤ v − 1, 1 ≤ m ≤ n,

(3.12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1
1k = Km

1k =
αk∑n

s=v αs − 1
, Kj

1k = 0, 2 ≤ j ≤ v − 1, v ≤ k,m ≤ n,

K1
ij = Km

ij = − δij∑n
s=v αs − 1

, Kr
ij = 0, 2 ≤ i, j, r ≤ v − 1, v ≤ m ≤ n,

Km
ik = 0, 2 ≤ i ≤ v − 1, v ≤ k ≤ n, 1 ≤ m ≤ n,

K1
kl = Km

kl = − αkδkl∑n
s=v αs − 1

, v ≤ k, l,m ≤ n, m 	= k, l,

Kj
kl = 0, Kk

kl = δkl − αkδkl∑n
s=v αs − 1

, 2 ≤ j ≤ n − 1, v ≤ k, l ≤ n.

(3.13)

It follows from (3.10), (3.12) and (3.13) that ∇̂K = 0. Hence, as claimed,
M

(3)
α(v) is a locally strongly convex canonical centroaffine hypersurface in

R
n+1. �

Before ending this section, we give further remarks concerning the pre-
ceding examples.

Remark 3.1. Given an integer 2 ≤ v ≤ n and real numbers {α̃i}1≤i≤v−1 with
α̃1 < 0, we have the centroaffine transformation of Rn+1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = y1, xi =
yi√
−α̃1

, 2 ≤ i ≤ v − 1; xj = yj , v ≤ j ≤ n;

xn+1 = − 1
α̃1

(

yn+1 +
v−1∑

i=2

α̃iyi

)

,
(3.14)

under which the locally strongly convex canonical centroaffine hypersurface
M

(3)
α(v), namely

xn+1 = 1
2x1

v−1∑

i=2

x2
i − x1

(

− ln x1 +
n∑

k=v

αk ln xk

)

, (3.15)

is changed to be Example 1.2 of Li–Wang [16]:

yn+1 = 1
2y1

v−1∑

i=2

y2
i −

v−1∑

i=2

α̃iyi − y1

⎛

⎝α̃1 ln y1 +
n∑

j=v

α̃j ln yj

⎞

⎠ , (3.16)

where α̃j = −α̃1αj , v ≤ j ≤ n.
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Moreover, corresponding to αk > 0 for v ≤ k ≤ n and αv + · · · + αn < 1
in (3.15), it holds that α̃k > 0 for v ≤ k ≤ n and α̃1 + α̃v + · · · + α̃n < 0 in
(3.16).

In [16], more information for the canonical centroaffine hypersurface (3.16)
is given. This includes the conclusion that the canonical centroaffine hypersur-
faces (3.16) are of Lorentzian centroaffine metric if α̃j > 0 for v ≤ j ≤ n and
α̃1 + α̃v + · · · + α̃n > 0.

Next, we recall Corollary 1.1 of Cheng-Hu-Moruz [3] which shows that
the centroaffine hypersurfaces described by the preceding examples are the
only locally strongly convex canonical centroaffine hypersurfaces in R

n+1.

Theorem 3.1 ([3,16]). Let x : Mn → R
n+1 (n ≥ 2) be a locally strongly convex

canonical centroaffine hypersurface. Then it is locally centroaffinely equivalent
to one of the following hypersurfaces:

(i) xα1
1 xα2

2 · · · xαn+1
n+1 = 1, where either αi > 0 for 1 ≤ i ≤ n + 1; or αj > 0

for 2 ≤ j ≤ n + 1 and α1 + · · · + αn+1 < 0;
(ii) xα1

1 xα2
2 · · · xαn−1

n−1 (x2
n + x2

n+1)
αn exp(αn+1 arctan xn

xn+1
) = 1, where αi < 0

for 1 ≤ i ≤ n − 1 and α1 + · · · + αn−1 + 2αn > 0;
(iii) xn+1 = 1

2x1
(x2

2+ · · ·+x2
v−1)−x1(− ln x1+αv ln xv + · · ·+αn ln xn), where

2 ≤ v ≤ n + 1, αi > 0 for v ≤ i ≤ n and αv + · · · + αn < 1.

Remark 3.2. Theorem 3.1 complements Theorem 1.1 of [16] by giving all ex-
amples with N(h) = n. Since a complete proof of Theorem 3.1 is omitted
in [3], hereby we would give an outline: By Theorem 6.1 in [3], all locally
strongly convex canonical centroaffine surfaces in R

3 are given by (ii) ∼ (v)
therein. Then, from the conclusions of Theorem 1.1, Propositions 3.1 and
3.2 of [3], we see that all higher dimensional locally strongly convex canon-
ical centroaffine hypersurfaces but that xn+1 = 1

2x1
(x2

2 + · · · + x2
n) + x1 ln x1

can be produced by the Calabi products of either two lower dimensional lo-
cally strongly convex canonical centroaffine hypersurfaces, or one lower di-
mensional locally strongly convex canonical centroaffine hypersurface with a
point, defined by (1.3) and (1.4) of [3], respectively, depending on a parameter
λ. Then, by using Theorem 1.1 of [3] again, noting that as building blocks
of the Calabi products, the standard immersions of the symmetric spaces
SL(m,R)/SO(m), SL(m,C)/SU(m), SU∗(2m

)
/Sp(m) and E6(−26)/F4 are

not of flat centroaffine metric (cf. [2]), we can finally achieve the conclusion of
Theorem 3.1.

4. Proof of Theorem 1.1

First of all, from (2.15) and (2.16), we immediately get the following lemma.



Vol. 77 (2022) On Centroaffine Tchebychev Hypersurfaces Page 13 of 29 175

Lemma 4.1. Let x : Mn → R
n+1 be a locally strongly convex centroaffine

Tchebychev hypersurface with constant sectional curvature c. Then it holds
that

‖∇̂H‖2 = c2‖T‖2, (4.1)

where ∇̂ and ‖ · ‖ denote the gradient operator and the tensorial norm with re-
spect to the centroaffine metric h, respectively. In particular, if the centroaffine
metric is flat, i.e., c = 0, the centroaffine mean curvature H is a constant.

Next, before completing the proof of Theorem 1.1, with the notations of
the second section and the indices convention, we are going to calculate the
Laplacian ΔJ of the centroaffine Pick invariant J .

Lemma 4.2. Let x : Mn → R
n+1 be a locally strongly convex centroaffine

hypersurface. Then, with respect to a local h-orthonormal frame {e1, . . . , en}
of Mn, it holds that

1
2n(n − 1)ΔJ =

∑

i,j,k,l

(Kk
ij,l)

2 +
∑

i,j,k,l

(Rijkl)2 +
∑

i,j

(Rij)2 − ε(n + 1)R

+ n
∑

i,j,k

Kk
ijRijT

k + n
∑

i,j,k

Kk
ijT

k
,ij .

(4.2)

Proof. By definition, we have

1
2n(n − 1)ΔJ = 1

2Δ

⎛

⎝
∑

i,j,k

(Kk
ij)

2

⎞

⎠ =
∑

i,j,k,l

(Kk
ij,l)

2 +
∑

i,j,k,l

Kk
ijK

k
ij,ll. (4.3)

By using (2.9) and (2.13), we have the calculations
∑

i,j,k,l

Kk
ijK

k
ij,ll =

∑

i,j,k,l

Kk
ijK

k
il,lj +

∑

i,j,k,l,m

Kk
ijK

k
mlRmijl

+
∑

i,j,k,l,m

Kk
ijK

k
imRmljl +

∑

i,j,k,l,m

Kk
ijK

m
il Rmkjl

= n
∑

i,j,k

Kk
ijT

k
,ij +

∑

i,j,k,l,m

Kk
ijK

k
mlRmijl

+
∑

i,j,k,m

Kk
ijK

k
imRmj +

∑

i,j,k,l,m

Kk
ijK

m
il Rmkjl.

(4.4)

Now, from the fact
∑

i,j,k,l,m

Kk
ijK

m
il Rmkjl = −

∑

i,j,k,l,m

Kk
ijK

m
il Rkmjl

= −
∑

i,j,k,l,m

Kk
mjK

k
ilRmijl,

(4.5)
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and (2.8), we obtain
∑

i,j,k,l,m

Kk
ijK

k
mlRmijl +

∑

i,j,k,l,m

Kk
ijK

m
il Rmkjl

=
∑

i,j,k,l,m

(Kk
ijK

k
ml − Kk

ilK
k
jm)Rmijl =

∑

i,j,l,m

(Rimjl)2 − 2εR.
(4.6)

Moreover, by using (2.10), we get
∑

i,j,k,m

Kk
ijK

k
imRmj =

∑

i,j

(Rij)2 + n
∑

i,j,k

Kk
ijRijT

k − ε(n − 1)R. (4.7)

From the above calculations, we conclude that
∑

i,j,k,l

Kk
ijK

k
ij,ll =

∑

i,j,l,m

(Rimjl)2 +
∑

i,j

(Rij)2 − ε(n + 1)R

+ n
∑

i,j,k

Kk
ijRijT

k + n
∑

i,j,k

Kk
ijT

k
,ij .

(4.8)

The assertion of the lemma then follows from (4.3) and (4.8). �

Completion of the Proof of Theorem 1.1.

Let x : Mn → R
n+1 be a locally strongly convex centroaffine hypersurface

with constant sectional curvature c and vanishing centroaffine shape operator
T = ∇̂T = 0. Thus, H = 0 and ‖T‖ is a constant.

If T = 0, then x is an equiaffine normal, thus x : Mn → R
n+1 is a proper

affine hypersphere centered at the origin O ∈ R
n+1. By the Main theorem of

Vrancken-Li-Simon [23], we conclude that x(Mn) is centroaffinely equivalent
to either a hyperquadric of proper affine hyperspheres centered at the origin
or the hypersurface x1x2 · · · xn+1 = 1 in R

n+1.
If T 	= 0, it is seen from Lemma 4.1 and the fact H = 0 that c = 0,

i.e., (Mn, h) is flat. It follows from (2.11) that J is a constant, and applying
Lemma 4.2, we obtain

0 = 1
2n(n − 1)ΔJ =

∑

i,j,k,l

(Kk
ij,l)

2 + n
∑

i,j,k

Kk
ijT

k
,ij =

∑

i,j,k,l

(Kk
ij,l)

2,

and therefore, x : Mn → R
n+1 is of parallel difference tensor.

Hence, x : Mn → R
n+1 is a locally strongly convex canonical centroaffine

hypersurface. Now, combining with Theorem 3.1, we have completed the proof
of Theorem 1.1. �

5. Construction of a Typical h-orthonormal Frame

From now on, we assume that x : Mn → R
n+1 is a flat hyperbolic centroaffine

hypersurface. Then, from (2.11), for any point p ∈ Mn, we have K(p) 	= 0.
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In this section, we will construct a typical h-orthonormal frame field on
Mn that should be of independent meaning. First of all, we fix an arbitrary
p ∈ Mn and construct a canonical basis of TpM

n.

Lemma 5.1. Let x : Mn → R
n+1 (n ≥ 2) be a flat hyperbolic centroaffine hy-

persurface. Then, at any p ∈ Mn, there exists an h-orthonormal basis {ei}n
i=1

of TpM
n such that the difference tensor K takes the following form at p:

⎧
⎪⎨

⎪⎩

Ke1e1 = λ1e1, Ke1ek = μ1ek,

Kek
ek = μ1e1 + · · · + μk−1ek−1 + λkek,

Kei
ej = μiej , 2 ≤ i < j ≤ n, 2 ≤ k ≤ n,

(5.1)

where the coefficients satisfy the following relations:
⎧
⎪⎪⎨

⎪⎪⎩

μ1 = 1
2

(

λ1 −
√

λ2
1 + 4

)

, λk > 0, μk 	= 0, 1 ≤ k ≤ n − 1,

μ� = 1
2

(
λ� −

√
λ2

� + 4(1 + μ2
1 + · · · + μ2

�−1)
)

, 2 ≤ 	 ≤ n − 1.

(5.2)

Proof. The argument is now standard, for readers not familiar are referred to
[4,23].

Denote by U1
p Mn = {u ∈ TpM

n |h(u, u) = 1} which is a compact set.
Define a continuous function f1(u) = h(Kuu, u) on U1

p Mn. Since K(p) 	= 0,
the function f1 attains an absolute maximum at some e1 ∈ U1

p Mn such that
λ1 := f1(e1) > 0. This implies that Ke1e1 = λ1e1. Then, considering the self-
adjoint map Ke1 : TpM

n → TpM
n, we obtain an h-orthonormal basis {ei}n

i=1

of TpM
n, consisting of the eigenvectors of Ke1 with associated eigenvalues λ1

and λ1j (2 ≤ j ≤ n) satisfying

Ke1e1 = λ1e1, Ke1ej = λ1jej , λ1 ≥ 2λ1j , 2 ≤ j ≤ n.

Then, taking in (2.6) X = e1, Y = Z = ej for j ≥ 2, as ε = −1, we can get

λ2
1j − λ1jλ1 − 1 = 0, 2 ≤ j ≤ n.

Given that λ1 ≥ 2λ1j , we have λ12 = · · · = λ1n = 1
2

(
λ1 −

√
λ2

1 + 4
)

=: μ1 	= 0.
Next, denote T 2

p Mn = Span{e2, . . . , en} and U2
p Mn = {u ∈ T 2

p Mn |
h(u, u) = 1}. Then, the function f2(u) = h(Kuu, u) defined on U2

p Mn attains
at an element e2 ∈ U2

p Mn so that the absolute maximum λ2 := f2(e2) ≥ 0.
This implies that Ke2e2 = μ1e1 + λ2e2.

Consider now the self-adjoint operator B2 : T 2
p Mn → T 2

p Mn defined by

B2X = Ke2X − h(Ke2X, e1)e1, X ∈ T 2
p Mn.

We can choose an h-orthonormal basis of {e1, e2}⊥, still denoted {ei}n
i=3, con-

sisting of eigenvectors of B2 with associated eigenvalues {λ2i}n
i=3 satisfying

Ke2e2 = μ1e1 + λ2e2, Ke2ej = λ2jej , 3 ≤ j ≤ n, λ2 ≥ 2λ2j , 2 ≤ j ≤ n.
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Then, taking in (2.6) X = e2, Y = Z = ej for j ≥ 3, we get

λ2
2j − λ2jλ2 − (1 + μ2

1) = 0, 3 ≤ j ≤ n,

which implies λ2 > 0 (if otherwise λ2 = 0, then λ2j = h(Ke2ej , ej) = 0 which
gives a contradiction to the above equation). Therefore, as λ2 ≥ 2λ2j , the above
equation implies that λ23 = · · · = λ2n = 1

2

(
λ2 −

√
λ2

2 + 4(1 + μ2
1)

)
=: μ2 	= 0.

Repeating the above procedure inductively, we then construct an h-
orthonormal basis {ei}n

i=1 of TpM
n for which K takes the form (5.1) with

coefficients satisfying (5.2). �
Next, we are going to extend the above h-orthonormal basis {ei}n

i=1 of
TpM

n to a local h-orthonormal frame field {Ei}n
i=1 on a neighbourhood U of

p ∈ Mn.

Lemma 5.2. Let x : Mn → R
n+1 be a flat hyperbolic centroaffine hypersurface.

For p ∈ Mn, there exists a local h-orthonormal frame field {Ei}n
i=1 on a neigh-

bourhood U of p ∈ Mn such that the difference tensor K takes the following
form:

⎧
⎪⎨

⎪⎩

KE1E1 = f1E1, KE1Ek = g1Ek,

KEk
Ek = g1E1 + · · · + gk−1Ek−1 + fkEk,

KEi
Ej = giEj , 2 ≤ i < j ≤ n, 2 ≤ k ≤ n,

(5.3)

where, the functions {fi, gk} satisfy the relations:
⎧
⎪⎪⎨

⎪⎪⎩

g1 = 1
2

(

f1 −
√

f2
1 + 4

)

, fk > 0, gk 	= 0, 1 ≤ k ≤ n − 1,

g� = 1
2

(
f� −

√
f2

� + 4(1 + g2
1 + · · · + g2

�−1)
)

, 2 ≤ 	 ≤ n − 1.

(5.4)

Proof. We divided the proof process into three steps.

Step 1. There exists a unit vector field E1 on some neighborhood U ′ of p such
that

KE1E1 = f1E1, KE1Y = g1Y, ∀Y ∈ {E1}⊥, (5.5)

where f1 > 0, g1 = 1
2

(
f1 −

√
f2
1 + 4

)
.

For the h-orthonormal basis {ei}n
i=1 of TpM

n as described in Lemma 5.1,
we choose an arbitrary local differentiable h-orthonormal frame field
{Ẽ1, . . . , Ẽn} on a neighborhood Ũ of p such that Ẽi(p) = ei for 1 ≤ i ≤ n.
Then, we define a mapping

ϕ : Rn × Ũ → R
n by ϕ(a1, a2, . . . , an, q) = (b1, b2, . . . , bn),

where

bk :=
n∑

i,j=1

aiajh(KẼi
Ẽj , Ẽk) − λ1ak, 1 ≤ k ≤ n, (5.6)

are regarded as functions on R
n × Ũ : bk = bk(a1, a2, . . . , an, q).
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It is easily checked from (5.1) that bk(1, 0, . . . , 0, p) = 0 for 1 ≤ k ≤ n,
and

∂bk

∂aj

∣
∣
∣
(1,0,...,0,p)

=

⎧
⎪⎨

⎪⎩

λ1 > 0, k = j = 1,

2μ1 − λ1 	= 0, 2 ≤ k = j ≤ n,

0, k 	= j.

(5.7)

Thus,
(

∂bk
∂aj

)
at the point (1, 0, . . . , 0, p) ∈ R

n × Ũ is invertible. By the implicit
function theorem there exist differentiable functions {ai(q)}1≤i≤n, defined on
a neighborhood Ũ ′ ⊂ Ũ of p such that a1(p) = 1, aj(p) = 0 for 2 ≤ j ≤ n,
and

bk(a1(q), a2(q), . . . , an(q), q) ≡ 0, 1 ≤ k ≤ n, ∀ q ∈ Ũ ′. (5.8)

Put V =
∑n

i=1 aiẼi. Then V (p) = e1, (5.6) and (5.8) imply that KV V =
λ1V .

Since ‖V (p)‖ =
√

h(V (p), V (p)) = 1, there exists a neighborhood U ′ ⊂
Ũ ′ of p such that V 	= 0 on U ′. Hence, the unit vector field E1 := V/‖V ‖ on
U ′ with E1(p) = e1 satisfies

KE1E1 = f1E1, f1 = λ1
‖V ‖ . (5.9)

(5.9) implies that the distribution {E1}⊥ orthogonal to Span{E1} is KE1-
invariant on U ′. For any q ∈ U ′, let {Xj}2≤j≤n ⊂ {E1(q)}⊥ be the orthnormal
eigenvectors of KE1(q) with associated eigenvalues {αj}2≤j≤n: KE1(q)Xj =
αjXj for 2 ≤ j ≤ n. Then, by using R̂(Xj , E1(q))E1(q) = 0, the Gauss equa-
tion (2.6) and ε = −1, we derive

α2
j − f1(q)αj − 1 = 0, 2 ≤ j ≤ n. (5.10)

It follows that KE1(q) has at most three distinct eigenvalues as below:

1
2

(

f1(q) −
√

f2
1 (q) + 4

)

, f1(q), 1
2

(

f1(q) +
√

f2
1 (q) + 4

)

.

On the other hand, by Lemma 5.1 and the continuity of the eigenvalue
functions of KE1 , we see that 1

2

(
f1(q)+

√
f2
1 (q) + 4

)
can not be attained. We

have got the conclusion of Step 1.

Step 2. There exists a unit vector field E2 ∈ {E1}⊥ on some neighborhood
Ũ ⊂ U ′ of p such that

KE2E2 = g1E1 + f2E2, KE2Y = g2Y, ∀Y ∈ {E1, E2}⊥, (5.11)

where g2 = 1
2

(
f2 −

√
f2
2 + 4(1 + g2

1)
)
.

Similar to Step 1, we begin with choosing an arbitrarily h-orthonormal
vector fields {Ẽ′

2, . . . , Ẽ
′
n} of {E1}⊥ on some neighborhood of p, still denoted

by U ′, such that Ẽ′
j(p) = ej for 2 ≤ j ≤ n. Then, we define a mapping

ϕ̃ : Rn−1 × U ′ → R
n−1 by ϕ̃(ã2, ã3, . . . , ãn, q̃) = (b̃2, b̃3, . . . , b̃n),
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where

b̃k =
n∑

i,j=2

ãiãjh(KẼ′
i
Ẽ′

j , Ẽ
′
k) − λ2ãk, 2 ≤ k ≤ n, (5.12)

are regarded as functions on R
n−1 × U ′ : b̃k = b̃k(ã2, ã3, . . . , ãn, q̃).

As Ẽ′
j(p) = ej , from (5.1), we see that b̃k(1, 0, . . . , 0, p) = 0 for 2 ≤ k ≤ n

and

∂b̃k

∂ãj

∣
∣
∣
(1,0,...,0,p)

=

⎧
⎪⎨

⎪⎩

λ2 > 0, k = j = 2,

2μ2 − λ2 	= 0, 3 ≤ k = j ≤ n,

0, k 	= j.

(5.13)

Thus,
(

∂b̃k
∂ãj

)
at the point (1, 0, . . . , 0, p) ∈ R

n−1 × U ′ is invertible. By the
implicit function theorem, there exist differentiable functions {ãj(q̃)}2≤j≤n

defined on a neighborhood Ũ ′ ⊂ U ′ of p such that ã2(p) = 1, ãr(p) = 0 for
3 ≤ r ≤ n and

b̃k(ã2(q̃), . . . , ãn(q̃), q̃) ≡ 0, 2 ≤ k ≤ n, ∀ q ∈ Ũ ′. (5.14)

Put Ṽ =
∑n

j=2 ãjẼ
′
j . Then Ṽ (p) = e2. From (5.5), (5.12) and (5.14) we

obtain

KṼ Ṽ = λ2Ṽ + g1h(Ṽ , Ṽ )E1.

As ‖Ṽ (p)‖ = 1, there exists a neighborhood Ũ ⊂ Ũ ′ of p such that Ṽ 	= 0
on Ũ . Then E2 := Ṽ /‖Ṽ ‖ defines a unit vector field over Ũ with E2(p) = e2

which satisfies

KE2E2 = g1E1 + f2E2, f2 = λ2

‖Ṽ ‖ . (5.15)

At any point q ∈ Ũ , we then consider B2(q) : {E1(q)}⊥ → {E1(q)}⊥,
defined by

B2(q)X = KE2(q)X − h(KE2(q)X,E1(q))E1(q), X ∈ {E1(q)}⊥,

which is a self-adjoint transformation. Besides E2, let X̃r be the other unit
eigenvectors of B2(q) corresponding to eigenvalues α̃r (3 ≤ r ≤ n). Then, it
holds at q:

KE2E2 = g1E1 + f2E2, KE2X̃r = α̃rX̃r, 3 ≤ r ≤ n.

Now, using R̂(X̃r, E2(q))E2(q) = 0 and the Gauss equation (2.6) with ε = −1,
we get

α̃2
r − f2α̃r − (1 + g2

1) = 0, 3 ≤ r ≤ n. (5.16)

This shows that B2(q) has at most three distinct eigenvalues

1
2

(

f2 −
√

f2
2 + 4(1 + g2

1)
)

, f2,
1
2

(

f2 +
√

f2
2 + 4(1 + g2

1)
)

.
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On the other hand, from (5.1) and (5.2) that λ2 > 2μ2 at p, and by
continuity of the eigenvalue functions of B2(q) for q ∈ Ũ , we see that 1

2

(
f2 +

√
f2
2 + 4(1 + g2

1)
)

can not be attained. Thus, for any Y ∈ {E1, E2}⊥ over Ũ ,
it holds

KE2Y = g2Y, g2 = 1
2

(

f2 −
√

f2
2 + 4(1 + g2

1)
)

. (5.17)

This completes the proof of Step 2.

Step 3. The completion of Lemma 5.2’s proof.
After the construction of E1 and E2 satisfying (5.5) and (5.11) in the

preceding two Steps, we can inductively prove the existence of {Ei}3≤i≤n such
that (5.3) and (5.4) hold.

Indeed, for any 2 ≤ j ≤ n − 2, after having h-orthonormal vector fields
{E1, . . . , Ej} over a neighborhood Ū of p, which satisfy corresponding rela-
tions in (5.3) and (5.4), we choose an arbitrary h-orthonormal vector fields
{Ēj+1, . . . , Ēn} of {E1, . . . , Ej}⊥ on Ū such that Ēi(p) = ei for j + 1 ≤ i ≤ n.
Then, we define a mapping

ϕ̄j : Rn−j × Ū → R
n−j by ϕ̄(āj+1, āj+2, . . . , ān, q̄) = (b̄j+1, b̄j+2, . . . , b̃n),

where

b̄k =
n∑

r,s=j+1

ārāsh(KĒr
Ēs, Ēk) − λj+1āk, j + 1 ≤ k ≤ n, (5.18)

are regarded as functions on R
n−j × Ū : b̄k = b̄k(āj+1, āj+2, . . . , ān, q̄).

As Ēi(p) = ei, from (5.1), we see that b̄k(1, 0, . . . , 0, p) = 0 for j + 1 ≤
k ≤ n and

∂b̄k

∂āl

∣
∣
∣
(1,0,...,0,p)

=

⎧
⎪⎨

⎪⎩

λj+1 > 0, k = l = j + 1,

2μj+1 − λj+1 	= 0, k = l ≥ j + 2,

0, k 	= l.

(5.19)

By the implicit function theorem, there exist differentiable functions
{āi(q̄)}j+1≤i≤n, defined on a neighborhood Ū ′ ⊂ Ū of p such that āt(p) = 0
for j + 2 ≤ t ≤ n, āj+1(p) = 1 and

b̄k(āj+1(q), . . . , ān(q), q) ≡ 0, j + 1 ≤ k ≤ n, ∀ q ∈ Ū ′. (5.20)

Put V̄ =
∑n

k=j+1 ākĒk. Then V̄ (p) = ej+1. By (5.18) and (5.20), we can
derive that

KV̄ V̄ = λj+1V̄ + g1h(V̄ , V̄ )E1 + · · · + gjh(V̄ , V̄ )Ej

Since ‖V̄ (p)‖ = 1, there exists a neighborhood U ⊂ Ū ′ of p such that V̄ 	= 0 on
U . Then Ej+1 := V̄ /‖V̄ ‖ defines a unit vector field over U with Ej+1(p) = ej+1

which satisfies

KEj+1Ej+1 = g1E1 + · · · + gjEj + fj+1Ej+1, fj+1 = λj+1

‖V̄ ‖ . (5.21)
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At any point q ∈ U , we then consider

Bj+1(q) : {E1(q), . . . , Ej(q)}⊥ → {E1(q), . . . , Ej(q)}⊥,

defined by

Bj+1(q)X = KEj+1X − h(KEj+1X,E1)E1 − · · · − h(KEj+1X,Ej)Ej ,

which is a self-adjoint transformation. Besides Ej+1, let X̄t be the other unit
eigenvectors of Bj+1(q) corresponding to eigenvalues ᾱt (j+2 ≤ t ≤ n). Then,
it holds at q:

KEj+1Ej+1 =g1E1 + · · · + gjEj +fj+1Ej+1, KEj+1X̄t = ᾱtX̃t, j + 2≤ t≤n.

Now, using R̂(X̄t, Ej+1(q))Ej+1(q) = 0 and (2.6) with ε = −1, we get

ᾱ2
t − fj+1ᾱt − (1 + g2

1 + · · · + g2
j ) = 0, j + 2 ≤ t ≤ n. (5.22)

From (5.22), we see that Bj+1(q) has at most three distinct eigenvalues

1
2

(
fj+1 −

√
f2

j+1 + 4(1 + g2
1 + · · · + g2

j )
)

, fj+1,

1
2

(
fj+1 +

√
f2

j+1 + 4(1 + g2
1 · · · + g2

j )
)

.

On the other hand, from (5.1) and (5.2) that λj+1 > 2μj+1 at p, and
by continuity of the eigenvalue functions of Bj+1(q) for q ∈ U , we see that
eigenvalues of the first two possibilities can be attained. Thus, for any Y ∈
{E1, . . . , Ej+1}⊥ over U , it holds

KEj+1Y = gj+1Y, gj+1 = 1
2

(
fj+1 −

√
f2

j+1 + 4(1 + g2
1 + · · · + g2

j )
)

.

(5.23)

In summary, by induction, we can extend the vectors {e1, e2, . . . , en−1}
to the h-orthonormal vector fields {E1, E2, . . . , En−1} which satisfy corre-
sponding relations in (5.3) and (5.4). Finally, we choose a unit vector field
En ∈ {E1, E2, . . . , En−1}⊥ so that {Ei}n

i=1 forms a local h-orthonormal frame
on a neighbourhood U ⊂ Mn of p. Obviously, with respect to {Ei}n

i=1, the dif-
ference tensor K takes the form in (5.3) and (5.4), where fi > 0 (1 ≤ i ≤ n−1)
follow from its continuity and that fi(p) = λi > 0.

This completes the proof of Lemma 5.2. �

6. Applying the Codazzi Equations

From this section on, we consider the case n = 4 and assume that x : M4 → R
5

is a flat hyperbolic centroaffine hypersurface. With respect to the typical h-
orthogonal frame field {E1, E2, E3, E4}, described in Lemma 5.2, we shall de-
rive by applying the Codazzi equation (2.7) the necessary information on the
derivatives {Ei(gj)} and the connection coefficients {Γk

ij} of ∇̂. The computa-
tions below are complicated but straightforward.
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Put ∇̂Ei
Ej =

∑4
k=1 Γk

ijEk, where Γk
ij + Γj

ik = 0 for 1 ≤ i, j, k ≤ 4.
Then, taking in (2.7) X = Ei, Y = Ej and Z = Ek for 1 ≤ i, j, k ≤ 4, we

get

∇̂Ei
K(Ej , Ek) − K(∇̂Ei

Ej , Ek) − K(Ej , ∇̂Ei
Ek)

− ∇̂Ej
K(Ei, Ek) + K(∇̂Ej

Ei, Ek) + K(Ei, ∇̂Ej
Ek) = 0.

(6.1)

First of all, for (i, j, k) = (1, 2, 1), we obtain from (6.1) and (5.3) that

(1 + g2
1)2g−2

1 (g1Γ2
11 + E2(g1))E1

−
[
g−1
1 (g2

1 + 1)Γ2
21 + g−1

2 (g2
1 + 1)Γ2

11 − g2Γ2
11 + E1(g1)

]
E2

+
[
g2Γ3

11 − g−1
1 (1 + g2

1)Γ3
21

]
E3 +

[
g2Γ4

11 − g−1
1 (1 + g2

1)Γ4
21

]
E4 = 0.

Hence, we get
{

Γ3
11 = (g1g2)−1(1 + g2

1)Γ3
21, Γ4

11 = (g1g2)−1(1 + g2
1)Γ4

21,

E1(g1) = −g−1
1 (g2

1 + 1)Γ2
21 − g−1

2 (g2
1 + 1)Γ2

11 + g2Γ2
11, E2(g1) = −g1Γ2

11.

(6.2)

Similarly, letting (i, j, k) = (1, 2, 2) in (6.1), and taking account of (6.2),
we obtain

Γ3
21 = Γ3

12, Γ4
21 = Γ4

12, E1(g2) = −2g1Γ2
11 − g2Γ2

21, (6.3)

whereas letting (i, j, k) = (1, 3, 1) in (6.1), and taking account of (6.2), we
obtain

{
Γ3

31 = (g2g3)−1
[
g3(g1Γ2

11 + g2Γ2
21) − (1 + g2

1 + g2
2 − g2

3)Γ3
21

]
,

Γ2
31 = Γ3

21, g2Γ4
31 = g3Γ4

21, E3(g1) = −g−1
2 (1 + g2

1)Γ3
12.

(6.4)

Letting (i, j, k) = (1, 3, 4) in (6.1), and taking account of (6.2)–(6.4), we
obtain

E1(g3) = −g−1
2

[
g1g3Γ2

11 + g2g3Γ2
21 + (1 + g2

1 + g2
2 + g2

3)Γ3
21

]
. (6.5)

Letting (i, j, k) = (1, 4, 1) in (6.1), and taking account of (6.2), we obtain
{

Γ4
41 = Γ2

21 + g−1
2 (g1Γ2

11 + g3Γ3
21) + g−1

3 f4Γ4
13,

Γ3
41 = Γ4

13, g3Γ4
21 = g2Γ4

13, E4(g1) = −g1Γ4
11.

(6.6)

Letting (i, j, k) = (1, 4, 4) in (6.1), taking account of (6.2), (6.3) and (6.6),
we get

E1(f4) = −f4(g1Γ2
11 + g2Γ2

21 + g3Γ3
21)

g2

− (f2
4 + 4(1 + g2

1 + g2
2 + g2

3))Γ4
13

g3
.

(6.7)
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Letting (i, j, k) = (2, 3, 2) in (6.1), taking account of (6.3) and (6.4), we
get
⎧
⎪⎨

⎪⎩

Γ4
22 = (g2g3)−1

[
(1 + g2

1 + g2
2)Γ4

32 − g1g2Γ4
13

]
, E3(g2) = −g2Γ3

22 − 2g1Γ3
12,

E2(g2) = −(g2g3)−1
[
g1(1 + g2

1 + g2
2 − g2

3)Γ3
21 + g2(1 + g2

2 − g2
3)Γ3

22

]

− (g2g3)−1
[
g3(1 + g2

2)Γ3
32 + g2

1(g2Γ3
22 + g3(−Γ2

11 + Γ3
32))

]
.

(6.8)

Letting (i, j, k) = (2, 3, 3) in (6.1), taking account of (6.2) and (6.8), we
get

Γ4
32 = Γ4

23, E2(g3) = −2g1Γ3
21 − 2g2Γ3

22 − g3Γ3
32. (6.9)

Letting (i, j, k) = (2, 4, 2) in (6.1), taking account of (6.6), we get
{

Γ4
42 = g−1

3 (g1Γ3
21 + g2Γ3

22 + g3Γ3
32 + f4Γ4

23), Γ3
42 = Γ4

23,

E4(g2) = −g−1
3

[
(1 + g2

1 + g2
2 − g2

3)Γ3
42 + g1g2Γ4

13 + g2
3Γ4

23

]
.

(6.10)

Letting (i, j, k) = (2, 4, 4) in (6.1), taking account of (6.10), we get

E2(f4) = −g−1
3

[
f4(g1Γ3

21 + g2Γ3
22 + g3Γ3

32)

+(f2
4 + 4(1 + g2

1 + g2
2 + g2

3))Γ4
23

]
. (6.11)

Letting (i, j, k) = (3, 4, 3) in (6.1), taking account of (6.6) and (6.10), we
get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E3(g3) =
g1(1 + g2

1 + 2g2
2)Γ3

21 + g3
2Γ3

22 + f4(g1g2Γ4
13 + g2

2Γ4
23 + g2g3Γ4

33)
g2g3

− g−1
3 (1 + g2

1 + g2
2 + g2

3)Γ4
43,

E4(g3) = −2g1Γ4
13 − 2g2Γ4

23 − g3Γ4
33.

(6.12)

Finally, letting (i, j, k) = (3, 4, 4) in (6.1), taking account of (6.6), (6.10)
and (6.12), we get

E3(f4) = −4(g1Γ4
13 + g2Γ4

23 + g3Γ4
33) − f4Γ4

43. (6.13)

7. Determining the Connection Coefficients

For the purpose of proving Theorem 1.2, we now assume that x : M4 → R
5 is

a flat hyperbolic centroaffine Tchebychev hypersurface.
In this section, applying for the Tchebychev condition we shall solve the

Eqs. (6.2)–(6.13) to express {Γk
ij} and E4(f4) by the coefficients {fi, gj} of

the difference tensor in (5.3). Similar as in the last section, the computations
below are complicated but straightforward.

First of all, by T = 1
4

∑4
i=1 K(Ei, Ei) we express the Tchebychev condi-

tion as
4∑

i=1

∇̂Ej
K(Ei, Ei) − 4HEj = 0, 1 ≤ j ≤ 4. (7.1)
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Then, taking j = 1 in (7.1), by calculations with applying (5.3), we can
derive that

0 =
[
E1(f1 + 3g1) + (f2 + 2g2)Γ1

12 + (f3 + g3)Γ1
13 + f4Γ1

14 − 4H
]
E1

+
[
E1(f2 + 2g2) + (f1 + 3g1)Γ2

11 + (f3 + g3)Γ2
13 + f4Γ2

14

]
E2

+
[
E1(f3 + g3) + (f1 + 3g1)Γ3

11 + (f2 + 2g2)Γ3
12 + f4Γ3

14

]
E3

+
[
E1(f4) + (f1 + 3g1)Γ4

11 + (f2 + 2g2)Γ4
12 + (f3 + g3)Γ4

13

]
E4.

(7.2)

From (5.4) we have
{

f1 + 3g1 = g−1
1 (4g2

1 − 1), f2 + 2g2 = g−1
2

[
3g2

2 − (1 + g2
1)

]
,

f3 + g3 = g−1
3

[
2g2

3 − (1 + g2
1 + g2

2)
]
.

(7.3)

From (6.2), (6.3) and (6.6), we get

Γ3
11 = (g1g2)−1(1 + g2

1)Γ3
12, Γ4

11 = (g1g3)−1(1 + g2
1)Γ4

13,

Γ2
14 = −g−1

3 g2Γ4
13.

(7.4)

Then, from (7.2), taking account of (7.3) and (7.4), Γk
ij = −Γj

ik, and the
expressions of E1(g1), E1(g2), E1(g3) and E1(f4) in Sect. 6, we can derive a
system of four equations with unknowns Γ2

11, Γ2
21, Γ3

12 and Γ4
13. Solving these

equations, we then obtain

Γ2
11 = 4Hg4

1g2

[(
−g2

1(1 + g2
1 + g2

2)2 + (−1 − g2
1 + g2

2)g2
3

)
(λβ)−1

+
(
2 + 4g4

1 + g2
1(6 + f2

4 + 4g2
2 + 4g2

3)
)
γ−1

]
,

Γ2
21 = −4Hg3

1g2
2

[
g2
1(1 + g2

1 + g2
2)2(1 + 6g6

1 + g2
1(6 + f2

4 + 2g2
2)

+ g4
1(11 + 2f2

4 + 6g2
2)) + ((1 + g2

1)2(1 + (6 + f2
4 )g2

1

+ 2(7 + f2
4 )g4

1 + 14g6
1) + 2g2

1(1 + 9g2
1 + (22 + f2

4 )g4
1

+ 14g6
1)g2

2 + 2g4
1(1 + 7g2

1)g4
2)g2

3 + g2
1(4 + g2

1(f2
4 (1 + 2g2

1)

+4(5 + g2
2 + 4g2

1(2 + g2
1 + g2

2))))g4
3 + 4g4

1(1 + 2g2
1)g6

3

]
(λβγ)−1,

Γ3
12 = 4Hg5

1g2g3

[
−(1 + g2

1 + g2
2)(1 + 2g4

1 + g2
1(3 + f2

4 + 2g2
2))

+(2 + g2
1(f2

4 + 2(2 + g2
1 + g2

2)))g2
3 + 4g2

1g4
3

]
(βγ)−1,

Γ4
13 = 4Hf4g

5
1g3γ

−1,

(7.5)

where
λ = (1 + g2

1)(g2
1 + g2

2),

β = g2
3 + g2

1((1 + g2
1 + g2

2)2 + (2 + g2
1 + g2

2)g2
3),

γ = 1 + g2
1(f2

4 (1 + g4
1 + g2

1(2 + g2
2 + g2

3))

+ (3 + 2g2
1 + 2g2

2 + 2g2
3)(2 + 2g4

1 + g2
1(3 + 2g2

2 + 2g2
3))).

(7.6)

Similarly, we take j = 2 in (7.1). By straightforward calculations with
applying (5.3), we can further use (7.5) to solve the unknowns Γ3

22, Γ3
32 and
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Γ4
23. Then, we obtain

Γ3
22 = 4Hg2

2g3

(1+g2
1)2

[
g2
2(2 + 2g4

1 + 4g4
2 + g2

1(4 + 6g2
2)

+g2
2(6 + f2

4 + 4g2
3))ϕ−1 − g2

2ψ−1 − g6
1(1 + g2

1 + g2
2)β−1

+g6
1(2 + 4g4

1 + g2
1(6 + f2

4 + 4g2
2 + 4g2

3))γ−1
]
,

Γ3
32 = 4H

(1+g2
1)2

[
g5
2ψ−1 + g6

1g2(1 + g2
1 + g2

2)2β−1

−(g3
2(1 + g2

1 + g2
2)((1 + g2

1)2 + (4 + f2
4 + 4g2

1)g2
2 + 4g4

2)
+2g5

2(1 + g2
1 + 2g2

2)g2
3)ϕ−1

+g4
1g2(−1 + g2

1(−f2
4 (1 + g4

1 + g2
1(2 + g2

2))
−(3 + 2g2

1 + 2g2
2)(2 + 2g4

1 + g2
1(3 + 2g2

2))
−2(1 + 2g4

1 + g2
1(3 + 2g2

2))g2
3))γ−1

]
,

Γ4
23 = 4Hf4g2g3

[
g12
1 + g4

2 + g10
1 (3 + 6g2

2) + g2
1g4

2(5 + f2
4 + 4g2

2 + 4g2
3)

+g4
1g4

2(4(g2
2 + g2

3)2 + 8(1 + g2
2 + g2

3) + f2
4 (1 + g2

2 + g2
3))

+g8
1(3 + 13g4

2 + g2
2(12 + f2

4 + 4g2
3)) + g6

1(1 + 12g6
2 + g2

2(6 + f2
4 + 4g2

3)
+g4

2(17 + 2f2
4 + 12g2

3))
]
(γϕ)−1, (7.7)

where
ϕ = (1 + g2

1 + g2
2)2((1 + g2

1)2 + (4 + f2
4 + 4g2

1)g2
2 + 4g4

2)

+ g2
2(4(1 + g2

1)2 + (f2
4 + 12(1 + g2

1))g2
2 + 8g4

2)g2
3 + 4g4

2g4
3 ,

ψ = (1 + g2
1 + g2

2)(g2
2 + g2

3),

(7.8)

Finally, taking in (7.1) j = 3 and j = 4, respectively, by direct calcula-
tions with using (7.5) and (7.7), we can derive

Γ4
33 = 4Hf4

[
g4
3θ−1 + g6

2g2
3(ηϕ)−1 + g6

1g2
3((1 + g2

1)γ)−1
]
,

Γ4
43 = 4Hg3

[
−g2

3(1 + g2
1 + g2

2 + 2g2
3)θ−1 − g4

2(1 + g4
1 + 2g4

2

+ g2
1(2 + 3g2

2) + g2
2(3 + 2g2

3))(ηϕ)−1

−g4
1(1 + 2g4

1 + g2
1(3 + 2g2

2 + 2g2
3))((1 + g2

1)γ)−1
]
,

E4(f4) = 4H
[
2 − (g2

2(1 + g2
1 + g2

2)2(2(1 + g2
1)2 + (4 + f2

4 + 4g2
1)g2

2)

+ g4
2(4(1 + g2

1)2 + (4 + f2
4 + 4g2

1)g2
2)g2

3)(ηϕ)−1

− ((1 + g2
1 + g2

2)3 + (1 + g2
1 + g2

2)(f2
4 + 6(1 + g2

1 + g2
2))g2

3

+ (f2
4 + 8(1 + g2

1 + g2
2))g4

3)θ−1 − ((2 + (4 + f2
4 )g2

1)(g1 + g3
1)2

+g4
1(4 + (4 + f2

4 )g2
1)g2

2 + g4
1(4 + (4 + f2

4 )g2
1)g2

3)((1 + g2
1)γ)−1

]
,

(7.9)

where
η = (1 + g2

1)(1 + g2
1 + g2

2),

θ = (1 + g2
1 + g2

2)(1 + g2
1 + g2

2 + g2
3)((1 + g2

1 + g2
2)2

+ (f2
4 + 4(1 + g2

1 + g2
2))g2

3 + 4g4
3).

(7.10)
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8. Completion of Theorem 1.2’s Proof

Let x : M4 → R
5 be a flat hyperbolic centroaffine Tchebychev hypersurface.

In this section, with the materials we derived in preceding sections, we shall
complete the proof of Theorem 1.2. We begin with the equation

E3(E4(g1)) − E4(E3(g1)) = (∇̂E3E4)(g1) − (∇̂E4E3)(g1). (8.1)

By using the results in Sects. 6 and 7, we can calculate (8.1) to obtain that

H2f4g
9
1g3

[
(1 + g2

1 + g2
2)3 − (1 + g2

1 + g2
2)(f2

4 + 3(1 + g2
1 + g2

2))g2
3

+f2
4 g4

3 + 4g6
3

]
= 0.

From the fact g1 	= 0 and g3 	= 0, we then obtain

H2f4μ = 0, (8.2)

where

μ := (1 + g2
1 + g2

2)3 − (1 + g2
1 + g2

2)(f2
4

+3(1 + g2
1 + g2

2))g2
3 + f2

4 g4
3 + 4g6

3 . (8.3)

From (8.2), we shall divide the following discussions into three cases:
Case I: H = 0;
Case II: H 	= 0 and f4 = 0;
Case III: H 	= 0, f4 	= 0 and μ = 0.
In Case I, we can apply Theorem 1.1. Then, combining with the results in

Sect. 3 and taking into account that x : M4 → R
5 is hyperbolic, we conclude

that x is centroaffinely equivalent to one of the hypersurfaces (cf. Remark 1.2):

xα1
1 xα2

2 xα3
3 xα4

4 xα5
5 = 1, αi > 0 for 1 ≤ i ≤ 5.

In Case II, substituting f4 = 0 into the expression of E4(f4) in (7.9), we
obtain that

0 = 4H
[
2 − (g2

2(1 + g2
1 + g2

2)
2(2(1 + g2

1)
2 + (4 + 4g2

1)g
2
2) + g4

2(4(1 + g2
1)

2

+ (4 + 4g2
1)g

2
2)g

2
3)(ηϕ)−1 − ((1 + g2

1 + g2
2)

3 + (1 + g2
1 + g2

2)(6(1 + g2
1 + g2

2))g
2
3

+ (8(1 + g2
1 + g2

2))g
4
3)θ

−1 − ((2 + 4g2
1)(g1 + g3

1)
2 + g4

1(4 + 4g2
1)g

2
2

+g4
1(4 + 4g2

1)g
2
3)((1 + g2

1)γ)−1
]

= 4HΩν−1,
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where
Ω = (1 + g2

1 + g2
2)2(1 + 4g8

1 + 2g2
2 + 4g4

2 + 2g6
1(5 + 8g2

2)

+ 4g2
1(1 + g2

2)(1 + g2
2 + 2g4

2) + g4
1(9 + 22g2

2 + 20g4
2))

+ 2(1 + g2
1 + g2

2)((1 + g2
1)2(1 + 3g2

1 + 8g4
1) + (1 + g2

1)(3 + 11g2
1 + 36g4

1)g2
2

+ 4(2 + 7G2
1 + 12g4

1)g4
2 + 20g2

1g6
2)g2

3 + 4((1 + g2
1)2(1 + 3g2

1 + 5g4
1)

+ (1 + g2
1)(3 + 12g2

1 + 28g4
1)g2

2 + (5 + 27g2
1 + 41g4

1)g4
2 + 18g2

1g6
2)g4

3

+ 8((g1 + g3
1)2 + (1 + 5g2

1 + 8g4
1)g2

2 + 7g2
1g4

2)g6
3 + 16g2

1g2
2g8

3 > 0,

ν = (1 + g2
1 + g2

2 + g2
3)(1 + g2

1 + g2
2 + 2g2

3)(1 + g4
1 + 2g4

2 + g2
1(2 + 3g2

2)

+ g2
2(3 + 2g2

3))(1 + 2g4
1 + g2

1(3 + 2g2
2 + 2g2

3)) > 0.

This is a contradiction to H 	= 0. Hence, Case II does not occur.
In Case III, we first see from g3 	= 0 and (5.4) that 1 + g2

1 + g2
2 − g2

3 > 0.
Moreover, replacing E4 by −E4 if necessary, we can assume f4 < 0. Then,
from (8.3), we get

f4 = −
√

(1+g2
1+g2

2−2g2
3)2(1+g2

1+g2
2+g2

3)

g2
3(1+g2

1+g2
2−g2

3)
, (8.4)

and that 1 + g2
1 + g2

2 − 2g2
3 	= 0.

Since x : M4 → R
5 is a Tchebychev hypersurface, from (2.15) we have

E3(‖T‖2) = 2Hh(T,E3). (8.5)

However, by Lemma 5.2, it holds that

T = 1
4 [(f1 + 3g1)E1 + (f2 + 2g2)E2 + (f3 + g3)E3 + f4E4] , (8.6)

‖T‖2 = 1
16

[
(f1 + 3g1)2 + (f2 + 2g2)2 + (f3 + g3)2 + f2

4

]
. (8.7)

Moreover, combining with (7.5), (7.7) and (7.9), we can rewrite E3(g1),
E3(g2), E3(g3) and E3(f4) in Sect. 6 as

E3(g1) = −4Hg5
1(1 + g2

1)g3

[
(−1 − g2

1 − g2
2)(1 + 2g4

1 + g2
1(3 + f2

4 + 2g2
2))

+(2 + g2
1(f2

4 + 2(2 + g2
1 + g2

2)))g2
3 + 4g2

1g4
3

]
(βγ)−1,

E3(g2) = 4Hg2g3
(1+g2

1)2

[
g4
2ψ−1 − (g4

2(2 + 2g4
1 + 4g4

2 + g2
1(4 + 6g2

2)

+g2
2(6 + f2

4 + 4g2
3)))ϕ−1 + g6

1(1 + g2
1 + g2

2)(2 + 2g2
1 + g2

2)β−1

−g6
1(2 + 2g2

1 + g2
2)(2 + 4g4

1 + g2
1(6 + f2

4 + 4g2
2 + 4g2

3))γ−1
]
, (8.8)

and

E3(g3) = 2H
(1+g2

1)2

[
−2g6

2ψ−1 + g2
2((1 + g2

1 + g2
2)2(−1 − g2

1 + 2g2
2)((1 + g2

1)2

+(4 + f2
4 + 4g2

1)g2
2 + 4g4

2) + g2
2(−2(1 + g2

1)3 + (1 + g2
1)(f2

4

−2(1 + g2
1))g2

2 + 8(1 + g2
1)g4

2 + 8g6
2)g2

3)((1 + g2
1 + g2

1)ϕ)−1

+(1+g2
1)2(−(1+g2

1+g2
2)3 − (1+g2

1 + g2
2)(f2

4 + 3(1 + g2
1 + g2

2))g2
3

+(f2
4 − 2(1+g2

1+g2
2))g4

3)θ−1 − (g2
1(1 + g2

1 + g2
2)2(−1 − 2g2

1 + 2g6
1
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+g4
1(1 + 2g2

2)) − (1 + g2
1)2(1 + g4

1 + g2
1(2 + g2

2))g2
3)β−1

+g2
1((−1 + 2g4

1 + g2
1(1 + 2g2

2))(1 + g2
1(f2

4 (1 + g4
1 + g2

1(2 + g2
2))

+(3 + 2g2
1 + 2g2

2)(2 + 2g4
1 + g2

1(3 + 2g2
2)))) + g2

1(−2 + g2
1(−4 + 6g2

1

+f2
4 (1 + g2

1) + 8g2
1(g2

1 + g2
2)(2 + g2

1 + g2
2)))g2

3)γ−1
]
,

E3(f4) = 4Hf4g3

[
g2
3(1 + g2

1 + g2
2 − 2g2

3)θ−1

−(g4
2(−1 − g4

1 + g2
2 + g2

1(−2 + g2
2) + 2g2

2(g2
2 + g2

3)))(ϕη)−1

+(g4
1 − 2g8

1 − g6
1(1 + 2g2

2 + 2g2
3))((1 + g2

1)γ)−1
]
, (8.9)

where {β, γ, ϕ, ψ, η, θ} are defined by (7.6), (7.8) and (7.10), respectively.
Now, combining (7.3), (8.4), (8.6), (8.7), (8.8) and (8.9), we can carry a

straightforward calculation of (8.5) to obtain the following relation:
1

2g3
(1 + g2

1 + g2
2 − 2g2

3)H = 0. (8.10)

But this is impossible. Hence, Case III does not occur.
In conclusion, we have completed the proof of Theorem 1.2.
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[13] Lalléchère, S., Ramifidisoa, L., Ravelo, B.: Flat hyperbolic centro-affine Tcheby-
chev hypersurfaces of R4. Results Math. 76: 71, 18 pp. (2021)

[14] Li, A.-M., Simon, U., Zhao, G., Hu, Z.: Global Affine Differential Geometry of
Hypersurfaces, 2nd edn. de Gruyter Expositions in Mathematics 11, Walter de
Gruyter, Berlin/Boston (2015)

[15] Liu, H., Simon, U., Wang, C.P.: Conformal structures in affine geometry: com-
plete Tchebychev hypersurfaces. Abh. Math. Sem. Hamburg 66, 249–262 (1996)

[16] Li, A.-M., Wang, C.P.: Canonical centroaffine hypersurfaces in R
n+1. Results

Math. 20, 660–681 (1991)

[17] Liu, H., Wang, C.P.: The centroaffine Tchebychev operator. Results Math. 27,
77–92 (1995)

[18] Liu, H., Wang, C.P.: Relative Tchebychev surfaces in R
3. Kyushu J. Math. 50,

533–540 (1996)

[19] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University
Press, Cambridge (1994)

[20] Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine
Differential Geometry of Hypersurfaces. Lecture Notes of the Science University
of Tokyo, Japan (1991)

[21] Simon, U., Trabelsi, H., Vrancken, L.: Complete hyperbolic Tchebychev hyper-
surfaces. J. Geom. 89, 148–159 (2008)

[22] Vrancken, L.: The Magid-Ryan conjecture for equiaffine hyperspheres with con-
stant sectional curvature. J. Differ. Geom. 54, 99–138 (2000)

[23] Vrancken, L., Li, A.-M., Simon, U.: Affine spheres with constant affine sectional
curvature. Math. Z. 206, 651–658 (1991)

[24] Wang, C.P.: Centroaffine minimal hypersurfaces in R
n+1. Geom. Dedicata. 51,

63–74 (1994)



Vol. 77 (2022) On Centroaffine Tchebychev Hypersurfaces Page 29 of 29 175

Xiuxiu Cheng, Zejun Hu and Cheng Xing
School of Mathematics and Statistics
Zhengzhou University
450001 Zhengzhou
People’s Republic of China
e-mail: chengxiuxiu1988@163.com;

huzj@zzu.edu.cn;
xingchengchn@yeah.net

Received: January 29, 2022.

Accepted: July 1, 2022.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	On Centroaffine Tchebychev Hypersurfaces with Constant Sectional Curvature
	Abstract
	1. Introduction
	2. Preliminaries
	3. Computations on Canonical Centroaffine Hypersurfaces
	4. Proof of Theorem 1.1
	5. Construction of a Typical h-orthonormal Frame
	6. Applying the Codazzi Equations
	7. Determining the Connection Coefficients
	8. Completion of Theorem 1.2's Proof
	Acknowledgements
	References




