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Abstract. The theory developed for solving Levi–Civita functional equa-
tions is more comprehensive on groups than it is on semigroups, due to
the existence of prime ideals in semigroups. Here we solve on semigroups
a particular Levi–Civita equation of importance to the theory, and we
use that result together with representation theory to solve the general
Levi–Civita equation with three summands on commutative monoids.
The results also give the continuous solutions on topological semigroups
and monoids.
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1. Introduction

Let S be a semigroup, N the set of positive integers, and C the set of complex
numbers. A functional equation of the form

f(xy) =
n∑

i=1

gi(x)hi(y), for all x, y ∈ S, (1)

for n ∈ N and unknown functions f, g1, . . . , gn, h1, . . . , hn : S → C is called
a Levi–Civita equation. There are two general methods used to describe the
solutions of (1). One is based on representation theory (see [3–6] and [7, Chap-
ter 5]), and the other, for the case that S is an Abelian group, is based on
spectral synthesis (see [8, Chapter 10]). These methods describe the general
structure of the solution but do not supply explicit formulas for the solution
functions. For that one may need to use special properties of S and/or make
additional computations. The existence of prime ideals in semigroups compli-
cates matters and rules out the methods found in [5,6,8].
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A general result giving explicit solution formulas for (1) in the case n = 2
on commutative monoids was proved in [2]. Here we do the same for the case
n = 3, where the complications caused by prime ideals increase significantly
over the case n = 2.

The outline of the paper is as follows. Section 2 introduces some nota-
tion and terminology. In Sect. 3 we quote a result about an important specific
instance of (1) for n = 2, namely the sine addition formula. The same sec-
tion contains a fundamental result using representation theory to describe the
general structure of solutions of (1). Section 4 contains the solution of a key
particular instance of (1) for n = 3. Our main result-Theorem 5.1-follows in
Sect. 5. The final section contains applications to specific functional equations
and examples on a couple of commutative monoids with very different prime
ideal structures.

Generally our results are presented in their topological versions, but one
may choose the discrete topology.

2. Notation and Terminology

Throughout this paper S denotes a semigroup. A monoid is a semigroup with
an identity element generally denoted e.

An additive function on S is a homomorphism from S into (C,+).
A polynomial on S is a function of the form P (A1, . . . , An), where P ∈

C[x1, . . . , xn] and A1, . . . , An are additive functions.
A multiplicative function on S is a homomorphism from S into (C, ·). If

χ : S → C is multiplicative and χ �= 0 then we call χ an exponential on S.
When we say that a function F is nonzero we mean that F �= 0.

Define the nullspace of a multiplicative χ by

Iχ := {x ∈ S | χ(x) = 0}.

If Iχ �= ∅ then it is a (two-sided) ideal of S and is called the null ideal of χ.
An ideal I ⊂ S is said to be a prime ideal if I �= S and whenever xy ∈ I it
follows that either x ∈ I or y ∈ I, so S \ I is a nonempty subsemigroup of S.
There is a very close relationship between prime ideals and exponentials on
semigroups. For any exponential χ it is easy to see that if Iχ �= ∅ then Iχ is a
prime ideal. Conversely, if I is any prime ideal of S and we define χ(x) := 0
for x ∈ I and χ(x) := 1 for x ∈ S \ I, then χ : S → C is an exponential with
null ideal Iχ = I.

For any subset T ⊆ S we define T 2 := {t1t2 | t1, t2 ∈ T}. Several subsets
of the nullspace Iχ of a multiplicative χ are significant for the description of
solutions of (1). One of them is

Pχ :={x ∈ Iχ \ I2χ | ux, xv, uxv ∈ Iχ \ I2χ for all u, v ∈ S \ Iχ}.

For a topological space X, let C(X) denote the algebra of continuous
functions mapping X into C. Let C

∗ = C \ {0}.
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3. Supporting Theory

Since (1) for n = 1 is f(xy) = g1(x)h1(y), it is not surprising that multi-
plicative functions are fundamental to the study of (1). A second particular
Levi–Civita equation that is important for the general study of (1) is the sine
addition formula

φ(xy) = φ(x)γ(y) + γ(x)φ(y), x, y ∈ S, (2)

for unknown functions φ, γ : S → C. The following is [1, Theorem 3.1].

Proposition 3.1. Let S be a topological semigroup, and suppose φ, γ : S → C

satisfy the sine addition law (2) with φ �= 0 and φ ∈ C(S). Then φ, γ belong
to one of the following families, where χ1, χ2 ∈ C(S) are multiplicative.
(a) For χ1 �= χ2 there exists b ∈ C

∗ such that φ = b(χ1 − χ2) and γ =
(χ1 + χ2)/2.

(b) For χ1 = χ2 =: χ �= 0, we have γ = χ and

φ(x) =

⎧
⎪⎨

⎪⎩

A(x)χ(x) for x ∈ S \ Iχ

φP (x) for x ∈ Pχ

0 for x ∈ Iχ \ Pχ

(3)

where A ∈ C(S \ Iχ) is additive and φP ∈ C(Pχ) is the restriction of φ
to Pχ. In addition we have the following conditions.

(i) φ(xu) = φ(ux) = 0 for all x ∈ Iχ \ Pχ and u ∈ S \ Iχ.
(ii) If x ∈ {up, pv, upv} for p ∈ Pχ and u, v ∈ S \ Iχ, then x ∈ Pχ

and we have respectively φP (x) = φP (p)χ(u), φP (x) = φP (p)χ(v),
φP (x) = φP (p)χ(uv).

(c) For χ1 = χ2 = 0, we have γ = 0, S �= S2, and

φ(x) =

{
φ0(x) for x ∈ S \ S2

0 for x ∈ S2

where φ0 ∈ C(S \ S2) is an arbitrary nonzero function.
Conversely, if the pair (φ, γ) is given by the formulas in (a), (c), or (b)

with conditions (i) and (ii) holding, then (φ, γ) satisfies (2).

Note that φP may take arbitrary values at some points of its domain (see
Example 6.4).

The following is an immediate consequence of Proposition 3.1.

Corollary 3.2. Let S be a topological semigroup, χ ∈ C(S) an exponential, and
φ ∈ C(S) with φ �= 0. If φ satisfies the special sine addition law

φ(xy) = φ(x)χ(y) + χ(x)φ(y), x, y ∈ S, (4)

then φ has the form (3) where A ∈ C(S \ Iχ) is additive and φP ∈ C(Pχ). In
addition we have conditions (i) and (ii) of Proposition 3.1(b).

Conversely, if φ has the form (3) where A is additive and φ, φP satisfy
conditions (i) and (ii) of Proposition 3.1(b), then φ is a solution of (4).
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Our fundamental result for describing the general structure of solutions
of the Levi–Civita Eq. (1) on commutative monoids is the following, most
of which is the result of combining [4, Lemma 2.4 and Theorem 2.5]. For
any n ∈ N consider C

n as a vector space of column vectors, and let Mn(C)
denote the algebra of n×n matrices over C. To avoid confusion with nullpaces
labeled as Ir, we denote the n × n identity matrix by En. A pure polynomial
is a polynomial with constant term 0.

Proposition 3.3. Let n ∈ N, let S be a topological commutative monoid, and
suppose f, gj , hj ∈ C(S) satisfy (1), with {g1, . . . , gn} and {h1, . . . , hn} linearly
independent. Let V = span{g1, . . . , gn} and g = [g1, . . . , gn]t.

There exists an associative and commutative algebra (Cn,+, ∗) with iden-
tity element g(e) and regular representation R : Cn → Mn(C) such that

R(g(xy)) = R(g(x))R(g(y)), x, y ∈ S,

with R(g(e)) = En and g(x) = R(g(x))g(e) for all x ∈ S.
There exists a similarity matrix D ∈ Mn(C) simultaneously transforming

the family {R(g(x)) | x ∈ S} of commuting matrices into block diagonal form

D−1R(g(x))D = diag{M1(x), . . . , Ms(x)}, Mr(x) ∈ Mdr (C), d1 + · · · + ds = n,

where each Mr is lower triangular of the form

Mr(x) = χr(x)Edr
+

(
ρi,j

r (x)
)
, ρi,j

r (x) = 0 for i ≤ j ∈ {1, . . . , dr},

for all x ∈ S. The vector space V is spanned by the matrix elements of the
representation R ◦ g of S, that is

V = span{R(g(·))i,j | i, j = 1, . . . , n}, (5)

so each χr and ρi,j
r belongs to V .

Each χr is an exponential with nullspace denoted Ir, and χ1, . . . , χs are
distinct. For each r ∈ {1, . . . , s} and j ∈ {1, . . . , dr − 1} there exist linearly
independent additive Ar,j ∈ C(S \Ir), pure polynomials Pr,j(Ar,1, . . . , Ar,dr−1)
of degree at most dr − 1, and functions qr,j ∈ V such that

qr,j(x) = Pr,j(Ar,1(x), . . . , Ar,dr−1(x))χr(x), for all x ∈ S \ Ir,

and V has a basis B1 ∪ · · · ∪ Bs where Br = {χr, qr,1, . . . , qr,dr−1}. (Note that
the form of qr,j on Ir is unspecified.)

Moreover f, h1, . . . , hn ∈ V .

Proof. Most of the statement follows from [4, Lemma 2.4 and Theorem 2.5].
The items needing justification are the following.

The first item is (5), which follows from the definition of R and g =
(R ◦ g)g(e) as noted near the end of the proof of [3, Theorem 1]. From this it
is clear that each χr and ρi,j

r belongs to V .
The second item is the linear independence (unstated in [4]) of the addi-

tive functions Ar,j . We may assume without loss of generality that {Ar,1, . . . ,
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Ar,dr−1} is linearly independent, since if not we could compensate by adjusting
the coefficients of the Pr,j . �

4. Solution of a Particular Instance of (1) for n = 3

Another particular Levi–Civita equation that plays a critical role in our dis-
cussion is

ψ(xy) = ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y), x, y ∈ S, (6)

for unknown ψ : S → C, where χ : S → C is an exponential and φ : S → C is
a nonzero solution of the special sine addition law (4). Observe that ψ(xy) =
ψ(yx) for all x, y ∈ S by the symmetry of the right hand side of (6).

The form of a continuous φ satisfying (4) on a topological semigroup is
described in Corollary 3.2. Now we find the form of continuous ψ satisfying
(6). In order to describe such functions we subdivide Iχ \ Pχ as follows. First
define

Jχ :=Iχ(Iχ \ Pχ) ∪ (Iχ \ Pχ)Iχ.

It is easy to see that Jχ ⊆ Iχ \ Pχ, since Jχ ⊆ I2χ while Pχ ⊆ Iχ \ I2χ. Next
define

Kχ :={x ∈ Iχ \ Pχ | ux, xv, uxv ∈ Iχ \ Jχ for all u, v ∈ S \ Iχ}.

It is not difficult to verify that Jχ and Kχ are disjoint. For example, suppose
x ∈ Iχ(Iχ \ Pχ), say x = st with s ∈ Iχ, t ∈ Iχ \ Pχ. Then for all u ∈ S \ Iχ

we have ux = (us)t ∈ Jχ, so x /∈ Kχ. It only remains to note that S \ Iχ is
nonempty since χ is an exponential. The proof for x ∈ (Iχ \ Pχ)Iχ is parallel.
Thus we can view Iχ \ Pχ as the disjoint union

Iχ \ Pχ = Kχ ∪ Jχ ∪ Lχ,

where Lχ := Iχ \ (Pχ ∪ Kχ ∪ Jχ).

Theorem 4.1. Let S be a topological semigroup, let χ ∈ C(S) be an exponential,
and let φ ∈ C(S) be a nonzero solution of the special sine addition law (4)
as described in Corollary 3.2, with additive A ∈ C(S \ Iχ) and restriction
φP ∈ C(Pχ).

If ψ ∈ C(S) is a solution of (6), then there exist an additive B ∈ C(S\Iχ)
and (restriction) functions ψP ∈ C(Pχ), ψK ∈ C(Kχ) such that

ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[B(x) + 1
2A2(x)]χ(x) for x ∈ S \ Iχ

ψP (x) for x ∈ Pχ

ψK(x) for x ∈ Kχ

0 for x ∈ Jχ ∪ Lχ

(7)

and the following conditions hold.
(a) For all y ∈ S \ Iχ and x ∈ Pχ we have yx, xy ∈ Pχ and ψP (yx) =

ψP (xy) = [ψP (x) + φP (x)A(y)]χ(y).



154 Page 6 of 19 B. Ebanks Results Math

(b) For all y ∈ S \ Iχ and x ∈ Kχ we have ψ(xy) = ψ(yx) = ψK(x)χ(y).
(c) ψ(xy) = ψ(yx) = 0 for all y ∈ S \ Iχ and x ∈ Jχ ∪ Lχ.
(d) ψ(xy) = ψ(yx) = φP (x)φP (y) for all x, y ∈ Pχ.
(e) ψ(xy) = ψ(yx) = 0 for all x ∈ Iχ and y ∈ Iχ \ Pχ.

Conversely, if ψ : S → C has the form (7) with additive B : S \ Iχ → C

and conditions (a)–(e) holding, then ψ satisfies (6).

Proof. Suppose ψ ∈ C(S) is a solution of (6), and let ψP , ψK be the respective
restrictions of ψ to Pχ and Kχ, which are disjoint. Recalling that φ has the
form (3), we get for x, y ∈ S \ Iχ that

ψ(xy) = ψ(x)χ(y) + χ(x)ψ(y) + A(x)χ(x)A(y)χ(y),

from which it follows that
ψ

χ
(xy) − ψ

χ
(x) − ψ

χ
(y) = A(x)A(y) =

1
2
[A2(xy) − A2(x) − A2(y)].

Thus B ∈ C(S \ Iχ) defined by

B(x) :=
ψ

χ
(x) − 1

2
A2(x), for all x ∈ S \ Iχ,

is additive, and we have the top case of (7).
Next we show that ψ vanishes everywhere on Jχ ∪ Lχ. Note first that if

x, y ∈ Iχ and either of them belongs to Iχ \ Pχ, then by (6) we have

ψ(xy) = ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y) = 0,

since χ(x) = χ(y) = 0 and one of φ(x), φ(y) is zero. Thus we have

ψ(x) = 0 for all x ∈ Jχ,

confirming part of the bottom case of (7). Now suppose x ∈ Lχ. By definition
of Lχ there exists u0 and/or v0 in S \ Iχ such that u0x, xv0, or u0xv0 belongs
to Jχ. In the case u0x ∈ Jχ we have

0 = ψ(u0x) = ψ(u0)χ(x) + χ(u0)ψ(x) + φ(u0)φ(x) = χ(u0)ψ(x),

since χ(x) = 0 = φ(x) (because Lχ ⊆ Iχ \ Pχ). It follows from χ(u0) �= 0 that
ψ(x) = 0. The case xv0 ∈ Jχ is parallel. In the case u0xv0 ∈ Jχ we note that
χ(xv0) = χ(x) = 0 = φ(x) = φ(xv0), the last by condition (i) of Proposition
3.1(b). Thus

0 = ψ(u0xv0) = ψ(u0)χ(xv0) + χ(u0)ψ(xv0) + φ(u0)φ(xv0)

= χ(u0)[ψ(x)χ(v0) + χ(x)ψ(v0) + φ(x)φ(v0)]

= χ(u0)ψ(x)χ(v0),

so ψ(x) = 0 since χ(u0)χ(v0) �= 0. This establishes the bottom case of (7).
Since there is nothing to prove in the two middle cases, (7) is established.

It remains to prove conditions (a)–(e).
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To prove (a) take x ∈ S \ Iχ, y ∈ Pχ in (6). Then

ψ(yx) = ψ(xy) = χ(x)ψ(y) + φ(x)φ(y) = χ(x)[ψ(y) + A(x)φP (y)],

since χ(y) = 0. It follows from condition (ii) of Proposition 3.1(b) that xy, yx ∈
Pχ, thus we have condition (a).

For (b) suppose x ∈ S \ Iχ, y ∈ Kχ. Then (6) yields

ψ(yx) = ψ(xy) = χ(x)ψK(y),

since χ(y) = φ(y) = 0.
To prove (c) let y ∈ S\Iχ and x ∈ Jχ∪Lχ. Then χ(x) = ψ(x) = φ(x) = 0,

so ψ(xy) = ψ(yx) = 0 follows immediately from (6).
For (d), taking x, y ∈ Pχ we see that

ψ(yx) = ψ(xy) = φ(x)φ(y) = φP (x)φP (y),

since χ(x) = χ(y) = 0.
Finally, for (e) suppose x ∈ Iχ and y ∈ Iχ \ Pχ. Noting that χ(x) =

χ(y) = φ(y) = 0, (6) yields ψ(xy) = ψ(yx) = 0.
For the converse, suppose first that y ∈ S \Iχ. If x ∈ S \Iχ, then we have

ψ(xy) =

[
B(xy) +

1

2
A2(xy)

]
χ(xy)

=

[
B(x) + B(y) +

1

2
A2(x) + A(x)A(y) +

1

2
A2(y)

]
χ(x)χ(y)

=

[
B(x) +

1

2
A2(x)

]
χ(x)χ(y) + χ(x)

[
B(y) +

1

2
A2(y)

]
χ(y) + A(x)χ(x)A(y)χ(y)

= ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y).

For x ∈ Pχ we have by (a) that xy ∈ Pχ, and

ψ(xy) = ψP (xy) = [ψP (x) + φP (x)A(y)]χ(y)

= ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y)

since χ(x) = 0. Next, if x ∈ Kχ then we get from (b) that

ψ(xy) = ψK(x)χ(y) = ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y)

since χ(x) = φ(x) = 0. Lastly, if x ∈ Jχ ∪ Lχ then by (c) we have (6) since
ψ(xy) = χ(x) = ψ(x) = φ(x) = 0.

The mirror cases with x ∈ S \ Iχ are parallel, so we have verified all
combinations of x, y with one of them belonging to S \ Iχ.

Now suppose y ∈ Pχ. If x ∈ Pχ then (d) yields

ψ(xy) = φP (x)φP (y) = ψ(x)χ(y) + χ(x)ψ(y) + φ(x)φ(y)

since χ(x) = χ(y) = 0. If x ∈ Iχ \ Pχ then (e) yields ψ(xy) = 0, which
confirms (6) since χ(x) = χ(y) = φ(x) = 0. The remaining cases are left to the
reader. �
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Note that ψP and ψK may take arbitrary values at some points of their
respective domains (see Example 6.4). Later, in Examples 6.3 and 6.4, we
will see how conditions (a)–(e) can be used to find explicit forms for ψ on
semigroups with very different prime ideal structures.

Here we record a simple linear independence result involving exponen-
tials, solutions of the sine addition law, and solutions of (6). In the next section
we will see that these three function types make up bases for the solutions of
(1) in the case n = 3.

Lemma 4.2. Let S be a semigroup.
(a) The set of exponentials on S is linearly independent.
(b) Let χ : S → C an exponential, and let φ : S → C be a nonzero solution

of the special sine addition law (4).
(i) If χ′ : S → C is an exponential different from χ, then {χ′, χ, φ} is

linearly independent.
(ii) If φ′ : S → C is a solution of the (4) with {φ, φ′} linearly indepen-

dent, then {χ, φ, φ′} is linearly independent.
(iii) If ψ : S → C satisfies (6) and ψ �= 0, then {χ, φ, ψ} is linearly

independent.

Proof. Part (a) is [7, Theorem 3.18].
For (b)(i) suppose there exist a, b, c ∈ C such that aχ′ + bχ + cφ = 0.

Then

0 = aχ′(xy) + bχ(xy) + cφ(xy)

= aχ′(x)χ′(y) + bχ(x)χ(y) + c
(
φ(x)χ(y) + χ(x)φ(y)

)

= aχ′(x)χ′(y) +
(
bχ(x) + cφ(x)

)
χ(y) + cχ(x)φ(y)

= aχ′(x)
(
χ′(y) − χ(y)

)
+ cχ(x)φ(y)

for all x, y ∈ S. By part (a) this implies that a(χ′ − χ) = cφ = 0. Since χ′ �= χ
and φ �= 0 we have a = c = 0. Therefore b = 0 too since χ �= 0.

For part (b)(ii) let aχ + bφ + cφ′ = 0 for some a, b, c ∈ C. Then

0 = aχ(xy) + bφ(xy) + cφ′(xy)

= aχ(x)χ(y) + b
(
φ(x)χ(y) + χ(x)φ(y)

)
+ c

(
φ′(x)χ(y) + χ(x)φ′(y)

)

=
(
aχ(x) + bφ(x) + cφ′(x)

)
χ(y) + χ(x)

(
bφ(y) + cφ′(y)

)

= −aχ(x)χ(y)

for all x, y ∈ S. Thus a = 0. Now bφ+cφ′ = 0, so b = c = 0 by the independence
of {φ, φ′}.

For (b)(iii) suppose aχ + bφ + cψ = 0 for some a, b, c ∈ C. Then

0 = aχ(xy) + bφ(xy) + cψ(xy)

= aχ(x)χ(y)+b
(
φ(x)χ(y)+χ(x)φ(y)

)
+c

(
ψ(x)χ(y)+χ(x)ψ(y)+φ(x)φ(y)

)
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=
(
aχ(x) + bφ(x) + cψ(x)

)
χ(y) + χ(x)

(
bφ(y) + cψ(y)

)
+ cφ(x)φ(y)

= −aχ(x)χ(y) + cφ(x)φ(y)

for all x, y ∈ S. Since {χ, φ} is independent by part (b)(i), this implies a =
c = 0. Then b = 0 follows. �

5. The Main Result

Now we apply Proposition 3.3 to solve the general Levi–Civita equation for
n = 3.

Theorem 5.1. Let S be a topological commutative monoid, and suppose f, gj , hj

∈ C(S) satisfy the Levi–Civita equation

f(xy) = g1(x)h1(y) + g2(x)h2(y) + g3(x)h3(y), x, y ∈ S, (8)

with {g1, g2, g3} and {h1, h2, h3} linearly independent. Then there exist con-
stants ck, aj,k, bj,k ∈ C such that f, gj , hj belong to one of the following fami-
lies, where χ, χ′, χk ∈ C(S) are exponentials, φ ∈ C(S) is a nonzero solution
of (4) as described in Corollary 3.2, and ψ ∈ C(S) is a nonzero solution of (6)
as described in Theorem 4.1.
(I) For distinct exponentials χ1, χ2, χ3 we have

f =
3∑

k=1

ckχk, gj =
3∑

k=1

aj,kχk, hj =
3∑

k=1

bj,kχk, (9)

with coefficients satisfying
⎛

⎝
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

⎞

⎠

⎛

⎝
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎞

⎠ =

⎛

⎝
c1 0 0
0 c2 0
0 0 c3

⎞

⎠ . (10)

(II) For distinct exponentials χ, χ′ we have

f = c1χ
′ + c2χ + c3φ, gj = aj,1χ

′ + aj,2χ + aj,3φ,

hj = bj,1χ
′ + bj,2χ + bj,3φ, (11)

with coefficients satisfying
⎛

⎝
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

⎞

⎠

⎛

⎝
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎞

⎠ =

⎛

⎝
c1 0 0
0 c2 c3
0 c3 0

⎞

⎠ . (12)

(III)

f = c1χ + c2φ + c3ψ, gj = aj,1χ + aj,2φ + aj,3ψ,

hj = bj,1χ + bj,2φ + bj,3ψ (13)

with coefficients satisfying
⎛

⎝
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

⎞

⎠

⎛

⎝
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎞

⎠ =

⎛

⎝
c1 c2 c3
c2 c3 0
c2 0 0

⎞

⎠ . (14)
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Conversely, each family (I), (II), (III) constitutes a solution of (8), and
{g1, g2, g3} and {h1, h2, h3} are linearly independent provided that the coeffi-
cients are chosen so that the matrices in (10), (12), (14) have rank 3.

Proof. Let V = span{g1, g2, g3}. We consider three cases as determined by
Proposition 3.3.

Case 1: Suppose s = 3, so d1 = d2 = d3 = 1. Then V has a basis of the
form {χ1, χ2, χ3} for three distinct continuous exponentials. Let f, gj , hj have
the form (9) for some ck, aj,k, bj,k ∈ C. By linear independence such functions
satisfy (8) if and only if the constants satisfy (10).

Case 2: Suppose s = 2 with d1 = 1 and d2 = 2 (the case d1 = 2, d2 = 1 is
equivalent). Since V is spanned by the matrix elements of the representation
R ◦ g of S, we have V = span{χ′, χ, ρ2,1} for distinct exponentials χ′, χ, where

D−1R(g(x))D =

⎛

⎝
χ′(x) 0 0

0 χ(x) 0
0 ρ2,1(x) χ(x)

⎞

⎠

as described in Proposition 3.3. Using the formula R(g(xy)) = R(g(x))R(g(y))
we find by matrix multiplication that φ := ρ2,1 is a solution of the special sine
addition law (4). From dimV = 3 it follows that φ �= 0 and {χ′, χ, φ} is a basis
for V .

Let f, gj , hj have the form (11) for some ck, aj,k, bj,k ∈ C. Such functions
satisfy (8) if and only if

0 =
3∑

j=1

[aj,1χ
′(x) + aj,2χ(x) + aj,3φ(x)][bj,1χ

′(y) + bj,2χ(y) + bj,3φ(y)]

− (c1χ′(xy) + c2χ(xy) + c3φ(xy))

=
3∑

j=1

[aj,1χ
′(x) + aj,2χ(x) + aj,3φ(x)][bj,1χ

′(y) + bj,2χ(y) + bj,3φ(y)]

− (c1χ′(xy) + c2χ(xy) + c3[φ(x)χ(y) + χ(x)φ(y)])

=

⎛

⎝
3∑

j=1

aj,1bj,1 − c1

⎞

⎠ χ′(x)χ′(y) +
3∑

j=1

aj,1bj,2χ
′(x)χ(y)

+
3∑

j=1

aj,1bj,3χ
′(x)φ(y) +

3∑

j=1

aj,2bj,1χ(x)χ′(y)

+

⎛

⎝
3∑

j=1

aj,2bj,2 − c2

⎞

⎠ χ(x)χ(y) +

⎛

⎝
3∑

j=1

aj,2bj,3 − c3

⎞

⎠ χ(x)φ(y)
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+
3∑

j=1

aj,3bj,1φ(x)χ′(y) +

⎛

⎝
3∑

j=1

aj,3bj,2 − c3

⎞

⎠ φ(x)χ(y)

+
3∑

j=1

aj,3bj,3φ(x)φ(y).

By the linear independence of {χ′, χ, φ} this means the constants must fulfill
(12).

Case 3: Suppose s = 1, so d1 = 3. By the same reasoning as in Case 2 we find
that V = span{χ, ρ2,1, ρ3,2, ρ3,1}, where

ρ2,1(xy) = ρ2,1(x)χ(y) + χ(x)ρ2,1(y),

ρ3,2(xy) = ρ3,2(x)χ(y) + χ(x)ρ3,2(y),

ρ3,1(xy) = ρ3,1(x)χ(y) + χ(x)ρ3,1(y) + ρ3,2(x)ρ2,1(y).

The first two formulas show that V = span{χ, φ1, φ2, ρ
3,1}, where φ1 := ρ2,1

and φ2 := ρ3,2 are solutions of the special sine addition law (4). Here we split
the proof into two sub-cases.

Sub-case 3(a): Suppose {φ1, φ2} is linearly independent. Then since dim
V = 3 we get from Lemma 4.2 that {χ, φ1, φ2} is a basis for V . Re-labeling
{φ1, φ2} as {φ, φ′}, let f, gj , hj be given by

f = c1χ + c2φ + c3φ
′, gj = aj,1χ + aj,2φ + aj,3φ

′,

hj = bj,1χ + bj,2φ + bj,3φ
′,

for some ck, aj,k, bj,k ∈ C. Now (8) holds if and only if

0 =
3∑

j=1

[aj,1χ(x) + aj,2φ(x) + aj,3φ
′(x)][bj,1χ(y) + bj,2φ(y) + bj,3φ

′(y)]

− [c1χ(xy) + c2 (φ(x)χ(y) + χ(x)φ(y)) + c3 (φ′(x)χ(y) + χ(x)φ′(y))]

=

⎛

⎝
3∑

j=1

aj,1bj,1 − c1

⎞

⎠ χ(x)χ(y)

+

⎛

⎝
3∑

j=1

aj,1bj,2 − c2

⎞

⎠ χ(x)φ(y) +

⎛

⎝
3∑

j=1

aj,1bj,3 − c3

⎞

⎠ χ(x)φ′(y)

+

⎛

⎝
3∑

j=1

aj,2bj,1 − c2

⎞

⎠ φ(x)χ(y) +
3∑

j=1

aj,2bj,2φ(x)φ(y)

+
3∑

j=1

aj,2bj,3φ(x)φ′(y)
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+

⎛

⎝
3∑

j=1

aj,3bj,1 − c3

⎞

⎠ φ′(x)χ(y) +
3∑

j=1

aj,3bj,2φ
′(x)φ(y)

+
3∑

j=1

aj,3bj,3φ
′(x)φ′(y)

for all x, y ∈ S. By the linear independence of the basis functions we arrive at
the constraint

⎛

⎝
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

⎞

⎠

⎛

⎝
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎞

⎠ =

⎛

⎝
c1 c2 c3
c2 0 0
c2 0 0

⎞

⎠ .

Since the matrix on the right hand side has rank at most 2, there are no non-
degenerate solutions in this subcase. That is, either {g1, g2, g3} or {h1, h2, h3}
is linearly dependent.

Sub-case 3(b): Suppose {φ1, φ2} is linearly dependent. Since dimV = 3 we
cannot have φ1 = φ2 = 0, so we can denote one of these functions as φ �= 0
and the other as dφ for some d ∈ C. Now ρ3,1 satisfies

ρ3,1(xy) = ρ3,1(x)χ(y) + χ(x)ρ3,1(y) + dφ(x)φ(y), x, y ∈ S.

If d = 0 then ρ3,1 is a solution of the special sine addition law (4). In this
case, defining φ′ := ρ3,1 we have {φ, φ′} linearly independent since dimV = 3.
Thus we revert to Sub-case 3(a) which is already settled. If d �= 0 then defining
ψ := d−1ρ3,1 we see that ψ is a solution of (6), and we have span{χ, φ, ψ} = V .
Moreover ψ �= 0 since dim V = 3, thus {χ, φ, ψ} is a basis for V .

Let f, gj , hj have the form (13) for some ck, aj,k, bj,k ∈ C. Then (8) holds
if and only if

0 =
3∑

j=1

[aj,1χ(x) + aj,2φ(x) + aj,3ψ(x)][bj,1χ(y) + bj,2φ(y) + bj,3ψ(y)]

− [c1χ(xy) + c2 (φ(x)χ(y) + χ(x)φ(y)) + c3 (ψ(x)χ(y)

+χ(x)ψ(y) + φ(x)φ(y))]

=

⎛

⎝
3∑

j=1

aj,1bj,1 − c1

⎞

⎠ χ(x)χ(y) +

⎛

⎝
3∑

j=1

aj,1bj,2 − c2

⎞

⎠ χ(x)φ(y)

+

⎛

⎝
3∑

j=1

aj,1bj,3 − c3

⎞

⎠ χ(x)ψ(y) +

⎛

⎝
3∑

j=1

aj,2bj,1 − c2

⎞

⎠ φ(x)χ(y)

+

⎛

⎝
3∑

j=1

aj,2bj,2 − c3

⎞

⎠ φ(x)φ(y) +
3∑

j=1

aj,2bj,3φ(x)ψ(y)
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+

⎛

⎝
3∑

j=1

aj,3bj,1 − c3

⎞

⎠ ψ(x)χ(y) +
3∑

j=1

aj,3bj,2ψ(x)φ(y)

+
3∑

j=1

aj,3bj,3ψ(x)ψ(y)

for all x, y ∈ S. By the linear independence of the basis functions we arrive at
constraint (14).

For the converse, the matrices in the constraints must all have full rank
to ensure that {g1, g2, g3} and {h1, h2, h3} are linearly independent. �

In the next section we apply Theorem 5.1 to two particular Levi–Civita
equations.

6. Applications and Examples

A well-known particular equation of the form (8) is the cosine-sine functional
equation

f(xy) = f(x)g(y) + g(x)f(y) + h(x)h(y), x, y ∈ S, (15)

for three unknown functions f, g, h : S → C.

Corollary 6.1. Let S be a topological commutative monoid, and suppose f, g, h
∈ C(S) is a solution of (15) with {f, g, h} linearly independent. Then there
exist constants ck, αk, βk ∈ C such that f, g, h belong to one of the following
three families, where χ, χ′, χk ∈ C(S) are exponentials, φ ∈ C(S) is a nonzero
solution of (4) as described in Corollary 3.2, and ψ ∈ C(S) is a nonzero
solution of (6) as described in Theorem 4.1.
(I) For distinct exponentials χ1, χ2, χ3 we have

f =
3∑

k=1

ckχk, g =
3∑

k=1

αkχk, h =
3∑

k=1

βkχk,

with coefficients satisfying
⎛

⎝
c1 α1 β1

c2 α2 β2

c3 α3 β3

⎞

⎠

⎛

⎝
α1 α2 α3

c1 c2 c3
β1 β2 β3

⎞

⎠ =

⎛

⎝
c1 0 0
0 c2 0
0 0 c3

⎞

⎠ .

(II) For distinct exponentials χ′, χ we have

f = c1χ
′ + c2χ + c3φ, g = α1χ

′ + α2χ + α3φ, h = β1χ
′ + β2χ + β3φ,

with coefficients satisfying
⎛

⎝
c1 α1 β1

c2 α2 β2

c3 α3 β3

⎞

⎠

⎛

⎝
α1 α2 α3

c1 c2 c3
β1 β2 β3

⎞

⎠ =

⎛

⎝
c1 0 0
0 c2 c3
0 c3 0

⎞

⎠ .
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(III)

f = c1χ + c2φ + c3ψ, g = α1χ + α2φ + α3ψ, h = β1χ + β2φ + β3ψ

with coefficients satisfying
⎛

⎝
c1 α1 β1

c2 α2 β2

c3 α3 β3

⎞

⎠

⎛

⎝
α1 α2 α3

c1 c2 c3
β1 β2 β3

⎞

⎠ =

⎛

⎝
c1 c2 c3
c2 c3 0
c2 0 0

⎞

⎠ .

The converse is also true provided that the constants are chosen so that
the matrices in each constraint have rank 3.

Proof. We apply Theorem 5.1 under the conditions g1 = h2 = f , h1 = g2 =: g,
and g3 = h3 =: h. In terms of the coefficients that means a1,k = ck = b2,k,
b1,k = a2,k =: αk, and a3,k = b3,k =: βk for all k ∈ {1, 2, 3}. Enforcing these
identifications, the result follows immediately. �

Another application of Theorem 5.1 is the following. Let 1S denote the
constant exponential function χ = 1 on S.

Corollary 6.2. Let S be a topological commutative monoid, and suppose f, g, h,
j, k ∈ C(S) satisfy

f(xy) = g(x) + h(y) + j(x)	(y), x, y ∈ S, (16)

with {g, 1S , j} and {1S , h, 	} linearly independent. The solutions belong to the
following families, where χ ∈ C(S) is an exponential and A,B ∈ C(S) are
additive.

(a) For χ �= 1S and A �= 0 we have

f = d1e1χ + (b + c2 + d2e2) + c3A, g = −d1e2χ + b + c3A,

h = −d2e1χ + c2 + c3A, j = d1χ + d2, 	 = e1χ + e2,

for b, cj , dj , ej ∈ C with c3d1e1 �= 0.
(b) For A �= 0 we have

f = (b1 + c1 + d1e1) + (b2 + d2e1)A + d2e2

(
1
2
A2 + B

)
,

g = b1 + b2A + d2e2

(
1
2
A2 + B

)
,

h = c1 + c2A + d2e2

(
1
2
A2 + B

)
, j = d1 + d2A, 	 = e1 + e2A,

for bj , cj , dj , ej ∈ C satisfying c2 + d1e2 = b2 + d2e1 and d2e2 �= 0.

Conversely, in each family above f, g, h is a solution of (16) with {g, 1S , j}
and {1S , h, 	} linearly independent.
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Proof. Since (16) is the special case g1 = g, g2 = h1 = 1S , g3 = j, h2 = h, and
h3 = 	 of (8), we obtain the solution forms by specializing Theorem 5.1 to this
case. Note that the exponential function 1S belongs to V = span{g, 1S , j}, so
without loss of generality we may assign it to any basis for V .

In case (I) the basis consists of three distinct exponentials, one of which
is 1S (which we designate as χ3). Writing f, g, h, j, 	 as

f =
3∑

k=1

akχk, g =
3∑

k=1

bkχk, h =
3∑

k=1

ckχk, j =
3∑

k=1

dkχk, 	 =
3∑

k=1

ekχk,

condition (9) becomes
⎛

⎝
b1 0 d1
b2 0 d2
b3 1 d3

⎞

⎠

⎛

⎝
0 0 1
c1 c2 c3
e1 e2 e3

⎞

⎠ =

⎛

⎝
a1 0 0
0 a2 0
0 0 a3

⎞

⎠ .

Simple calculations show that either a1 = 0 or a2 = 0, so this case yields no
nondegenerate solutions (i.e. no solutions with {g, 1S , j} and {1S , h, 	} linearly
independent).

In case (II) we have either χ = 1S or χ′ = 1S . Suppose χ′ �= 1S = χ. For
χ = 1S Eq. (4) shows that φ is additive. Writing φ = A ∈ C(S) we have

f = a1χ
′ + a2 + a3A, g = b1χ

′ + b2 + b3A, h = c1χ
′ + c2 + c3A,

j = d1χ
′ + d2 + d3A, 	 = e1χ

′ + e2 + e3A,

with additive A �= 0, and we get from condition (12) that
⎛

⎝
b1 0 d1
b2 1 d2
b3 0 d3

⎞

⎠

⎛

⎝
0 1 0
c1 c2 c3
e1 e2 e3

⎞

⎠ =

⎛

⎝
a1 0 0
0 a2 a3

0 a3 0

⎞

⎠ .

Re-naming χ′ as a new χ this leads to solutions of the form (a) above. The
condition c3d1e1 �= 0 is dictated by the linear independence assumptions. If on
the other hand χ′ = 1S �= χ, then a similar calculation shows that there are
no nondegenerate solutions.

Finally, in case (III) we have χ = 1S , so φ = A is additive and nonzero.
Now (6) takes the form

ψ(xy) = ψ(x) + ψ(y) + A(x)A(y), x, y ∈ S,

and by Theorem 4.1 we have ψ = B + 1
2A2 for some additive B ∈ C(S).

Writing

f = a1 + a2A + a3

(
1
2
A2 + B

)
, g = b1 + b2A + b3

(
1
2
A2 + B

)
,

h = c1 + c2A + c3

(
1
2
A2 + B

)
,

j = d1 + d2A + d3

(
1
2
A2 + B

)
, 	 = e1 + e2A + e3

(
1
2
A2 + B

)
,
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for additive A,B ∈ C(S) with A �= 0, where the constants satisfy
⎛

⎝
b1 1 d1
b2 0 d2
b3 0 d3

⎞

⎠

⎛

⎝
1 0 0
c1 c2 c3
e1 e2 e3

⎞

⎠ =

⎛

⎝
a1 a2 a3

a2 a3 0
a3 0 0

⎞

⎠ .

This leads to solutions of the form (b), with the condition d2e2 �= 0 following
from the linear independence assumptions.

The converse is easy to check. �

We close with contrasting examples illustrating the results of Theorem 5.1
on two different monoids, one with a very simple prime ideal structure and one
with a very rich prime ideal structure.

In the first example there are very few prime ideals. Let R(α) denote the
real part of α ∈ C. Recall that the continuous exponentials on ([0, 1], ·) under
the usual topology are m0 = 1 and mα defined by

mα(x) :=

{
xα for x > 0
0 for x = 0

for any α ∈ C with R(α) > 0. Note also that the only additive function on
([0, 1], ·) is A = 0, since A(0) = A(0 · x) = A(0) + A(x) for all x ∈ [0, 1]. The
continuous additive functions on ((0, 1], ·) have the form A(x) = c log x for
some c ∈ C.

Example 6.3. Let S = ([0, 1] × [0, 1], ·) with the product topology. The prime
ideals of S are I1 = {0} × [0, 1], I2 = [0, 1] × {0}, and I1 ∪ I2. The continuous
exponentials on S have the form χ(x, y) = m1(x)m2(y), denoted χ = m1⊗m2,
where each mj : [0, 1] → C is either m0 or mα for some R(α) > 0.

Exponentials χ ∈ C(S) and additive functions A ∈ C(S \Iχ) correspond-
ing to each possible nullspace are the following, where c1, c2, α, β ∈ C with
R(α),R(β) > 0.

(a) For Iχ = ∅, χ = m0 ⊗ m0 = 1, and A = 0.
(b) For Iχ = I1, χ = mα ⊗ m0, and A(x, y) = c1 log x for all x ∈ (0, 1] and

y ∈ [0, 1].
(c) For Iχ = I2, χ = m0 ⊗ mα, and A(x, y) = c2 log y for all x ∈ [0, 1] and

y ∈ (0, 1].
(d) For Iχ = I1 ∪ I2, χ = mα ⊗ mβ , and A(x, y) = c1 log x + c2 log y for all

x, y ∈ (0, 1].

Note that in each case (a)–(d) we have I2χ = Iχ, so Pχ = Kχ = Lχ = ∅
and Jχ = Iχ. Thus the forms of φ, ψ ∈ C(S) given by Corollary 3.2 and
Theorem 4.1 simplify to

φ(x, y) =

{
A(x, y)χ(x, y) for (x, y) ∈ S \ Iχ

0 for (x, y) ∈ Iχ
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and

ψ(x, y) =

{
[ 12A2(x, y) + B(x, y)]χ(x, y) for (x, y) ∈ S \ Iχ

0 for (x, y) ∈ Iχ

for additive A,B ∈ C(S \ Iχ).
The solutions of (8) (under the accompanying linear independence as-

sumptions) are obtained by using the appropriate forms above in the formulas
of Theorem 5.1.

For the second example we choose the commutative monoid S = (N, ·),
which has infinitely many prime ideals. Let P denote the set of prime numbers,
and for each p ∈ P define the function Cp : S → N ∪ {0} for each x ∈ S by

Cp(x) := the number of copies of p in the prime factorization of x.

Then Cp is additive for each p ∈ P , and each x ∈ S has prime factorization
x =

∏
p∈P pCp(x).

Example 6.4. Let S = (N, ·) under the discrete topology. For any exponen-
tial χ : S → C we have χ(x) = χ(

∏
p∈P pCp(x)) =

∏
p∈P χ(p)Cp(x), so χ is

completely determined by its values on P . The prime ideals of S are of the
form

IQ :=
⋃

p∈Q

pN

where Q is any nonempty subset of P .
An additive function A : S \Iχ → C has the form A(x) =

∑
p∈P\Iχ

Cp(x)
A(p), where the values of A on P \ Iχ may be chosen arbitrarily.

Next we determine the forms of the subsets Pχ, Jχ,Kχ, Lχ ⊂ Iχ for a
given exponential χ. The definitions of these sets simplify here because S is
commutative. Suppose χ : S → C is an exponential with Iχ = IQ for some
∅ �= Q ⊂ P . By definition x ∈ IQ if and only if there exist p ∈ Q and z ∈ S
such that x = pz. Similarly x ∈ In

Q for some positive integer n if and only
there exist p1, . . . , pn ∈ Q and z ∈ S such that x = p1 · · · pnz. It is not difficult
to verify that

Pχ = IQ \ I2Q, Iχ \ Pχ = I2Q, Jχ = I3Q, Iχ \ Jχ = IQ \ I3Q.

Thus we have

Kχ = {x ∈ I2Q | ux ∈ IQ \ I3Q for all u ∈ S \ IQ} = I2Q \ I3Q,

and Lχ = ∅.
By Corollary 3.2 the form of nonzero φ : S → C satisfying (4) is given

by (3), where A : S \ Iχ → C is additive and φP : Pχ → C is any function
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such that conditions (i) and (ii) of Proposition 3.1(b) hold. It is not difficult
to work out that

φ(x) =

⎧
⎨

⎩

A(x)χ(x) for x ∈ S \ IQ

φQ(p)χ(z) for x = pz ∈ IQ \ I2Q (p ∈ Q, z ∈ S \ IQ)
0 for x ∈ I2Q

where φQ : Q → C is an arbitrary function.
By Theorem 4.1 the form of ψ : S → C satisfying (6) with a given nonzero

solution φ of (4) is (7), where B : S \ Iχ → C is additive and ψP : Pχ → C,
ψK : Kχ → C are functions such that conditions (a)–(e) hold. After a few
straightforward calculations we arrive at

ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

[
B(x) + 1

2
A2(x)

]
χ(x) for x ∈ S \ IQ

[ψQ(p) + φQ(p)A(z)] χ(z) for x = pz ∈ IQ \ I2
Q (p ∈ Q, z ∈ S \ IQ)

φQ(p1)φQ(p2)χ(z) for x = p1p2z ∈ I2
Q \ I3

Q (pj ∈ Q, z ∈ S \ IQ)
0 for x ∈ I3

Q

where ψQ : Q → C is an arbitrary function. Here we have applied condition
(d) for p1, p2 ∈ Q to get ψK(p1p2) = φQ(p1)φQ(p2).

The solutions of (8) (under the accompanying linear independence as-
sumptions) are obtained by substituting the appropriate forms above into the
formulas of Theorem 5.1.
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