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Abstract. Ricci-like solitons with arbitrary potential are introduced and
studied on Sasaki-like almost contact B-metric manifolds. A manifold
of this type can be considered as an almost contact complex Riemannian
manifold which complex cone is a holomorphic complex Riemannian man-
ifold. The soliton under study is characterized and proved that its Ricci
tensor is equal to the vertical component of both B-metrics multiplied by
a constant. Thus, the scalar curvatures with respect to both B-metrics
are equal and constant. In the 3-dimensional case, it is found that the
special sectional curvatures with respect to the structure are constant.
Gradient almost Ricci-like solitons on Sasaki-like almost contact B-metric
manifolds have been proved to have constant soliton coefficients. Explicit
examples are provided of Lie groups as manifolds of dimensions 3 and 5
equipped with the structures under study.
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Introduction

Ricci soliton is a special self-similar solution of the Hamilton’s Ricci flow and it
is a natural generalization of the notion of Einstein metric. According to [19],
a (pseudo-)Riemannian manifold admits a Ricci soliton if the metric, its Ricci
tensor and the Lie derivative of the metric along a vector field (called potential)
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are linear dependent. If the coefficients of this dependence are functions then
the soliton is called an almost Ricci soliton [32]. If a function exists so that
the potential is its gradient, then the (almost) Ricci soliton is called a gradient
(almost) Ricci soliton (see, e.g., [14,15,35]).

The topic became more popular after Perelman’s proof of the Poincaré
conjecture, following Hamilton’s program to use the Ricci flow (see [31]). Ricci
solitons have been explored by a number of authors (see, e.g., [2,3,9–11,17,21,
30,33]).

Ricci solitons are also of interest to physicists, and in physical literature
are called quasi-Einstein (see, e.g., [12,16]).

The presence of the structure 1-form η on manifolds with almost contact
or almost paracontact structure motivates the need to introduce so-called η-
Ricci solitons. Then, η ⊗ η is the restriction of the metric on the orthogonal
complement to the (para)contact distribution, determined by the structure
vector field ξ. By adding a term proportional to η⊗η into the defining equality
of a Ricci soliton, it is defined the notion of η-Ricci soliton, introduced in
[13]. Later, it has been studied on almost contact and almost paracontact
manifolds by many authors (e.g., [1,4,5,8,34]). For almost η-Ricci solitons,
see, for example [6,7].

Our global goal is to study the differential geometry of almost contact
B-metric manifolds investigated since 1993 [18,29].

Unlike almost contact metric manifolds, almost contact B-metric mani-
folds have two metrics that are mutually associated with structural endomor-
phism. The restrictions of both B-metrics on the orthogonal distribution to
the contact distribution is η ⊗ η. This is the reason for introducing in [27] a
further generalization of the notions of a Ricci soliton and an η-Ricci soliton,
the so-called Ricci-like soliton, using both B-metrics and η⊗η. There, we have
explored these objects with potential Reeb vector field on some important
kinds of manifolds under consideration: Einstein-like, Sasaki-like and having a
torse-forming Reeb vector field. In [28], we continue to study Ricci-like solitons,
whose potential is the Reeb vector field or pointwise collinear to it.

In the present paper, our goal is to investigate Ricci-like solitons with
arbitrary potential on almost contact B-metric manifolds of Sasaki-like type,
as well as gradient almost Ricci-like solitons on these manifolds.

The paper is organized as follows. In Sect. 1, we recall basic definitions
and properties of almost contact B-metric manifolds of Sasaki-like type and
obtain several immediate consequences. Section 2 includes some necessary re-
sults and a 5-dimensional example for a Ricci-like soliton with a potential Reeb
vector field. In Sect. 3, we study Ricci-like solitons with an arbitrary potential.
Then, we prove an identity for the soliton constants and a property of the po-
tential, as well as that the Ricci tensor is a constant multiple of η ⊗ η. For the
3-dimensional case, we find the values of the sectional curvatures of the special
2-planes with respect to the structure and construct an explicit example. In
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Sect. 4, we introduce gradient almost Ricci-like solitons on Sasaki-like mani-
folds and prove that their Ricci tensor has the same form as in the previous
section. For the example in Sect. 3, we find a potential function to illustrate
the obtained results.

1. Sasaki-like Almost Contact B-metric Manifolds

A differentiable manifold M of dimension (2n + 1), equipped with an almost
contact structure (ϕ, ξ, η) and a B-metric g is called an almost contact B-
metric manifold and it is denoted by (M,ϕ, ξ, η, g). More concretely, ϕ is an
endomorphism of the tangent bundle TM , ξ is a Reeb vector field, η is its dual
contact 1-form and g is a pseudo-Riemannian metric of signature (n + 1, n)
satisfying the following conditions [18]

ϕξ = 0, ϕ2 = −ι + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

g(ϕx, ϕy) = −g(x, y) + η(x)η(y), (1.1)

where ι stands for the identity transformation on Γ(TM).
In the latter equality and further, x, y, z, w will stand for arbitrary

elements of Γ(TM) or vectors in the tangent space TpM of M at an arbitrary
point p in M .

The following equations are immediate consequences of (1.1)

g(ϕx, y) = g(x, ϕy), g(x, ξ) = η(x),

g(ξ, ξ) = 1, η(∇xξ) = 0,
(1.2)

where ∇ denotes the Levi-Civita connection of g.
The associated metric g̃ of g on M is also a B-metric and it is defined by

g̃(x, y) = g(x, ϕy) + η(x)η(y).

In [18], almost contact B-metric manifolds (also known as almost contact
complex Riemannian manifolds) are classified with respect to the (0,3)-tensor
F defined by

F (x, y, z) = g
(
(∇xϕ) y, z

)
.

It has the following basic properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ),
F (x, ϕy, ξ) = (∇xη)y = g(∇xξ, y).

This classification consists of eleven basic classes Fi, i ∈ {1, 2, . . . , 11}.
In [20], it is introduced the type of a Sasaki-like manifold among almost

contact B-metric manifolds. The definition condition is its complex cone to be
a Kähler-Norden manifold, i.e. with a parallel complex structure. A Sasaki-
like manifold with almost contact B-metric structure is determined by the
condition

(∇xϕ) y = −g(x, y)ξ − η(y)x + 2η(x)η(y)ξ, (1.3)
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which is equivalent to the following (∇xϕ) y = g(ϕx, ϕy)ξ + η(y)ϕ2x.
Obviously, Sasaki-like manifolds form a subclass of the class F4. More-

over, the following identities are valid for it [20]

∇xξ = −ϕx, (∇xη) (y) = −g(x, ϕy),
R(x, y)ξ = η(y)x − η(x)y, ρ(x, ξ) = 2n η(x),
R(ξ, y)z = g(y, z)ξ − η(z)y, ρ(ξ, ξ) = 2n,

(1.4)

where R and ρ stand for the curvature tensor and the Ricci tensor of ∇.
The corresponding curvature tensor of type (0, 4) is determined as usually

by R(x, y, z, w) = g(R(x, y)z, w).
Further, we use an arbitrary basis {ei}, i ∈ {1, 2, . . . , 2n + 1} of TpM ,

p ∈ M .
On an arbitrary almost contact B-metric manifold, there exists a (0, 2)-

tensor ρ∗, which is associated with ρ regarding ϕ. It is defined by ρ∗(y, z) =
gijR(ei, y, z, ϕej) and due to the first equality in (1.2) ρ∗ is symmetric.

The following relation between ρ∗ and ρ is valid for a Sasaki-like manifold

ρ∗(y, z) = ρ(y, ϕz) + (2n − 1)g(y, ϕz). (1.5)

It follows by taking the trace for x = ei and w = ej the following property of
a Sasaki-like manifold [20]

R(x, y, ϕz, w) − R(x, y, z, ϕw)
= {g(y, z) − 2η(y)η(z)} g(x, ϕw) + {g(y, w) − 2η(y)η(w)} g(x, ϕz)

−{g(x, z) − 2η(x)η(z)} g(y, ϕw) − {g(x,w) − 2η(x)η(w)} g(y, ϕz).
(1.6)

As a corollary of (1.5) we have that ρ(y, ϕz) = ρ(ϕy, z), i.e. Q◦ϕ = ϕ◦Q,
where Q is the Ricci operator, i.e. ρ(y, z) = g(Qy, z).

The scalar curvature τ̃ of g̃ is defined by τ̃ = g̃ij g̃klR̃(ei, ek, el, ej), where
R̃ is the curvature tensor of g̃ and g̃ij = −ϕj

kgik + ξiξj holds. In addition,
the associated quantity τ∗ of τ with respect to ϕ is determined by τ∗ =
gijρ(ei, ϕej). For them, using (1.6) for a Sasaki-like manifold, we infer the
following relation

τ̃ = −τ∗ + 2n. (1.7)

In [26], it is given the following relations between τ and τ̃

dτ ◦ ϕ = dτ̃ + 2(τ − 2n)η, dτ̃ ◦ ϕ = −dτ + 2(τ̃ − 2n)η.

As corollaries we have

dτ ◦ ϕ2 = dτ̃ ◦ ϕ, dτ̃ ◦ ϕ2 = −dτ ◦ ϕ, (1.8)
dτ(ξ) = 2(τ̃ − 2n), dτ̃(ξ) = −2(τ − 2n). (1.9)
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Proposition 1.1. On a Sasaki-like manifold (M,ϕ, ξ, η, g) of dimension 2n+1,
the following formulae for the Ricci operator Q are valid

(∇xQ)ξ = Qϕx − 2nϕx, (1.10)
(∇ξQ)y = 2Qϕy. (1.11)

Proof. For a Sasaki-like manifold, according to (1.4), the equalities Qξ = 2n ξ
and ∇xξ = −ϕx holds. Using them, we obtain immediately the covariant
derivative in (1.10).

Now, we apply ∇z to the expression of R(x, y)ξ in (1.4) and then, using
the form of ∇η in (1.4), we get the following

(∇zR) (x, y)ξ = R(x, y)ϕz − g(y, ϕz)x + g(x, ϕz)y.

We take the trace of the above equality for z = ei and x = ej and use (1.5) to
obtain

gij(∇ei
R)(ej , y)ξ = −Qϕy − 2nϕy.

By virtue of the following consequence the second Bianchi identity

gij(∇ei
R)(ξ, y)ej = (∇yQ) ξ − (∇ξQ) y,

the symmetries of R and (1.10), we get (1.11). �

As consequences of (1.10) and (1.11) we obtain respectively

η
(
(∇xQ)ξ

)
= 0, η

(
(∇ξQ)y

)
= 0. (1.12)

Let us recall [27], an almost contact B-metric manifold (M,ϕ, ξ, η, g) is
said to be Einstein-like if its Ricci tensor ρ satisfies

ρ = a g + b g̃ + c η ⊗ η (1.13)

for some triplet of constants (a, b, c). In particular, when b = 0 and b = c =
0, the manifold is called an η-Einstein manifold and an Einstein manifold,
respectively.

If a, b, c are functions on M , then the manifold is called almost Einstein-
like, almost η-Einstein and almost Einstein, respectively.

Tracing (1.13) and using (1.7), the scalar curvatures τ and τ̃ of an
Einstein-like almost contact B-metric manifold have the form

τ = (2n + 1)a + b + c, τ̃ = 2n(b + 1). (1.14)

For a Sasaki-like manifold (M,ϕ, ξ, η, g) with dimM = 2n + 1 and a
scalar curvature τ regarding g, which is Einstein-like with a triplet of constants
(a, b, c), the following equalities are given in [27]:

a + b + c = 2n, τ = 2n(a + 1). (1.15)

Then, for τ̃ on an Einstein-like Sasaki-like manifold we obtain

τ̃ = 2n(b + 1) (1.16)
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and because (1.14)–(1.16), the expression (1.13) becomes

ρ =
( τ

2n
− 1

)
g +

(
τ̃

2n
− 1

)
g̃ +

(
2(n + 1) − τ + τ̃

2n

)
η ⊗ η.

Proposition 1.2. Let (M,ϕ, ξ, η, g) be a (2n+1)-dimensional Sasaki-like man-
ifold. If it is almost Einstein-like with functions (a, b, c) then the scalar curva-
tures τ and τ̃ of g and g̃, respectively, are constants

τ = const, τ̃ = 2n

and (M,ϕ, ξ, η, g) is η-Einstein with constants

(a, b, c) =
( τ

2n
− 1, 0, 2n + 1 − τ

2n

)
.

Proof. If (M,ϕ, ξ, η, g) is almost Einstein-like then ρ has the form in (1.13),
where (a, b, c) are a triad of functions. Then, according to (1.7), (1.13), (1.14)
and the expression for ρ(ξ, ξ) on a Sasaki-like manifold, given in (1.4), we have
the following

a + b + c = 2n, τ = 2n(a + 1), τ̃ = 2n(b + 1). (1.17)

Using (1.4), we can express R(x, y)ξ and R(x, ξ)y as follows

R(x, y)ξ =
1

4n2

{
2n [η(x)Qy − η(y)Qx + ρ(x, ξ)y − ρ(y, ξ)x]

+(τ − 2n) [η(y)x − η(x)y] + (τ̃ − 2n) [η(y)ϕx − η(x)ϕy]
}
,

R(x, ξ)y =
1

4n2

{
2n [ρ(x, y)ξ + g(x, y)Qξ − ρ(y, ξ)x − η(y)Qx]

+(τ − 2n) [η(y)x − g(x, y)ξ]
+(τ̃ − 2n) [η(y)ϕx − g(x, ϕy)ξ]

}
.

Then, for y = ξ in either of the last two equalities, we have

R(x, ξ)ξ = η(x)ξ − 1
2n

Qx − 1
4n2

{
[τ − 2n(2n + 1)]ϕ2x − [τ̃ − 2n]ϕx

}
.

After that, we compute the covariant derivative of R(x, ξ)ξ with respect
to ∇z. Since (1.3) and (1.4), we obtain

(∇zR) (x, ξ)ξ = − 1
2n

{(∇zQ)x − η(x)Qϕz} − 1
4n2

{
dτ(z)ϕ2x − dτ̃(z)ϕx

−[τ − 2n(2n + 1)]g(x, ϕz)ξ + [τ̃ − 2n]g(ϕx, ϕz)ξ
} − η(x)ϕz,

which by taking the trace for z = ei and x = ej and (1.8) gives the following

gijg
(
(∇ei

R) (ej , ξ)ξ, y
)

= − 1
4n

dτ(y) −
{

τ̃

2n
− 1

}
η(y). (1.18)

By virtue of the following consequence of the second Bianchi identity

gijg
(
(∇ei

R)(y, ξ)ξ, ej

)
= η

(
(∇yQ) ξ

) − η
(
(∇ξQ) y

)
(1.19)
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and (1.12), we have that the trace in the left hand side of (1.19) vanishes.
Then, (1.18) and (1.19) imply

dτ(y) = −2{τ̃ − 2n}η(y),

which comparing with (1.9) implies

dτ(ξ) = 0, τ̃ = 2n.

The latter equalities together with (1.8) and (1.17) complete the proof. �

2. Ricci-like Solitons with Potential Reeb Vector Field on
Sasaki-like Manifolds

In [27], by a condition for Ricci tensor, it is introduced the notion of a Ricci-like
soliton with potential ξ on an almost contact B-metric manifold.

Now, we generalize this notion for a potential, which is an arbitrary vector
field as follows. We say that (M,ϕ, ξ, η, g) admits a Ricci-like soliton with
potential vector field v if the following condition is satisfied for a triplet of
constants (λ, μ, ν)

1
2
Lvg + ρ + λ g + μ g̃ + ν η ⊗ η = 0, (2.1)

where L denotes the Lie derivative.
If μ = 0 (respectively, μ = ν = 0), then (2.1) defines an η-Ricci soliton

(respectively, a Ricci soliton) on (M,ϕ, ξ, η, g).
If λ, μ, ν are functions on M , then the soliton is called almost Ricci-like

soliton, almost η-Ricci soliton and almost Ricci soliton, respectively.
If (M,ϕ, ξ, η, g) is Sasaki-like, we have

(Lξg) (x, y) = g(∇xξ, y) + g(x,∇yξ) = −2g(x, ϕy),

i.e. 1
2Lξg = −g̃ + η ⊗ η. Then, because of (2.1), ρ takes the form

ρ = −λg + (1 − μ)g̃ − (1 + ν)η ⊗ η.

Theorem 2.1 ([27]). Let (M,ϕ, ξ, η, g) be a (2n + 1)-dimensional Sasaki-like
manifold and let a, b, c, λ, μ, ν be constants that satisfy the following equali-
ties:

a + λ = 0, b + μ − 1 = 0, c + ν + 1 = 0.

Then, the manifold admits a Ricci-like soliton with potential ξ and constants
(λ, μ, ν), where λ+μ+ν = −2n, if and only if it is Einstein-like with constants
(a, b, c), where a + b + c = 2n.

In particular, we get:
(i) The manifold admits an η-Ricci soliton with potential ξ and constants

(λ, 0,−2n − λ) if and only if the manifold is Einstein-like with constants
(−λ, 1, λ + 2n − 1).
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(ii) The manifold admits a shrinking Ricci soliton with potential ξ and con-
stant −2n if and only if the manifold is Einstein-like with constants
(2n, 1,−1).

(iii) The manifold is η-Einstein with constants (a, 0, 2n − a) if and only if it
admits a Ricci-like soliton with potential ξ and constants (−a, 1, a−2n−1).

(iv) The manifold is Einstein with constant 2n if and only if it admits a Ricci-
like soliton with potential ξ and constants (−2n, 1,−1).

2.1. Example 1

In Example 2 of [20], it is given a Lie group G of dimension 5 (i.e. n = 2)
with a basis of left-invariant vector fields {e0, . . . , e4} and the corresponding
Lie algebra is defined as follows

[e0, e1] = pe2 + e3 + qe4, [e0, e2] = −pe1 − qe3 + e4,

[e0, e3] = −e1 − qe2 + pe4, [e0, e4] = qe1 − e2 − pe3, p, q ∈ R.

After that G is equipped with an almost contact B-metric structure defined
by

g(e0, e0) = g(e1, e1) = g(e2, e2) = −g(e3, e3) = −g(e4, e4) = 1,

g(ei, ej) = 0, i, j ∈ {0, 1, . . . , 4}, i �= j,

ξ = e0, ϕe1 = e3, ϕe2 = e4, ϕe3 = −e1, ϕe4 = −e2.

It is verified that the constructed almost contact B-metric manifold (G,ϕ, ξ,
η, g) is Sasaki-like.

In [27], it is proved that (G,ϕ, ξ, η, g) is η-Einstein with constants

(a, b, c) = (0, 0, 4). (2.2)

Moreover, it is clear that τ = τ̃ = 4.
It is also found there that (G,ϕ, ξ, η, g) admits a Ricci-like soliton with

potential ξ and constants

(λ, μ, ν) = (0, 1,−5). (2.3)

Therefore, this example is in unison with Theorem 2.1 (iii) for a = 0.

3. Ricci-like Solitons with Arbitrary Potential on Sasaki-like
Manifolds

Theorem 3.1. Let (M,ϕ, ξ, η, g) be a (2n + 1)-dimensional Sasaki-like mani-
fold. If it admits a Ricci-like soliton with arbitrary potential vector field v and
constants (λ, μ, ν) then it is valid the following identities

λ + μ + ν = −2n,

∇ξv = −ϕv. (3.1)
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Proof. According to (2.1), a Ricci-like soliton with arbitrary potential vec-
tor field v is defined by

(Lvg
)
(y, z) = −2ρ(y, z) − 2λ g(y, z) − 2μ g̃(y, z) −

2ν η(y)η(z). Then, bearing in mind (1.4), the covariant derivative with respect
to ∇x has the form

(∇xLvg
)
(y, z) = − 2

(∇xρ
)
(y, z) − 2μ{g(ϕx, ϕy)η(z) + g(ϕx, ϕz)η(y)}

+2(μ + ν){g(x, ϕy)η(z) + g(x, ϕz)η(y)}. (3.2)

We use of the following formula from [36] for a metric connection ∇
(∇xLvg

)
(y, z) = g ((Lv∇)(x, y), z) + g ((Lv∇)(x, z), y) ,

which due to symmetry of Lv∇ can read as

2g
(
(Lv∇)(x, y), z

)
=

(∇xLvg
)
(y, z) +

(∇yLvg
)
(z, x) − (∇zLvg

)
(x, y). (3.3)

Applying (3.3) to (3.2), we obtain

g
(
(Lv∇)(x, y), z

)
= −(∇xρ

)
(y, z) − (∇yρ

)
(z, x) +

(∇zρ
)
(x, y)

−2μ g(ϕx, ϕy)η(z) + 2(μ + ν)g(x, ϕy)η(z). (3.4)

Setting y = ξ in the equality above and using (1.10) and (1.11), we get

(Lv∇)(x, ξ) = −2Qϕx. (3.5)

The covariant derivative of the above equation by using of (1.4) has the form
(∇yLv∇)

(x, ξ) = (Lv∇)(x, ϕy) − 2(∇yQ)ϕx + 2η(x)Qy

−4n g(x, y) − 2(2n + 1)η(x)η(y)ξ. (3.6)

We apply the latter equality to the following formula from [36]

(LvR)(x, y)z =
(∇xLv∇)

(y, z) − (∇yLv∇)
(x, z) (3.7)

and owing to symmetry of Lv∇, we obtain the following consequence of (3.5)–
(3.7)

g
(
(LvR)(x, y)ξ, z

)
= − (∇xρ)(ϕy, z) + (∇ϕyρ)(x, z) − (∇zρ)(x, ϕy)

+(∇yρ)(ϕx, z) − (∇ϕxρ)(y, z) + (∇zρ)(ϕx, y)
−2 η(x)ρ(y, z) + 2 η(y)ρ(x, z). (3.8)

Plugging y = z = ξ in (3.8) and using (3.5), we obtain

(LvR)(x, ξ)ξ = 0. (3.9)

On the other hand, applying Lv to the expression of R(x, ξ)ξ from (1.4)
and using (2.1), as well as the formulae for R(x, y)ξ and R(ξ, y)z from the
same referent equalities, we get

(LvR)(x, ξ)ξ = (Lvη)(x)ξ + g(x,Lvξ)ξ − 2η(Lvξ)x

or in an equivalent form

(LvR)(x, ξ)ξ = {(Lvη)(x) + g(x, Lvξ) − 2η(Lvξ)η(x)}ξ + 2η(Lvξ)ϕ2x. (3.10)
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Comparing (3.9) and (3.10), we obtain the following system of equations

(Lvη)(x) + g(x,Lvξ) − 2η(Lvξ)η(x) = 0, η(Lvξ) = 0,

i.e.

(Lvη)(x) + g(x,Lvξ) = 0, η(Lvξ) = 0. (3.11)

According to (2.1) and ρ(x, ξ) = 2nη(x) from (1.4), we have for a Sasaki-
like manifold

(Lvg)(x, ξ) = −2(λ + μ + ν + 2n)η(x) (3.12)

and as a consequence for x = ξ the following

(Lvg)(ξ, ξ) = −2(λ + μ + ν + 2n). (3.13)

The Lie derivative of g(x, ξ) = η(x) with respect to v gives

(Lvg)(x, ξ) = (Lvη)(x) − g (x,Lvξ) , (3.14)

which for x = ξ leads to

(Lvg)(ξ, ξ) = −2η (Lvξ) . (3.15)

From (3.13) and (3.15) we obtain

η(Lvξ) = λ + μ + ν + 2n.

The latter equality implies (3.1), by virtue of the second equality in (3.11).
Substituting (3.1) in (3.12) gives the vanishing of (Lvg)(x, ξ) and because

of (3.14) we have (Lvη)(x) = g (x,Lvξ). Hence, bearing in mind the first
equality in (3.11), we get

Lvξ = 0,

which together with ∇ξ = −ϕ from (1.4) completes the proof. �
Proposition 3.2. Let (M,ϕ, ξ, η, g) be a (2n+1)-dimensional Sasaki-like man-
ifold. If it admits a Ricci-like soliton with arbitrary potential v then the Ricci
tensor ρ of g and the scalar curvatures τ and τ̃ of g and g̃, respectively, satisfy
the following equalities

(Lvρ) (x, ξ) = 0, τ = 2n, τ̃ = const.

Proof. By (3.7) we find the following

g
(
(LvR) (x, y)ξ, z

)
= − g

(
(Lv∇) (x, ϕy), z

)
+ g

(
(Lv∇) (ϕx, y), z

)

−2 (∇xρ) (ϕy, z) + 2 (∇yρ) (ϕx, z)
−2η(x)ρ(y, z) + 2η(y)ρ(x, z).

Taking the trace of the last equality for x = ei and z = ej and using (3.4) and
(1.7), dτ = 2div ρ, we obtain successively

gijg
(
(Lv∇) (ei, ϕy), ej

)
= −dτ(ϕy),

gijg
(
(Lv∇) (ϕei, y), ej

)
= dτ̃(y),

gijg
(
(LvR) (ei, y)ξ, ej

)
= (Lvρ) (y, ξ) (3.16)
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and therefore the following formula is valid

(Lvρ) (y, ξ) = −dτ̃(y) + 2(τ − 2n)η(y), (3.17)

which for y = ξ implies

(Lvρ) (ξ, ξ) = −dτ̃(ξ) + 2(τ − 2n). (3.18)

On the other hand, according to (3.9) and (3.16), (Lvρ) (ξ, ξ) vanishes
and therefore (3.17) and (3.18) imply

(Lvρ) (x, ξ) = dτ̃(ϕ2x), dτ̃(ξ) = 2τ − 4n. (3.19)

The latter equalities, due to (1.8) and (1.9), imply consequently dτ̃(ξ) = 0
and

τ = 2n, τ̃ = const.

In conclusion, because of (3.19), we infer the assertion. �

Theorem 3.3. Let (M,ϕ, ξ, η, g) be a (2n+1)-dimensional Einstein-like Sasaki-
like manifold. If it admits a Ricci-like soliton with potential v then the Ricci
tensor is ρ = 2n η ⊗ η and the scalar curvatures are τ = τ̃ = 2n.

Proof. The assertion follows from Theorem 3.1, Propositions 1.2 and 3.2. �

Corollary 3.4. Let (M,ϕ, ξ, η, g), dim M = 2n + 1, be an Einstein-like Sasaki-
like manifold. Then it is η-Einstein with constants (0, 0, 2n), which is equiva-
lent to the existence on M of a Ricci-like soliton with potential ξ and constants
(0, 1,−2n − 1).

Proof. Using Theorem 3.3, we obtain the following expression Lvg = −2λ g −
2μ g̃ +2(λ+μ)η ⊗ η, which holds for λ = 0, μ = 1 in the case v = ξ. Therefore
Theorem 2.1 is restricted to its case (iii) and a = 0. �

Let us recall, every non-degenerate 2-plane (or section) β with a basis
{x, y} with respect to g in TpM , p ∈ M , has the following sectional curvature

k(β; p) =
R(x, y, y, x)

g(x, x)g(y, y) − [g(x, y)]2
. (3.20)

A section β is said to be ϕ-holomorphic if the condition β = ϕβ holds. Every
ϕ-holomorphic section has a basis of the form {ϕx, ϕ2x}. A section β is called
a ξ-section if it has a basis of the form {x, ξ}.

Theorem 3.5. Let (M,ϕ, ξ, η, g) be a 3-dimensional Sasaki-like manifold. If it
admits a Ricci-like soliton with potential v then:

(i) the sectional curvatures of its ϕ-holomorphic sections are equal to −1;
(ii) the sectional curvatures of its ξ-sections are equal to 1.
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Proof. It is well known that the curvature tensor of a 3-dimensional manifold
has the form

R(x, y)z = g(y, z)Qx − g(x, z)Qy + ρ(y, z)x − ρ(x, z)y

−τ

2
{g(y, z)x − g(x, z)y}. (3.21)

Then, substituting y = z = ξ and recalling (1.4), we have

ρ =
1
2
{(τ − 2)g − (τ − 6)η ⊗ η},

which means that the manifold is η-Einstein. Therefore, because of Theo-
rem 3.3, we have

ρ = 2 η ⊗ η, τ = τ̃ = 2.

Substituting the latter two equalities for τ and ρ in (3.21), we get

R(x, y)z = − [g(y, z) − 2 η(y)η(z)]x + 2 g(y, z)η(x)ξ
+[g(x, z) − 2 η(x)η(z)]y − 2 g(x, z)η(y)ξ.

Using a basis {ϕx, ϕ2x} of an arbitrary ϕ-holomorphic section, we cal-
culate its sectional curvature by (3.20), replacing x and y by ϕx and ϕ2x, re-
spectively. Then, bearing in mind (1.1) and (1.2), we obtain k(ϕx, ϕ2x) = −1.

Similarly, for a ξ-section with a basis {x, ξ}, we get k(x, ξ) = 1, which
completes the proof. �

Remark 3.6. Examples of 3-dimensional Sasaki-like manifolds as a Lie group
from type Bia(V II0)(1), a matrix Lie group, an S1-solvable extension on a
Kähler-Norden 2-manifold, and their geometrical properties are studied in [22–
25], respectively.

Remark 3.7. The constructed 5-dimensional example in Sect. 3.1 of a Sasaki-
like manifold with the results in (2.2) and (2.3) supports also Theorem 3.1,
Proposition 3.2, Theorem 3.3 and Corollary 3.4 for the case of v = ξ and n = 2.

3.1. Example 2

Let us consider M as a set of points in R
3 with coordinates (x1, x2, x3) and

let M be equipped with an almost contact B-metric structure defined by

g (∂1, ∂1) = −g (∂2, ∂2) = cos 2x3, g (∂1, ∂2) = sin 2x3,

g(∂1, ∂3) = g(∂2, ∂3) = 0, g(∂3, ∂3) = 1,

ϕ∂1 = ∂2, ϕ∂2 = −∂1, ξ = ∂3,

where ∂1, ∂2, ∂3 denote briefly ∂
∂x1 , ∂

∂x2 , ∂
∂x3 , respectively. Then, the vectors

determined by

e1 = cosx3∂1 + sinx3∂2, e2 = − sinx3∂1 + cosx3∂2, e3 = ∂3 (3.22)
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form an orthonormal ϕ-basis of TpM , p ∈ M , i.e.

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1

g(ei, ej) = 0, i, j ∈ {1, 2, 3}, i �= j,

ϕe1 = e2, ϕe2 = −e1, ξ = e3.

(3.23)

Immediately from (3.22) we obtain the commutators of ei as follows

[e0, e1] = e2, [e0, e2] = −e1, [e1, e2] = 0. (3.24)

Then, according to Example 1 in [20] for n = 1, the solvable Lie group of
dimension 3 with a basis of left-invariant vector fields {e1, e2, e3} defined by
(3.24) and equipped with the (ϕ, ξ, η, g)-structure from (3.23) is a Sasaki-like
almost contact B-metric manifold.

In the well-known way, we calculate the components of the Levi-Civita
connection ∇ for g and from there the corresponding components Rijkl =
R(ei, ej , ek, el) and ρij = ρ(ei, ej) of the curvature tensor R and the Ricci
tensor ρ, respectively. The non-zero ones of them are the following (keep in
mind the symmetries of R)

∇e1e2 = ∇e2e1 = −e3, ∇e1e3 = −e2, ∇e2e3 = e1; (3.25)
R1221 = R1331 = −R2332 = 1, ρ33 = 2. (3.26)

The latter equality means that the Ricci tensor has the following form

ρ = 2η ⊗ η, (3.27)

i.e. the manifold is Einstein-like with constants (a, b, c) = (0, 0, 2). Therefore,
the scalar curvatures with respect to g and g̃ are τ = τ̃ = 2.

The values of Rijkl in (3.26) imply the sectional curvatures

k12 = −k13 = −k23 = −1,

which supports Theorem 3.5.
Let us consider a vector field, determined by the following

v = v1e1 + v2e2 + v3e3,

v1 = −{c1 cos x3 + c2 sin x3}x1 + {c2 cos x3 − c1 sin x3}x2 + sinx3,

v2 = −{c2 cos x3 − c1 sin x3}x1 − {c1 cos x3 + c2 sin x3}x2 + cos x3,

v3 = c3, (3.28)

and c1, c2, c3 are arbitrary constants.
Using (3.22), (3.23), (3.25) and (3.28), we obtain the following

∇e1v = −c1e1 − (c2 + c3)e2 − v2e3,

∇e2v = (c2 + c3)e1 − c1e2 − v1e3,

∇e3v = v2e1 − v1e2, (3.29)
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that allow us to calculate the components (Lvg)ij = (Lvg) (ei, ej) of the Lie
derivative Lvg. Then, we get the following nonzero ones

(Lvg)11 = − (Lvg)22 = −2c1, (Lvg)12 = 2(c2 + c3),

which implies that this tensor has the following expression

Lvg = −2 c1 g − 2(c2 + c3)g̃ + 2(c1 + c2 + c3)η ⊗ η. (3.30)

Substituting the latter equality and (3.27) in (2.1), we obtain that (M,ϕ, ξ, η, g)
admits a Ricci-like soliton with potential v determined by (3.28) and the po-
tential constants are

λ = c1, μ = c2 + c3, ν = −c1 − c2 − c3 − 2.

These results are in accordance with Theorems 3.1 and 3.3. The con-
clusion in Proposition 3.2 follows from (3.27) and the subsequent formula
(Lvρ)(x, ξ) = −2g(ϕx, v) + 2η(∇xv), together with the equalities in (3.28)
and (3.29).

4. Gradient Almost Ricci-like Solitons

Let us consider a Ricci-like soliton, defined by (2.1) with the condition λ, μ, ν
to be functions on M . If its potential v is a gradient of a differentiable function
f , i.e. v = grad f , then the soliton is called a gradient almost Ricci-like soliton
of (M,ϕ, ξ, η, g). In this case (2.1) is reduced to the following condition

Hess f + ρ + λg + μg̃ + νη ⊗ η = 0, (4.1)

where Hess denotes the Hessian operator with respect to g, i.e. Hess f is defined
by

(Hess f)(x, y) := (∇xdf)(y) = g(∇x grad f, y). (4.2)

Taking the trace of (4.1), we obtain

Δf + τ + (2n + 1)λ + μ + ν = 0,

where Δ := tr ◦Hess is the Laplacian operator of g. Also for the Laplacian of
f , the formula Δf = div(grad f) is valid, where div stands for the divergence
operator.

The gradient Ricci-like soliton is said to be trivial when f is constant.
Further, we consider only non-trivial gradient Ricci-like solitons.

Equality (4.1) with the recall of (4.2) provides the following

∇xv = −Qx − λx − μϕx − (μ + ν)η(x)ξ, (4.3)

where Q is the Ricci operator and v = grad f .

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a Sasaki-like almost contact B-metric man-
ifold of dimension 2n+1. If it admits a gradient almost Ricci-like soliton with
functions (λ, μ, ν) and a potential function f , then (M,ϕ, ξ, η, g) has constant
scalar curvatures τ = τ̃ = 2n for both B-metrics g and g̃, respectively, and its
Ricci tensor is ρ = 2n η ⊗ η.
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Proof. Using (4.3), we compute the following curvature tensor

R(x, y)v = − (∇xQ) y + (∇yQ) x

+{dλ(y) + μη(y)}x − {dλ(x) + μη(x)}y

+{dμ(y) + (μ + ν)η(y)}ϕx − {dμ(x) + (μ + ν)η(x)}ϕy

+d(μ + ν)(y)η(x)ξ − d(μ + ν)(x)η(y)ξ. (4.4)

The latter expression implies the following equality

R(ξ, y)v = − (∇ξQ) y + (∇yQ) ξ + {dλ(ξ) + μ}ϕ2y − {dμ(ξ) + μ + ν}ϕy

+d(λ + μ + ν)(y)ξ − d(λ + μ + ν)(ξ)η(y)ξ,

where we apply (1.10) and (1.11) and get

R(ξ, y)v = −Qϕy + {dλ(ξ) + μ}ϕ2y − {dμ(ξ) + μ + ν + 2n}ϕy

+d(λ + μ + ν)(y)ξ − d(λ + μ + ν)(ξ)η(y)ξ. (4.5)

We put z = v in the equality for R(ξ, y)z in (1.4) and obtain the following
expression

R(ξ, y)v = df(y)ξ − df(ξ)y. (4.6)

Combining (4.5) and (4.6), we find the following formula

Qϕy = {d(λ − f)(ξ) + μ}ϕ2y − {dμ(ξ) + μ + ν + 2n}ϕy

+d(λ + μ + ν − f)(y)ξ − d(λ + μ + ν − f)(ξ)η(y)ξ. (4.7)

We apply η of equality (4.7) and since Q ◦ ϕ = ϕ ◦ Q for a Sasaki-like
manifold, we obtain the following

d(λ + μ + ν − f)(y) = d(λ + μ + ν − f)(ξ)η(y), (4.8)

which changes (4.7) and (4.5) as follows

Qϕy = {d(λ − f)(ξ) + μ}ϕ2y − {dμ(ξ) + μ + ν + 2n}ϕy,

R(ξ, y)v = −Qϕy + {dλ(ξ) + μ}ϕ2y − {dμ(ξ) + μ + ν + 2n}ϕy

+{df(y) − df(ξ)η(y)}ξ

and therefore we have

R(ξ, y, v, z) = −ρ(y, ϕz) + {dλ(ξ) + μ}g(ϕy, ϕz)
−{dμ(ξ) + μ + ν + 2n}g(y, ϕz)
+{df(y) − df(ξ)η(y)}η(z). (4.9)

On the other hand, the expression of R(x, y)ξ from (1.4) and equality
(4.4) imply respectively the following two equalities

R(x, y, ξ, v) = df(x)η(y) − df(y)η(x),
R(x, y, v, ξ) = −η ((∇xQ)y − (∇yQ)x) + d(λ + μ + ν)(y)η(x)

−d(λ + μ + ν)(x)η(y).
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By summation of the latter two equalities, we find the following formula

η
(
(∇xQ)y − (∇yQ)x

)
= −d(λ + μ + ν − f)(x)η(y)

+d(λ + μ + ν − f)(y)η(x),

which because of (4.8) is simplified to the following form

η
(
(∇xQ)y − (∇yQ)x

)
= 0.

On the other hand, the expression of R(ξ, y)z from (1.4) yield

R(ξ, y, z, v)= − df(ξ)g(ϕy, ϕz) − {df(y) − df(ξ)η(y)}η(z),

which together with (4.9) and the form of ρ(x, ξ) from (1.4) implies

ρ(y, z) = {dμ(ξ) + μ + ν + 2n}g(ϕy, ϕz) + {d(λ − f)(ξ) + μ}g(y, ϕz)
+2nη(y)η(z).

The latter equality can be rewritten in the form

ρ = −{dμ(ξ) + μ + ν + 2n}g + {d(λ − f)(ξ) + μ}g̃

+{4n + ν − d(λ − μ − f)(ξ)}η ⊗ η,

which means that the manifold is almst Einstein-like with coefficient functions

a = −dμ(ξ) − μ − ν − 2n, b = d(λ − f)(ξ) + μ,

c = −d(λ − μ − f)(ξ) + ν + 4n. (4.10)

Then, using (1.14), we obtain

τ = − 2n{dμ(ξ) + μ + ν + 2n − 1}, τ̃ = 2n{d(λ − f)(ξ) + μ + 1}.

(4.11)

Contracting (4.4) with respect to x, we obtain

ρ(y, v) =
1
2
dτ(y) + 2n dλ(y) + d(μ + ν)(y) − dμ(ϕy) − {d(μ + ν)(ξ) − 2nμ}η(y)

and consequently for y = ξ we have

ρ(ξ, v) =
1
2
dτ(ξ) + 2n dλ(ξ) + 2nμ. (4.12)

We compute the left side of (4.12) by the formula ρ(x, ξ) = 2n η(x) from (1.4)
and then from (4.12) and (1.9), we obtain

τ̃ = −2n{d(λ − f)(ξ) + μ − 1}.

Comparing the latter equality with (4.11), we have

d(λ − f)(ξ) = −μ,

τ̃ = 2n.

The former equality implies b = 0 in (4.10) and therefore the manifold is
almost η-Einstein and the latter one means that dτ̃ = 0 and using (1.9), we
obtain for τ the following

τ = 2n.
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Then, substituting the value of τ in (4.11), we obtain

dμ(ξ) = −μ − ν − 2n,

which implies a = 0 in (4.10) and finally we get (a, b, c) = (0, 0, 2n). �

4.1. Example 3

Let (M,ϕ, ξ, η, g) be the 3-dimensional Sasaki-like manifold, given in Exam-
ple 2 of sect. 3.1. Now, let f be a differentiable function on M , defined by

f = −1
2
s {(x1)2 + (x2)2} + x2 + t x3

for arbitrary constants s and t. Then, the gradient of f with respect to the
B-metric g is the following

grad f = −{s x1 cos x3 + (s x2 − 1) sin x3}e1

+{s x1 sin x3 − (s x2 − 1) cos x3}e2 + t e3. (4.13)

Using (3.22), we compute the components of Lgrad fg as follows

(Lgrad fg)11 = − (Lgrad fg)22 = −2s, (Lgrad fg)12 = 2t,

which give us the following expression

(Lgrad fg) = −2s g − 2tg̃ + 2(s + t) η ⊗ η.

The latter equality coincides with (3.30) for s = c1, t = c2+c3. Therefore,
(M,ϕ, ξ, η, g) admits a Ricci-like soliton with potential v = grad f determined
by (4.13) and the potential constants are

λ = s, μ = t, ν = −s − t − 2.

In conclusion, the constructed 3-dimensional example of a Sasaki-like
manifold with τ = τ̃ = 2 and gradient Ricci-like soliton supports also Theo-
rem 4.1.

Author contributions Not applicable.

Funding The author was supported by projects MU21-FMI-008 and FP21-
FMI-002 of the Scientific Research Fund, University of Plovdiv Paisii Hilen-
darski, Bulgaria.

Data Availibility Data is contained within the article.

Declarations
Conflicts of interest The author declares no conflict of interest. The funders
had no role in the design of the study; in the collection, analyses, or interpre-
tation of data; in the writing of the manuscript, or in the decision to publish
the results.



149 Page 18 of 20 M. Manev Results Math

References

[1] Ayar, G., Yıldırım, M.: η-Ricci solitons on nearly Kenmotsu manifolds. Asian-
Eur. J. Math. 12(6), 2040002 (2019). (8 pages)

[2] Bagewadi, C.S., Ingalahalli, G.: Ricci solitons in Lorentzian α-Sasakian mani-
folds. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 28, 59–68 (2012)

[3] Bejan, C.L., Crasmareanu, M.: Second order parallel tensors and Ricci solitons
in 3-dimensional normal paracontact geometry. Ann. Global Anal. Geom. 46,
117–127 (2014)

[4] Blaga, A.M.: η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom.
Appl. 20, 1–13 (2015)

[5] Blaga, A.M.: η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat
30(2), 489–496 (2016)

[6] Blaga, A.M.: Almost η-Ricci solitons in (LCS)n-manifolds. Bull. Belg. Math.
Soc. Simon Stevin 25(5), 641–653 (2018)

[7] Blaga, A.M., Perktaş, S.Y.: Remarks on almost η-Ricci solitons in (ε)-para
Sasakian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2),
1621–1628 (2019)
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form. Tôhoku Math. J. 61(2), 205–212 (2009)

[14] Chow, B., Knopf, D.: The Ricci Flow: An Introduction, Mathematical Surveys
and Monographs, vol. 110. American Mathematical Society, Providence, USA
(2004)

[15] De, U.C., Mandal, K.: Ricci solitons and gradient Ricci solitons on N(k)-
paracontact manifolds. J. Math. Phys. Anal. Geom. 15(3), 307–320 (2019)

[16] Friedan, D.H.: Non linear models in 2 + ε dimensions. Ann. Phys. 163, 318–419
(1985)
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