
Results Math (2022) 77:141

c© 2022 The Author(s), under exclusive licence to
Springer Nature Switzerland AG

1422-6383/22/040001-20
published online May 13, 2022

https://doi.org/10.1007/s00025-022-01682-9 Results in Mathematics

The Corner Element of Generalized
Numerical Semigroups

Matheus Bernardini , Wanderson Tenório, and
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Abstract. In this paper we introduce the concept of corner element of a
generalized numerical semigroup, which extends in a sense the idea of
conductor of a numerical semigroup to generalized numerical semigroups
in higher dimensions. We present properties of this new notion and its
relations with existing invariants in the literature, and provide an algo-
rithm to compute all the generalized numerical semigroups with fixed
corner. Besides that, we provide lower and upper bounds on the number
of generalized numerical semigroups having a fixed corner element.
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1. Introduction

Let N be the set of the positive integers and N0 = N ∪ {0}. A generalized nu-
merical semigroup (GNS) is a submonoid S ⊆ N

d
0, where d is a positive integer,

such that its complement H(S) = N
d
0 \ S is finite. The elements of H(S) are

called the gaps (or holes) of S and its cardinality g(S) = |H(S)| is the so-called
genus of S. Generalized numerical semigroups arise as a natural generaliza-
tion to higher dimensions of the notion of numerical semigroup (case d = 1),
which is an active topic of research with many challenging open problems. For
a detailed overview and compilation of the several ways of development on
numerical semigroups, we refer the reader to [15,16].

Generalized numerical semigroups were introduced by Failla, Peterson,
and Utano in [10], where they computed the number of GNSs S ⊆ N

d
0 of genus
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g for small values of g and d and provided certain asymptotic bounds for large
values of g and d. Since their work, several papers on GNSs, as well as on a
wider class of submonoids in N

d
0, have appeared in the literature proposing to

formulate definitions, properties, results, and open problems of numerical semi-
groups to the general higher dimensional setting. For instance, in [4], Cisto,
Failla, Peterson, and Utano investigated the property of irreducibility in GNSs,
introducing also the notion of Frobenius GNSs and allowable gaps. Cisto, Faila,
and Utano [3] studied the generators of GNSs. A new family of Frobenius
GNSs, extending the irreducible ones, was proposed by Cisto and Tenório in
[6] with the study of the property of almost-symmetry for GNSs. Singhal and
Lin [17] characterized the allowable gaps in GNSs and provided estimates on
the number of Frobenius GNSs with a given Frobenius number. In [2], Cisto,
Delgado, and Garćıa-Sánchez provided algorithms to perform calculations on
GNS and to compute the set of all GNS with a prescribed genus. Pseudo-
Frobenius elements of a special class of submonoids in N

d
0 that includes the

GNSs were studied by Garćıa-Garćıa, Ojeda, Rosales, and Vigneron-Tenorio in
[14]. Generalizations of the Wilf’s conjecture were proposed in [5,13]. An ex-
tension of proportionally modular numerical semigroups to higher dimensions
is investigated in [9,12].

In this work, we introduce the concept of corner of a GNS (see Defini-
tion 3.1), which somehow generalizes the notion of conductor of a numerical
semigroup. We explore the properties of this new concept and its relationships
with the genus and other invariants in the literature on GNS, motivated by
well known relations in numerical semigroups. Besides that, using the notion
of tree of GNS, we present an algorithm to compute all the GNSs with fixed
corner and we provide lower and upper bounds on the number of GNSs with
a fixed corner.

This paper is organized as follows. In Sect. 2 we present some useful
definitions and notations for the rest of the paper. The concept of corner of a
GNS is introduced in Sect. 3, where we also present properties of this concept.
The relation between the genus and the corner of a GNS is studied in Sect.
4. In Sect. 5 we give an algorithm to compute all the GNSs with fixed corner.
We complete this work in Sect. 6 by providing lower and upper bounds on the
number of GNSs having fixed corner.

2. Preliminaries and Notations

Throughout this paper, we use the following notations. For integers a and b,
we denote [a] := {x ∈ Z : 1 ≤ x ≤ a} and [a, b] := {x ∈ Z : a ≤ x ≤ b}. For a
real number x, �x� stands for the smallest integer greater than or equal to x
and �x	 stands for the biggest integer smaller than or equal to x.

For an element α ∈ N
d
0, the coordinates of α will be denoted by α =

(α1, . . . , αd) and the product of the coordinates of α by the symbol |α|. The
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all zero d-tuple (0, . . . , 0) will be denoted simply by 0 and the vectors of the
standard basis in R

d will be denoted by e1, e2, . . . , ed. The natural partial
order ≤ in N

d
0 is defined as follows: for α,β ∈ N

d
0, we have

α ≤ β if and only if αi ≤ βi for all i ∈ [d].

For α ∈ N
d
0, we consider the set C(α) := {a ∈ N

d
0 : a ≤ α}. Given a finite

nonempty set B ⊆ N
d
0, the least upper bound (lub) of B is the element of Nd

0

defined by

lub(B) := (max{β1 : β ∈ B}, . . . ,max{βd : β ∈ B}).

A monomial order ≺ is a total order in N
d
0 that satisfies the following

conditions:
• for α,β ∈ N

d
0, if α ≺ β, then α + γ ≺ β + γ for all γ ∈ N

d
0; and

• for α ∈ N
d
0, if α �= 0, we have 0 ≺ α.

Monomial orders extend the natural partial order ≤ in N
d
0 (see [4, Proposi-

tion 4.4]).
Given S ⊆ N

d
0 a GNS, we consider the partial order ≤S in N

d
0 defined

by:

α ≤S β if and only if β − α ∈ S,

where β − α stands for the usual difference. Writing S∗ = S \ {0}, the set of
pseudo-Frobenius elements of S is defined as

PF(S) := {x ∈ H(S) : x + S∗ ⊂ S}.

Its elements are exactly the maximal elements of H(S) with respect to the
partial order ≤S (see [4, Proposition 1.3]). The set of special gaps of S is

SG(S) := {x ∈ PF(S) : 2x ∈ S}.

When there is a unique maximal element in H(S) with respect to the natural
partial order ≤ of Nd

0, S is said to be a Frobenius GNS. Otherwise, it is said
to be a non-Frobenius GNS.

3. The Corner of a GNS

In this section, we define the corner of a GNS, which plays an important role
in this paper.

Definition 3.1. Let S ⊆ N
d
0 be a GNS. An element c = (c1, . . . , cd) ∈ S is

called a corner of S if the following conditions are are satisfied:
(1) for all i ∈ [d] and for all α ∈ N0 such that α ≥ ci we have that

(β1, . . . , βi−1, α, βi+1, . . . , βd) ∈ S for all β1, . . . , βi−1, βi+1, . . . , βd ∈ N0;
(2) for all i ∈ [d], there exist γ1, . . . , γi−1, γi+1, . . . , γd ∈ N0 such that

(γ1, . . . , γi−1, ci − 1, γi+1, . . . , γd) /∈ S.
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Notice that every GNS S has a corner element since H(S) is finite. In
particular, 0 is a corner of Nd

0.

Proposition 3.2. Let S ⊆ N
d
0 be a GNS. Then the corner of S is unique.

Proof. Let c = (c1, . . . , cd) and c′ = (c′
1, . . . , c

′
d) be two corners of S and

suppose that c �= c′. Hence, there exists i ∈ [d] such that ci �= c′
i and

we can assume, without loss of generality, that ci − 1 ≥ c′
i. Item (1) of

the Definition 3.1 ensures that (β1, . . . , βi−1, ci − 1, βi+1, . . . , βd) ∈ S for all
β1, . . . , βi−1, βi+1, . . . , βd ∈ N0, because c′ is a corner of S. On the other hand,
item (2) of the definition guarantees that there are γ1, . . . , γi−1, γi+1, . . . , γd ∈
N0 such that (γ1, . . . , γi−1, ci − 1, γi+1, . . . , γd) /∈ S, which leads to a contra-
diction. �

Proposition 3.3. Let S ⊆ N
d
0 be a GNS with positive genus and corner c =

(c1, . . . , cd). Then the following properties hold:
i) ci �= 0 for all i ∈ [d];
ii) there exists i ∈ [d] such that ci > 1.

Proof. Suppose that ci = 0 for some i ∈ [d]. From item (1) of Definition 3.1, if
βi ≥ 0, then (β1, . . . , βi−1, βi, βi+1, . . . , βd) ∈ S for all β1, . . . , βi−1, βi+1, . . . ,
βd ∈ N0. Hence, S = N

d
0 which is a contradiction. Now, suppose that ci = 1

for all i ∈ [d]. Item (1) of the Definition 3.1 ensures that ei ∈ S for all i ∈ [d]
and, again, we conclude that S = N

d
0, which is a contradiction. �

We recall that the conductor c of a numerical semigroup S is an element
of S such that c + n ∈ S, for all n ∈ N0 and c − 1 /∈ S. In this way, the corner
generalizes the concept of the conductor of a numerical semigroup. Indeed, for
d = 1, the conductor and the corner are the same.

Remark 3.4. Let S ⊆ N
d
0 be a GNS with genus g > 0 and c be the corner of S.

By definition, we can conclude that H(S) ⊆ C(c − 1), where 1 stands for the
d-tuple (1, . . . , 1). Moreover, the corner is the minimum element of the GNS
(with respect to the partial order ≤) with this property, i.e., c = min≤{x ∈
N

d
0 : C(x − 1) ⊇ H(S)}.

Next result relates the corner of a GNS with its set of gaps.

Theorem 3.5. Let S ⊆ N
d
0 be a GNS with genus g > 0 and corner c. Then,

c = lub(H(S)) + 1.

In particular, S is a Frobenius GNS if and only if c − 1 ∈ H(S).

Proof. Let H(S) = {α1, . . . ,αg} be the set of gaps of S, where αi = (α(i)
1 , . . . ,

α
(i)
d ) for each i ∈ [g]. For each j ∈ [d], define cj = 1 + max{α

(i)
j : i ∈ [g]} and

c = (c1, . . . , cd). The definition of c ensures that it lies on S. Now we prove
that c is the corner of S. If α ≥ cj , then the definition of cj guarantees that
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(β1, . . . , βi−1, α, βi+1, . . . , βd) ∈ S for all β1, . . . , βj−1, βj+1, . . . , βd ∈ N0 and
the condition (1) in Definiton 3.1 is verified. Since cj −1 = max{α

(i)
j : i ∈ [g]},

there exists k ∈ [1, g] such that the j-th coordinate of αk is cj − 1. Hence, the
condition (2) in Definiton 3.1 is satisfied. Therefore, c is the corner of S. �

In particular, one can also relate the corner of a GNS with its pseudo-
Frobenius elements.

Corollary 3.6. Let S ⊆ N
d
0 be a GNS with genus g > 0 and corner c. Then

c = lub(PF(S)) + 1.

Proof. It suffices to prove that lub(PF(S)) = lub(H(S)). As PF(S) ⊆ H(S),
we have lub(PF(S)) ≤ lub(H(S)). On the other hand, since PF(S) are the
maximal elements in H(S) with respect to ≤S , for all h ∈ H(S) there exists
h′ ∈ PF(S) such that h ≤S h′. In particular, for all h ∈ H(S) there exists
h′ ∈ PF(S) satisfying h ≤ h′. Hence, lub(H(S)) ≤ lub(PF(S)). �

4. The Relation Between the Genus and the Corner of a GNS

Motivated by the relation between the genus g and the conductor c of a nu-
merical semigroup by the following formula g + 1 ≤ c ≤ 2g (see [15]), we
investigate relations between the genus of a GNS and the coordinates of its
corner.

Proposition 4.1. Let S ⊂ N
d
0 be a GNS with genus g > 0 and corner c =

(c1, . . . , cd). Then

g + 1 ≤
d∏

i=1

ci.

Proof. Using Remark 3.4, we conclude that H(S) ⊆ C(c−1). Since (0, 0, . . . , 0)
∈ S, then |H(S)| ≤

(∏d
i=1 ci

)
− 1 and the result follows. �

In [5], the authors introduced the concept of GNS ordinary semigroup as
follows.

Definition 4.2. A GNS S ⊂ N
d
0 is called ordinary if there exists some s ∈ N

d
0

such that S = {0} ∪ (Nd
0 \ C(s)).

Next, we show that those GNS are the unique that reach the bound
presented in Proposition 4.1.

Lemma 4.3. Let S = {0} ∪ (Nd
0 \ C(s)) ⊂ N

d
0 be an ordinary GNS. Then the

corner of S is c = s + 1.
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Proof. Let s = (s1, . . . , sd). If i ∈ [d] and α ≥ si + 1 is an integer, then
(β1, . . . , βi−1, α, βi+1, . . . , βd) /∈ C(s), for all β1, . . . , βi−1, βi+1, . . . , βd ∈ N0,
i.e., it belongs to S. Also, s = (s1, . . . , si−1, (si + 1) − 1, si+1, . . . , sd) ∈ C(s),
for all i ∈ [d], hence it is not in S. Therefore, c = (s1 + 1, . . . , sd + 1) is the
corner of S. �

The ordinary GNS with corner c will be denoted by O(c).

Proposition 4.4. Let S ⊂ N
d
0 be a GNS with corner c and genus g > 0. Then

the following statements are equivalent:
(i) S = O(c);
(ii)

∏d
i=1 ci = g + 1.

Proof. Let c = (c1, . . . , cd).
(i) ⇒ (ii). Suppose that S is an ordinary GNS with corner c and genus

g. So, there is some s = (s1, . . . , sd) ∈ N
d
0 such that S = {0} ∪ (Nd

0 \ C(s)).
Thus, the set of gaps of S is H(S) = {α ∈ N

d
0 : 0 �= α ≤ s}, and it follows

that g = |H(S)| =
∏r

i=1(si + 1) − 1. Lemma 4.3 ensures that si + 1 = ci.
(ii) ⇒ (i). Remark 3.4 guarantees that H(S) ⊆ C(c − 1). Hence, g =

|H(S)| ≤ |{α ∈ N
d
0 : 0 �= α ≤ c − 1}| =

∏d
i=1 ci − 1. By condition (ii), we

conclude that H(S) = C(c − 1) \ {0} and thus S = O(c). �

Next, we investigate a lower bound for the genus of a GNS with respect
to the coordinates of its corner.

Theorem 4.5. Let S ⊂ N
d
0 be a GNS with corner c = (c1, . . . , cd), where ci ≥ 2

for i ∈ [d]. Then there exists a GNS S′ ⊂ N
d
0 with corner c such that H(S′) is

contained in the axes of Nd
0 and g(S′) ≤ g(S).

Proof. If d = 1, then S′ = S. If d > 1, let H0 := {h ∈ H(S) : h is in the axes of
N

d
0} and H1 := {(h1, . . . , hd) ∈ H(S)\H0 : hjej ∈ H(S)∪{0} for all j ∈ [d]}.

For
h = (h1, . . . , hd) ∈ H(S) \ (H0 ∪ H1), define h′ := hj0ej0 , where j0 = min{j ∈
[d] : hjej ∈ S \ {0}}. Now, taking into account the process of associating h
to h′ as above, consider the set

H = H0 ∪ {h′ : h ∈ H(S) \ (H0 ∪ H1)}.

Note that H is contained in the axes of Nd
0. Let us show that S′ = N

d
0 \H

is a GNS in N
d
0 with corner c. For this purpose, we will prove that if xei ∈ H

with xei = (y + z)ei and yei ∈ S′, then zei /∈ S′. Now, observe that yei ∈ S′

implies that yei ∈ S, because if yei /∈ S, then yei ∈ H. In the case that
zei /∈ S, we have that zei /∈ S′ since H contains the gaps of S in the axes of
N

d
0. On the other hand, if zei ∈ S, as xei = (y + z)ei and yei ∈ S, we obtain

xei ∈ S. Hence, since xei ∈ S and xei ∈ H, it follows from the construction of
H that xei = h′ for some h ∈ H(S) outside the axes of Nd

0. Now, let y be such
that h = yei + y. By the definition, we conclude that the i-th coordinate of y
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is z. Since h /∈ S and yei ∈ S, we must have y /∈ S. Furthermore, because of
h is outside the axes of Nd

0, so is y. Since all coordinates of h and y, different
from the i-th, are the same, h′ lies in the axis Oxi and zei ∈ S, we conclude
that y′ = zei ∈ H. Therefore, S′ is a GNS.

In order to prove that S′ has corner c, let us show that hi = (ci−1)ei ∈ H
for all i ∈ [d]. First, notice that h1 ∈ H because there exists h ∈ H(S) such that
h1 = c1−1, and thus we have either h1 /∈ S or h1 = h′. In both cases, we obtain
h1 ∈ H. Now, let us consider hi for i ∈ [2, d]. If hi /∈ S, then hi ∈ H0 ⊂ H
and we are done. If hi ∈ S, there exists w = (w1, . . . , wr) ∈ H(S) such that
wi = ci − 1. If wjej /∈ S for all j ∈ [i − 1], as hi = wiei ∈ S, then hi = w′ and
thus hi ∈ H. Now, suppose that J = {j : wjej ∈ S and j < i} is a nonempty
set and let x = w − ∑

j∈J wjej /∈ S. There are two possibilities: (1) if x is in
the axis of Nd

0, then x ∈ H0 and thus x = hi; (2) if x is not in the axis of Nd
0:

since the i-th coordinate of x is wi = ci − 1 ≥ 1 and x ∈ H(S), we have that
hi = x′ because xiei = hi ∈ S. Thus, we can conclude that S′ has corner c.

Since every gap of S′ comes from at most one gap of S by the construction
of H, we have the inequality g(S′) ≤ g(S). �

Example 4.6. Consider the GNS S in N
2
0 with H(S) = {(1, 0), (1, 1), (3, 0)},

which has corner (4, 2). We shall construct the set H following the proof of The-
orem 4.5. In this case, H0 = {(1, 0), (3, 0)},H1 = ∅ and H = {(1, 0), (3, 0)} ∪
{(1, 1)′}. Theorem 4.5 ensures that S′ = N

2
0 \ H is a GNS with corner (4, 2)

and now we explicit it by the set of gaps. By definition, (1, 1)′ = (0, 1), since
(1, 0) /∈ S and (0, 1) ∈ S. Hence, H = {(1, 0), (3, 0), (0, 1)} is the set of gaps
of S′, which is a GNS with all the gaps in the axis. Moreover, g(S) = 3 and
g(S′) = 3.

Example 4.7. Consider the GNS S in N
4
0 with

H(S) = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 2, 0), (0, 0, 3, 0), (0, 0, 3, 1),
(0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 0, 3), (1, 0, 1, 0),
(1, 0, 2, 0), (1, 0, 2, 2), (1, 0, 6, 0), (3, 0, 0, 0)}.

Observe that S has corner (4, 2, 7, 4). This example also illustrates the
method of obtaining S′ from S as in Theorem 4.5. In this case,

H0 = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 2, 0), (0, 0, 3, 0), (1, 0, 0, 0), (3, 0, 0, 0)},

H1 = {(0, 0, 1, 1), (0, 0, 3, 1), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 2, 0)}
and the set H is

H = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 2, 0), (0, 0, 3, 0), (1, 0, 0, 0), (3, 0, 0, 0)}
∪{(0, 1, 1, 1)′, (1, 0, 0, 3)′, (1, 0, 2, 2)′, (1, 0, 6, 0)′}.

Theorem 4.5 ensures that S′ = N
2
0 \ H is a GNS with corner (4, 2, 7, 4)

and its set of gaps is

H(S′) = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 2, 0), (0, 0, 3, 0), (1, 0, 0, 0), (3, 0, 0, 0),
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(0, 1, 0, 0), (0, 0, 0, 3), (0, 0, 0, 2), (0, 0, 6, 0)}.

Furthermore, g(S) = 15 and g(S′) = 10.

Next, we present a lower bound for the genus of a GNS in terms of the
coordinates of its corner.

Proposition 4.8. Let S ⊂ N
d
0 be a GNS with corner c = (c1, . . . , cd), with ci ≥ 2

for all i. Then

d∑

i=1

ci ≤ 2 g(S).

Proof. We want to minimize g(S), for S in the set of all GNS with fixed corner
c. By Theorem 4.5, we only have to check those GNS with all the gaps in the
axes of Nd

0.
Let S be a GNS with all the gaps in the axes of Nd

0 and consider Si :=
{s ∈ N0 : sei ∈ S}. One can check that Si is a numerical semigroup with
conductor ci. Let gi be the genus of Si. By numerical semigroups properties,
we obtain ci ≤ 2gi, for all i and the genus of S is given by

∑
gi. Hence,∑

ci ≤ ∑
2gi = 2g(S) and we are done. �

Notice that both GNS given in Example 4.6 are examples that reach this
last bound.

Remark 4.9. The arithmetic-geometric mean inequality guarantees that if S ⊂
N

d
0 is a GNS with genus g and corner c = (c1, . . . , cd), with ci ≥ 2, for all i,

then

d∏

i=1

ci ≤
(

1
d

·
d∑

i=1

ci

)d

≤
(

2g

d

)d

.

Next, we exhibit a GNS with corner c with the least possible genus. For
this propose, we deal with irreducible numerical semigroups. Recall that a
numerical semigroup with genus g and conductor c satisfies g ≥ ⌈

c
2

⌉
. Recall

furthermore that a numerical semigroup is irreducible if, and only if, g =
⌈

c
2

⌉

(cf. [15]). Moreover, for each c ∈ N, c ≥ 2, there exists an irreducible numerical
semigroup with conductor c.

Corollary 4.10. Let c = (c1, . . . , cd) ∈ N
d
0, where ci ≥ 2 for all i. There exists

a GNS T with corner c, such that

g(T ) =
d∑

i=1

⌈ci

2

⌉
.

Moreover, this is the least possible genus for a GNS with corner c.
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Proof. For each i ∈ [d], let Ti be an irreducible numerical semigroup with
conductor ci. By taking H :=

⋃d
i=1{hei : h /∈ Ti}, one can check that

T = N
d
0 \ H is a GNS with genus

∑d
i=1

⌈
ci
2

⌉
.

Now, let S be a GNS with corner c. From Theorem 4.5, there exists a
GNS S′ with all gaps in the axes such that g(S′) ≤ g(S). For each i ∈ [d],
consider the numerical semigroup S′

i := {s ∈ N0 : sei ∈ S′} with genus gi.
From the construction of S′

i, its conductor is ci (since the corner of S′ is c)
and the genus of S′ is

∑
gi. Since gi ≥ ⌈

ci
2

⌉
for each i ∈ [d], we conclude that

g(S) ≥ g(S′) ≥
d∑

i=1

⌈ci

2

⌉
.

�

To end this section, we explain the reason for the hypothesis ci ≥ 2, for
every i in last results. We also explain how we can obtain a relation between
the sum of the coordinates of the corner and the genus of a GNS, if some of the
coordinates of the corner are equal to 1. For instance, the GNS S = N

2
0\{(1, 0)}

has genus g = 1 and corner (2, 1); the sum of the coordinates of the corner
is greater than twice the genus. Hence, Proposition 4.8 does not hold in this
case.

Remark 4.11. Let S ⊂ N
d
0 be a GNS with genus g > 0 and corner c =

(c1, . . . , cd) such that the set of indices U(c) = {j : cj = 1} is nonempty.
We want to obtain an upper bound for the sum of the coordinates of c in
terms of g, where |U(c)| = k is a positive number. By the definition of corner,
we conclude that k ≤ d − 1. Notice that all the gaps of S are of the form
h = (h1, . . . , hd), where hi = 0, if i ∈ U(c). Hence, we can look at the set
H(S) as a subset of Nd−k

0 , by erasing all the coordinates that are in the j-th
position, with j ∈ U(c). This new set is the set of gaps of a GNS in N

d−k
0

with corner c̄, which has all the coordinates greater than one. Moreover, the
genus of this new GNS is the same as the genus of S. Hence, we can apply
Proposition 4.8. In this case, the sum of the coordinates of the corner c̄ is such
that

∑
i/∈U(c) ci ≤ 2g. By summing up

∑
i∈U(c) ci in both sides and recalling

that ci = 1, for i ∈ U(c), we conclude that
d∑

i=1

ci ≤ 2g + k,

which is globally bounded by 2g + d − 1.

5. The Tree of GNS with Fixed Corner

In this section, we give an algorithm to compute all the GNSs with fixed corner.
Consider C(c) the family of GNSs having corner c. From Proposition 3.3, we
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shall consider c ∈ N
d \ {1} and one can take the ordinary GNS O(c) in C(c).

Thus, we present a procedure to obtain all elements in C(c) from O(c). In
special, we show that this method allow us arranging all GNSs having fixed
corner into a rooted tree.

For x ∈ N
d
0, recall that C(x) = {y ∈ N

d
0 : y ≤ x}. Given a GNS S and

x ∈ N
d
0 such that C(x − 1) ⊃ H(S), define for each i ∈ [d] the sets

∇i(S,x) := {h ∈ H(S) : hi = xi − 1 and hj ≤ xj − 1 for j �= i},

where h = (h1, . . . , hd) and x = (x1, . . . , xd). Next, we characterize GNSs with
fixed corner c in terms of the sets ∇i(S, c).

Lemma 5.1. Let S ⊆ N
d
0 be a GNS and let c ∈ N

d
0 such that C(c− 1) ⊃ H(S).

Then S has corner c if and only if ∇i(S, c) �= ∅ for all i ∈ [d].

Proof. If ∇i(S, c) = ∅ for some i ∈ [d], then there is no gap of S such that
its i-th coordinate is ci − 1. Hence, the i-th coordinate of lub(H(S)) is smaller
than ci − 1, contradicting Theorem 3.5. On the other hand, if ∇i(S, c) �= ∅ for
all i ∈ [d], then c = lub(H(S)) + 1 is the corner of S by Theorem 3.5. �

We now consider unitary extensions of GNSs which preserve the property
of having a fixed corner c. Recall that if S is a GNS and x /∈ S, then S ∪ {x}
is a GNS if and only if x ∈ SG(S) (see [4] Proposition 2.3).

Proposition 5.2. Let S ⊆ N
d
0 be a GNS with corner c and x ∈ SG(S). Then

S ∪ {x} has corner c if and only if ∇i(S, c) �= {x} for all i ∈ [d].

Proof. By Lemma 5.1, it suffices to notice that for each i ∈ [d] we have ∇i(S ∪
{x}, c) �= ∅ if and only if ∇i(S, c) �= {x}. �

Recall that if T is a GNS and x ∈ T , then T \ {x} is a GNS if and only if
x is a minimal generator of T , that is, x ∈ T ∗ \ (T ∗ +T ∗) (see [10] Proposition
4.1). We now look for conditions on a minimal generator of a GNS so that the
new GNS obtained by taking it out has the same corner as the previous one.

Proposition 5.3. Let T ⊆ N
d
0 be a GNS with corner c and let x be a minimal

generator of T . Then T \ {x} has corner c if and only if x ≤ c − 1.

Proof. If T \ {x} has corner c, as x ∈ H(T \ {x}), then x ≤ c− 1. Conversely,
if x ≤ c− 1, then H(T ) ∪ {x} ⊂ C(c− 1). Since H(T \ {x}) = H(T ) ∪ {x} and
∇i(T \ {x}, c) ⊇ ∇i(T, c) for all i ∈ [d], the result follows from Lemma 5.1.
�

Remark 5.4. The unitary extensions of GNSs with corner c given in Proposi-
tions 5.2 and 5.3 are inverse procedures to each other in the sense that, for S
and T GNSs with corner c, we have:

• if x ∈ SG(S), then x is a minimal generator of S ∪ {x} with x ≤ c − 1;
and

• if x is a minimal generator of T with x ≤ c − 1, then x ∈ SG(T \ {x}).
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In order to obtain GNSs with a same corner by adding special gaps,
motivated by Proposition 5.2, let us consider the following definition.

Definition 5.5. For S ⊆ N
d
0 a GNS with corner c, define

D(S) := {x ∈ SG(S) : ∇i(S, c) �= {x} for all i ∈ [d]}.

Next, we describe a procedure to obtain all the GNSs in C(c). The main
idea is building up GNSs with corner c from O(c) (the ordinary GNS with
corner c) through Proposition 5.2 by considering unitary extensions S ∪ {x}
for elements x ∈ D(S), where S is a GNS with corner c. However, this method
may provide redundant GNSs in C(c), in the sense that the same GNS can
be generated more than one time in this way. To avoid this situation, we will
consider a special subset of D(S) as follows.

Definition 5.6. Let S ⊆ N
d
0 be a nonordinary GNS with corner c and let ≺ be

a monomial order. Considering L(S) := {x ∈ S : x ≤ c − 1}, define

D≺(S) := {x ∈ D(S) : x ≺ y for all y ∈ L(S) \ {0}}.
We also define the element

low≺(S) := min≺ (L(S) \ {0}).

Observe that L(O(c)) \ {0} = ∅. Thus, we shall consider D≺(O(c)) =
D(O(c)), which coincides with SG(O(c)), the set of special gaps of O(c). Notice
that, except for O(c), it is always ensured the existence of a such minimal
generator x in a GNS with corner c as in Proposition 5.3.

Lemma 5.7. Let T ⊆ N
d
0 be a nonordinary GNS with corner c. Let ≺ be a

monomial order and x = low≺(T ). Then T \ {x} is a GNS with corner c.

Proof. Since T is nonordinary, the set L(T ) \ {0} = {z ∈ T ∗ : z ≤ c − 1} is
not empty, and thus the element x is well-defined. Notice that x is a minimal
generator of T since otherwise we could write x = x1 + x2 with x1,x2 ∈ T ∗,
which implies that x1 ≺ x, contradicting the minimality of x with respect to
≺ in L(S) \ {0} because x1 ≤ x ≤ c − 1. Hence, T \ {x} is a GNS that has
corner c by Proposition 5.3. �

Lemma 5.8. Let S ⊆ N
d
0 be a nonordinary GNS with corner c and let ≺ be a

monomial order. Then there exists a chain S1 ⊃ S2 ⊃ · · · ⊃ Sn−1 ⊃ Sn of
GNSs with corner c such that:

• S1 = S;
• Si+1 = Si \ {low≺(Si)} for i ∈ [n − 1]; and in particular
• Sn = O(c).

Proof. For S1 = S, it follows from Lemma 5.7 that S1 \ {x1} has corner c,
for x1 = low≺(S1). Putting S2 = S1 \ {x1}, if S2 is ordinary we conclude the
procedure, and otherwise we consider S3 = S2 \ {x2} with corner c, where
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x2 = low≺(S2), by Lemma 5.7. Repeating this argument for each i ≥ 2, we
obtain a GNS Si+1 = Si \ {xi} with corner c, where xi = low≺(Si). The
procedure stops when it reaches Si = O(c) for some i (and it occurs because
L(S) is finite). �
Remark 5.9. It is worth to mention that, in the previous result, the element
low≺(Si) ∈ D≺(Si+1) for each i. Indeed, as observed in Remark 5.4, low≺(Si) ∈
SG(Si+1). Furthermore, we get ∇j(Si+1, c) �= {low≺(Si)} for all j ∈ [d], by
using Proposition 5.2 with the fact that Si = Si+1 ∪ {low≺(Si)} has corner c.
Hence, we have low≺(Si) ∈ D(Si+1). As low≺(Si) = min≺(L(Si)\{0}), we get
low≺(Si) ≺ y for all y ∈ L(Si+1) \ {0} because L(Si) ⊃ L(Si+1).

As a consequence, gathering the conclusions of Proposition 4.1, Corol-
lary 4.10 and Lemma 5.8, we obtain the distribution of genera of GNSs with
prescribed corner.

Corollary 5.10. Given a pair (g, c) ∈ N × {x ∈ N
d : xi ≥ 2 for all i}, there

exists a GNS with corner c and genus g if, and only if,
⌈

c1
2

⌉
+ · · · +

⌈
cd
2

⌉ ≤ g ≤ |c| − 1.

In order to provide a procedure that gives all GNSs having fixed corner
c, without repetitions of GNSs, let us consider the following definition.

Definition 5.11. Let ≺ be a monomial order, c ∈ N
d and let C(c) be the set of

GNSs having corner c. Define G≺(c) = (C(c), E≺) to be the graph whose set
of vertices is C(c) and the set of edges is E≺ := {(T, S) ∈ C(c) × C(c) : S =
T \ {low≺(T )}}. If (T, S) ∈ E≺, T is called a child of S.

The following result shows us it is possible to arrange GNSs having fixed
corner into a rooted tree.

Theorem 5.12. Let ≺ be a monomial order and c ∈ N
d. Then G≺(c) is a

rooted tree whose root is O(c) and the children of S ∈ C(c) are S ∪ {x}, where
x ∈ D≺(S).

Proof. Given S ∈ C(c), it follows from Lemma 5.8 that there exists a chain of
GNSs S1 ⊃ S2 ⊃ · · · ⊃ Sn−1 ⊃ Sn such that S1 = S, Si+1 = Si \ {low≺(Si)}
and Sn = O(c). In particular, (S1, S2), (S2, S3), . . . , (Sn−1, Sn) is a path of
edges of G≺(c) linking S to O(c). If another path of edges of G≺(c) links S
to O(c), then for some i ∈ [n] there are two different GNSs T1, T2 ∈ C(c)
such that (Si, T1), (Si, T2) ∈ E≺. By the definition of G≺(c), we have T1 =
Si \ {low≺(Si)} = T2, which contradicts T1 �= T2. Hence, we conclude that
G≺(c) is a rooted tree whose root is the vertex O(c). Now, if T is a child of
S, then S = T \ {low≺(T )}, and therefore T = S ∪ {low≺(T )}. In particular,
following the same idea of Remark 5.9, we obtain that low≺(T ) ∈ D≺(S). On
the other hand, if x ∈ D≺(S) then T = S∪{x} is a child of S, since in this case
S = T \ {x} with x = low≺(T ) because L(T ) = L(S) ∪ {x} and x ∈ D≺(S).
�
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Figure 1. The tree of GNSs in N
2
0 with fixed corner c =

(3, 2), with respect to the lexicographical order, of Exam-
ple 5.13

Observe that different monomial orders ≺1 and ≺2 in N
d
0 may provide

different trees G≺1(c) and G≺2(c), although both sets of vertices are the same.

Example 5.13. Given c = (3, 2), let us compute the rooted tree G≺(c) of GNSs
having corner c by considering the lexicographic order. Since a such GNS S
is entirely described by the set L(S), we shall use those sets in the Fig. 1 to
illustrate the GNSs in the rooted tree. In Fig. 1, the elements of an S ∈ C(c)
are denoted by the black points and those of H(S) are denoted by the red ones.

Hence, we have a procedure that computes all GNSs with corner c, with-
out repetitions, which relies on Theorem 5.12. It is presented in Algorithm 1
as follows.

6. Bounds on the Number of GNS with Fixed Corner

In this section, we provide lower and upper bounds on the number of GNSs
having fixed corner. Since the notions of conductor and corner coincide for
d = 1, the well known bounds due to Backelin [1] for the number of numerical
semigroups with fixed Frobenius number give us naturally the following bounds
for the number N(c) of numerical semigroups with corner c as

2� c−2
2 � ≤ N(c) ≤ 4 · 2� c−2

2 �.

As the lower bound above comes up from the observation that every subset A
of {n ∈ N : � c

2� ≤ n < c−1} provides a numerical semigroup with conductor c
by considering A∪O(c), where O(c) = {0, c, c+1, ...} is the ordinary numerical
semigroup with conductor c, we will employ a generalization of this idea to
give a lower bound for the number of GNSs in N

d
0, with d ≥ 2, having fixed

corner c ∈ N
d \ {1}.

6.1. A Lower Bound on the Number of GNSs with Fixed Corner

Let Pd be the power set of [d]. for all J ∈ Pd and y = (y1, . . . , yd) ∈ N
d
0 \C(1),

we define

ΩJ (y) : =
{
x ∈ N

d
0 :

⌈yj

2
⌉ ≤ xj ≤ yj − 1 for j ∈ J and xi
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Algorithm 1 Algorithm for computing the set C(c) of all GNSs with fixed
corner c
Require: c ∈ N

d \ {1} and a monomial order ≺ in N
d
0.

Ensure: the set C(c) of all GNSs with fixed corner c.
Compute the ordinary GNS O(c).
Set C(c) = {O(c)}.
n = 1.
Set I[n] = ∅.
for x ∈ SG(O(c)) do

Append O(c) ∪ {x} to I[1].
Append O(c) ∪ {x} to C(c).

end for
while I[n] �= ∅ do

I[n + 1] = ∅.
for S ∈ I[n] do

Compute D≺(S).
for x ∈ D≺(S) do

Append S ∪ {x} to C(c).
Append S ∪ {x} to I[n + 1].

end for
end for
n ← n + 1.

end while
return C(c).

<
⌈yi

2
⌉

for i ∈ [d] \ J
}
.

Remark 6.1. Observe that for all two distinct J, J ′ ∈ Pd, the sets ΩJ (y) and
ΩJ ′(y) are disjoint. Furthermore, these sets ΩJ (y) split the region C(y−1) of
N

d
0 into 2d disjoint subsets. The Figures 2 and 3 illustrate such decomposition

in N
2
0 and N

3
0:

Proposition 6.2. Let d ≥ 2, c = (c1, . . . , cd) ∈ N
d, with cj > 1 for all j and let

J ∈ Pd be a nonempty set. Then, for all subset A ⊆ ΩJ (c),

S = A ∪ O(c)

is a GNS in N
d
0 with corner c.

Proof. Let ∅ �= J ∈ Pd and A ⊆ ΩJ (c). Note that S is a GNS. In fact, 0 ∈ S
and N

d
0 \ S is finite, since O(c) is an ordinary GNS and O(c) ⊆ S. Now, let

α,β ∈ S. If α or β lies in O(c), then it is clear that α + β ∈ S. If α,β ∈ A,
then α+β = (α1+β1, . . . , αd+βd) ∈ O(c) ⊆ S, since αj +βj ≥ cj for all j ∈ J .
Hence, A∪O(c) is a GNS. Let us prove that S has corner c. If i ∈ [d] and α ≥ ci,
then
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Figure 2. The decomposition of a region C(y−1) in N
2
0 into

the 4 disjoint subsets Ω∅(y), Ω{1}(y), Ω{2}(y), and Ω{1,2}(y)

Figure 3. The region C(y−1) ⊂ N
3
0 splits into the 8 disjoint

sets Ω∅(y), Ω{1}(y), Ω{2}(y), Ω{3}(y), Ω{1,2}(y), Ω{1,3}(y),
Ω{2,3}(y), and Ω{1,2,3}(y)

(β1, . . . , βi−1, α, βi+1, . . . , βd) ∈ O(c) ⊆ S, since c = (c1, . . . , cd) is the cor-
ner of O(c). Thus, the condition (1) of Definition 3.1 is verified. So, it remains
to verify the part (2) of Definition 3.1. Let α = (α1, . . . , αd) ∈ A. For J = [d],
we have 1 ≤ αi ≤ ci − 1 for all i ∈ [d], which implies that (ci − 1)ei /∈ S, for
all i ∈ [d]. If J �= [d], then there exists � ∈ [d] \ J such that α� < c� − 1, and
thus c − 1 /∈ S. Therefore, we conclude that c is the corner of S. �

As a consequence, we obtain a lower bound for the number of GNSs in
N

d
0 with corner c as follows.
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Theorem 6.3. Let d ≥ 2 and c = (c1, . . . , cd) ∈ N
d, with ci > 1 for all i, and

let N(c) be the number of GNSs in N
d
0 with corner c. Then

N(c) ≥ 1 +
∑

J∈Pd\{∅}

(
2nJ − 1

)
,

where

nJ = nJ (c) =
∏

j∈J

� cj
2 	

∏

t∈[d]\J

� ct
2 �.

Proof. For a fixed J ∈ Pd, we have that

|{A : ∅ �= A ⊆ ΩJ (c)}| =
[
2

∏
j∈J (cj−
 cj

2 �) ∏
t/∈J
 ct

2 �] − 1.

Note that, by Remark 6.1, if A �= ∅, then the GNSs of the form A ∪ O(c) are
all distinct. So, as O(c) ∈ C(c), we can conclude that

|C(c)| ≥ 1 +
∑

J∈Pd\{∅}

[
2

∏
j∈J (cj−
 cj

2 �) ∏
t/∈J
 ct

2 � − 1
]
.

Since a − �a/2� = �a/2	 for all integer a, we obtain the stated formula. �

Remark 6.4. Despite the idea behind the lower bound given in Theorem 6.3
is the same employed by Backelin [1], it is worth to notice why Theorem 6.3
cannot be applied to the case d = 1. The reason is that for d = 1 the set Ω{1}
becomes {n ∈ N : � c

2� ≤ n ≤ c − 1}, and hence a subset A ⊆ Ω{1} containing
c − 1 does not give a numerical semigroup A ∪ O(c) with conductor c. On the
other hand, for d ≥ 2, the decomposition of C(c − 1) into the disjoint regions
ΩJ (c) takes into account that for each i ∈ [d] there are gaps of the GNSs
A ∪ O(c) with at least one coordinate equal to ci − 1, for A ⊆ ΩJ (c) as in
Proposition 6.2, no matter the choice of J ∈ Pd \ {∅}.

6.2. An Upper Bound on the Number of GNSs with Fixed Corner

As in the previous subsection, let us consider for each c ∈ N
d \{1} the decom-

position of C(c − 1) into 2d subsets

ΩJ (c) : =
{
x ∈ N

d
0 :

⌈cj

2
⌉ ≤ xj ≤ cj − 1 for j ∈ J and xi

<
⌈ci

2
⌉

for i ∈ [d] \ J
}
,

where J ∈ Pd, the power set of [d]. We note that, for every x ∈ Ω∅(c) \ {0},
there exists n ∈ N such that

nx ∈ C(c − 1) \ Ω∅(c).

The following result is about configurations of points in C(c − 1) that do not
provide GNSs.
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Lemma 6.5. Let c = (c1, . . . , cd) ∈ N
d, with cj > 1 for all j ∈ [d]. Then, for

all nonempty subset A ⊆ Ω∅(c) with A �= {0}, there are at least 2|c|−|Ω∅(c)|−1

subsets B of C(c − 1) \ Ω∅(c) such that

A ∪ B ∪ O(c)

is not a GNS in N
d
0.

Proof. If x is an element in a nonempty A ⊆ Ω∅(c), then nx ∈ C(c−1)\Ω∅(c)
for some n ∈ N. Hence, for all subset B of C(c− 1) \ Ω∅ that does not contain
nx, we have that the A ∪ B ∪ O(c) is not a GNS since it is not closed to
addition. As |C(c− 1) \ Ω∅(c)| = |c| − |Ω∅(c)|, there are exactly 2|c|−|Ω∅(c)|−1

such subsets of C(c − 1) \ Ω∅(c). �
A consequence of the previous lemma is the following upper bound for

N(c).

Theorem 6.6. For c = (c1, . . . , cd) ∈ N
d, with ci > 1 for all i = 1, . . . , d, let

N(c) be the number of GNSs in N
d
0 with corner c. Then

N(c) ≤ 2|c|−1 − (2|Ω∅(c)|−1 − 1) · 2|c|−|Ω∅(c)|−1.

Proof. In order to bound N(c) we will count the configurations of points in
C(c − 1) which do not provide GNSs. To begin with, we note that there
are 2|Ω∅(c)|−1 − 1 possibilities of nonempty subsets A in Ω∅(c), different from
{0}. From each one of these subsets A, there are 2|c|−|Ω∅(c)|−1 possibilities of
subsets B in C(c − 1) \ Ω∅(c) such that A ∪ B ∪ O(c) is not a GNS, by the
previous lemma. Hence, putting together these possibilities, there are at least
(2|Ω∅(c)|−1 − 1) · 2|c|−|Ω∅(c)|−1 configurations of points in C(c − 1) \ {0} that
when joined to O(c) do not provide GNSs. Now, since C(c−1)\{0} has |c|−1
elements, there are 2|c|−1 possibilities of sets containing 0 in C(c − 1). From
this amount, by using the lower bound on subsets of C(c−1) that do not give
GNSs, we obtain that the number of GNSs with corner c is upper bounded by
2|c|−1 − (2|Ω∅(c)|−1 − 1) · 2|c|−|Ω∅(c)|−1. �

Next, we present Table 1 with the lower and upper bounds obtained in
Theorems 6.3 and 6.6 and the exact values of N(c), which has been com-
puted using the Algorithm 1, implemented in GAP [11] with the package
numericalsgps [8]. Observe that every permutation in the coordinates of a
given c provides the same lower bound, upper bound and exact value of N(c).

7. Concluding Remarks

In the preceding sections, we addressed the natural relations of the corner ele-
ment with other invariants of a GNS, the problem of computing all GNSs with
fixed corner, and basic estimates on the number of such GNSs. As naturally
occurs when an invariant is introduced, many questions arise. We list here
some of them. What is the magnitude of the number of GNSs in N

d
0 with a
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Table 1. Lower bound (LB), upper bound (UB) and exact
values for N(c)

c LB N(c) UB c LB N(c) UB

(2,2) 4 4 8 (6,3) 78 3,212 67,584
(3,2) 6 10 24 (5,4) 94 8,758 270,336
(3,3) 8 38 144 (2,2,2) 8 52 128
(4,2) 10 30 96 (3,2,2) 14 388 1,536
(4,3) 22 203 1,152 (4,2,2) 22 2,903 24,576
(5,2) 14 66 320 (3,3,2) 30 6,930 73,728
(6,2) 22 199 1,280 (4,3,2) 58 136,277 4,718,592
(5,3) 26 669 8,448 (2,2,2,2) 16 4,382 32,768
(4,4) 46 1,587 18,432 (3,2,2,2) 30 222,734 6,291,456

fixed corner? We saw that these GNSs can be divided into two classes: what
can be said about the proportion of Frobenius and non-Frobenius GNSs with
fixed corner? Apart from some known families of Frobenius GNS, which other
families of GNSs could be described in terms of the corner element? In the
spirit of the recent advances in numerical semigroups (see the surveys [7,16]),
is there any approach involving the corner element for counting GNSs in N

d
0

by genus or dealing with the generalized Wilf conjecture?
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[2] Cisto, C., Delgado, M., Garćıa-Sánchez, P.A.: Algorithms for generalized numer-
ical semigroups. J. Algebra Appl. 20(5), 2150079 (2021)

[3] Cisto, C., Failla, G., Utano, R.: On the generators of a generalized numerical
semigroup. Analele Universitatii “Ovidius” Constanta - Seria Matematica 27(1),
49–59 (2019)

[4] Cisto, C., Failla, G., Peterson, C., Utano, R.: Irreducible generalized numerical
semigroups and uniqueness of the Frobenius element. Semigroup Forum 99, 481–
495 (2019)

[5] Cisto, C., Dipasquale, M., Failla, G., Flores, Z., Peterson, C., Utano, R.: A gen-
eralization of Wilf’s conjecture for generalized numerical semigroups. Semigroup
Forum 101, 303–325 (2020)
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