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Abstract. We show that along the almost Hermitian curvature flow, the
non-positivity of the first Chern—Ricci curvature can be preserved if the
initial almost Hermitian metric has the Griffiths non-positive Chern cur-
vature. If additionally, the first Chern—Ricci curvature of the initial metric
is negative at some point, then we show that the almost complex struc-
ture of a compact non-quasi-Kéahler almost Hermitian manifold equipped
with such a metric cannot be integrable.
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1. Introduction

It is known that the Ricci flow can be used to give an alternative proof of the
uniformization theorem of Riemann surfaces. Likewise, it can be questioned
whether a geometric flow is able to be applied for classifying non-Kéhler com-
plex surfaces. These flows should preserve Hermitianness and some additional
structures such as pluriclosedness, and should be close to the Ricci flow as
much as possible. From this point of view, J. Streets and G. Tian introduced
a parabolic evolution equation of pluriclosed metrics with a pluriclosed initial
metric wy on a compact Hermitian manifold,
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%w(t) = 00, w(t) + 55;(t)w(t) — P(g(t)),
w(0) = wo,

which is called the pluriclosed flow, where 8;‘( ) and 5;(15) are decompositions
of the L2-adjoint operator of the exterior differential operator and P(g(t)) is
the Ricci-type curvature of the Chern connection with respect to metrics g(t)
(cf. [9]). Their studies motivated us to generalize their results to almost Her-
mitian geometry. In [4], the author defined two parabolic flows; the almost
Hermitian flow (AHF) and the almost Hermitian curvature flow (AHCF) on
almost complex manifolds, which coincide with the pluriclosed flow and the
Hermitian curvature flow respectively on complex manifolds, and studied the
relationship between these parabolic evolution equations on a compact almost
Hermitian manifold. In [5], we derived higher order derivative etimates in the
presence of a curvature bound. And moreover, we exibited a long-time ex-
istence obstruction for solutions to the almost Hermitian curvature flow by
showing smoothing estimates for the curvature and torsion.

In the present paper, we investigate the AHCF, which coincides with the
AHF (cf. [4, Theorem 1.2]), on a compact almost Hermitian manifold and we
show that if the initial metric has the non-positive first Chern—Ricci curvature,
then this positivity can be preserved along the AHCF. We mimic the argument
in the proof of the positivity preservation properties of the Hermitian curvature
flow (cf. [7]). Such an argument was initiated by G. Liu in order to prove that
the Kéhler—Ricci flow preserves the non-positivity of Ricci curvature if the
initial metric has non-positive bisectional curvature (cf. [8]).

Let (M, J) be a compact almost complex manifold and let g be an almost
Hermitian metric on M. Let {Z,} be an arbitrary local (1,0)-frame around a
fixed point p € M and let {¢"} be the associated coframe. Then the associated
real (1,1)-form w with respect to g takes the local expression w = v/—1g,:¢" A
¢*. We will also refer to w as to an almost Hermitian metric. Let ©Q be the
curvature of the Chern connection and € splits in Q = H + R + H, where
ReT(AYMM @ AV M), H € T(A?°M @ AV M) (see Sect. 2 in detail). The
almost Hermitian flow (AHF) with an almost Hermitian initial metric wp on
(M, J) is as follows:

%w(t) = 00, w(t) + 55;(t)w(t) — P(w(t)),

w(0) = wp,

where 3;(t) and 5;(t) are the L?-adjoint operators with respect to metrics g(t),
and P(w) is one of the Ricci-type curvatures of the Chern curvature, which is
callaed the first Chern—Ricci curvature and locally given by P;; = gklRijkl-.
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We have proven the following short-time existence result for the AHF.

Proposition 1.1. (cf. [4, Theorem 1.1]) Given a compact almost Hermitian
manifold (M,wo,J), there exists a unique solution to the AHF with initial
condition wg on [0,¢) for some e > 0.

We denote by S one of the Ricci-type curvatures of the Chern curvature,
which is called the second Chern-Ricci curvature and is locally given by S;; =
9" Ry

It has been proved that a solution of the almost Hermitian flow with
initial condition gq is equivalent to a solution of the following parabolic flow
on a compact almost complex manifold with an almost Hermitian metric, we
call it the almost Hermitian curvature flow (AHCF):

%g(t) = —S(g(t)) — Q"(9(t) — Q%(g(t)) + BT"(9(t)) + Z(T")(9(t)),

9(0) = go,

where Q',Q7, Q% are quadratics in the torsion of the Chern connection (cf.
[11, pg. 712])

Qi = T Tiirr - Qi = Tk Trags - Q= TirkTjirs Wi = Tir,
BTi/j — ngTz‘rﬁ + B..T -+ B?TT = B%‘iwm

pt=prj Py

and
Z(T") ;5 = —Ze(T3) 955 — Z3(wi) — g"VT}; Z5(grg)-

These components are defined using an arbitrary unitary frame. In all this
paper, we assume the Einstein convention omitting the symbol of sum over
repeated indexes.

Note that P = S + divV T’ — Vi + Q7 + Q® for any almost Hermitian
metric g (cf. [11, Lemma 3.5]), where T” is the torsion of the Chern connection
V associated to g, (diva’)ij = gMViTyi5, (V)5 = g¥'ViTy,.

We say that a Hermitian metric g is pluriclosed if its associated real
(1,1) form w satisfies 90w = 0. We often write w as a metric and say that w is
pluriclosed as well. In this paper, we will call the following parabolic flow on
a compact complex manifold the Hermitian curvature flow (HCFg1):

%g(t) — —S(g(t)) + Q' (9(1)),

9(0) = go,

where go is a pluriclosed metric. We can obtain the following equivalence be-
tween the AHCF and the HCFg: when the almost complex structure J is
integrable.
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Proposition 1.2. (cf. [4, Proposition 1.1]) The AHCF coincides with the HCF
starting at a pluriclosed metric if J is integrable.

It is known that the HCFg1 coincides with the pluriclosed flow starting
at the same initial metric, which is called Streets—Tian identifiability theorem
(cf. [9, Proposition 3.3]). The following result is the generalized version of
Streets—Tian identifiability theorem.

Proposition 1.3. (cf. [4, Theorem 1.2]) Let (M, go,J) be a compact almost Her-
mitian manifold with the associated real (1,1)-form wo. Then a solution to the
AHCF with initial condition go is equivalent to a solution to the AHF starting
at the initial condition wy.

As in [10, Theorem 1.1], we have developed some regurarity results for
the AHCF. And also, we obtained the long-time existence obstruction for the
AHCEF in [5]. The long-time existence obstruction will be used for estimating
the evolution equation of the Chern curvature R along the AHCF in order to
prove our main theorem.

Proposition 1.4. (cf. [5, Theorem 1.1]) Let (M?",.J,g(t)) be a solution to the
AHCF for a mazimal time interval [0, Tpmaz) on a compact almost Hermitian
manifold which starts at the initial almost Hermitian metric go. The following
statements (i), (ii) and (iii) hold.
(i) We choose arbitrary 0 < T < Tpaz. Assume that, for a positive constants
a with a/T > 1, the following inequalities hold:

a 9 a , a
sup |Rl, < —, sup [T’ <—, sup |VT'|,4) < —.
mxon ST o 0T T o 90 =7

Then, for any m € N, the following inequalities hold:

C C

IV Ry < TTTL’:;, VT g4y < %
for any t € (0, 7], where Cy, 5, o is sSome positive constant depending only
onm, n and c.

(1) If Tas < 00, then

liTTsup max { max |Rlg(t), max |T/\§(t), max |VT'|g(t)} = o0.

(iii) If J is integrable and go is pluriclosed, then g(t) is pluriclosed for all
time in the existence interval and g(t) is a solution to the HCFg:. If
furthermore go is Kdhler, then g(t) is Kahler for all time and g(t) solves
the Kdhler—Ricci flow.

Remark 1.1. Notice the fact that for any C°°-family of C°°-functions
{Pt}1€(0,7max) SUCh that limsup, .~ maxys [p;| = co and for any 0 < 7 <
Tmax < 007

sup max |p;| < max max |p;| < 0o
tefo,r) M €, 7] M
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holds because M x [0, 7] is compact. We may apply this for max,, |T’|§(t),
max s |VT'|4) and maxys |R|gq since we have the long-time existence ob-
struction in Proposition 1.4 (ii). Hence, we may assume that the quantities
|T/|%‘O(g(t))7 IVT'|cog(ty) and |R|co(g(4)) are uniformly bounded on [0, 7), where

ooy = maxar |+ |ge)-

Note that we have shown that the uniform equivalence between almost
Hermitian metrics and the solution to the AHF (equivalently, the AHCF) in
[6]. By applying the strong maximum principle (see Sect. 5), we have the
following main result.

Theorem 1.1. Suppose (M, J, go) is a compact almost Hermitian manifold with
the Griffiths non-positive Chern curvature (see Definition 2.1). Let g(t), t €
[0, Tmax) be a solution to the AHCF starting from the initial metric g(0) = go,
where Tmax 18 the finite explosion time of the AHCF. Then there exists 0 <
T < Tmax Such that the first Chern—Ricci curvature P(g(t)) is non-positive on
[0,7]. Moreover, if the metric go has the first Chern—Ricci curvature which
is negative at some point, then there exists 0 < T < Tmax Such that for any
t € (0,7], P(g(t)) <0 everywhere on M.

Note that if the initial metric go has the Griffiths non-positive Chern
curvature and the first Chern—Ricci curvature which is negative at some point,
then go has the quasi-negative first Chern—Ricci curvature (see Definition 2.2).

A quasi-Kahler structure is an almost Hermitian structure whose real
(1,1)-form w satisfies (dw)™?) = Ow = 0, which is equivalent to the original
definition of quasi-Kéhlerianity: Dx J(Y)+ D x J(JY) = 0 for all vector fields
X,Y, where D is the Levi-Civita connection with respect to the metric w. By
letting IC, QIC, and H denote the class of Kahler manifolds, the class of quasi-
Kahler manifolds, and the class of Hermitian manifolds respectively, we have
that K =H N QK (cf. [2]).

Notice that in [7], M.-C. Lee has proven that the canonical line bundle
of a compact Hermitian manifold with nonpositive curvature in the sense of
Griffiths and quasi-negative Ricci curvature must be ample. The following
result can be easily given by applying this Lee’s result. We introduce another
proof by applying Theorem 1.1. The condition “non-quasi-Kéahler” means that
the almost complex structure J admits no quasi-Kahler metric.

Corollary 1.1. Suppose (M, J, go) is a compact non-quasi-Kdahler almost Her-
mitian manifold with Griffiths non-positive Chern curvature. Moreover, if the
metric go has the first Chern—Ricci curvature which is negative at some point,
then J cannot be integrable.

Proof. By the short-time existence result in [4], there exists a shot-time so-
lution g(t) to the AHCF starting from the metric go. By Theorem 1.1, there
exists 7 > 0 such that P(g(7)) < 0 on M. Now, let us assume that the almost
complex structure J is integrable. Then the manifold becomes Hermitian and
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the assumption “non-quasi-Kahler” implies that the complex structure J ad-
mits no Kahler metric from the fact that I = H N QK. Since we obtain that
c1(Kpr) > 0 from that P(g(7)) < 0 on M and the assumption that J is inte-
grable, then the manifold M must be Kahler, which is contradictory to that J
does not admit any Kéhler metrics. Therefore, the almost complex structure
J cannot be integrable under these assumptions. O

Note that if M C R”, M is almost-Kihler if and only if M is Kéhler, i.e.,
M is non-almost-Kéhler if and only if M is non-Kéhler (cf. [3]). This tells us
that we may change the condition “non-quasi-Kéahler” to “non-almost-Kéahler”,
which means that the almost complex structure J admits no almost-K&hler
metric, for a compact almost Hermitian manifold M C R7 in Corollary 1.1.

This paper is organized as follows: in Sect. 2, we recall some basic def-
initions and computations. In Sect. 3, we show some estimates for torsions
and the term Z(T') and the curvature H. And also we compute the evolution
equation of the curvature R and the first Chern—Ricci curvature P. In Sect. 4,
we show the preservation of non-positivity of the first Chern—Ricci curvature
on a compact almost Hermitian manifold with non-positive bisectional cur-
vature. In the last section, we prove if moreover, the initial metric has the
first Chern—Ricci curvature which is negative at some point, then there ex-
ists 7 > 0 such that the first Chern—Ricci curvature is negative on (0, 7] by
applying the strong maximal principle. Notice that we assume the Einstein
convention omitting the symbol of sum over repeated indexes in all this paper.

2. Preliminaries

2.1. The Nijenhuis Tensor of the Almost Complex Structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex
structure on M is an endomorphism J of TM, J € I'(End(TM)), satisfying
J? = —Idpy, where TM is the real tangent vector bundle of M. The pair
(M, J) is called an almost complex manifold. Let (M, J) be an almost complex
manifold. We define a bilinear map on C*>°(M) for X,Y € I'(T'M) by

AN(X,Y) = [JX,JY] = J[JX,Y] - J[X,JY] - [X,Y],

which is the Nijenhuis tensor of J. The Nijenhuis tensor NV satisfies N(X,Y) =
-N({Y,X),NJX,Y)=-JN(X,Y),N(X,JY)=—-JN(X,Y), NJX,JY) =
—~N(X,Y). For any (1,0)-vector fields W and V, N(V,W) = —[V, W],
NV,W) = N(V,W) = 0 and N(V,W) = —[V,W]19 since we have
AN(V,W) = =2([V,W]+V/=1J[V,W]), AN(V, W) = =2([V, W]-v/=1J [V, W]).
An almost complex structure J is called integrable if N = 0 on M. There are
several equivalent conditions for integrability: as we just mentioned that the
Nijenhuis tensor N;k of J vanishes, which is equivalent to that there exist
holomorphic coordinates compatible with J, and also equivalent to that the
space of (1,0)-vector fields related to J is closed under Lie bracket. Giving a
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complex structure to a differentiable manifold M is equivalent to giving an
integrable almost complex structure to M. Let (M, J) be an almost complex
manifold. A Riemannian metric g on M is called J-invariant if J is compatible
with g, i.e., for any X, Y € T'(TM), g(X,Y) = g(JX,JY). In this case, the
pair (g,J) is called an almost Hermitian structure. The fundamental 2-form
w associated to a J-invariant Riemannian metric g, i.e., an almost Hermitian
metric, is determined by, for X, Y € I(TM), w(X,Y) = ¢g(JX,Y). Indeed we
have, for any X, Y € T'(TM),

w(Y,X) = g(JY,X) = g(J?Y, JX) = —g(JX,Y) = —w(X,Y)

and w € T(A*T*M). We will also refer to the associated real fundamental
(1,1)-form w as an almost Hermitian metric. The form w is related to the
volume form dV; by nldV, = w".

The complexified tangent vector bundle is given by TCM = TM @ C
for the real tangent vector bundle TM. By extending J C-linearly and g, w
C-bilinearly to TCM, they are also defined on TCM and we observe that the
complexified tangent vector bundle 7€M can be decomposed as

T°M =T"°M & T M,
where THOM, T%1M are the eigenspaces of J corresponding to eigenvalues
v/—1 and —v/—1, respectively:
THM ={X —V-1JX|X e TM}, T"'M ={X+V-1JX|X € TM}.
Let A"M = ®p+qzr AP9M for 0 < r < 2n denote the decomposition of

complex differential r-forms into (p, q)-forms, where AP M = AP(AY°M) @
A9(AOTAT),

AYOM = {n+ vflJn|1] e A'MY, AM ={n- \/flJn|1] e A'M}

and A'M denotes the dual of TCM.
Let {Z,} be a local (1,0)-frame on (M,J) with an almost Hermitian
metric g and let {¢"} be a local associated coframe with respect to {Z,}, i.e.,

¢(Z;) =46 ij=1,....n

Since g is almost Hermitian, its components satsfy g;; = g;; = 0 and g,; =
gj; = Gi;- By using these local frame {Z,} and coframe {¢"}, we have

]\T(Zg7 Z;) = —[ZE,ZE}(LO) = N%an N(Z’H Zj) = _[Z’L—7Zj}(071) = Nigzlg’
and
1— ) . 1 7. A3
N = 5N;.’%Z;; ®(C"A¢T) + §N2}%Zk ® (¢" A ¢).

Let (M,g,J) be an almost Hermitian manifold with dimg M = 2n. An
affine connection D on TCM is called almost Hermitian connection if Dg =
DJ = 0. For the almost Hermitian connection, we have the following Lemma

(ct. [1]).
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Lemma 2.1. Let (M, J, g) be an almost Hermitian manifold with dimg M = 2n.
Then for any given vector valued (1,1)-form © = (0")1<;<yn, there exists a
unique almost Hermitian connection NV on (M, J,g) such that the (1,1)-part
of the torsion is equal to the given ©.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes
everywhere, then the connction is called the second canonical connection or
the Chern connection. We will refer the connection as the Chern connection
and denote it by V.

Now let V be the Chern connection on M. We can write

(2,25 = By Zy + Bl Ze,  |Zi,25) = B2y + B Zs,
%3, Z3) = Bi;Z, + B Zy

and also we here note that for instance, [Z;, Z;] = [Z;, Z;]"0 + [Z;, Z;]OY),
where

12, 250 = (12 25) ~ V112, 23),

12, 2519 = (12 25) + V112, 23).

For any p-form 1, there holds that
p+1

dd](Xl? .- 'aXp-‘rl) = Z(_1)1+1X(¢(X17 s 75(\2'7 s aXp+1))

+Z D (X, X1, X1y Xy ey Xy ooy Xpi1)

1<j
for any vector fields X1,..., Xp41 on M (cf. [13]). We directly compute that

1
d¢* = —5 B¢ Al = Byt nd! _,B e

For any real (1,1)-form n = \/_177¢3CZ A (7, we have

V-1 . . . i o

on = 5 (Zi(’?jl%) = Zj(miz) — Bijnse — Bigngs + Bj,;m@)C ACTACE,

N -

on = T (Zi(nki) = Zi(mj) — Byimsj + Bk]n% + Bl]n;%)Ck ACEA .
From these computations above, we have

vas) . . . i o

ow = 5 (Zi(ng) = Zi(9:ix) — Bjj9sx — Bip9js + legng)C ACTACF

= 7Tij]}<i A A CE

and
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Ow = 5= (Zj (9x3) = Zi(9x3) — Bii9sj + Bijgei + B%ng) CFACAE

V-1

= 5 Tiud A A
And in this sense, we also obtain for any (0, 1)-form g,
(08)k5 = Z1(B;) — By Bm = Vif;.
2.2. The Torsion and the Curvature on Almost Complex Manifolds

Since the Chern connection V preserves J, we have
ViZ; =12, ViZ;= F%Z,—.,
where
U7 = 9" Zi(gjs) — 9" 9;1Bis,  Th, = Zi(logdet g) — B
We can obtain that
I'; = B3
since the (1, 1)-part of the torsion of the Chern connection vanishes everywhere
(cf. [4]). For any (0, 1)-form 3, we have 3 = 3;¢,

Vi = Z1(8;) — U300 = Zi(B5) — By Br-
Note that the mixed derivatives V;Z; do not depend on g (cf. [11]). Let
{7j} be the connection form, which is defined by v; = I'y;(* + ngCg. The
torsion 7" of the Chern connection V is given by 7" = d¢* — (P A, T* =
dct —CP A ’y},, which has no (1, 1)-part and the only non-vanishing components
are as follows:

Ty =Ty -Lj— By Tj=-Bij
These tell us that T = (T%) splits into T = T’ +T", where T" € T'(A*°M ®
TYOM), T" € T(A"2M ® TH°M). We also lower the index of torsion and

denote it by
Tyji = T395k = Zi(955) — Zi(9ix) + BY,9ja — B, 9ia — B} 9.

Note that 7" depends only on J and it can be regarded as the Nijenhuis tensor
of J, that is, J is integrable if and only if 7" vanishes.

We denote by 2 the curvature of the Chern connection V. We can regard
Q as a section of A°M @ A M, Q € T(A2M @ AY'M) and Q splits in Q =
H+ R+ H, where R € T(AM'M @ A M), H € T(A2°M ® AV1M). The
curvature form can be expressed by Q} = d’y§ +9EA ;-

In terms of Z,’s, we have

Ri." = W2, Z5) = Zi(T5,) — Z5(T3)

s S T S S T S ' _ T
F15 5 = 50 = Bl + Byl = =Ry

ijk
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H;; " =W(Zi, Z5) = Z(Uyy,) — Z;(Ty) + D3TS5, — D15, — By TG,
- isj gk = _Hjikrv
ey = (7, 7;) = Z4(T%,) — 73(T%,) + TT%, — T2 T, — BST

ij is— jk js— ik ij— sk
s ’r _ _ [y T
—BiIy, = —Hy, "

We can write Q = (€}) = Q20 4 o £ 002 — F 4+ R+ H, with

020 _ <%Hijk e /\Cj)7 QY — (Rz‘jk rei /\CE)7
Q0 = (%Hm "CTA Cj)-

Then the Chern—Ricci form is (v/—1Q%) € ¢1(M, J) € H?>(M,R), where ¢ (M, J)
is the first Chern class of (M, J). .
We deduce that by using '}, = Z(log det g) — By,
sz = Rﬁr " .
= Zi(5,) — Z;(}) — Bj5T% — Bi51%,
= Z:(1},) — Z;Zi(log det g) + Z;(Bir) — B;;Zs(log det g) + B;; Bir — BjT's,
= Zi(T},) + [Zi, Z3](log det g) — Z; Z;3(log det g) + Z;(Bf;)
~[2:, 2;]" (log det g) + Bj; B, — B5TS,
= —(ZiZ; — Zi, Z;)*V) (log det g) + Z;(Bi;) + Zi(B5,) + Bj; Bl — BB,
Rij = Hj, "
= Zi(T},) — Z;(Tiy) — BT, — BTs,
= Z;Z;(log det g) — Zi(Bj;) — Z; Zi(log det g) + Z;(Bir)
—B;;Zs(log det g) + B{; Bi» — B;; Bs,
= (12:, 7)) — 2, Z;)"*) (log det g) — Zi(Bj;) + Z;(Biy) + B; By — Bj; By,
= (2, 2;) (log det g) - Zi(BJy) + Z;(Bly) + B}, Biz — By By,

— Z4(I%,) - Z3(T%,) - BT - BT,

= Z;(Bj,) — Z;(B;,) — B Zs(log det g) + Bj; By — By; Bg,

= —[2;, ;)0 (log det g) + Z;(BS,) — Z;(BL,) + BBl — BSBY,.
The Chern—Ricci form Ric(w) is defined by

/—1 -

Ric(w) := TRMC’“ AC V=P A C +
It is a closed real 2-form. If J is integrable, it is a closed real (1,1)-form. If
furthermore, J is integrable and dw = 0, then the Chern—Ricci form coincides

—1 - _
QRHCIC e
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with the Ricci form defined by the Levi-Civita connection of w. Assume that
w= \/—1571»3@ A (7 is another almost Hermitian metric. Then we have

"?’L

Ric(w) — Ric(w) = —fdelog
with Ric(w) € 2mey (M, J) € H2(M,R) (cf. [13]).

Lemma 2.2. (The first Bianchi identity for the Chern curvature) For any
X,Y,ZeT M,

Sz =3 (TIN(X.Y), 2) + VxT(Y, 7)),
where the sum is taken over all cyclic permutations.
This identity induces the following formulae:

R '=R..'— +V;T, =R

igk kji l—’ + V]-T,il, (21)

2.2)

kjv

Hijkl = T;Tffr VZTfi = *Byr‘iTrfﬁl’ v Bjkw (

where used that Rin = Ry = ijz‘k = H;m; = Hfijk = Hlijfc =0.

Lemma 2.3. (The second Bianchi identity for the Chern curvature) For any
X,Y,ZeT M,

D VXY, Z) ==Y QT Z),

where the sum is taken over all cyclic permutations.
This identity induces the following formulae:
ViR,g' = ViR, + VsH, ' + TR,k + T Hpp gl (2.3)
ViH, ' = VR '+ V. Ry ' + Trquqikl + 17 quk : (2.4)
Taking into account the Bianchi identities, we have the following lemma:
Lemma 2.4. ([11, Lemma 3.5]) The following formula holds
P=S+din"T — Vi + Q" + Q° (2.5)

for any almost Hermitian metric g , where T' is the torsion of the Chern
connection V associated to g,

(di"T");5 = ¢MViTys,  (V); = ¢"ViTy,
We define the curvature condition as follows:

Definition 2.1. We say that an almost Hermitian manifold (M, J, g) has the
Griffiths non-positive Chern curvature if there is non-positive function x such
that for any p € M, X,Y € T;°M,

R(X,X,Y,Y) < k(p)B(X, X,Y,Y),
where Bj5.r = 9,591 + 9ii9k;-
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Definition 2.2. We say that an almost Hermitian manifold (M, J, g) has the
first Chern—Ricci curvature bounded above by a function k if for any p € M,
X e TplvOM ,

P(X,X) < k(p)g(X, X).

If the function k is non-positive (resp. negative), then we say that g has the
non-positive (resp. negative) first Chern—Ricci curvature. If the function « is
non-positive and negative at some point, then we say that g has the quasi-
negative first Chern—Ricci curvature.

3. Evolution Equations Along the Almost Hermitian Curvature
Flow

Let (M?",g,.J) be a compact almost Hermitian manifold. Let V be the Chern
connection on (M?", g, J). Let {Z,.} be a local unitary (1, 0)-frame with respect
to g around a fixed point p € M. Note that unitary frames always exist locally
since we can take any frame and apply the Gram-Schmidt process. Then with
respect to a local g-unitary frame, we have g;; = d;;, Zx(g;;) = 0 for any
1,5,k =1,...,n, and the Christoffel symbols satisfy

Ty =T T =-Th

since we have
TY = 9(ViZi, Zx) = Zilg;r) — 9(Z;,ViZg) = —T7,,

T = g(Zk, ViZy) = Zilgw;) — 9(ViZi, Z7) = —T%,.

With respect to such a frame, the components of the torsion can be written
as

kE _ J i k
Tij = _Bi]} + ijc - Bij
and the components of w can be written as
w; = —Bj, — B;F + Bl
And also we have

Rig” = Z(T%,) - Z3(Tly) + TLTS, — T3,T% - BTl + BTk

ij is© gk~ T s ik T ij- sk
=—Z; (F;:?F) + ZE (FEF) + FfFF% - F?’FFEE + B%Fff - B?i]‘—‘éf
= _Rz‘ﬁkv
Hij " = Zi(Uy) — Z;(iy) + i3y, = D515 — BTG, — ij Sk
= —Zi(F?*) - Zj (F§F> + FfFF§§ - F?FF% + ijrgf + ijrlgf
=M.k
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and
Rs." = Z;(U;) — Z;(T5) + Ti05 — T3l — BT + BT
= Z;(T},) = Z;(I5,) + T3, 5, — T3, T, — BTG, + BT,
k
Rj;r )
Hy " = Zi(Us) = Z5(Ui) + T35 = U5l = By = BT
= _ZE(F;%“) + Z5 (Ffr) + Ffr’rgs - Fgrrés - ES{FQET - 3551_‘]:7
_ gk
- gir
Hence we obtain R;j.- = —Rijr, Hijkr = —Hijrp and Ryjp: = Rjgop, Hijkr =
H3;,j; by using a local unitary frame with respect to g.

Let B° be the terms of B’s depending only on .J, which means that these
terms do not depend on ¢ along with the solution to the AHCF. Note that B;‘E,
B;’b’s do not depend on g, which depend only on J since the mixed derivatives
V;Zy, V;Zy, do not depend on g. Since we have BZ; = fB;—?b, we have that
ng, ng’s also do not depend on g. Also note that B, B¢ do not depend on
g, depend only on .J. These components B?E, B;Ib, ng, ng, Bj; and B, are
denoted by B°.

Lemma 3.1. (cf. [4, Lemma 3.1], [5, Lemma 3.1]) Let (M, w(t), J) be a solution
to the AHCF fort € [0,7) starting at the initial almost Hermitian metric wy.
Then one has for alll =0,1,2,..., for any fized time ty € [0,7),

1Z'(T(9(t0)))lg(t0) < Ci
for some uniform constant Cy > 0.
Proof. Fix an arbitrary chosen time ¢, € [0,7). By using a local unitary
frame with respect to g(to), since we have g(to);; = d;;, and Ffj(g(to)) =

—Fg]g(g(to)) = —BZE = —B°, which means that these coefficients do not de-
pend on tg, we obtain on M,

|Ffj (g(to))@(to) = g(to)kz’g(to)ﬁg(to)jgrfj (9(to))Tks(g(to))
= ng(g(to))ng(g(to))
= BgEng < Co
for some uniform constant C' > 0 since BEB’ B;.Ib’s do not depend on g, which
depend only on J because the mixed derivatives V;Z; do not depend on g (cf.
[11, Lemma 5.2]).
Likewise, using a local unitary frame with respect to g(to), for all I =
0,1,2,..., we have
1 ZH(TF (9(t0) 510y = 12 (T (9(t0) o1y = 12 (B o) = 12 (B°) 210y < Ci

for some uniform constants C; > 0. O
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We introduce some evolution equations in the following.

Lemma 3.2. (cf. [11, Lemma 5.1, 5.2 and 5.5]) Let g(t) be a smooth family of
metric on M compatible with J. We denote by h = %g the variation of g.
Then one has

0 0

Ok _ wi
—Fij =g Vlh

_ E _ . _ pr _ ~ _
o i L =0 Fpfge = Rigpher — Vi Vihg
and
9 m
%Tijﬁ = Vihjr = Vihig + T3 b

The second formula follows from the fact that the Ffj’s do not depend
on t.
We need the following computation for estimating components Z (7’ )ij-
In order to avoid a notational quagmire, we adopte the following -
convention A; x Ay between two quantities A; and A with respect to a metric
g:
(i) Summation over pairs of maching upper and lower indices.
(ii) Contraction on upper indices with respect to the metric.
(iii) Contraction on lower indices with respect to the dual metrics.

Lemma 3.3. Let (M?",g,J) be a compact almost Hermitian manifold. Let
{Z,} be a local (1,0)-frame with respect to g around a fized point p € M.
Then one has that

Z(T") = Z(T)+ Z(B°) + B° T
+T' T+« T4+ B°«T +B°«T +T' T +T T
+B° % B° +0(Z(9)) + O(Z(g)). (3.1)
Moreover, we then have the estimate
Z(T") < C(IVL|g + LI + |T'[; + Dw + O(Z(g)) + O(Z(g)),
where w is the associated real (1,1)-form with respect to g.
Proof. Let {Z,} be an arbitrary local (1, 0)-frame around a fixed point p € M.
Now let D be the Levi-Civita connection with respect to g and let V be the

Chern connection with respect to g. The relation between D and V is as follows
(cf. [12, Lemma 3.1]):

oDy X, 2) = g(Vy X, 2) + S(g(T(X,Y),2) +g(T(¥ 2), X) ~ o(T(Z, X),Y)

for any tangent vector fields X, Y and Z. Here notice that the torsion T of
the Chern connection V is also defined as

T(X,Y)=VxY —VyX — [X,Y],
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and in this sense, we compute as follows with a local (1,0)-frame {Z,} with
respect to g:

Ty =T(Zi,Z;) =V 2,Z; =V z,Z; — | Z;, Zj]

= 1%, %2, — Bb 2, — Bl 2, = Tk 2 + TR 23,
Ti; = T(Zi, Z;) =N 2,Z; =N 7, Z; — | Z;, Z;]

_ k k E ko _

= (B}, —T15)Zx + (I'; — Bj;)Z; = 0.

Then we have the following:

—

Q(DTZz - DiZTa ZE) = g(VTZu ZE) + *(g(Tim ZE) + g(TTéa Zz) - g(T§i7 Z7))

[\

1
—g(Vz'Zr, Zg) - i(g(Tm‘, Z§) + Q(Tz‘§7 Zr) - Q(Tgr, Zz))

=I¥irs — Dhogns + Thigrs
= Bfigkg
= g([ZTv Zl]v Z§)7

1
9(DyZ; — DiZy, Zs) = 9(NV#Zi, Zs) + - (9(Tir, Zs) + 9(Trs, Zi) — 9(Tsi, Zr))

2
1
—9(ViZz, Zs) — 5(9(Tm‘, Zs) + 9(Tis, Zr) — 9(T'sy, Z5))
= F?igkg
= B§igk§
= g([ZF7 ZZ]7 Z§)

We compute
Zi (912, Zi, Zj)) = 9(Ds(Zr, Zi], Zi) +9([Zr, Zi], DFZE), Dyl Z,, Zi]
= Dw(DyZ; — D Z,)
= [Zs, Z:|Z; + Dy Zr, Z;] — | Zr, Zi) Zr — D3| Z5, Z0) + [ Zr, Zi) Zr
and
Zr(9([Zr, Zi), Z3))
= 9([Zr, Z+]Zs, Z5) + 9(Dr[Zr, Zi], Z3)
—9([Z7, Zi| Zr, Z5) — 9(DilZr, Zv), Z5) + 9([Zr, Zi) Z7, Z3) + 9(|Zr, Zi], D5 Z5)
= 9([Zr, 2,2, Z5) + Z:(9(1Zr, Zi], Z3)) — 9([Zr, 2], Dr Z3) — 9([Zr, Zi) Zr, Z7)
—=Zi(9([Zr, Zv), Z3)) + 9([Zr, Z;], DiZ5) + 9([Zr, Zi| Z7, Z5) + 9([Zr, Z:], D7 Z5)
= 9([Z7, 2+ 2, Z5) — 9([Zr, Z:], Dv Z5) — 9([Zr, Zi| Zr, Z5) + 9([Z7, Z+], DiZ;5)
+9([Zr, Zi)Z, Z5) + 9(|Zr, Zi], Dr Z5) + Z1(BFi)gs; — Zi(Brr)gs5 + O(Z(9)),
where we used that

Zr(9([Zr, Zi), Z5)) = Zi(9((Zr, Zr), Z5))
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= Zn(Bri)gsj — Zi(Br,)gs5 + O(Z(g))-
We compute by using that [Z,, Z;] = BS,Zs + BE, Zs,
ZF(Bfi)gsj = g(VF(B::i)Z-ﬁ Zj)

= 9(Vi (B} Zs) — B, ViZs, Z3)

= Zw(9(B;: Zs, Zj)) —9(B} Zs, VFZE) — B.9(VZs, Zj)

= Z(9((Zr. 2:) ~ B}, 75, 75)) — 9(B: 24, T Z5) — Blig(U Zi. Z5)

= 9([Zr, Z:r)Zi, Zj) - 9([Zr, Zi], DrZE) - 9([Zr, Zi] Z,., Zj)
+9([Zr, Z:], DiZ3) + 9(| 2y, Zi) Zr, Z3) + 9(|Zr, Zi], Dr Z5)
+2,(B})gg — Zi(B;,)955 — BT 04 — Bl foai + 0(2(9)).

We also compute
9(1Zr, 2:)2:, Z;) = g(BY, D Zi + B, D2, 73)

1
= Bro(9(VZi: Z5) + 5(9(Tixs Z3) + 9(Tig Zi) = 9(Tj0, 21))

2 1
+Br(9(ViZi, Z;) + 59Tk, Z5) + 9(Tiz, Zi) — 9(T5:, Z1)))
s 1 £} k E] 1 k Ts
=B°+«T+B°+«T +B°+«B°+B°« T,
9([Zr, Zi), D+ Z5) = g(BsiZs + B} Zs, Dr Z;)
. 1
= BFz(g(vTZ57 ZS) + i(g(TE'm S) + g(TTS7 Z;) - g(T537 ZT)))
< 1
+B7:(9(VrZ5, Zs) + i(g(Tfrv Zs) + 9(Trs, Z;3) — 9(Ts;, Zr)))

s 1k 1 s 1 5 mk
= Bﬁrﬁjgsl} + §BﬂTrksgk3 + §B;insgrl’c
=B°«B°+B°*«T +B°«T,
9([Zr, Z:)Zr, Z5) = g(BiDs Zy + B DsZy, Z;)
1

= B;z(g(vSZTa Z}) + i(g(TT‘M Z}) + g(T337 ZT) - g(Tfm ZS)))
. 1

1 5 1,570
= BriTagu; + 5 BriTrag + Brilewos + 5 BrTlo.
=B°+«T+B°+«T +B°+«+B° +B°x T,

s 1
= BF'r(g(vlzjv ZS) + §(g(T§m 8) + g(TiS7 ZE) - g(T537 Zl)))
5 1
+B:,.(9(ViZ;,Zs) + E(Q(Tji» Zs) + 9(Tis, Z3) — 9(Ts5, Z4)))

s il 1 s 1 5
= Br L5000+ 5 B Tigy + 5 BrThga
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=B°«B°+B°s«T +B°«T,
9([Zr, Zi)Zr, Z3) = g(B;;Ds Zz + By DsZr, Z3)

2 (0(Tee, 23) + 9(T5, Z5) — 9(T57, 2.))

+B5i(9(VsZr, Z5) +

= Bri(9(VsZr, Z5) +

3 (ng,zf->+g<TSJ,zT> 9(T;1, 25)))

1 1
§BﬁlTl]gsl + 2BrzTrlsglg + Bilegglr + B Tlggls

=Bx«T + B°*B°,
9([Zr, Zi), D+ Z3) = g(ByiZs + By Zs, Dr Z;)
1
2( (T]T’7Z ) +g(T757 Zj) (TS]7 ZT)))
5 1
+BT7J( (VFZf' Z§) + 2( (T]’I"Z ) +g(Tf§7Z") (T5]7Z )))

= Bri(9(VeZ;, Zs) +

- Bizrl]gsl + Bi'LTlrgsl + B'rle'rng + B;’LT’Il‘Sglj + Brlesng
:B*F—i—B*T + B° x B°,

where we used that g;; = 0, I‘k = B~ ;. = Fii; =B;. =B T = i =

r5?
—B,{S = —BL.. Using these computations, we obtain
—Ze(T7,)9s5 = = Zr(17; = T3 = BJi)gs;

= —Zr(I73)gs5 + Zr(U5,)955 + Zr(Bri) 955

= =2 (%) 955 + Zr(U5,) 955 + 9([Zr, 201 23, Z5)
—9([Zr, Zi), Dy Z3)
—9([ZT,Z]ZT,ZQ) 9([Zr, Zy], Di Z3)
+9([2r, Zi) Zz, Z5) + 9(12r, Zi), Dr Z3)
+2,(B2)gs; — Zi(Bin)gsj — BiTE g

—B;,T5.95 + O(Z(g))

= —Z;(17:)955 + Zr(U5.) 955 + Zr(B7) 955

~Zi(B,) 955 — BiiTlgsr — Byl ko gr;

+B°+xT+ B+ +B°xT' +B°xT + BT+ B°x B + O(Z(g)).
Similarly, we have

ij(w ) = m")

Z5(

y( zrgST>

= ](T )gsr — T Z5(gsr)
Z;(
A
Al

L3)gs + Z;5 ( )gsf
B;.)gsr — 15, J(gsf)
I3)gs + Z; ( )gsf

J

J

J
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+9(1Z5, Zi) Zr, Z7) + 9(Dil Z5, 2], Z7)
—9(1Z5, Z:)Zi, Z7) — 9(D2[Z5, Zi], Z7) + 9((Zi, 2:) 25, Zr)
+g([ZZ’Z ] ) Bs F]rgsk Bfrijng Tli‘Z](gSF)

= —Z;(I5,)gsr + Z5(7)gsr
~B;T% g, — B}.TY grr — T3, Z;5(9sr)
+9(125, Zi) Z,, Zr) + Zi(B5, ) gsr + B;,. Zi(9s7) — 9((Z5, Z,], DiZy)
_9([Z37 Zr]Zz‘7 ZF)
*ZT(Bjs'z‘)gsF - Bfin(gsF) =+ g([Zjv Zi]v Der) + 9([21‘7 Zr]Zja ZF)
+9(1Zi, Z,], D; Z7)
= —Z;(05,)9sr + Z5(7;)gsr
+Zi(B3,)gsr — Zr(B3,)gsr
-B; Fjrgsk B;.T¥ gir
+B°«T +B+«T +B°«T' +B°«T' + BxT'
+B° % B° + O(Z(g)) + O(Z(g))-
Combining these with the term —gP1T". Z5(g,5) = T} Z5(gsr), we have

2] L
Z(T")ij = = Z(T7)g55 — Z5(wi) — 97713, Z5(grq)

= ( )95] + Zr (Fs )gsg + Zr (Bﬁ)953
(B'Fr) - By F 59sk — B; F rs9kj

Tt Ty ri- T

j(Fzr)gsr + Z ( )gsF + Zz(Bﬁr)gsf
Zn(

]z)gsf - Bfrrfrgsk B;.T jsgkr
+B° I+ B+« +B°«T' +B°«T'
+B*T'+ B° % B°+ 0(Z(g9)) + O(Z(9))
=ZI)+Z(B°)+B+«B°+BxTl
+B°«I'+ B« +B°«T' +B°«T' +BxT'
+B°x B° + 0(Z(g)) + O(Z(9))
=Z()+Z(B°)+ B°+T +T' T +T T
+B°«T' +B°«T +T' «T' +T T
+B° x B° + O(Z(g)) + O(Z(g)),

where we used that B = T +I' and then B x B® = T'«+B°+T'xB° BxI =
T «T+T*D BxT' =T +«T"+T % T at the third equality. O

T

Lemma 3.4. Let (M,g(t),J) be a solution to the AHCF fort € [0,7) starting
at the initial almost Hermitian metric wy. Suppose that there exist uniform
bounds for |T’(g(t))|200(g(t)) and [VT'(g(t))|cogty)- Then we have that for any
fized time tog € [0,7),
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IVVT (g(t0))coga(e)) < Cs VYT (g(t0))lco(g(te)) < O,
V2T (g(to))|cogeroy < O V2T (g(t0)lco(g(t0)) < C

for some uniform constant C' > 0.

Proof. We compute
ViV (Tikr) = ViV (Thy) g
= V%(Zm(Tf ) — fanslk - ankTJl's +Th., ) i
= Vi(Zn(Th)) + VI« T + T« VT’
and
VilZn(T5)) = ZiZm(Tji) = Ui Zs(T5) = T Zn(Tor) = Ui Zon (1) + i Zon (T5)
= ZmZi(Th) + | Zz, Zo (i)
~D5 Za(Tje) = U35 2 (Tok) = Ui Zm(T5) + T Zn (T).-
= ZmZ;(Th) + B® x Z(T') + B® x Z(T")
Using that [Z,., Z;] = BS,Zs + BE, Zs, we compute
Z;(B g = 9(Vi(Bh) 21, Zr)e
= g(Vi(BLZ)) — By Vi Zi, Zx)
= Z;(9(BL 21, Z7)) — 9(By 21,V Z7) — By g(ViZ1, Zr)
= Z:(9([Zs, Zk) — B} Zr, Zr)) — 9(Bj1 20,15 25) — Bhig(T5,Zs, Zr)
= 9(D;1Z;, Z), Z#) + 9(12Z;, Zk), D;i Z7) — B2y, T5.9(Z1, Zs) — B T5,9(Zs, Zr)
= 9([%3, 2312k, Zr) + 9((Zx, Z3)Z;5, Z7) + 9(D;1Z3, Z), Zr)
+9(DrlZ;, Z3), Z7) + 9((Z;, Zk) Z5, Zr) + 9(|Z;, Zx), D3 Zr)
_B;'k:rg?glg - Bék-rfzgsf
= 9([Z:, 212k, Zr) + 9([Zk, Z3)Z;, Zr) + Z;(9([Z3, Z1], Z7))
—9([Z3, Zk], D; Zr)
+Z1(9([Z;, Z3], Z7)) — 9([Z;5, Z3], D Zr) + 9(1Z5, Zi]Z5, ZF)
+9([Z;, Zx], Di Z7)
—BL T2 g1s — BL TS ger,
where we used that
D;(Zj, Zx] = (%3, Z;1 21 + [Zk, 23] 2 + DjlZ;, Zk] + Dyl 25, Z3) + |25, Zi] Z;.
We also compute
9((Z3, Z;1Zk, Zr) = g(B;;Ds Zi + B;; Ds Zy,, Zr)
= B{;(9(VsZk, Zr) + %(g(Tks, Z7) + 9(Tsr, Z1) — 9(Trk, Zs)))
""Bzgj (9(VsZi, Zr) + %(Q(Tkg, Z7) + 9(Tsr, Zi) — 9(Tri, Zs)))
= ijrlskglf + %ijTlisglF + Bigjrlgkglf + %ijigkf

=B°«I'+B°«T'+B°%«B°+B°%T’,
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9(Zk, Z;1Z;5, Z7) = g(B;j;DsZ; + Bj;Ds ZJ,Z )

= By:(9(VsZj, Z7) + 5(9(Tjs,ZF) +9(Tsr, Z5) — 9(Trj, Zs)))
_ 1
Byi(9(VsZ;, Z7) + E(g(Tjg,Zf) + 9(Tsr, Z3) — 9(Trs, Z5)))
1 _ R
= Byl 00 + 53227’}391? + Bl gie + §Biszlr9jz’
=B°*«I'+B°+«T' +B°x«B°+B°xT,
9(1%3, 2y, D Zr) = 9(B$, Zs + B}, Zs, D Zr)
1
= B3, (9(ViZr, Zs) + 5(9(Tmzs) +9(Tjs, Zr) — 9(Tsr, Z;5)))
- 1
+B5,(9(VjZr, Zs) + E(Q(Tfj, Zs) + 9(Tys, Zr) — 9(Tsr, Z5)))

= B5TL g+ 2B T gin + LB T
= B Uirgar + ik jsglr+2 iktrsdjil

2
= B°%«B°+B°«T' +B° T,

9([Z;, Z;], D Zr) = g(Bj; Zs +BS Zs,DyZr)
= Bii(o(VaZr, 20) + 5 (0(Trk, 25) + 9(Tio, Z2) = 9(Ter, 70)
B (9(VaTr, Z5) + L (9(Tow, Z3) + 9(Tis, Zr) — 9(Tsr, Z1)))
= Bj; Flmgsl + %B;;Tésgﬁ + %B TEagnt

:BO*BO+BO*T/+BO*T',
9([Z5, Zx) %3, Z7) = (B3, DsZ; + B3, Ds Z;, Zr)

- B‘Sk(g(v Z,“Z )+ (g( is» )+g(TSF’Zf) (T’I"HZ )))
+Bi<g<v§Z;,zf>+§< (Tias Zr) + (T, Z2) = 9(Tri, 7))

= *Bs T, g5+ B T 91r + %BfkTéFglz + 5 BT
= B*T’-I-BO *BO,
(25, Z1), DiZ#) = g(B:y Zs + B3, Zg,D—.Z—)
= B, (9(ViZr, Zs) + - (9( w3 Zs) + 9(Tis, Zr) — 9(Tsr, Z7)))
B0V, Z5) + 5 (0T, Z5) + (T, Z2) = 9(T5r, 20)))
= B3It g+ %B WThgar + 1BSkTTlZgls + 1BSlelsglr + 1BJkTTSg“
= BxI'+ BT’ + B® x B®.
And we compute that
Zi(9(1%, Z1), Z7))) = Zj(Bigir) = Z;i(Bjy)gir + O(Z(9)),
Z1(9([Zj, Z3), Z#))) = Z1(Bligir) = Z1(B;)gir + O(Z(9))-

Therefore we have
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Zg(B;k)glF =B°+T'+B°+T' +B°+«B°+B°+T' +B*T' +Bx*T

+Z; (Bmgsr) + Zk(nggsf) - B;'krffglg - B;‘kF?lgsF'

Using these computations, we obtain

ZnZ5(Ti) g1 = Zin(Z:(Tii) — Z3(Th;) = Zi(Bjx)) i
= ZnZ:(Ts)9ir — Zn Zi(Tis ) gir — Zon( Z5(Bjr) i) + Zi(Bji) Zon (1)
= Zn Z:(T51) g1 — Zm Z:(Tiej) g1
~Zm(B° T +B°+«T' +B°+B°+B° T + B+T' + BxT)
~Zm Zi(Bit)gir = Zm Ze(Bi)gir + Zm(Byilin)gis + Zm (BjuT5)gsr + O(Z(9))
=ZZM)+ZZ(B°)+ Z(B°+T +B°+«T' + B°+«B° + B°«T' + T «T
AT« T+ T T +T T+ 0(Z(g)),
where we used that B = T’ + I'. Combining these computations, we obtain
ViV Tjir) = ZZ(T) + ZZ(B°) + Z(B° « ' + B° «T' + B° x B°
+B° s« T +T T +T*«T+T T +T' «T")+O(Z(g))
+B°+« Z(T')+ B°+ Z(T') + VI «T' + T x VT,

Now fix an arbitrary chosen time ¢, € [0,7) and using a local g(to)-
unitary frame, we have that at to, |Z;Z;(T Jk)| < C as in Lemma 3.1, and
we also have that O(Z(g)) = 0. By using Lemma 3.3, then we obtain that
IVVT'(g9(to))]|co(g(te)) < C for some uniform constant C' > 0 under our as-
sumptions that |T’(g(t))|2co(g(t)) and [VT"(g(t))|co(g(+)) have uniform bounds.
Similarly, one can obtain the rest of uniform bounds, since we have
ViV (Tikr) = Z:Zm (T, k)gl? - FfmZ—( k) =I5, Zm (T, i) — T2 m(TgLs) +F%SZW(T;I@)

-Vi (B'rsng sk +BS - Biﬁs jk)gl?

= Zizm(rjk)glf - Zme(FLj)gl; - Zi(Zm(Bé‘k)glF) + Zm(B;k)Z;(gl;)
+T* Z(T')+B° %« Z(T') +VB° « T' + B° VT’

=ZZ(T)—Z;(B°*T+B°+«T' +B°*B° + B°«T' + B+T' + BxT)
—Z;Z;(Bhpgir) — Zi Zi (Bl gir) + Z; (B D5 ngis + Bl Ti 1 gs7)
+Zm(Bj) Zi(gir) + T Z(T') + B® % Z(T') + VB® T’ + B® x VT’

=Z2Z(T)+ Z(B°+«T+ B°+T' +B°+«B° +B°+«xT' + B+T' + BxT)
12Z(B°) + Z(B) *T + B+ Z(T) + Z(B) * B® + B + Z(B°)
+0 % Z(T") + B° % Z(T') + VB® * T' + B° « VT' + O(Z(y)),

Vo Vi(Ti,) = ZZ(T) + T Z(T') + B° « Z(T') + VB « T' + B® + VT’

—Zm(Z( jk)glF) + Zi(Bjk)ZM(grf)

=ZZM)+T*«Z(T )+ B°« Z(T')+VB° «T' + B° « VT’
+Z(B°*T+B°+«T' +B°*B°+B°+«T' +B+T + Bx*T)
~Zm Z5(Blg9r0) = Zm Z5(Bj,9,7)
+Zn (B T4, 900 + BLL59rs) + Zi(BLi) Zm (9,0)
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=ZZ(0)+T* Z(T') + B® « Z(T') + VB® « T' + B « VT’
+Z(B°*T +B°+«T' +B°*B° +B°*T' + BxT' 4+ BxI)
1 ZZ(B°) + Z(B) T + B+ Z(T') + Z(B) * B° + B = Z(B°) + O(Z(g))
and
ViV (Tsi,) = ZZ(0) + B® % Z(T') + T % Z(T') + VB + T' + B° x VT’
~Zi(Za (Bl gir) + Zm(BL) Zi(9,1)
=Z2Z(N+B°+«Z(T)+T*Z(T')+VB°+«T' + B° VT’
~Z;(B°+«T+B°+«T' +B°+«B°+B°«T + B+T'+ Bx*1)
~Z:25(Bg9:1) — ZiZ5(Bj9,0) + Zi(BYDinrgsr + BLI51905)
+Zm(BY) Zi(9,1)
= Z22(0)+ ZZ(B°) + B « Z(T') + T # Z(T') + VB® + T' + B x VT
+Z(B°*T+B°+T' +B°+«B°+B°+«T' + BxT' + B«I)
+Z(B)« T+ B+ Z(T) + Z(B)* B°+ B Z(B°) + O(Z(g))
Then, by applying the estimates in Lemmas 3.1, 3.3, we obtain the uniform
bound for [V2T"(9(t0))[ 20 (410))> IVVT'(9(t0))[E0 (4 (1) for any fixed time to €

[0,7). O
Recall that we have
H = H;jir
= Hijk lglf

= (Zi(ré‘k) — Z;(Tly) + T, Tk I}
=Z(I)+T«I'+BxI'+ B°%B°
= Z(@)+ T« +T T + B° x B°.

Note that we have for any j =0,1,2.
VIH =V (Z(T )+F*F+T’*F—|—B°*BO)

S S
jstik T F zjrsk)gh"

= VI (Z( +ZVF*VJ ZP+ZVT’*VJ lF+ZVlB°>«<VJ 'B°.
1=0 1=0 1=0
From the equality above and Lemma 3.1, we have the following estimate.

Lemma 3.5. One can obtain the following estimate for any j =0,1,2,... and
for a time ty € [0, 7),

J
IV H (g(t0))|co(g(eo)) < C D IV (g(t0))cogete)) + C-
1=0
Especially, from Lemmas 3.4 and 3.5, under the assumption that

|T’(g(t))|200(g(t)), [VT"(g(t))|co(g(t)) have uniform bounds, then we obtain for
any fixed time to € [0, 7),
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IV2H (g(to))lcogte) < C,  [V2H (g(t0))lco(g(t)) < C

for some uniform constant C' > 0 independent tg.

From now on, we consider the solution g = g(t) of the AHCF starting at
the initial almost Hermitian metric gg on a compact almost Hermitian manifold
M satisfying

%g(t) = —S(g(t)) — Q"(9(t)) — Q%(g(t)) + BT'(9(t)) + Z(T")(9(1)),

9(0) = go,
Lemma 3.6. For a solution to the AHCF, one has that

0 8 q
R = ARG+ g (ngvTRiqkf +TEVsR 57 + THTER gt + R, PRyskr

ot TSy
+RrjkpRi§pf - RrjpTRigkp)
*gmﬁRwﬁ *nRiski + gnﬁTrsni(vsHjﬁkz' =+ T,%Hspkz')
+QMﬁ(vaiH3ﬁkf + VmTr%Rigkz' + VoD Hygpr + T Vo Hygrr
+F§irfnstﬁkl_ + F?irﬁqusﬁpl_ + F?irfn[Rsﬁkﬁ + F?ﬁFZkRiEPZ_ + Ff‘ﬁril’Riikﬁ
FI5. 00 Ry + F;krg’bﬁRiﬁsf + D5 Rinpr + P?krizRiﬁsﬁ + F}El’rmepﬁkE
+T5 T Ripks + U500 Rinps + U5l s Rinkp + B3 L% Ryrws + B3 Lo R

jm=~ si inpl
+B§$'meIRiﬁkﬁ + Bis'_mrgiRpﬁkl’ + BfmrgﬁRiﬁkf + B3S'_mF§kRiﬁpz’ + Bfmrngiﬁkﬁ
_anirgstﬁkT - F:nzrg)kRsﬁpf - anzF%‘RSﬁkﬁ - an'ﬁrgngﬁkZ - FfmﬁrgkRi§pf
*anﬁF%Riﬁkﬁ =I5 l% Ryt — ankrgﬁRipsi =I5k % Rinpr — ankl—‘g[Rmsﬁ

—T0uil% Rpnks — Dol Ripks — DTy Rinps — UiiU% Rinkp + V3VaHpigr
+V5T i Ranii — ViBmiHsnrt — BriViHgii)
—g"" (Bl Bi; = ViTim + Doyl = T5,T0 = BY T4 + BY T50) Ry

Jjpt mi

J
_gmﬁ(rfnprgk - F?prfnk - Bfnjrzk + B?mrzk)Riﬁsf
+9mn(ri3rfnﬁ - FinﬁF% - Bé)mr‘;ﬁ + BZEFZFL)RQIJ
+9"" (U5l = Dol 5y — BY, Ui + By ) Rinks

~Ri"(S+ Q"+ Q% — BT — Z(T")),1+ V3Vi(Q" + Q° — BT — Z(T"))ur
= AR + ¢ (TS Ve Riger + TEV s Ryjur + THTER

pikl rit 55 tpakl
+Ri5T pRpgkz + RﬁkpRigpz — B3R5 ")
~Ri."(S+Q"+Q° — BT — Z(T")),1 + Esur- (3.2)

Proof. We consider the term —.S in the evolution equation of g. Using Lemma 3.2,
the evolution % g = —S yields

0

e ikt = ~Rige Srr+ Vi ViSi
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Applying the second Bianchi identity in Lemma 2.2, we have
ViViSir = 97" V;ViR i
= gmﬁvj(vaiﬁkT + ViaH i + T Ronnt — BiniHnt)
= 9" (ViVi Rinpt + Vi Vi g + ViToi R + T Vi Rannr
_vag’Lngﬁk[ - BfniijETka)'
We compute
ViV Rkt = Vi Vi Rinpr + anEVERme + T V3R it + anﬁijigkz’
00k ViR et + FfuiVERiﬁkg + Zm (V5 Ronpt + Ff’ﬁRiEkZ+ D2 Rinsr + F%Riﬁ%)
+[Z5, Zm) Rzt — Z5(Urni Rt + Ui Risit + Ura Rinst + Uy Rinks)
_Fiiv’mRsﬁkf - F?ﬁv"lRiEkf - F?kvamsZ - FEZVmRiﬁkE - F?mvSRiﬁkZ
and
Vi ViR = Vi ViR g
=V (Vo Rag + Vil + T R + Ty Hsar)

= Vi ViR + Vi Vil gz + Vm(Tr%Rigkl_ + 15 Hgp7)-

2

Hence, we obtain
ViViSii = AR i + 9™ (Vi ViHi1 + Vo (Trj Risi + T Hini))
+9™" (0305 Vs Rt + Dini Vi Rt + Do Vi Risir + D ViRing
T3,V Rinks) + 97" Zin (5 Rosut + Uj Risit + Ui Rinst + Ui Rinks)
+9""Z5, Zm) Rini — 9™ Z5(Crni Rt + Ui Risii + Dok Rinsi + Ui Rinks)
_gmﬁ (Fi‘vasﬁkl’ + F?ﬁVWRiEkT + F;kaRiﬁsf + F?l’vaiﬁkE
150 Vs Rinit) + 97" (ViVaH it + Vi (Tni Rt — BmiHsar))
= AR + 9" (Vo ViH000 + Von T Risni + T Vi Risir + Von Ty Hyo
T35V mH i + Ui Vs Rinni + Toii ViRt + Do Vi Risii + Dok Vi Rigat
4150 ViRinks + Zm (T5) Ronit + D5V Rapii + D50 hs Rpngt + T5: 05 n Ryt
+F§iankRsﬁpf + F?iristﬁkﬁ +Zm (Fgﬁ)Rigkl’ + Ff‘ﬁv’mRi?;kT + F?ﬁrfniRpEkf
Jrrf'ﬁrfngRipkz' + F?'FLFZLI@RZ'E;;Z_ + F;’FLFZ[Ri§kTJ + Zn (T5) Rinsi + U5 Vi Rizsr
F05. T i Ryt + F}j'kr?nﬁRipsZ + D5 s Ripr + F?kFZ[Riﬁsﬁ + Zm(rgz’)RiﬁkE
025V Rinks + T30 Rpaks + U305 Ripes + T30 Rinps + U505 Rinkp
+B5,, Vs Rinwi + B} U8 Rynir + Bgs‘mrfﬁRiﬁki + B3, T8 Rispi + Bis‘mrsziﬁkﬁ
+B§mv§Riﬁkf + BfmrgiRpml’ + BfmrgnRiﬁki + Bf’ml—‘}s‘ijiﬁpT + Bjémrngiﬁkﬁ
—Z;(Ti) Ronni — Do ViRonpr — aningR FinirgﬁRsﬁkf - anirgkRsﬁpf
*FfmF%Rsﬁkﬁ - Zj (anﬁ)Rim - annVERigkf - anﬁr§iRp§kT - anﬁrggRiﬁkl_
_anﬁrgkRiEp[ - anﬁP%Riﬁkﬁ - Z}( fnk)Riﬁs[ - Finkijmsl’ - ankrgiRpﬁsf
_F’fnkrgﬁRiﬁs[ - ankrgsRmpl’ - ankrgl’Riﬁsﬁ — Z;(T;. ) Rinks — L5, V5 Rinks

piakl
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*anil—‘%Rpﬁkg - anl’rgﬁRiﬁkg - anfrgkRi'ﬁpE - anfrggRiﬁkﬁ
T3V Renir — Ff’ﬁvaigkl’ — 5V Riner — %VT"RM’“ = D5 Vs Rini
+V5VaHint + V5 TomiRonir + TriViRanir — ViBmiHsart — BriViHzngi),
where we used that R, = R, = 0,
125, Zn)(Rizit) = B3 Zs(Rini) + B, Zs(Rizr)-
Note that we have that T') -ViRz. + B;, Vsl = 0 since B - =
—Bfn; = —I‘fnj.
Then we obtain the following equality:
ViViSit = AR + Tg Ve Risir + Tni (Vi Ramit + Vs Himpr + Th s Ropit
+T§13H5ka) + 9" (Vi VilH507 + Vi Ta5 Risit + Vi T Hyspt + TV Hy it

+Zm (U5 Regpr + 15,10 s Rpari + F?irfnﬁRsﬁkZ_ + 500 Renpr + F?iri[Rsﬁkﬁ
+Zm (Fgﬁ)RiEkT + F?ﬁrfniRpEkf + F?ﬁrfn§Riﬁkf + F?ﬁrfnkRing + F?ﬁrfn[RiEkﬁ
+Zm(F§k)Riﬁsf + F?krﬁmiRp'ﬁsf + karfnﬁRiﬁsl’ + F?krfnsRiﬁpf + karfm‘RiﬁSﬁ
+Zm (U5 Rinks + D500 Rpnks + D5l s Ripks + D5, Rinps + U505 Rinkp
B3, T8 Rkt + BS o D Ripri + BS o Dok Rigpt + B5 Tl Rinkp + B3, T8 Ry
+B5mF§ﬁRiﬁkf + BfmrgkRiﬁpl’ + Bfmrngmkﬁ - ZE(Ffm)Rsﬁkf - anirgstﬁkf
*anirgﬁRsﬁki - anirgkRs'ﬁpi - aniF%Rsﬁkﬁ - Z}(anﬁ)Rigkf - anﬁrgiRpEkf
_anﬁrggRiﬁkf - anﬁrgkRi§pf - anﬁr‘?[RiEkﬁ - Z}(ank)Riﬁsf - ankrgiRpﬁsf
5T Ripar — i % Rt — ankf%Rmsﬁ = Z;(05, ) Rinns — T iT%, Rpans

-re [F?ﬁRiﬁk§ — anfrgkRiﬁpg — anfrggRiﬁkﬁ + V;VﬁHmik[
+V;T; Rsﬁki - VEBfm‘Hgﬁki - B'rgrtiij§ﬁkf)7

Jgrmi

where we have used that by applying (2.3),
ViR = ViR sk
= vajgll'f + VgHmjll_c + szjRpgll_c + szjHﬁgll}

= vfﬂstki + vsHjmki + ngRsﬁkf + Tf%szka‘

We have the following;:
_(Zj(rfnﬁ) - Zm(rf'ﬁ))Rigkl' = _(Zj (Ffﬁn) - Zﬁz(rin))Rigkl'
= (R, 5—TsTE +Ts TP +BP.Ts — BY TS5 R,ai

gmn jp-mn mp~ jn jm=— pn mj- pn
_(_ 5 5P 1S P _ P s P s R
= (B % + 15l mn — Unpln — B3 U + B lon) Risirs

and similarly,
—(Z;(T3,0) = Zm (T59) Rins
— S 35 TP 3 D D 3 P 5
= (=R, + 5,00 - = T3 pUh = BY ot BY T3 ) Rinks,
(Zn(U51) = Z5(Uoie)) Riast
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= (ijks - anp]‘—‘gk + F;E’p]‘—‘fnk + lej ;k - Bfm %k)Riﬁsfa

(Zm(I5,) = Z5(T30i)) Ry
= (R,,5° = Dol + 15,00+ BY T, — B T50) Ry

mji mp* i jp- mi jm> Dt
_ s q s _ms s P s TP P s D 1S _
- (szm - Bszzﬁ + V]T’mﬂ - Fmpl—‘jl + Fjprmz + Bmirpi - Bjmrﬁi>Rsﬁkl’

where we used that RmﬁS = Rﬁm
Choosing t = to and a local unitary (1,0)-frame {Z,} around a fixed
point p € M with respect to g(tp). Then using the local g(¢o)-unitary frame,

g(tO)mﬁ - 5mna

* = Bj B + VT,

Jrim:

P _ _TJ 5 _ _ TV
ij =17, = I
By combining these calculations, we compute for the evolution % g=-29,
with a local unitary frame,

a T
aRﬁkf = —R," S+ V5ViSyy

= —R;)." S, + AR g7 + 9" (TEV, Rigry + T1 Vs Ryjg)
+ganTiz (VSHjﬁkZ + T,-I:;Rsﬁki + TFZZszka)
+gmn(Ri3mTRrﬁki + ijI:Rzﬁsf - ijrfRiﬁkT) - gmnR
9" (Vi ViHip7 + VmT%Rigki + VI g + 155V Hygp
+T5T8 Ry + T8I0 R r+ T8 TP Ry + 15,10 R

ji- ms*lp ji- mk 7t ml jn- mk

H5 0 Risky + D5 Ui Ryt + T3 Dn R

mi” 'pns

AT Ry + T8I0 Ringp + T5Th  Rynks + D505 Riprs

AT Rinps + D500 s Rinkp + B3, U8 Ryg + B3, T5 R

mk jm= si im™ sk inpl

+B2, I Rinkp + BS, T2 R pir + BS, T R

Rz‘glci

5
mj n

i5pl

ipsl

Jm* sl jm> sittpnkl
+B§mF§leﬁpl_ + B?77LF§ZRiﬁkﬁ
~L5il% Ryt = Doni T8 Ry = Toni Ui Resiiip — Do T R
_anﬁrgkRiEpf - FgmﬁFé_?l_Rigkﬁ - ank]'—‘é_‘)iRpﬁs[ - ankrgﬁRiﬁsl’
Lokl Rinpi = Uok L8 Risap — U3 Rys — U3 0% Riges

s P . __ TS5 TP o
—T8 % Rinps — U517 Rinkg

+V5VaH it + VT Ronii — ViBiiHsnri — BiiViHsnii)

JTmae s
—9"" (BB = ViTh, + Dol = T3 T — Bl Lo+ BY To)R g
-9 ﬁ(anpFi =T8T — Bfngrf:k + B§m o) Rinst
g (L5 — Dl — BY Ton + B Lo ) Rigr
g™ (050 = Dol = BY, U5+ By Do) R,
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where we have used that

;E'ﬁrfniRpEkf - FfmF?ﬁRsﬁki =0,
F?irgnﬁRsﬁk[ - Fgmﬁré_‘)iRpEki =0,
and
gmﬁ(l—‘?ﬁrfnéRiﬁk[ + BfmrfﬁRiﬁki)
= FgmrgngRiﬁkl_ + Bfmrmeiﬁkl_
= _F?;F?nERiﬁki + Bfmrmeipkl’ =0.
Combining this formula and the terms from —Q7 — Q% 4+ BT' + Z(T")
gives the result. 0

Lemma 3.7. Along the AHCF, we have the following evolution equation for the
first Chern—Ricci curvature.

0

5P = AP+ 9" (TEN  Pig + TEN s Py; + THTE Pog + Ry5 ¥ Ps)

rit 55
—9" 9" RopjrnPis + 97" T5i (Vs Ry + TP:Rop)

+T5 T8 Py + B, T% Py + B3, T% Py + B3, T2, Py — T3, T2 P

L5l Pip + ViV Rini + V3T, - P — V3Bp - Rsn — By Vi Ran
—g"" (B By; = ViTh, + Dol =15, Th . — BY T, + B T5:)Pan

Ji Jp~ mi jm> Dt
5 kI _
T, 5 — BT+ B, D R
g™ (I8 T~ TS0 — BY TS 4 BY T3Py

ma ki (5 7P 5 p p 15 5
+g"ViVi(QT+ Q= BT — Z(T")) iz
= AP + g (TEV, Pig + TEVs Py + THTE Pyg + Ry " Pys) + Ejj, (3.3)
where we put
Ej = g"Eg. (3.4)
Proof. We compute that
0 0, .7
apﬁ(g(t)) = &(gklRijkl_)
- 7 70
=(S+ Q"+ Q- BT' - Z(T/))klRijkl_ + gklaRiEkl_-

Choosing t = tp and a local unitary (1, 0)-frame {Z, } around a fixed point p €
M with respect to g(to). Then using the local g(t)-unitary frame, g(to)™" =
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6’"’7.71 )

I’ =_1v s =17 .
mj (¥ 18

mp?

Results Math

In the evolution equation in Lemma 3.6 (3.2), we see that

99" (R 5, " Risyi — RyjpiRig”) = 0,

9" R, (S + Q7 +Q° — BT — Z(T')) 1
= 0" 9" Ri1s(S + Q7 + Q¥ — BT — Z(T")),;
= (S+Q" +Q° — BT — Z(T'")M Ry,
s TP Ryt + T3.T%  Romnip = F?.FP R

ji- mk Ji mk it mk*lsmpk

5 TP _ 5 1P TS TP o
ijrmkRigpk + ijFmEkap - ijrmkRz§pk

s D 5 1D _ 178 TP .
FEkaER”ﬁsﬁ + F}EFnglm’fﬁ — Fikrmlemsﬁ

s TP _ s TP —Ts TP _
ijrmiRpT'nsk + ijq]‘—‘miRPm’Cg - ijrmiRpmsk

— 05T Ramip = 0,

1 mp
5 1k
- P?ﬁlrmpRigkﬁ =0,

- F?srigRiﬁlkﬁ =0,

— T3 Rpmis = 0,

js— mi

F?krgnﬁRiﬁsfc + FgEFEnTLRiﬁk§ = ngrfnﬁRipsl} - FstEnﬁRiﬁkg =0,

L s Rimpk + L5 Rimps = IR

— % T7  Rimps =0,

b impk js+ mk
T TP Rinsp + D500 cRimkp = T5.T7 - Rimsp — TE TP Risnip = 0
Gkt mktimsp jk+ms imkp — Gkt ik limsp jstms imkp — Y,
s TP _ s TP R._, — Bs TP - _BSTFRo-,—
BijSkRiﬁlpk + BijS]}le’fP - BijSkRiﬁka BijSplekp =0,
5 1P _ 5 P.p._ . _ RS TP __RBsrkp_
BjmrgkRimpk + B;mfglemkp = BijEkRimpk Bjmfngzmkp =0,
802 Ropor 4+ 18 TP Ronp =T8T R — T8 T8 Ry =0
mi jE vsmpk mi jk smkp — L mi jk*tsmpk mi jp smkp — Y5
5 p _ 5 D _ 15 P _ 5 k _
Fmﬁzriji§pk: + me]'—‘ifchng_) - merijiEpk - PmmFEpngkﬁ =0,

s k
ankl—‘%Rpﬁsfc + F;EF%RPTTLkg = FinkrgiRpﬁsE - FmngiR;Dﬁlkg =0,

Dokl Rimsp + Uy U5 Rinp = Dok Rimsp — Do IS Rinkp = 0,

an,k]'—‘é_‘)mRiﬁsE + anEFngiﬁkg = ankrngiﬁsfc

which leads the desired result.

impk

k —
— T8 TP Rigps = 0,

— T2 Riprs = 0,

O

We need the estimate of the term V;V;(Q7+Q®%—BT'—Z(T")),; included
in the terms E;5,; and Ej; for giving a proof of Theorem 1.1. From Lemma 3.3,

we have that

Z(T=ZM)+ Z(B°)+ BT +T' « T+ T+« +B°«T' + B« T’
+T' T +T+T' + B°x B° + O(Z(9)) + O(Z(9g))

From the definitions of BT’, Z(T") and the equality above, we have

(—Q" — Q* + BT' + Z(T")) ;5

= —BfrBf:;;gkgglj - BfrBé,;gkgng + ngﬂrﬁ + By Ty5 + BTy + Bjw:

pitpry

piJ
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—Zr(T7%)9s5 — Z5(wi) — gple;iZE(grrZ)
=B°«B°4+B°«T' +B°«T +T' «T +T' «T+T' «T +T«T
+I'x B°+ Z(T) + Z(B°) + O(Z(g)) + O(Z(g))
and then we obtain
~ViVi(—=Q" — Q* + BT + Z(T"))1
=VVB° % B°+VB°«VB° +VVB°«T +VB°«VT' + B°« VVT'
+VVB® «T' + VB «VT' + VB° « V1" + B« VVT' + VVT' x T
+VT' « VI + VT’ « VI +T" %« VVI + VVT' %« + VT % VI
+VT' * VL + T « VVL +VVT' « T +VT' VT +VT' « VT’
+T' % VVT' + VVL + T + VI« VI + VI« VI + T+« VVI + VVI * B°
+VI «VB° 4+ VI «VB°+T %« VVB°
+VVZ() + VVZ(B°) + VVO(Z(g)) + VVO(Z(g)).
Hence, by applying Lemmas 3.1, 3.4, we have the following estimate since

we may assume that the quantities |T/|%'O(g(t))’ IVT"[cog(ty) and | R|co(q(r)) are
uniformly bounded on [0,7) for any 0 < 7 < Tpax < 00 (see Remark 1.1),
ViVi-QT - @+ BT + 2T,
g
- ‘vVBO «B° + VB° +VB° + VVB° + T + VB° % VT’
+B°«VVT' +VVB°«T' + VB° «VT' + VB° « VT' + B° « VVT’
+VVT « T +VT' « VL +VT' « VL +T' * VVI + VVT' *T
+VT' « VL +VT' « VI +T' « VVL + VVT' « T' + VT « VT’
+VT' « VT + T « VT +VVE T + VI « VI 4+ VI « VI + T %« VVI
+VVI % B+ VI *VB° + VI * VB® + '« VVB°® + VVZ(T)
+VVZ(B®) + VVO(Z(g)) + ?VO(Z(g»‘ u
g

< O'R'+|VVO(Z(g)) + VVO(Z(g)) (3.5)

g(t)
for some uniform constant C’ > 0, where R’ is the time dependent tensor field
defined by R;jkl_ = g(t)i9() s

4. Preservation of Curvature Conditions

Remark 4.1. As we confirm in Remark 1.1, we may assume that the quantities
|T’|%0(g(t)), IVT'|co(g(t)) and |R|cog(s)y are uniformly bounded on [0, 7) for any
0 < 7 < Tnax < 00. We define

Ko:= sup (|Rlg) + |T"[20) + VT |40))
Mx {0}
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and choose sufficiently large K > K so that 7 = K1 < Tjpax < 00 and
sup (| Rlg + |T"|? oty VT |4)) < 2Ko. (4.1)

x[0,7

Proposition 4.1. Suppose that (M, J, g(t)) is a solution to the almost Hermit-
ian curvature flow such that the initial metric g(0) = go has the Griffiths
non-positive Chern curvature. There exist T > 0 and K > 0 such that for all
t €10,7], R= R(g(t)) satisfies the following conditions:

(i) P <0;
(ii) |Rupez|> < (1 + Kt)Pua Py for all z, u, v € TVOM, |z = 1.

We consider R%ki := R51 — €Byjir, where Bisir = 65957+ 9i19x; and € 1s
a sufficiently small real number. The result of Proposition 4.1 follows directly
as a consequence of the following Lemma by letting ¢ — 0.

Lemma 4.1. Under the assumption of Proposition 4.1, there exist T > 0 and
K > 0 such that for any sufficiently small ¢ > 0, and for any t € [0,7], the
following hold.

; —Kt, _ ) .
(i) P35 < —ee™ g5, where we put P35 =g R

(i1) |RS;.5? < (14 Kt)PE,PSy for all z, u, v € TVOM, |z| = 1.

uu— vv

We firstly show that ¢g(0) = go satisfies the assumptions in Lemma 4.1.

Lemma 4.2. Under the assumption of Proposition 4.1, R*(go) satisfies for any
sufficiently small € > 0,

(i) P<(g0)i; < —€(g0)ij;
(ii) \Rs(go)m—,m@o < P(90)54P(90)5y for all x, u, v € THOM, |x| = 1.

Proof. (i) follows from that P(go) < 0 and g’ng(go)ﬁk[ = (n +1)(go);;- Next
we show (ii). For a fixed 2 € TV M, since R®(go);j.z is almost Hermitian form,
we may choose eigenvectors {e;};j-; such that R*(go);j.z = Midij, where A; <0
since we have assumed that the 1n1t1a1 metric gg has the Griffiths non-positive
Chern curvature. Hence, for u =", u'e; and v =3 v'e;,

2

| R*(90)uvaz |go

90

(o ;0> ($02)
=1 1=1

=R (go)uﬁxiRE(QO)vixi
< PE(QO)uﬁPE(QO)m7~
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Proof of Lemma 4.1. As in Remark 4.1, we choose sufficiently large K > K
so that 7 = K1 < Tyay and satisfying (4.1). If conditions (i), (ii) are true
on [0, 7], then we are done. Let ty € (0, 7] be the first time such that one of
conditions (i), (ii) fails. First, we assume that (i) is true on [0,ty) and fails
at t = to. Then there exist pg € M and Xy € T, M with |Xo|gq,) = 1 such
that P°(g(t0)) x,x, = —c€¢ “"g(to) x,x, = —ce %' Moreover, for all p € M,
te0,t], Y,U,V € T}°M with |[Y| =1,

Pgy < —ce Kl o = —ce K1, |R§,‘—/YY|2 < (14 Kt)P; 5Py
Using polarization as in [7,8] and (4.1) to infer that for sufficiently small
€ >0, any e, e € TI}’OM with unit 1 and e;,e; € Tpl’OM for all p € M,
|R5l® < CuPgPs,  |RGl” < CuKo| Pyl
We consider
A= P5+ e(e ™8t —(n+ 1)g;; = P + Ee_thﬁ,

which satisfies A(Xo, Xo) =0 and A(Y,Y) <0 forall Y € T;°M, pe M. We
may assume that |Xo|g,) = 1 by rescaling. We extend X locally to a vector
field around (po, to) such that at (po,to),

VaX? =0, V,X?=Tix".
Then A(X, X) locally defines a function and satisfies

OA(X, X) >0,
where 0 := (2 — A). At (po,to), we have
9 X 9 ixd _ 0 i j 12 j
5 A X) = <&Ai3>x X7 +Aij<§x XTI+ X atXJ)
= (%Pﬁ —e(e Kt —(n+1))(S+ Q7T+ Q% — BT — Z(T'));5 — eKe*thﬁ)Xi)ﬁ
0 i3 0 3
+Ai3(ax X7 4+ X &Xﬂ)
0 _ iyi 1 —Kt
< (QPU)X XT - JeKe K, (4.2)

where we used (4.1) and the fact that for any Y € T,.°M, Ay, y = 0. Choosing
a local unitary (1,0)-frame with respect to g(tp) around a point py, we have
9i5(to) = d;3, Zr(gi5(to)) = 0 at po. Then we obtain
AA(X,X) = L4 (V, Vs 4 VaV,)(4,;XX0)
= AA; - X'X7 + AGXAXT + A XIAXT
VY, AGVeXt - X9 4 VA5V, X XY
VA - XIVXT + VA - XUV, XY
FAGV XV X 4 AGVRXV, XY
= AP; - X'X) 4+ V,P3V: X' - X7 4 V,P;V, X" X7
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+V, Py - X'V X7 + Vo Ps - X'V, X7

+AGV XV X7 + AV X'V, XY, (4.3)
where we used Vg = 0 and the fact that for any Y € TI}(;OM, Ax,y = 0 for
the terms involve A(AX, X) or its conjugate.

By combining them, we obtain by using the formula (3.3), and applying
(4.2), (4.3),

_ L= 1
OA(X,X) < X'X70P; — 5sKe—Kf
—g" (Vo Pi3VsX' - XI + VP53V, X" X9 4V, P3X'Vs X7 + VsPi3X'V,. X9)
—g"¥(Pi;V X' Vs X + Pi3V: X'V, X7)
—e(e Kt — (n+1))g"¥(V, X'V X7 + VX'V, X7)
e _ o1

= X'X7g" (TLN +Pig + TEVsPys + TH TS Pog + Rz " Pps) + Ej X' X7 — 551@*“
—g"(VsPi; - T3 X X7 4V, Py; - XTI X! 4 P XPTI X7
—e(e Kt — (n 4 1))g" T, X TT X1

=" R, "X X Pps + B X' X7 — %sKe*Kt —e(e™ Kt — (n+1))g" T, XTI XT

We have the following estimate from the estiamte (3.5),

ViVi(=Q" = Q% + BT' + Z(T")11 o SCF (4.4)
for a uniform constant C’ > 0, where we used that Z(g) = 0 with a local
unitary frame.

As K > K sufficiently large, since we may assume that the quantities
|T’|é0(g(t)), IVT'|co(g(yy and |R|co(g(r)) are uniformly bounded on [0, 7], we
have the estimates in Lemma 3.1, 3.4, 3.5, and the estimate (4.4),

> 1 1
0 S DA(X7X) S RXkaPpk - ZEK S _éEK,

which is a contrsdiction.
Next, we suppose that (ii) is not true at t = ¢g. Then, there exist py € M,

Xo,Uo, Vo € Tp;°M with |Xo|yq,) = 1 such that |R?]@V0X0X'o|!2i(to) = (1+
Kto) P55, Py, v, - By rescaling, we may assume that [Uolg(ts) = [Volg(,) = 1-

For all (p,t) € M x [0,t0], X,U,V € Ty°M with | X| =1,
P)E(X— < _567thx)’( = —EeiKt, |R?]\7XX|2 S (1 -+ Kt)PZEJUP‘E/V (45)

For sufficiently small € > 0, and for any ey, ¢; € TZ}>0M for all p € M with unit
1

)

RS < CuPEPS, IR

i jj? ijkl

> < C, Ko|Pg|. (4.6)

As in the previous case, we extend X, Uy to a local vector field X, U around
(po,to). We extend Xg, Uy, Vp to X, U and V around (py,to) such that at
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(pOa tO)a

VU™ =0, V,U"=T,U",

VeV =0, VY,V =TV,

VX" =0, V,X"=0, OX"=0.
Notice that we have at (po, to),

0 1 4
OU" = .U = §gkl(VkV[+ ViVi)Ur
0 r 1 kixo_(r 778
= &U - 59 V(T ,U?)
9 r 1 Kkl r s I s
= &U 59 (ViTi, - U® + Ty, ViU®)
0

T 1 T s
- &U —§V];T1%U 5

and note that we get

T 8 s
|DU ‘g(to) < ’&U

1 i S
sy T S I VTl g(t) | U%lg(10) < €
for some uniform constant C' > 0, where we have used that (4.1) and Lemma 3.4.
In particular, | X|,,) = 1. Then the function
F(z,t) = g% |Ryyxx” — 1+ KOPG Poy
attains its local maximum at (pg,to) and therefore satisfies
DF|(P0¢0) = 0.
We calculate by making use of (3.3),
OPgg = OP; - U0 + P3U'DUY + P5OU* U7 7
—g" PEV, U — gV, Py - U'VSU7 — g™V PV, U - U7
=0P; - U'U? +e(n+1)(S+ Q"+ Q° — BT — Z(T"));U'U?
+PEU'OUY + PSUOUY + &(n + 1)g" g5 15, T2,UPU?
*grgﬂiTTipngquUq _ grgvrpij . TsjqUiU!? _ grgvgpij . T;pUPU§
= R, PU'UI By + PzU70U" + PzU'D07 — 2¢(n+ U'DU"
+EGUU? +e(n+1)g" g5 Ti,UFTIU!
+e(n+1)(S+ Q"+ Q° — BT' — Z(T"));U'U”. (4.7)
Similarly we have
0Py = R, "V'VIPf + PgVIOV' + PViOV7 = 2¢(n+ V'OV
+EGVVI +e(n+1)g" g, T VTV
+e(n+1)(S+ Q"+ Q° — BT — Z(T"));;V'V7. (4.8)
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By combining these and chossing K > K sufficiently large and 7 = K1, we
obtain by applying (4.1), (4.5)—(4.8),

O[(1 + Kt) P Poy] > (1+ Kt) Py (RS, 7B, ) + (1 + Kt) Py (R; 5,7 P, *)

) 1
—2(1 + Kt)Re(g9"* VP VsPyy) + 5 K P Pry

_ 1
(4.9)

where we used that the quantities |T” |CO (9(®) VT |cog(t)) and [R|co(g)) are
uniformly bounded on [0, 7], and we applied Lemmas 3.1, 3.4, 3.5, the estiamte

(4.4).
We have by using (3.2),
ORyyx g = ORijii - UvIixkx! - e0B;547 - Uivixkxt
+REOUT VIXEXT 4 Re 0OV XEXT
+REUTVI(OXY - X+ XPOXT)
—g"V, R (UVVI - XEXT 4 U'VIXEV XY
~g"VsR;5(V,. U VIXEXT 4 UVIV, X* . XT)
—Re, (VUYL XEXT UV VIv, XE L X
+V,U VIXEY X+ UVIV, XV XD
= 9T§<RUVTpRp§XX + RT(/XPRngX - Rr\_/p)_(RUEXp)
—Rypx (S+Q"+ Q% — BT — Z(T')),x + Ry xx0OU’
+RyjxxOV7 + (S + Q7+ Q° = BT — Z(T"))yvgxx
+9up(S+Q "+ Q%= BT' — Z(T')) xx
+(S+ Q"+ Q* — BT = Z(T"))yx9xv
+9ux(S+Q"+Q® — BT — Z(T") xv)
+€Bi5XXTlUT— e(Biyxx0OU" + BUjXXDVj) +LEyvxx,
(4.10)
where we have used that
RSV, UV XPX = T T8 Ry — eBixx Tin T
Similarly, we have
ORVoxx =97 (Byg, Bpsxx + B g Rvspx — Reopx Rysy’)
—Ryx"(S+ Q"+ Q% = BT = Z(T")),x + RigxxOV' + Ryjx xOU7
+e((S+ Q"+ Q° = BT = Z(T")ypgxx + 9vo(S+ Q"+ Q° — BT
—Z(T")xx + (S+ Q"+ Q* = BT' — Z(T"))y xgxv
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+ovx(S+ Q7+ Q% = BT — Z(T")) xp) + eBixxTiv T/,
—e(BigxxOV' + BVEXXDUj) +Eypxx- (4.11)
By combining these, we obtain by applying (4.1), (4.4), (4.5), (4.9) and (4.10),
O(RGyxxRyvoxs) < —IVRypxx” = VR pxx I + Co Ko P Py,
where we used that the quantities \T’|200(g(t))7 IVT'|coqg(t)) and [R|co(ge)) are
uniformly bounded on [0, 7], and applied the estimates in Lemmas 3.1, 3.4,

3.5, the estimate (4.4).
Therefore, at (po, to),
OF < 2(1 + Kt)Re(g™V, P55 VPl
~|VRyyxx|* — VR px ¢I?
—éKPf]UP‘E,V +2(S+Q"+Q%— BT — Z(T") x x| R5 o x 52
By using that VF =0 and F = 0 at (po, to), one may conclude that
2(1+ Kt)Re(g"*V, P VsPyy) < [VRypx5l” + VR oy I
Using (4.1) and F(po,to) = 0, we deduce that
205+ Q"+ Q% — BT' — Z(T")) x x| Riyy x x> < Cuko P Pryy
and hence for sufficiently large K > C,, K, for some C,, > 1, at (p, to),

1
0<0OF < —-—KP;,

16 UU]DE

%

which is a contradiction. O

5. Strong Maximum Principle

Theorem 5.1. Suppose (M, J, g(t)) is a solution to the AHCF on t € [0, Tmax)
be a solution to the AHCF starting from the initial metric g(0) = go, where
Tmax 8 the finite explosion time of the AHCF. If the metric gy has the Griffiths
non-positive Chern curvature and its first Chern—Ricci curvature is negative
at some p € M, then there exists 0 < T < Tyax < 00 such that P(g(t)) <0 on
(0,7]. Note that under these assumptions, the metric go has the quasi-negative
first Chern—Ricci curvature.

Proof. Let 7 be the constant obtained in Proposition 4.1. Let y € M be a
point at which the first Chern—Ricci curvature is negative. Let ¢y be a smooth
non-negative function such that ¢o(y) > 0, ¢o = 0 outside a neighbour of y
and

P(go) + ¢0go <0 on M.
Let ¢(x,t) be the solution to the heat equation

0
(5 — Ag(t))¢(x,t) =0, on M x|[0,7];
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(,ZS(iL’, O) = ¢O~
By the strong maximum principle, it follows that ¢(x,t) > 0 on M x (0, 7]. By
rescaling, one may assume that ¢(z,t) < 1. Let k := ¢, Ko with ¢, > 1. For
any € > 0, we consider

AT = A%(g(t) = P(g(t) + e Mo?g(t) — eey(t),
where A is some sufficiently large constant which will be determined later. We
claim that A <0 on M x [0, 7]. Then the result follows by letting ¢ — 0. Note
that A%(¢g(0)) < 0 on M. Suppose not, there is ¢y € (0, 7] such that for all
(p,t) € M x [0,t0], U € Ty"M, Af, - (p,t) < 0. And there exists po € M, V €
T,:OM so that AS, o (po,to) = 0. By rescaling, we may assume that [V, = 1.
We extend V' around (po, to) locally such that
v;Vi=0, V,V'=T; V"

Then the function A, attains local maximum at (po,to) and obeys

DA;V'(POJO) > 0. (5.1)

Choosing a local unitary (1, 0)-frame with respect to g(to) around pg such that
9i5(to) = 9,5, then we compute
D47y = 0A5 - V'V 4+ A5(V' OV + v/ OV
—g(AGVAVIVYT 4 Ve AG VISV + VeAGY V)
= \:‘A% . V2V3 — A%Trzkvagfvi _ VTA% . Tgl_vai o VFA% ) T,E,Cv’“\ﬂ’
(5.2)

where we have used that A{,; =0 forall U € TZ}(;OM , hence we get that
A5(V,07) = 45OV, V) = 0,
which can be seen by considering the first derivation of functions: A®(V +

tU,V +tU) and A% (V +t/—1U,V —ty/—1U) at t = 0. From the formula (3.3),
we obtain at (po, to),

DAZ - ViV/ = P;

ij
+R PVIVIP, 4 BgViV
ke g2 — 2[VPe M — 2 (S + QT + QF — BT
—Z(T");VV7 = eAeM +ee (S + Q7+ Q° - BT
~Z(T")5 ViV

Combining them with Proposition 4.1 and the fact that A, (po,to) = 0, which

—e Rt ¢? + ceMt we have at (po,to), using (4.1),

T8

TLVTIVI 4V, Py - T2V 4 VP - T VoV

gives us that Py ¢
(5.1) and (5.2),

0 <OAS, = (—pPe 4 eeAt)gifoSVsTgZVz — 4ge F Re (¢ T, pg VPV )

J

Posto) —
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1jpq
—eAeM 4+ PVEVIS + QT + Q¥ — BT — Z(T")) 5ViVY
< (k4 CoKo)p?e ™ 4 el (—A 4 C, Ky),

R, VIVIP® 4 ESVIVI — ke g2 — 2|V |2

which leads a contradiction by choosing k and A sufficiently large, since the
quantities |T'|é0(g(t)), IVT'|cog(t)) and [R|co(g()) are uniformly bounded on
[0, 7], where we applied Lemmas 3.1, 3.4, 3.5, the estimate (4.4). As a result,
we have shown that there exist sufficiently large constants & > 0, A > 0 such
that for all e > 0, (x,t) € M x [0, 7],

P(g(t) < (=e () + ee)g(1).
In particular, by letting ¢ — 0, we obtain P(g(t)) < 0 for ¢ € (0, 7]. O
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