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Abstract. For a complete Riemannian manifold M with a (1,1)-elliptic
Codazzi self-adjoint tensor field A, we use the divergence type opera-
tor LA(u) := div(A∇u) and an extension of the Ricci tensor to extend
some major comparison theorems in Riemannian geometry. In fact we
extend theorems such as mean curvature comparison theorem, Bishop–
Gromov volume comparison theorem, Cheeger–Gromoll splitting theorem
and some of their famous topological consequences. Also we get an up-
per bound for the end of manifolds by restrictions on the extended Ricci
tensor. The results can be applied to some Riemannian hypersurfaces of
Riemannian or Lorentzian space forms.
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1. Introduction

In comparison geometry, one of the most important theorems is the Laplacian
comparison theorem for distance function in complete Riemannian manifolds.
The theorem states that for a complete Riemnnian manifold Mn with RicM ≥
(n − 1)H, one has ΔMr ≤ ΔHr, where ΔMr is the Laplacian of the distance
function r on M and ΔHr is the Laplacian of the distance function r on
the model space (i.e. a simply connected space form) of constant sectional
curvature H. The theorem has many consequences in Riemannian geometry
such as Myers’ theorem, Bishop–Gromov volume comparison theorem [38],
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Cheeger–Gromoll splitting theorem [11] and their applications in topology [13,
38], etc.

There are some extensions for the Laplace operator. One of the well
known extensions of the Laplace operator is the weighted Laplace operator
which is defined as Δf = Δ − ∇f.∇ for f ∈ C∞(M). This operator plays the
same role on weighted manifolds as Laplacian on manifolds. Many results in
comparison geometry for Laplace operator have been extended to this oper-
ator and weighted manifolds, for example refer to [7,13,14,18,22,31,35]. On
these manifolds, the tensor Ricf = Ric + Hessf plays the same role as the
Ricci tensor on Riemannian manifolds. Also Wylie extended the notion of sec-
tional curvature on these manifolds and got some valuable results [19,36]. The
p-Laplace operator Δpu = div

(
|∇u|p−2∇u

)
is another extension of the Laplace

operator and has a rich study in comparison geometry [28–30].
Another extension of the Laplace operator is the elliptic divergence type

operator LAu := div(A∇u), where A is a positive definite self-adjoint (1, 1)-
tensor field on a complete Riemannian manifold. A natural and major question
is how to extend the results for Laplace operator and Ricci tensor to this
operator. In this regard, Bakry and Emery invented the so-called curvature-
dimension inequality [5]. Let L be a second order differential operator with
L1 = 0. By the use of L, Bakry and Emery defined differential forms Γ, Γ2 as
follows,

Γ(u, v) =
1
2

{L(uv) − uL(v) − vL(u)}
and

Γ2(u, v) =
1
2

{L(Γ(u, v)) − Γ(u,L(v)) − Γ(v, L(u))} .

The operator L satisfies the CD(n,K)- curvature-dimension inequality, when
the following differential inequality holds,

Γ2(u, u) � 1
n

(Lu)2 − KΓ(u, u), ∀u ∈ C∞(M). (1.1)

The usual Bochner formula can be reformulated as follows in terms of
Γ,Γ2,

ΔΓ(u, u) = 2 ‖Hessu‖2
2 + 2Γ(u,Δu) + 2Ric(∇u,∇u).

Since ‖Hessu‖2
2 � 1

n (Δu)2, the CD(n,K)− curvature-dimension inequality
for Δ is equivalent to [21]

Ric(∇u,∇u) � K.

In a weighted manifold
(
M, e−f

)
, f ∈ C∞(M) for the weighted Laplacian

L = Δ − 〈∇f, .〉, one has

Γ2(u, u) = Hess f (∇u,∇u) + ‖Hessu‖2
2 ,
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and for m � n, L satisfies the CD(K,m)−curvature-dimension inequality, iff
[21]

∇f ⊗ ∇f � (m − n) [Ric + Hessf − Kg] .

The use of inequality (1.1) and properties of the heat semigroup has been
proved to be a powerful tool in the study of Markov diffusion operators on
manifolds. Bakry and Ledux and their collaborators have succeeded to re-
obtain several well-known fundamental results for Riemannian manifolds sat-
isfying the curvature-dimension inequality, when Laplacian is replaced by L
[6]. Qian used the so called Bakry–Emery’s curvature-dimension inequality and
several basic properties of the distance function to extend the Mean Curvature
Comparison for elliptic operators as follows [25].

Theorem 1.1 [25]. Let L be an elliptic differential operator of second order on
an m dimensional smooth manifold M . If L satisfies a curvature-dimension
inequality CD(n;−K) for some constants n > 0; K > 0, and if the distance d
induced by Γ is complete, then

Lρ2 ≤ n

{
1 +

√
1 +

4Kρ2

n

}
, on M − cut(p);

where ρ(x) = dist(x, p).

Inspired by these wonderful results we would like to give some nice ex-
tensions of them as follows:
In Theorem 1.2, we give an extension of the mean curvature comparison the-
orem different from Theorem 1.1. Our proof of Theorem 1.2 is compeletely
different from the proof of Theorem 1.1. This is because we have neither as-
sumed the strong curvature-dimension inequality CD(n;−K) condition, nor
completeness of the metric induced by Γ, but we used an extension of the
Ricci tensor and a different Bochner formula obtained in [2,16]. In fact we
give an upper bound for LAr where LA is an elliptic operator of the form
LAu = div(A∇u) and A is a self-adjoint (1, 1)− Codazzi tensor field on the
manifold.
We provide another extension of mean curvature comparison theorem. Via
this approach, we use the extension of Bochner formula obtained in [2,16] and
extend the Ricci tensor as (X,Y ) �→ Ric (X,AY ). We also extend some im-
portant classical theorems in comparison geometry such as Myers’ theorem,
Bishop–Gromov volume comparison theorem and its consequences including
Yau- Calabi theorem [37] for the growth of the volume of geodesic balls, Gal-
lot and Anderson’s theorem. We also extend some famous consequences of the
mean curvature comparison theorem like as Cheeger–Gromoll splitting theo-
rem and its applications in topology. Finally we get an upper estimate for the
ends of a manifold as for Riemannian or weighted Riemannian manifolds.

Our main results are Theorems 1.2–1.6. We state and explain them as
follows. First we prove the extended mean curvature comparison Theorem
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1.2 which is different from Theorem 1.1. We present two kinds of extensions
of mean curvature comparison. The first one is a result for the differential
operator ΔA,f and we use it to extend Myers’ theorem and Cheeger–Gromoll
splitting theorem. The second one is for differential operator LA,f which is
used to extend the volume comparison theorem.

Theorem 1.2 (Extended mean curvature comparison). Let x0 ∈ M , r(x) =
dist(x0, x) and H be constant.

(a) If (n − 1) δnH|X|2 ≤ Ric(X,AX) and
∣∣fA
∣∣ ≤ K where K is some con-

stant ( for H > 0 assume r ≤ π
4
√

H
), then along any minimal geodesic

segment from x0 we have,

ΔA,fAr ≤ δn

(
1 +

4K

δn (n − 1)

)
ΔHr.

(b) If (n − 1) δnH ≤ Ric−Trace(A)(∂r, A∂r) ,
∣∣fA
∣∣ ≤ K and |Trace(A)| ≤ K ′

where K and K ′ are some constants ( for H > 0 assume r ≤ π
4
√

H
), then

along any minimal geodesic segment from x0 we have,

LAr ≤ δn

(
1 +

4 (K + K ′)
δn (n − 1)

)
(ΔHr) + ∂r.f

A(r),

where the notations LA,f , ΔA,f , RicTrace(A)(∂r, A∂r)and δn are defined in
Definitions 2.3 and 2.2, fA is an estimates for a contraction of the tensor field
T∇∇rA, defined in Definition 3.2.

As a consequence of the extended mean curvature comparison for the
operator ΔA,f and by inspiring the ideas of [23,31,34], we prove a variant of
Myer’s theorem via the excess functions as follows.

Theorem 1.3. If Ric(X,AX) ≥ (n − 1) δnH|X|2 for any vector field X ∈
X(M) and some constant H > 0 and

∣∣fA
∣∣ ≤ K Then

(a) M is compact and diam(M) ≤ π√
H

+ 4K
δn(n−1)

√
H

,

(b) M has finite fundamental group.

The Bishop–Gromov volume comparison theorem (see [13] or [38]) is
one of the most important theorems in differential geometry and has many
important applications, we extend the volume comparison theorem as follows.

Theorem 1.4. Let M be a Riemannian manifold, x0 ∈ M and r(x) := dist
(x0, x). Let A be a self adjoint (1,1)-tensor field on M and RT be a constant.
Assume the following conditions

(1) For some constant H we have Ric−Trace(A)(X,AX) ≥ (n − 1) δnH|X|2
( If H > 0, assume RT ≤ π

4
√

H
),

(2)
∣∣fA
∣∣ ≤ K and |Trace(A)| ≤ K ′.
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Then for m = C (δn, n, δ1,K,K ′,H) =
[

δn(n−1)+4(K+K′)
δ1

]
+ 2, the following

results hold,

(a) If
∣∣∇fA

∣∣ ≤ a, then for any 0 < r ≤ R, then

volA(B(p,R))
volA(B(p, r))

≤ e(a/δ1)R
volmH (R)
volmH (r)

.

(b) For any 0 < r ≤ R and p > 1,
(

volA(B(x0, R))
volmHB(R)

)1/p

−
(

volA(B(x0, R))
volmHB(r)

)1/p

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R

∫ R

r

tsnm−1
H (t)

(volmHB(t))1+1/p
dt.

(c) For any 0 < r1 ≤ r2 ≤ R1 ≤ R2 ≤ RT , one has the following extended
volume comparison formula for annular regions,

(
volA(B(x0,r2,R2))

volmH B(r2,R2)

)1/p

−
(

volA(B(x0,r1,R1))
volmH B(r1,R1)

)1/p

≤ cm

pδn

∥∥∥
(
δ
1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,RT

×
[∫ R2

R1

tsnm−1
H (t)

(volmH B(r2,t))1+1/p dt +
∫ r2

r1

R1snm−1
H (R1)

(volmH B(t,R1))
1+1/p dt

]
.

Here B(x0, r) is the geodesic ball with center x0 and radius r, B(x0, R1, R)
= B(x0, R)\B(x0, R1). δn, δ1 and volA are defined in Definitions 2.2, 4.1 and
fA is defined in Definition 3.2.

One of the major and beautiful consequences of mean curvature com-
parison theorem, is the Cheeger–Gromoll splitting theorem [11]. The theorem
states that a compelet manifold Mn with nonnegative Ricci curvature which
contains a line can split as a Reimannian product Nn−1 × R and RicN ≥ 0.
We extend this theorem as follows.

Theorem 1.5 (Extended Cheeger–Gromoll Splitting theorem). If M contains
a line and Ric(Y,AY ) ≥ 0 for any vector field Y , by defining N = (b+)−1 (0)
and AN = proj(∇b+(0))⊥ ◦ A ◦ proj(∇b+(0))⊥ , one has M = Nn−1 × R and
Ric(X,ANX) ≥ 0, where b+ is the Bussemann function associated to the ray
γ+(t) and X ∈ Γ (TN).

The number of ends of a manifold is an important concept in topology and
Differential geometry, so finding an upper bound for it is an important problem.
Cai invented an approach to estimate the number of ends of a Riemannian
manifold, when the Ricci tensor is non negative outside of a compact set [8].
Wu used that approach for weighted manifolds [33]. Similarly, we get an explicit
upper bound for the number of ends of a manifold, when the extended Ricci
tensor is nonnegative outside of a compact set .

Theorem 1.6. Let x0 ∈ M be a fixed point and H,R > 0 be two constants.
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Assume Ric−Trace(A)(X,AX) ≥ −(n − 1)Hδn|X|2 in the geodesic ball
B(x0, R) and Ric−Trace(A)(X,AX) ≥ 0 outside the ball B(x0, R), then the
number of ends N(A,M,R) of M is estimated as

N(A,M,R) ≤ 2m

m − 1

(√
HR
)−m

exp
(

17R

2

(
(m − 1)

√
H + 1

))
,

where p > m and

m := C (δn, n, δ1,K,K ′,H) =
[
δn(n − 1) + 4(K + K ′)

δ1

]
+ 2

K := sup
x∈B(x0,25R/2)

∣∣fA (x)
∣∣ ,

K ′ := sup
x∈B(x0,25R/2)

|Trace(A) (x)| ,

The paper is organized as follows. In Sect. 2, we give the preliminaries.
Passing to Sect. 3, we prove the extended mean curvature comparison Theo-
rem 1.2 and as an application, we prove the Myers’ theorem 1.3. At the end
of this section we recall some weak inequalities which we use them to the ex-
tended Bishop–Gromov volume comparison Theorem and estimation of the
excess functions. Section 4 is devoted to the extension of volume comparison
theorem. As an application, we extend Yau and Calabi theorem [37] on the
growth of the volume and extend Gallot’s theorem on the estimation of the first
Betti number and extend Anderson’s theorem [4]. We generalize the Cheeger–
Gromoll splitting theorem and extend some famous topological results of this
theorem in Sect. 5. Section 6 is for the estimate of the excess function and its
applications in topology. We give an upper bound for the number of ends of
the manifold in Sect. 7. Finally in Sect. 7, as an example we use an extended
Ricci tensor on some hypersurfaces immersed isometrically in a Riemannian
or Lorentzian manifold of constant sectional curvature and show that the ex-
tended Ricci tensor is greater than the Ricci tensor of the hypersurface, so
the study of the geometry and topology of a Riemannian hypersurface by the
extended Ricci tensor maybe better than the original one.

2. Preliminaries

In this section, we present the preliminaries. Throughout the paper M =
(M, 〈, 〉) is a complete Riemannian manifold, unless otherwise stated.

Definition 2.1. A self-adjoint operator A on M is a (1, 1)-tensor field with the
following property,

∀X,Y ∈ X(M), 〈AX,Y 〉 = 〈X,AY 〉 .

Definition 2.2. Let A be a self-adjoint positive definite operator on M , A is
called bounded if there are constants δ1, δn > 0 such that δ1 < 〈X,AX〉 < δn

for any unit vector field X ∈ X(M).
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Definition 2.3. Let A be a self-adjoint operator on M . We define LA,ΔA,ΔA,f ,
LA,f , RicA and Ricf as follows:
(a) LA(u) := div (A∇u) =

∑
i 〈∇ei

(A∇u) , ei〉,
(b) ΔA(u) :=

∑
i 〈∇ei

∇u,Aei〉,
(c) ΔA,f (u) = ΔAu − 〈∇f,∇u〉 ∀f, u ∈ C∞(M), and for X ∈ X(M), ΔA,X

(u) := ΔAu − 〈∇f,X〉 .
(d) LA,f (u) := efdiv

(
e−fA∇u

)
, ∀f, u ∈ C∞(M).

(e) Ricf (X,AY ) := Ric(X,AY ) + Hessf(X,Y ), ∀X,Y ∈ X(M).
(f) RicA(X,Y ) :=

∑
i 〈R(X,Aei)ei, Y 〉, ∀X,Y ∈ X(M). where {ei} is a

local orthonormal frame.
RicA and Ric(−, A−) are both extensions of the Ricci tensor.

Example 2.4. Here we give three examples for LA.f and ΔA,f .
(1) When A = id, then LA,f = ΔA,f = Δf = Δ − 〈∇f, .〉 .
(2) Let Σn ⊂ Mn+1 be a Riemannain hypersurface with shape operator A,

the so-called Newton transformations related to the shape operator A are
inductively defined by [3]

P0 := id,
Pk := SkI − A ◦ Pk−1 , 1 � k � n,

Sk is the kth− mean curvature of Σ. Associated to each Newton trans-
formation Pk, the operator Lk : C∞(Σ) → C∞(Σ) which is defined as,

Lku = tr(Pk ◦ hessu) = ΔPk
u

is a second order differential operator. Note that,

LPk
u = div(Pk∇u) = Lku + 〈divPk,∇u〉 .

When the ambient manifold M has constant sectional curvature, then
divPk = 0 and

Lku = ΔPk
u = LPk

u.

In the case f ∈ C∞(Σ) is constant, then

Lku = ΔPk,fu = LPk,fu.

(3) If A = Pk and f = H, be the mean curvature function, then

ΔA,fu = Lku − n 〈∇H,∇u〉 &LA,fu

= Lku + 〈divPk − Pk∇H,∇u〉 , u ∈ C∞(Σ).

Remark 2.5. The operators Lk are important in the study of the geometry
of hypersurfaces. Applying the maximum principles such as Omori–Yau maxi-
mum principles to these operators led to many beautiful and important results
[3]. It seems that the results of this paper provide an approach that may have
potential applications in comparison geometry for Riemannian hypersurfaces
of Riemannian or Lorentzian space forms.



215 Page 8 of 37 S. Azami et al. Results Math

By the following proposition for the distance function r(x), ΔAr has the
same asymptotic behavior as Δr, when r → 0.

Proposition 2.6. Let x0 ∈ M be a fixed point and r(x) = dist(x0, x), then
limr→0 r2 (ΔAr) = 0.

Proof. One knows that

Hessr =
1
r

(〈 , 〉 − dr ⊗ dr) + O(1) , r → 0+.

Let {ei} be a local orthonormal frame field with e1 = ∇r. By Definition 2.3
we have,

ΔAr =
∑

i
〈∇ei

∇r,Aei〉 =
∑

i
Hessr (ei, Aei) =

1
r

(
Trace(proj∂⊥

r
◦ A|∂⊥

r

)

+O(1) , r → 0+.

�
For comparison results in geometry one needs Bochner formula. The fol-

lowing theorem provides the extended Bochner formula.

Theorem 2.7 (Extended Bochner formula) [2,16]. Let A be a self-adjoint op-
erator on M , then,
1
2LA(|∇u|2) = 1

2

〈
∇|∇u|2, div(A)

〉
+ Trace

(
A ◦ hess2 (u)

)
+ 〈∇u,∇(ΔAu)〉

−Δ(∇∇uA)u + RicA(∇u,∇u), ∀u ∈ C∞(M).

where, RicA was defined in Definition 2.3 and hessu(X) := ∇X∇u.

Definition 2.8. Let B be a (1, 1)-tensor field on M . Define TB as,

TB(X,Y ) := (∇XB) Y − (∇Y B) X.

It is clear that TB is a (2,1) tensor field and when TB = 0, then B is a Codazzi
tensor, that is, (∇XB)〈Y,Z〉 = (∇Y B)〈X,Z〉.
Example 2.9. If B is the shape operator of a hypersurface Σn ⊂ Mn+1 then

TB(Y,X) =
(
R̄(Y,X)N

)T
,

where R̄ is the curvature tensor of M and N is a unit normal vector field on
Σn ⊂ Mn+1.

Lemma 2.10. Let B be a (1,1)-self-adjoint tensor field on M , then,〈
X,TB(Y,Z)

〉
=
〈
TB(Y,X), Z

〉
+
〈
TB(X,Z), Y

〉
.

Proof. By computation, we have,〈
X,TB(Y,Z)

〉
= 〈X, (∇Y B)Z − (∇ZB) Y 〉
= 〈(∇Y B) X − (∇XB) Y,Z〉 + 〈Y, (∇XB) Z − (∇ZB) X〉
=
〈
TB(Y,X), Z

〉
+
〈
TB(X,Z), Y

〉
.

�
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To simplify the extended Bochner formula 2.7, we give some properties
of the second covariant derivation of the operator B in the following Lemma.

Lemma 2.11. Let B be a (1,1)-self-adjoint tensor field on M and X,Y,Z ∈
X(M), then
(a)

(∇2B
)
(X,Y,Z) =

(∇2B
)
(X,Z, Y ) + R(Z, Y ) (BX) − B (R(Z, Y )X) ,

(b)
(∇2B

)
(X,Y,Z) − (∇2B

)
(Y,X,Z) =

(∇ZTB
)
(X,Y ).

Proof. For part (a) we have,

∇2B(X,Y,Z) = (∇ (∇B)) (X,Y,Z) = (∇Z (∇B)) (X,Y )
= (∇Z (∇Y B)) X + (∇Y B) (∇ZX)

− (∇Y B) (∇ZX) − (∇∇ZY B) (X)
= (∇Z (∇Y B)) X − (∇∇ZY B) X

Similarly,

∇2B(X,Z, Y ) = (∇Y (∇ZB)) X − (∇∇Y ZB) X.

Thus

∇2B(X,Y,Z) − ∇2B(X,Z, Y )
= (∇Z∇Y B) X − (∇Y (∇ZB)) X − (∇[Z,Y ]B

)
X

= (R(Z, Y )B) X = R(Z, Y ) (BX) − B ((R(Z, Y )X)) .

For part (b), by definition of T , we have

∇2B(X,Y,Z) = (∇Z (∇B)) (X,Y )

= ∇Z

(
(∇B) (Y,X) + TB (Y,X)

)

− (∇B) (∇ZX,Y ) − (∇B) (X,∇ZY )
= (∇Z (∇B) (Y,X)) + (∇B) (∇ZY,X) + (∇B) (Y,∇ZX)

+∇Z

(
TB (Y,X)

)− (∇B) (∇ZX,Y ) − (∇B) (X,∇ZY )

= (∇Z (∇B) (Y,X)) +
(∇ZTB

)
(X,Y ) .

�

Lemma 2.12. Let B be a (1, 1)−self-adjoint tensor field on M , then

〈(ΔB) X,X〉 = 〈(∇XdivB) ,X〉 − RicB (X,X)

+Ric (X,BX) +
〈∇∗TB(X),X

〉
.

where ∇∗ is adjoint of ∇ and

∇∗TB(X) =
∑

i

(∇ei
TB
)
(X, ei).

Proof. For simplicity let {ei} be an orthonormal local frame field in a normal
neighborhood of p such that with ∇ei

ej = 0 at p. At p Lemma 2.11 implies,

〈(ΔB) X,X〉 =
∑

i 〈(∇ei
∇ei

B) X,X〉 =
∑

i

〈∇2B(X, ei, ei),X
〉

=
∑

i

〈∇2B(ei,X, ei),X
〉

+
〈∇∗TB(X),X

〉
.
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So by Lemma 2.11, part (a) we have

〈(ΔB) X, X〉 =
∑

i 〈∇2B(ei, X, ei), X〉 +
〈∇∗TB(X), X

〉
=
∑

i 〈∇2B(ei, ei, X) + R(ei, X) (Bei) − B ((R(ei, X)ei)) , X〉
+
〈∇∗TB(X), X

〉
= 〈(∇XdivB) , X〉 − RicB (X, X) + Ric (X, BX) +

〈∇∗TB(X), X
〉
.

�

The extended Bochner formula 2.7 is very much complicated. The compli-
cation of the formula is due the existence of the term Δ∇uBu. Howerer, when
Δ∇uBu ≤ 0, the extended Bochner formula yields a simple Riccati inequality
as the usual Bochner formula does for Laplacian. In the following proposition,
we give a presentation for Δ∇uBu which seems useful for its estimation.

Proposition 2.13. Let B be a (1,1)-self-adjoint tensor field on M , then

Δ(∇∇u B)u = ∇u.∇u.Trace(B) − 〈∇u, (ΔB) ∇u〉 +
〈∇u,

(∇∗TB
)
(∇u)

〉
+
∑

i

〈
ei, T

B(∇u,∇ei
∇u)

〉
+
∑

i

〈
T (∇∇uB)(ei,∇u), ei

〉
.

Proof. Let B be a (1, 1)-tensor field, then

Δ(∇∇uB)u =
∑

i 〈∇ei∇u, (∇eiB) ∇u〉 +
∑

i

〈∇ei∇u, TB(∇u, ei)
〉

=
∑

i ei. 〈∇u, (∇eiB) ∇u〉 −∑i

〈∇u,
(∇2

ei
B
)∇u

〉
−∑i 〈∇ei∇u, (∇eiB) ∇u〉 +

∑
i

〈∇ei∇u, TB(∇u, ei)
〉

=
∑

i ei. 〈∇u, (∇∇uB) ei〉 +
∑

i ei.
〈∇u, TB(ei, ∇u)

〉− 〈∇u, (ΔB) ∇u〉
−Δ(∇∇uB)u + 2

∑
i

〈∇ei∇u, TB(∇u, ei)
〉
.

Note
∑

i ei.
〈∇u, TB(ei, ∇u)

〉
+ 2

∑
i

〈∇ei∇u, TB(∇u, ei)
〉

=
∑

i

〈∇ei∇u, TB(ei, ∇u)
〉

+
∑

i

〈∇u,
(∇eiT

B
)
(ei, ∇u)

〉
+
∑

i

〈∇u, TB(ei, ∇ei∇u)
〉

+ 2
∑

i

〈∇ei∇u, TB(∇u, ei)
〉

=
∑

i

〈∇u,
(∇eiT

B
)
(ei, ∇u)

〉
+
∑

i

〈∇u, TB(ei, ∇ei∇u)
〉

+
∑

i

〈∇ei∇u, TB(∇u, ei)
〉

= − 〈∇u,
(∇∗TB

)
(∇u)

〉
+
∑

i

〈∇u, TB(ei, ∇ei∇u)
〉

+
∑

i

〈∇ei∇u, TB(∇u, ei)
〉

= − 〈∇u,
(∇∗TB

)
(∇u)

〉
+
∑

i

〈
ei, TB(∇u, ∇ei∇u)

〉

In other words,

Δ(∇∇uB)u = 〈∇u, div (∇∇uB)〉 − 〈∇u, (ΔB) ∇u〉 − 〈∇u,
(∇∗TB

)
(∇u)

〉
+
∑

i

〈
ei, T

B(∇u,∇ei
∇u)

〉
.

But,

〈∇u, div (∇∇uB)〉 =
∑

i
〈∇u, (∇ei

(∇∇uB)) ei〉 =
∑

i
〈(∇ei

(∇∇uB)) ∇u, ei〉
=
∑

i

〈
(∇∇u (∇∇uB)) ei + T (∇∇uB)(ei,∇u), ei

〉

= ∇u.∇u.Trace(B) +
∑

i

〈
T (∇∇uB)(ei,∇u), ei

〉
.
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So,

Δ(∇∇u B)u = ∇u.∇u.Trace(B) − 〈∇u, (ΔB) ∇u〉 − 〈∇u,
(∇∗TB

)
(∇u)

〉
+
∑

i

〈
ei, T

B(∇u,∇ei
∇u)

〉
+
∑

i

〈
T (∇∇uB)(ei,∇u), ei

〉
.

�

So, the extended Bochner formula in Theorem 2.7 can be rewritten as
follows.

Proposition 2.14. Let B a (1,1)-self-adjoint tensor field on M and u ∈ C∞(M),
then
1
2LB(|∇u|2) = 1

2

〈
∇|∇u|2, div(B

〉
+ Trace

(
B ◦ hess2 (u)

)
+ 〈∇u,∇(ΔBu)〉

−∇u.∇u.Trace(B) + 〈(∇∇udivB) ,∇u〉 + 2
〈∇∗TB(∇u),∇u

〉
−∑i

〈
ei, T

B(∇u,∇ei
∇u)

〉−∑i

〈
T (∇∇uB)(ei,∇u), ei

〉
+Ric (∇u,B∇u) .

Proof. The result follows from Proposition 2.13, Theorem 2.7 and Lemma 2.12.
�

3. Extended Mean Curvature Comparison

In this section, we prove two versions of the extended mean curvature com-
parison theorem, when A is a (1, 1)-self-adjoint Codazzi tensor. The first one
is for the elliptic operator ΔA,f , which is used for the extension of Myers’
theorem, Cheeger–Gromoll splitting theorem and estimating the excess func-
tions. The second is for the elliptic operator LA,f which is used to extend
Bishop–Gromov volume comparison theorem and its topological results. For
the first one we use the tensor Ric(∂r, A∂r) and for the second one, the tensor
RicTrace(A)(∂r, A∂r) = Ric(∂r, A∂r) + ∂r. 〈divA, ∂r〉 is used. Let x0 ∈ M be a
fixed point, we define r(x) = dist(x0, x), then r(x) is smooth on M\cut(x0)
and |∇r| = 1. For simplicity, we denote ∇r by ∂r. So by Theorem 2.14 we get
Theorem 3.1 as follows.

Theorem 3.1. Let A be a (1,1)-self-adjoint Codazzi tensor on M and r(x) :=
dist(x0, x), then

0 = Trace
(
A ◦ hess2 (r)

)
+ ∂r.(ΔAr) + Ric(∂r, A∂r) −

∑
i

〈
T (∇∂r A)(ei, ∂r), ei

〉
,

on M\cut(x0).

To get the extended mean curvature comparison, we need to approximate∑
i

〈
T (∇∂r A)(∂r, ei), ei

〉
. When it is negative, a simple Riccati inequality is

obtained, but when this it is positive the case is more complicated, and we
estimate it by using HessfA(∂r, ∂r) and adapt the approach of [31] to estimate
ΔA,fAr and LA,fAr. Let us define FA and fA.
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Definition 3.2. We define the continuous function FA as follows,

FA(x) := max
X∈TxM,|X|=1

∑
i

〈
T (∇XA)(ei,X), ei

〉
(x).

We define the function fA as a smooth function which satisfies the following
condition,
(*) FAgM ≤ Hess

(
fA
)
, in the sense of quadratic forms, where gM is the

metric tensor of the manifold M .

Example 3.3. In the following fA = 0.
(a) When Σn ⊂ Mn+1(c) is a totally ubilical hypersurface, then Δ∇∇uAu =

0, so FA = 0, thus fA = 0.
(b) For a Codazzi tensor A, if ∇2A = 0 then fA = 0.

By the following Lemma, we find a radial function fA which satisfies
condition (*) by some conditions on the radial sectional curvature of M .

Lemma 3.4. Assume FA(x) ≤ K(x) and fA be a radial function. If fA is
a solution of the following differential inequality, then the condition (*) is
satisfied.

sup
x∈B(r)

K(x) = K(r) ≤
(

fA′′
+

h′

h
fA′
)

, fA′
> 0

where h is the solution of differential equation,{
h′′ − Gh = 0,
h(0) = 0 , h′(0) = 1,

and G is a suitable function, with secrad ≤ −G (secrad is the radial sectional
curvature of M).

Now we present proof of Theorem 1.2. We follow the proof of Theorem
1.1 in [31]. In [31] the Authors proved when Ric + Hessf ≥ (n − 1)H then
Δfr ≤ Δn+4k

H r. we inspire their proof to get our result.

Proof of Theorem 1.2. We are inspired by the proof of Theorem 3.1 of [31].
For the first part, by assumption A is positive semi-definite, so for any smooth
function u we have

Trace
(
A ◦ hess2 (u)

) ≥ (ΔAu)2

(TraceA)
,

Since A is bounded, we have
1

(n − 1) δn
≤ 1

Trace(A)
.

So we get the following differential inequality,

0 ≥ (ΔAr)2

(n − 1) δn
+ ∂r.(ΔAr) + Ric(∂r, A∂r) − ∂r.∂r.f

A. (3.1)
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Let γ(t) be a minimal geodesic through the point x0. Then,

0 ≥ (ΔAr)2

(n − 1) δn
+ (ΔAr)′ + Ric (γ′(t), Aγ′(t)) − (fA(t)

)′′
.

On the space form Mn
H with constant sectional curvature H, one has (see [13])

(ΔHr)2

n − 1
+ (ΔHr)′ + (n − 1)H = 0.

We know that ΔHr = (n − 1) sn′
H(r)

snH(r) (see [13]), where

snH(r) =

⎧
⎪⎨
⎪⎩

1√
H

sin(
√

Hr) H > 0,

r H = 0,
1√−H

sinh(
√−Hr) H < 0.

By assumption, (n − 1) δnH ≤ Ric(∂r, A∂r). So,

(
ΔAr

δn
− ΔHr

)′
≤ −

(
(ΔAr)2

(n − 1) δ2
n

− (ΔHr)2

n − 1

)
+

1
δn

(
fA(t)

)′′
. (3.2)

Formula (3.2) and computation give that

(
sn2

H(r)
(

ΔAr

δn
− ΔHr

))′

= 2sn′
H(r)snH(r)

(
ΔAr

δn
− ΔHr

)
+ sn2

H(r)
(

ΔAr

δn
− ΔHr

)′

≤ 2sn2
H(r)

(n − 1)
(ΔHr)(

ΔAr

δn
− ΔHr) − sn2

H(r)(
(ΔAr)2

(n − 1)δ2
n

− (ΔHr)2

n − 1
)

+
sn2

H(r)
δn

(
fA(r)

)′′

=
sn2

H(r)
(n − 1)

(
2
(ΔHr) (ΔAr)

δn
− 2(ΔHr)2 − (ΔAr)2

δ2
n

+ (ΔHr)2
)

+
sn2

H(r)
δn

(
fA(r)

)′′

= −sn2
H(r)

(n − 1)

(
ΔAr

δn
− ΔHr

)2

+
sn2

H(r)
δn

(
fA(r)

)′′

≤ sn2
H(r)
δn

(
fA(r)

)′′
.
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By Proposition 2.6, limr→0 sn2
H(r)

(
ΔAr
δn

− ΔHr
)

= 0. So integration with
respect to r, concludes,

1
δn

sn2
H(r) (ΔAr) ≤ sn2

H(r) (ΔHr) +
1
δn

∫ r

0

sn2
H(t)

(
fA(t)

)′′
dt

= sn2
H(r) (ΔHr) +

1
δn

sn2
H(r)

(
fA(r)

)′

− 1
δn

∫ r

0

(
sn2

H(t)
)′(

fA(t)
)′

dt.

By Definition 2.3(c) one has,

1
δn

sn2
H(r)

(
ΔA,fA(r)

) ≤ sn2
H(r) (ΔHr) − 1

δn

∫ r

0

(
sn2

H(t)
)′(

fA(t)
)′

dt.

So integration with respect to t implies,

1
δn

sn2
H(r)

(
ΔA,fA(r)

) ≤ sn2
H(r) (ΔHr) − 1

δn
fA(r)

(
sn2

H(r)
)′

+
1
δn

∫ r

0

(
sn2

H(t)
)′′

fA(t)dt.

When H > 0, by assumption, we have r ≤ π
4
√

H
, so

(
sn2

H(t)
)′′ ≥ 0, thus

1
δn

sn2
H(r)

(
ΔA,fA(r)

) ≤ sn2
H(r) (ΔHr) +

2K

δn

(
sn2

H(r)
)′

.

We know,

(
sn2

H(r)
)′

= 2(snH(r))′
snH(r) =

2
n − 1

(ΔHr)
(
sn2

H(r)
)
,

so,

(
ΔA,fA(r)

) ≤ δn

(
1 +

4K

δn (n − 1)

)
(ΔHr) .

For the second part, from the condition on RicTrace(A) (∂r, A∂r) we have,

(
ΔA

δn
− ΔHr

)′
≤ −

(
(ΔAr)2

(n − 1) δ2
n

− (ΔHr)2

n − 1

)
+

1
δn

(
fA(t) − Trace(A)

)′′
.

By similar computation,
(

sn2
H(r)

(
ΔAr

δn
− ΔHr

))′
≤ sn2

H(r)
δn

(
fA(t) − Trace(A)

)′′
.
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Thus,
1
δn

sn2
H(r) (ΔAr) ≤ sn2

H(r) (ΔHr) +
1
δn

∫ r

0

sn2
H(t)

(
fA(t) − Trace(A)

)′′
dt

= sn2
H(r) (ΔHr) +

1
δn

sn2
H(r)

(
fA(r) − Trace(A)

)′

− 1
δn

∫ r

0

(
sn2

H(t)
)′(

fA(t) − Trace(A)
)′

dt.

Note that A is a Codazzi tensor, so divA = ∇Trace(A), and
1
δn

sn2
H(r)

(
(ΔAr) + 〈divA, ∂r〉 − ∂r.f

A(r)
) ≤ sn2

H(r) (ΔHr)

− 1
δn

∫ r

0

(
sn2

H(t)
)′(

fA(t) − Trace(A)
)′

dt,

and LAr = 〈divA, ∂r〉 + ΔAr, thus,
1
δn

sn2
H(r)

(
LAr − ∂r.f

A(r)
) ≤ sn2

H(r) (ΔHr)

− 1
δn

∫ r

0

(
sn2

H(t)
)′(

fA(t) − Trace(A)
)′

dt.

Similarly,

LAr ≤ δn

(
1 +

4 (K + K ′)
δn (n − 1)

)
(ΔHr) + ∂r.f

A(r). (3.3)

�

Remark 3.5. When H > 0, for π
4
√

H
≤ r ≤ π

2
√

H
we have

∫ r

0

(
sn2

H(t)
)′′

fA(t)dt ≤ K

(∫ π
4

√
H

0

(
sn2

H(t)
)′′

dt −
∫ r

π
4

√
H

(
sn2

H(t)
)′′

dt

)

= K

(
2√
H

− snH(2r)
)

.

So, when π
4
√

H
≤ r ≤ π

2
√

H
,

(
ΔA,fA(r)

) ≤ δn

⎛
⎝1 +

1
δn

4K

(n − 1) sin
(
2
√

Hr
)
⎞
⎠ (ΔHr) .

This estimate will be used to prove the extended Myers’ theorem.

Corollary 3.6. If Trace(A) is constant and Trace(A)H ≤ Ric (∂r, A∂r), then

ΔA,fAr ≤ Trace(A)
n − 1

(
1 +

4K

Trace(A)

)
ΔHr,

LAr ≤ Trace(A)
n − 1

(
1 +

4K

Trace(A)

)
(ΔHr) + ∂r.f

A(r).



215 Page 16 of 37 S. Azami et al. Results Math

Now we prove the extended Myers’ theorem by using the so called excess
functions. In fact the idea is used in [23,31,34]. By adapting their approach
we obtain the compactness result using the extended mean curvature Theorem
1.2 for the elliptic differential operator ΔA,fA to the excess function.

Proof of Theorem 1.3. (Myers’ theorem) (a) Let p, q are two points in M with
dist (p, q) ≥ π√

H
. Define B := dist (p, q)− π√

H
, r1(x) := dist (p, x) and r2(x) :=

dist (q, x). Let ep,q(x) be the excess function associated to the points p, q. By
triangle inequality, we have ep,q(x) ≥ 0 and ep,q (γ(t)) = 0, where γ is the
minimal geodesic joining p, q. Hence ΔA,fAe (γ(t)) ≥ 0 in the barrier sense.

Let y1 = γ
(

π
2
√

H

)
and y2 = γ

(
B + π

2
√

H

)
. So ri (yi) = π

2
√

H
, i = 1, 2. Remark

3.5 concludes that

ΔA,fA(ri)(yi) ≤ 2K
√

H. (3.4)

From (3.1) and assumption on Ric (∂r, A∂r) we get,

ΔA,fAr ≤ ΔA,fAr0 − (n − 1)δnH (r − r0) .

Thus,

ΔA,fAr1(y2) ≤ ΔA,fAr1(y1) − B(n − 1)δnH. (3.5)

So by (3.4) and (3.5) we have

0 ≤ ΔA,fA (ep,q) (y2) = ΔA,fAr1(y2) + ΔA,fAr2(y2) ≤ 4K
√

H − B(n − 1)δnH,

thus B ≤ 4K
δn(n−1)

√
H

and

dist(p, q) ≤ π√
H

+
4K

δn(n − 1)
√

H
.

(b): Let
(
M̄,Φ

)
be the universal cover of M , then we define Ā := Φ∗A =

(Φ∗)
−1 ◦ A ◦ Φ∗. Note that for any unit vector field X ∈ X(M), we have
∑

i

〈
T (∇Φ∗XĀ) (Φ∗ei,Φ∗X) ,Φ∗ei

〉
=
∑

i

〈
T (∇XA) (ei,X) , ei

〉
◦ Φ

≤ HessfA (X,X) .

So by defining f Ā := fA ◦ Φ, one has
∑

i

〈
T (∇Φ∗XĀ) (Φ∗ei,Φ∗X) ,Φ∗ei

〉
≤ Hessf Ā (Φ∗X,Φ∗X) ,

and ∣∣∣f Ā
∣∣∣ =
∣∣fA
∣∣ and R̄ic

(
Φ∗X, Ā (Φ∗X)

)
= Ric (X,AX) .

Thus the universal cover M̄ is compact and consequently M has finite funda-
mental group. �
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To generalize the inequalities of the extended mean curvature comparison
theorem to M globally, we need three definitions of inequalities in weak senses
(see [13]). The first one is the weak inequality in barrier sense which is originally
defined by Calabi [9] in 1958.

Definition 3.7 (see [13]). Let f ∈ C0(M), X ∈ X(M) and A be a bounded
below (1, 1)−tensor field as in Definition 2.2. Then ΔA,Xu ≥ v in the barrier
sense, if for any point x0 in M and any ε > 0, there exists a function ux0,ε

which is called a support function and a neighborhood Ux0,ε of x0, such that
the following properties are satisfied,

(a) ux0,ε ∈ C2(Ux0,ε),
(b) ux0,ε(x0) = u(ux0) and u(x) ≥ ux0,ε(x) for all x ∈ Ux0,ε,
(c) ΔA,Xux0,ε(x0) ≥ v − ε.

Similarly, ΔA,Xu ≤ v in barrier sense, if ΔA,X (−u) ≥ −v in the sense just
defined.

By [9] we know that, If γ is a minimal geodesic from p to q, then for any
ε > 0 the function rq,ε(x) = ε+dist (γ(ε), x) is an upper barrier for the distance
function r(x) = dist (p, x). So we get the following inequality in barrier sense
for the distance function. The following lemma is used in Proposition 6.2 for
the extension of Quantitative Maximal Principle of Abresch and Gromoll and
to get the same inequality in distribution sense in Lemma 3.11.

Lemma 3.8 (see [13]). Let p ∈ M and r(x) = dist (p, x). If ΔA,X(r) ≤ α(r)
point-wise on M\cut(p) for a continuous function α and v ∈ C2(R) be non-
negative, u(x) = v(r(x)) and suppose v′ ≥ 0, then

(a) If v′ ≥ 0, then ΔA,X(u) ≤ |∇r|2A v′′(r)+α(r)v′(r) in barrier sense on M .
(b) If v′ ≤ 0, then ΔA,X(u) ≥ |∇r|2A v′′(r)+α(r)v′(r) in barrier sense on M .

The same results hold for LA,f (r).

The second definition of inequality in weak sense is defined in the sense
of viscosity which was introduced by Crandall and Lions in [12].

Definition 3.9 (see [13]). Let h ∈ C0(M), Then LA,fh(p) ≥ a in the viscosity
sense, if LA,fφ(p) ≥ a whenever φ ∈ C2 (U) and (h − φ) (q) = infU (h − φ),
where U is a neighborhood of q . Similarly LA,fh ≤ a is defined.

By Lemma 5.1, it is clear that barrier sub solutions are viscosity sub
solutions. The last and very useful notion of inequality is inequality in the
sense of distribution.

Definition 3.10 (see [13]). For continuous functions u, h on the manifold M ,
LA,f (u) ≤ h in weak or distribution sense, if

∫
M

uLA,f (φ)dvolg ≤ ∫
M

φhvolg
for each φ ∈ Lipc(M).
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When A is bounded from below as in Definition 2.2, it is known that, if
u is a viscosity solution of LA,fu ≤ h on M , it is also a distribution solution
and vice versa (see [17, Theorem 3.2.11 ] or [20]). The following lemma is used
for proving the monotonicity of the volume of geodesic balls in Theorems1.4
and 4.3,

Lemma 3.11. Let LA,f (r) ≤ α(r) point-wise on M\cut(p) for a continuous
function α. Let u(x) = v(r(x)) where v ∈ C2(R) be non-negative and v′ ≥ 0,
v′′ = 0, then LA,fu ≤ v′α(r) in the distribution sense on M .

Proof. By Lemma 3.8, the inequality is valid in barrier sense for LA,f (r). So
it is valid in viscosity sense and by [20] or [17] it is valid in the distribution
sense. �

4. Extended Volume Growth

In this section, we get some results on the growth of extended volume. We
define the extended volume as follows.

Definition 4.1. Let M be a Riemannian manifold, A be a self adjoint (1,1)-
tensor field on M , x0 ∈ M and r(x) := dist(x0, x). We define the extended vol-
ume of the geodesic ball B(x0, R) as volA(B(x0, R) :=

∫
B(x0,R)

〈A∇r,∇r〉dvolg.

We compare this volume with the usual volume of geodesic balls in the
model spaces R

n , Sn and H
n. In order to give the proof of Theorem 1.4 we

state and prove Theorems 4.2 and 4.3.

Theorem 4.2. Let M be as before, x0 ∈ M and r(x) := dist(x0, x), A be a self
adjoint (1,1)-tensor field on M . Assume that LAr ≤ 1

C
sn′

H(r)
snH(r) + a, point-wise

on M\cut(x0) and the following condition holds,
1

C (m − 1)
≤ 〈∇r,A∇r〉 . (4.1)

Then
volA(B(p,R))
volA(B(p, r))

≤ e(a/δ1)R
volmH (R)
volmH (r)

.

Proof. We use the standard method appeared in the proof of Theorem 2.14 of
[24] But the computation is different in our case. By Lemma 3.11, the inequality
holds weakly (in distribution sense) on M . Thus, for every 0 ≤ ϕ ∈ Lipc(M),
we have

−
∫

M

〈∇ϕ,A∇r〉 dvolg ≤ 1
C

∫

M

(
sn′

H (r(x))
snH (r(x))

+ a

)
ϕdvolg. (4.2)

For any ε > 0, we apply the test function ϕε(x) to the above (weak) inequality,

ϕε(x) = ρε(r(x))sn1−m
H (r(x))e−(a/δ1)r(x)
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where ρε(t) is the function

ρε(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t ∈ [0, r) ,
t−r

ε t ∈ [r, r + ε) ,
1 t ∈ [r + ε,R − ε) ,

R−t
ε t ∈ [R − ε,R) ,
0 t ∈ [R,+∞) .

By computation we have,

∇ϕε =
{

−χR−ε,R

ε
+

χr,r+ε

ε
−
(

(m − 1)
sn′

H(r(x))
snH(r(x))

+ (a/δ1)
)

ρε

}

×e−(a/δ1)r(x)sn−m+1
H (r(x))∇r,

for a.e. x ∈ M , where χs,t is the characteristic function of the set B(x0, t)\
B(x0, s). By inserting ϕε in to (4.2) and computation we get,
1
ε ∫(B(x0,R)\B(x0,R−ε))sn

−m+1
H (r(x))e−(a/δ1)r(x) 〈∇r,A∇r〉 dvolg

− 1
ε ∫(B(x0,r)\B(x0,r+ε))sn

−m+1
H (r(x))e−(a/δ1)r(x) 〈∇r,A∇r〉 dvolg

≤ ∫
M

(
1
C − (m − 1) 〈∇r,A∇r〉) sn′

H(r(x))sn−m
H (r(x))e−(a/δ1)r(x)ρεdvolg

+
∫

M

(
a − a

δ1
〈∇r,A∇r〉

)
e−(a/δ1)r(x)sn1−m

H (r(x))ρεdvolg.

So if, (note that snH
′(r(x))sn−m

H (r(x)) ≥ 0)
(

1
C

− (m − 1) 〈∇r,A∇r〉
)

≤ 0 ⇔ 1
C (m − 1)

≤ 〈∇r,A∇r〉 ,

then
1
ε ∫(B(x0,R)\B(x0,R−ε))sn

−m+1
H (r(x))e−(a/δ1)r(x) 〈∇r,A∇r〉 dvolg

− 1
ε ∫(B(x0,r)\B(x0,r+ε))sn

−m+1
H (r(x))e−(a/δ1)r(x) 〈∇r,A∇r〉 dvolg ≤ 0.

Letting ε → 0, we conclude,

volA(∂B(x0, R))
e(a/δ1)Rsnm−1

H (R)
− volA(∂B(x0, r))

e(a/δ1)rsnm−1
H (r)

≤ 0.

So the function

r �→ volA(∂B(p, r))
e(a/δ1)r(x)snm−1

H (r)

is non-increasing. By using Lemma 3.2 of [38],
∫ R

R1
volA(∂B(p, t)dt∫ r

r1
volA(∂B(p, t))dt

≤
∫ R

R1
e(a/δ1)tsnm−1

H (t)dt∫ r

r1
e(a/δ1)tsnm−1

H (t)dt
,

for any r1<r and R1< R and r <R. In other words,

volA(B(p,R1, R))
volA(B(p, r1, r))

≤ vol
m,(a/δ1)
H (R1, R)

vol
m,(a/δ1)
H (r1, r)

.
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Where vol
m,(a/δ1)
H (r,R) =

∫ R

r

∫
Sm−1 e(a/δ1)tsnm−1

H (t)dθm−1dt is the volume of
the annulus B(O,R)\B(O, r) in the pointed metric measure space Mm

H,(a/δ1)
=(

Mm
H , gH , e−hrdvolg, O

)
and h(x) = − (a/δ1) dist(x,O) where O is a fixed

point in the simply connected m− dimensional space form Mm
H of constant

sectional curvature H. So by the same discusstion as in [31], the result follows.
�

Theorem 4.3. Let M be as before, x0 ∈ M and r(x) := dist(x0, x), A be a
self adjoint (1,1)-tensor field on M . Assume that LAr ≤ 1

C
sn′

H(r)
snH(r) + ∂r.f

A(r)
point-wise on M\cut(x0) and the following condition holds,

1
C (m − 1)

≤ 〈∇r,A∇r〉 . (4.3)

Then
(a) For any 0 < R, we have,

d

dR

(
volA(B(x0, R))

volmHB(R)

)
≤ 1

δn

cmRsnm−1
H (R)

(volmHB(R))1+1/p

(
volA (B(x0, R))

volmHB(R)

)1−1/p

∥∥∥
((

δ1/p
n

∣∣∇fA
∣∣))
∥∥∥

p,R
.

(b) For any 0 < r < R, we get
(

volA(B(x0, R))
volmHB(R)

)1/p

−
(

volA(B(x0, r))
volmHB(r)

)1/p

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R

∫ R

r

tsnm−1
H (t)

(volmHB(t))1+1/p
dt.

(c) For any 0 < r1 ≤ r2 ≤ R1 ≤ R2, the following extended volume compari-
son inequality for annular regions holds,
(

volA(B(x0,r2,R2))
volmH B(r2,R2)

)1/p

−
(

volA(B(x0,r1,R1))
volmH B(r1,R1)

)1/p

≤ cm

pδn

∥∥∥
(
δ
1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R2

×
[∫ R2

R1

tsnm−1
H (t)

(volmH B(r2,t))1+1/p dt +
∫ r2

r1

R1snm−1
H (R1)

(volmH B(t,R1))
1+1/p dt

]
,

where volmH (R) is the volume of B(o,R) in the m-dimensional simply connected
complete manifold with constant sectional curvature H and

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R
:=
∫

B(x0,R)

δn

(∣∣∇fA
∣∣)pdvolg.

Remark 4.4. If r → 0, then the integral
∫ R

r

tsnm−1
H (t)

(volmHB(t))1+1/p
dt,

blows up.
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Proof (Proof of the Theorem 4.3). The proof is based on the same discussion
as in the proof of Theorem 4.2 and inspiration of the proof of Lemma 2.18 of
[24].
we know that

−
∫

M

〈∇ϕ,A∇r〉 dvolg ≤ 1
C

∫

M

sn′
H (r(x))

snH (r(x))
ϕdvolg +

∫

M

∂r.f
A(r)ϕdvolg.

(4.4)

Let ϕε(x) be the radial cut-off function,ϕε(x) = ρε(r(x))sn1−m
H (r(x)), similar

to the proof of Theorem 4.2, we conclude,

volA(∂B(x0,R))

snm−1
H (R)

− volA(∂B(x0,r))

snm−1
H (r)

≤ ∫
(B(x0,R)\B(x0,r))

∂r.f
A(r)sn−m+1

H (r(x))dvolg

≤ sn−m+1
H (r)

∫
(B(x0,R)\B(x0,r))

∣∣∇fA(r)
∣∣dvolg.

Let p > 1, using Hölder inequality, we obtain

snm−1
H (r)volA(∂B(x0, R)) − snm−1

H (R)volA(∂B(x0, r))

≤ 1
δn

snm−1
H (R)

(
volA (B(x0, R))

)1−(1/p)

(∫

B(x0,R)

δn

(∣∣∇fA
∣∣)pdvolg

)1/p

.

(4.5)

So, we have

d

dR

(
volA(B(x0, R))

volmHB(R)

)

=
volmHB(R)volA(∂B(x0, R)) − volmH (∂B(R)) volA(B(x0, R))

(volmHB(R))2

≤ cm(volmHB(R))−2

∫ R

0

1

δn
snm−1

H (R)
(
volA (B(x0, R))

)1−(1/p)
dr

×
(∫

B(x0,R)

δn
(∣∣∇fA

∣∣)pdvolg

)1/p

≤ 1

δn

cmRsnm−1
H (R)

(volmHB(R))1+1/p

(
volA (B(x0, R))

volmHB(R)

)1−1/p
(∫

B(x0,R)

δn
(∣∣∇fA

∣∣)pdvolg

)1/p

≤ 1

δn

cmRsnm−1
H (R)

(volmHB(R))1+1/p

(
volA (B(x0, R))

volmHB(R)

)1−1/p∥∥∥
(
δ1/pn

(∣∣∇fA
∣∣))∥∥∥

p,R
.

Thus,

d

dR

((
volA(B(x0, R))

volmHB(R)

)1/p
)

=
1

p

(
volA(B(x0, R))

volmHB(R)

)−1+1/p
d

dR

(
volA(B(x0, R))

volmHB(R)

)

≤ cm

pδn

∥∥∥
(
δ
1/p
n

(∣∣∣∇fA
∣∣∣
))∥∥∥

p,R

R(
volmHB(R)

)1+1/p
snm−1

H (R).
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Consequently,

(
volA(B(x0, R))

volmHB(R)

)1/p

−
(

volA(B(x0, r))
volmHB(r)

)1/p

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R

∫ R

r

tsnm−1
H (t)

(volmHB(t))1+1/p
dt.

For the volume comparison for annular regoins we use the procedures of part
(a) repeatedly. First note that

d

dR

(
volA(B(x0, r, R))

volmHB(r, R)

)

= cm
volA(∂B(x0, R))

∫R
r snm−1

H (t)dt − snm−1
H (R)volA(B(x0, r, R))(

volmHB(r, R)
)2

= (volmHB(r, R))−2
∫ R

r

[
cmsnm−1

H (t)volA(∂B(x0, R)) − cmsnm−1
H (R)volA(B(x0, t))

]
dt

≤ 1

δn

cmRsnm−1
H (R)

(
volmHB(r, R)

)1+1/p

(
volA (B(x0, r, R))

volmHB(r, R)

)1−1/p∥∥∥
(
δ
1/p
n

(∣∣∣∇fA
∣∣∣
))∥∥∥

p,R
,

where we use the term volA (B(x0, r, R)) instead of volA (B(x0, R)) in the
inequality (4.5). and similarly,

d

dR

(
volA(B(x0, r, R))

volmHB(r,R)

)1/p

≤ 1
pδn

cmRsnm−1
H (R)

(volmHB(r,R))1+1/p

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R
.

Thus,

(
volA(B(x0, r2, R2))

volmHB(r2, R2)

)1/p

−
(

volA(B(x0, r2, R1))
volmHB(r2, R1)

)1/p

(4.6)

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R2

∫ R2

R1

tsnm−1
H (t)

(volmHB(r2, t))
1+1/p

dt.

Similarly,

d

dr

(
volA(B(x0, r, R))

volmHB(r, R)

)

= cm
−volA(∂B(x0, r))

∫R
r snm−1

H (t)dt −
(
−snm−1

H (r)
)

volA(B(x0, r, R))
(
volmHB(r, R)

)2

= (volmHB(r, R))−2
∫ R

r
cmsnm−1

H (r)volA(∂B(x0, t)) − cmsnm−1
H (t)volA(∂B(x0, r))dt

≤ 1

δn

cmsnm−1
H (R)

∥∥∥
(
δ
1/p
n

(∣∣∇fA
∣∣))
∥∥∥
p,R(

volmHB(r, R)
)1+1/p

(
volA (B(x0, r, R))

volmHB(r, R)

)1−1/p

.
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So,

d

dr

((
volA(B(x0, r, R))

volmHB(r,R)

)1/p
)

≤ cmRsnm−1
H (R)

pδn

∥∥∥
(
δ
1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R

(volmHB(r,R))1+1/p
.

And
(

volA(B(x0, r2, R1))
volmHB(r2, R1)

)1/p

−
(

volA(B(x0, r1, R1))
volmHB(r1, R1)

)1/p

(4.7)

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R1

∫ r2

r1

R1sn
m−1
H (R1)

(volmHB(t, R1))
1+1/p

dt.

By adding (4.7) and (4.6), we get
(

volA(B(x0, r2, R2))
volmHB(r2, R2)

)1/p

−
(

volA(B(x0, r1, R1))
volmHB(r1, R1)

)1/p

≤ cm

pδn

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R2

[∫ R2

R1

tsnm−1
H (t)

(volmHB(r2, t))
1+1/p

dt

+
∫ r2

r1

R1sn
m−1
H (R1)

(volmHB(t, R1))
1+1/p

dt

]
.

�

Proof of Theorem 1.4. (Extended volume comparison) The proof is done by
using Theorem 1.2, part (b) and taking

m = C (δn, n, δ1,K,K ′,H) =
[
δn(n − 1) + 4(K + K ′)

δ1

]
+ 2,

in Theorems 4.2 and 4.3. �

Now we extended three famous results of the Bishop–Gromov volume
comparison theorem for the extended Ricci tensor. First we extend Theorem
3.13 of [38].

Theorem 4.5. Let M be a complete manifold, A is a bounded self-adjoint (1,1)-
tensor field on it and the following conditions are satisfied,

(a) Ric−TraceA (X,AX) ≥ (n − 1)δnH|X|2
(b)

∣∣fA
∣∣ ≤ K

(c)
∣∣∇fA

∣∣ ≤ a,
(d) diam(M) ≤ D

Then the first Betti number b1 satisfies the estimate b1 ≤ C
(
δ1, δn, n,K,HD2,

aD).

The second is an extension of Anderson’s theorem [4].
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Theorem 4.6. Let M be a complete manifold, A is a bounded self-adjoint (1,1)-
tensor field on M and the following conditions are satisfied,

(a) Ric−TraceA (X,AX) ≥ (n − 1)δnH|X|2
(b)

∣∣fA
∣∣ ≤ K

(c)
∣∣∇fA

∣∣ ≤ a,
(d) diam(M) ≤ D, vol(M) ≥ V .

Then there are only finitely many isomorohism types of π1(M).

The proofs of Theorem 4.5 and 4.6 are obtained by the proofs of Theorem
3.13 and 3.14 of [38] by noting that the extended Ricci curvature can also give
control on the first Betti number via the extended volume comparison theorem.

The third and last theorem of this section is an extension of Yau’s theo-
rem, which was originally proved by Calabi and Yau in 1976 [37] via analytic
methods in the Riemannian case for Ricci tensor. We adapt [33] for the proof.

Theorem 4.7 (Extension of Yau theorem). Let M be non compact, x0 be a
fixed point and Ric−Trace(A) (∂r, A∂r) ≥ 0, then for any p > n and R ≥ 2,
there is an ε = ε(m, p,A,R + 1) such that if

sup
x∈M

δn

δ1vol(B(x,R + 1))

(∫

B(x,R+1)

∣∣∇fA
∣∣pdvolg

)1/p

< ε

then

vol (B(x0, R)) ≥ cR,

where c is a constant.

Proof. Let x ∈ M be such that dist (x0, x) = R ≥ 2. By the relative compar-
ison Theorem 4.3 for annulus and letting r1 = 0 , r2 = R − 1 , R1 = R and
R2 = R + 1 we have,

(
volA (B(x,R − 1, R + 1))

(1 + R)m − (R − 1)m

)1/p

−
(

volA (B(x, 0, R))
Rm

)1/p

≤ 2cm

pδn
(R + 1)m+1

∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p,R+1
.

So
(

volA (B(x,R − 1, R + 1))
(R + 1)m − (R − 1)m

)
≤
(

volA (B(x,R))
Rm

)

+C(R + 1)(m+1)p
∥∥∥
(
δ1/p
n

(∣∣∇fA
∣∣))
∥∥∥

p

p,R+1
.
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By multiplying with (R+1)m−(R−1)m

volA(B(x,R+1))
, we get

(
volA (B(x,R − 1, R + 1))

volA (B(x,R + 1))

)

≤ D

R
+ D(R + 1)(m+1)p sup

x∈M

δn

(∫
B(x,R+1)

∣∣∇fA
∣∣pdvolg

)1/p

δ1volm(B(x,R + 1))
,

where D is some constant depends on m, p, δ1. We choose ε = ε(m, p,A,R+1)
small enough such that

volA (B(x,R − 1, R + 1))
volA (B(x,R + 1))

≤ 2D

R
.

For R ≥ 2 we have,

volA (B(x0, 2R + 1)) ≥ volA (B(x0, 1))
2D

R.

�

5. Cheeger–Gromoll Splitting Theorem

One of the important applications of mean curvature comparison theorem is
the Cheeger–Gromoll splitting theorem. In this section we extend the Cheeger–
Gromoll splitting theorem by replacing Ric(X,X) with Ric (X,AX). Our ap-
proach for the proof is similar to the original one. i.e, we show that the vector
field ∇b+

γ is Killing and
∥∥∇b+

γ

∥∥ = 1, where b+
γ is the Bussemann function asso-

ciated to the ray γ+. So by the extended Bochner formula and the restriction
on the extended Ricci tensor, we show b+

γ is a harmonic function. First, one
should provide the maximum principal for the operator ΔA,X = ΔA −〈X,∇ 〉,
thus we recall the following Lemma.

Lemma 5.1 (see [13]). Let f, h ∈ C2(M) and p ∈ M and U be a neighborhood
of p. If

(a) f(p) = h(p),
(b) f(x) ≥ h(x) for all x ∈ U ,

then

(a) ∇f(p) = ∇h(p),
(b) Hessf(p) ≥ Hessh(p),
(c) ΔA,Xf(p) ≥ ΔA,Xh(p).
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Proof. Parts (a), (b) are clear. For part (c) it is sufficient to show that ΔAf(p) ≥
ΔAh(p). We know that Hess (f − h) (p) ≥ 0. By assumption, A is positive def-
inite, so A = B2 and

ΔA (f − h) (p) = Trace
(
B2 ◦ hess (f − h) (p)

)

= Trace (B ◦ hess (f − h) (p) ◦ B)

=
∑

i
〈hess (f − h) (p) ◦ Bei, Bei〉 ≥ 0.

Thus ΔA,Xf(p) ≥ ΔA,Xh(p). �
Now we extend the maximum principle for ΔA.

Theorem 5.2 (Extended maximum principle). Let f ∈ C0(M) and ΔA,Xf ≥
0 in barrier sense, then f is constant in a neighborhood of each local maximum
of f . So, if f has a global maximum, then f is constant.

Proof. Let p ∈ M be a local maximum of f . If ΔA,Xf(p) > 0, then we have a
contradiction by Lemma 5.1 part (c). So we assume ΔA,Xf(p) ≥ 0. Without
loose of generality we may assume that there is a sufficiently small r < inj(p),
such that p is a maximum of the restricted function f : B(x0, r) → R and
there is some point x0 ∈ ∂B(p, r) such that f(x0) �= f(p). As usual, we define

V := {x ∈ ∂B(p, r) : f(x) = f(p)} .

Let U be an open neighborhood with the property that V ⊆ U ⊆ ∂B(p, r) and
φ be a function such that,

φ(p) = 0 , φ|U < 0 , ∇φ �= 0.

Then for the function h = eαφ − 1 we have,

ΔA,Xh = αeαφ (α 〈∇φ,A∇φ〉 + ΔA,Xφ) ≥ αeαφ
(
αδ1|∇φ|2 + ΔA,Xφ

)
.

So by choosing α large enough we have,

ΔA,Xh > 0 , h|V <0 , h(p) = 0.

Now by defining F = f + δh, for small enough δ > 0, we have ΔA,XF > 0 on
B(x0, r) and F has a maximum point in B(x0, r), which is a contradiction by
the first part of the proof. �

The second step in the proof of the Cheeger–Gromoll splitting theorem
is the regularity property which states when Δf = 0 in barrier sense, then f is
smooth. In fact using this property one can show that, when the Ricci tensor
is positive, the Bussemann functions are smooth. As the original proof, first
we recall the regularity property for ΔA,X by the following Proposition.

Proposition 5.3. If A is bounded ( δ1 > 0 ) and ΔA,Xf = 0 in the barrier
sense, then f is smooth.

Proof. Since A is bounded below, so ΔA,X satisfies the elliptic conditions in
sections 6.3–6.4 or Theorem 6.17 of [15], thus f is smooth. �



Vol. 76 (2021) Comparison Geometry for an Extension... Page 27 of 37 215

Now we are ready to prove the extension of Cheeger–Gromoll splitting
theorem. To this end, we use the so-called Busseman functions of a line in M
and show that the gradient of a Busseman funtion b+ is Killing and ‖∇b+‖ = 1.
First we recall the definition of a Bussemann function.

Definition 5.4 [13,31,38]. Let γ : [0,+∞] → M be a ray, the Bussemann
function bγ associated to γ is defined as bγ(x) := limt→∞ (t − d(x, γ(t))).

Now, we should prove that ΔA,fA (bγ) ≥ 0 in the barrier sense.

Proposition 5.5. If Ric(∂r, A∂r) ≥ 0, then ΔA,fA (bγ) ≥ 0 in the barrier sense.

Proof. For each point q ∈ M the family of functions defined as ht(x) = t −
d(x, γ(t)) + bγ(q) are lower barrier functions for bγ at the point q, where γ(t)
is one of the asymptotic rays to the ray γ at q [13,31,38]. So ht is smooth
in a neighborhood U of q. Finally by Theorem 1.2 and the restriction on the
extended Ricci tensor,

ΔA,fAht(q) = −ΔA,fA (d(q, γ̄(t))) ≥ −δn

(
1 +

4K

δn (n − 1)

)
1

d(q, γ̄(t))
.

Since limt→∞ d(q, γ(t)) = ∞, for each ε > 0 one can find t such that
ΔA (d(q, γ(t))) ≥ −ε and this completes the proof. �

Corollary 5.6. If Ric(∂r, A∂r) ≥ 0 and γ+ and γ− are two rays derived from
the line γ, and b+ and b− denote their Bussemann functions, then
(a) b+ + b− = 0,
(b) ΔA,fAb+ = ΔA,fAb− = 0 and the functions b+ and b− are smooth.

Proof. (a) By Proposition 5.5 and the restriction on the extended Ricci tensor,
we know that ΔA,fAb+,ΔA,fAb− ≥ 0. So

ΔA,fA

(
b+ + b−) ≥ 0.

By triangle inequality, (b+ + b−) (γ(0)) = 0 is the maximum value of the sub
harmonic function b++b−, so by Theorem 5.2, b++b− = 0. For part (b), by (a)
we have ΔA,fAb+ = −ΔA,fAb−, so Proposition 5.5 concludes that ΔA,fAb+ =
ΔA,fAb− = 0, finally by Proposition 5.3 b+, b− are smooth. �

Corollary 5.7. If Ric(∂r, A∂r) ≥ 0, then ‖∇bγ‖ = 1.

Proof. By Corollary 5.6, the Busseman function b+ is smooth, so ‖∇b+‖ = 1.
For the complete proof see [11,13,14,31,38]. �

Proof of Theorem 1.5. By Corollary 5.7, we have ‖∇b+‖ = 1, so ∇∇b+∇b+ =
0, since A is a Codazzi tensor, −∇b+.∇b+.T race(A)+〈∇∇b+div(A),∇b+〉 = 0.
Theorem 3.1 implies,

0 = Trace
(
A ◦ hess2

(
b+
))

+∇b+.(ΔAb+) −
∑

i

〈
T (∇∇b+A)(∇b+, ei), ei

〉

+Ric(∇b+, A∇b+)
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Corollary 5.6 yields ΔA,fAb+ = 0, so ΔAb+ =
〈∇fA,∇b+

〉
and

∇b+.(ΔAb+) = ∇b+.
〈∇fA,∇b+

〉
= HessfA

(∇b+,∇b+
)
.

By Definition 3.2 we know that

HessfA
(∇b+,∇b+

)−
∑

i

〈
T (∇∇b+A)(∇b+, ei), ei

〉
≥ 0,

so

0 ≥ Trace
(
A ◦ hess2

(
b+
))

+ Ric(∇b+, A∇b+).

The restriction on the extended Ricci tensor concludes Trace
(
A ◦ hess2(b+)

)
=

0. Since A is positive definite (note that A is invertible), hess2(b+) ≡ 0.
Consequently ∇b+ is a Killing vector field and its flows are isometries. Also
‖∇b+‖ = 1, so the following function

ψ : N × R → M

ψ(x, t) = Fl∇b+(x),

splits M isometrically, where N = {x : b+(x) = 0}. AN is also a Codazzi ten-
sor. To see this note that,

∇N
X (ANY ) = ∇X (ANY ) = ∇X (AY − 〈∂t, AY 〉 ∂t)

= ∇X (AY ) − 〈∂t,∇X (AY )〉 ∂t = proj∂⊥
t

(∇X (AY )) ,

and

AN

(∇N
XY
)

= AN (∇XY ) = proj∂⊥
t

(A (∇XY )) .

So
(∇N

XAN

)
Y = ∇N

X (ANY ) − AN

(∇N
XY
)

= proj∂⊥
t

(∇X (AY ) − A (∇XY ))
= proj∂⊥

t
((∇Y A) X) =

(∇N
Y AN

)
X.

The last part is clear by properties of the Ricci tensor. �

Lifting the extended Ricci tensor Ric (X,AX) to Ric
(
X, ĀX

)
to the

universal covering space of M as it is done in the proof of Theorems 1.3, 1.5
and with a similar argument as in [31] or in [38], we obtain the following
results.

Theorem 5.8. If M is a compact Riemannian manifold with Ric (X,AX) ≥ 0
for any vector field X, then M is finitely covered by Ndim M−k ×T

k, where N
is compact and simply connected and T

k is k−dimentional flat torus.

Theorem 5.8 has the following topological results.
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Corollary 5.9. Let M be compact with Ric (X,AX) ≥ 0 for any vector field
X, then

(a) b1(M) ≤ n.
(b) π1(M) has a free abelian subgroup of finite index and of rank ≤ n.
(c) If at one point Ric (X,AX) > 0 for any non zero vector X, then π1(M)

is finite.

Similar to Theorem 6.8 of [31], the splitting Theorem 1.5 gives the fol-
lowing extension of Sormani’s theorem [26].

Theorem 5.10. Let M be a complete and non-compact manifold and Ric
(X,AX) > 0 for any unit vector field X ∈ X(M), then

(a) M has only one end.
(b) M has the loops to infinity property. In particular, if M is simply con-

nected at infinity then M is simply connected.

6. Excess Functions and Applications

Excess functions are important in the study of topology of manifolds, so finding
their upper bounds are interesting. Let p, q ∈ M , we recall that the excess
function ep,q(x) is defined as

ep,q(x) := d(p, x) + d(q, x) − d(p, q). (6.1)

Similar to the classical one, to estimate the excess function we need the
following extension of Abresch–Gromoll quantitative maximal principle (see
[13,38]). The proof of the following theorem is an adaptation of the ideas of
[1] or [10]. First we recall the following definition.

Definition 6.1 [38] The dilation of a function f is denoted by dil(f) and is
defined as

dil(f) = min
x,y

|f(x) − f(y)|
d(x, y)

.

Proposition 6.2 (Quantitative Maximal Principle). Let U : B(y,R + η) →
R be a Lipschitz function on M . For H ≤ 0, Assume that (n − 1) δnH ≤
Ric (∂r, A∂r),

∣∣fA
∣∣ ≤ K and

(a) U ≥ 0,
(b) dil(U) ≤ a, U(y0) = 0, where y0 ∈ B(y,R).
(c) ΔA,fA(U) ≤ b in the barrier sense,

then U(y) ≤ ac + G(c) for all 0 < c < R where G(r(x)) is the unique function
on Mn

H such that
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(1) G(r) > 0 for 0 < r < R,
(2) G′(r) < 0 for 0 < r < R,
(3) G(R) = 0,
(4)

(
δ1 − δn

(
1 + 4K

δn(n−1)

))
G′′ + δn

(
1 + 4K

δn(n−1)

)
ΔHG = b, where ΔH is

the Laplace operator on the space form Mn
H .

Proof. We construct G explicitly. Since ΔH = ∂2

∂r2 + mH(r) ∂
∂r + Δ̃. It is suffi-

cient to solve the ODE
(

δ1 − δn

(
1 +

4K

δn(n − 1)

))
G′′ + δn

(
1 +

4K

δn(n − 1)

)
(G′′ + mH(r)G′) = b,

or equivalently, to solve

δ1G
′′ + δn

(
1 +

4K

δn(n − 1)

)
mH(r)G′ = b. (6.2)

For H = 0 we know that mH(r) = n−1
r , so by (6.2) we have

δ1G
′′ + δn

(
1 +

4K

δn(n − 1)

)
n − 1

r
G′ = b,

or equivalently

δ1G
′′r2 + (n − 1) δn

(
1 +

4K

δn(n − 1)

)
G′r = br2,

which is an Euler-type ODE. For n ≥ 3, the solutions of this ODE are,

G =
b

2C
r2 + c1 + c2r

D,

where

C = δ1 + (n − 1) δn

(
1 +

4K

δn(n − 1)

)
and

D = 1 − (n − 1)
δn

δ1

(
1 +

4K

δn(n − 1)

)
.

Now G(R) = 0, gives

b

2C
R2 + c1 + c2R

D = 0.

By assumption G′(r) < 0, so for 0 < r < R one should have,

b

C
r + Dc2r

D−1 ≤ 0.
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Thus, c2 ≥ − b
CD R−D+2. Thus for H = 0, one has,

G(r) =
b

2C

(
r2 +

(
−1 +

2
D

)
R2 − 1

D
R−D+2rD

)
.

For H < 0, we have,mH(r) = (n − 1)
√−H cosh(

√−Hr)

sinh(
√−Hr)

. Hence by (6.2) we get,

δ1G
′′ + δn

(
n +

4K

δn
− 1
)√−H

cosh(
√−H)

sinh(
√−Hr)

G′ = b.

Thus,

G(r) =
b

δ1

∫ R

r

∫ t

r

(
sinh(

√−Ht)
sinh(

√−Hs)

) δn
δ1

(1+ 4K
δn(n−1) )

dsdt.

Now we return to prove the result of the theorem. By conditions on G and
Lemma 3.8

ΔA,fAG ≥
(

δ1 − δn

(
1 +

4K

δn(n − 1)

))
G′′ + δn

(
1 +

4K

δn(n − 1)

)
ΔHG.

Define V := G − U , so

ΔA,fAV = ΔA,fAG − ΔA,fAU

≥
(

δ1 − δn

(
1 +

4K

δn(n − 1)

))
G′′

+δn

(
1 +

4K

δn(n − 1)

)
ΔHG − ΔA,fAU ≥ 0.

Theorem 5.2 implies that the function V on A(y, c, R) = {x : c < d(y, x) < R}
takes its maximum on ∂B(y, c)∪∂B(y,R). But V |∂B(y,R) ≤ 0 and V (y0) ≥ 0,
so if y0 ∈ A(y, c, R), there exists some y1 ∈ ∂B(y, c) such that V (y1) ≥
V (y0) ≥ 0. Since

U(y) − U(y1) ≤ a d(y, y1) = ac

and

0 ≤ V (y1) = G(y1) − U(y1).

One has

U(y) ≤ ac + U(y1) = ac + (G(y1) − V (y1)) ≤ ac + G(c).

If y0 ∈ B(y, c) then

U(y) = U(y) − U(y0) ≤ ad(y, y0) ≤ ac ≤ ac + G(c).

�

Proposition 6.2 gives the following upper estimate for the excess function.
To obtaine the estimate, we recall the definition of the height function h(x) :=
dist(x, γ), where dist(x, γ) is any fixed minimal geodesic from p to q.
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Theorem 6.3. Let Ric (∂r, A∂r) ≥ 0,
∣∣fA
∣∣ ≤ K and h(x) ≤ min{d(p, x), d(q, x)},

then

ep,q(x) ≤ 2
(

δn(n − 1) + 4K + δ1

δn(n − 1) + 4K − δ1

)(
1
2
Ch

δ1+δn(n−1)+4K
δ1

) δ1
δn(n−1)+4K

,

where

C =
δn(n − 1) + 4K

2(n − 1) (δ1 + δn(n − 1) + 4K)

(
1

d(p, x) − h(x)
+

1
d(q, x) − h(x)

)
.

Proof. We follow the original proof (see [38] Theorem 4.15), so we use the
extended Abresch and Gromoll’s Quantitative Maximal Principle. Note that
dil(ep,q) ≤ 2. If we choose R = h(x), then for any y ∈ B(x,R) we have

ΔA (ep,q(y)) ≤ δn

(
1 +

4K

δn(n − 1)

)(
1

d(p, y)
+

1
d(q, y)

)

≤ δn

(
1 +

4K

δn(n − 1)

)(
1

d(p, x) − h(x)
+

1
d(q, x) − h(x)

)
.

By choosing R = h(x) and b := δn

(
1 + 4K

δn(n−1)

)(
1

d(p,x)−h(x) + 1
d(q,x)−h(x)

)
,

the conditions of Proposition 6.2 are satisfied. So

ep,q(x) ≤ min
0≤r≤R

(2r + G(r)) .

The function 2r + G(r), for 0 < r < R is convex, hence its minimum is assumed
at the unique point r0, where 0 < r0 < R and 2+G′(r0) = 0, thus we conclude,

2r1−D
0 +

b

2C

(
2r2−D

0 − R2−D
)

= 0, (6.3)

where C,D are defined in Proposition 6.2. By (6.3) we get,

r0 ≤
(

b

4C
R2−D

) 1
1−D

.

Consequently,

ep,q(x) ≤ 2r0 + G(r0) =
(

1 − 2
D

)[
2r0 +

b

C

(
r2
0 − R2

)] ≤ 2
(

1 − 2
D

)
r0

≤ 2
(

1 − 2
D

)(
b

4C
R2−D

) 1
1−D

.

�

Applying the estimate of the excess function Theorem, 6.3 gives an ex-
tension of theorems of Abresch–Gromoll [1] and Sormani [27] as follows (see
[31]).

Theorem 6.4. Let M be a complete non compact manifold with Ric (∂r, A∂r) ≥
0 then,
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(a) If M has bounded diameter growth and its sectional curvature is bounded
below then it has finite type topology, i.e, it is homeomorphic to the inte-
rior of a compact manifold with boundary.

(b) If it has sub-linear diameter growth, then its fundamental group is finitely
generated.

7. Number of Ends

In this section we give an estimate for the number of ends of a complete
Riemannian manifold M by some restrictions on the extended Ricci tensor.
Our approach is similar to [8] which is invented by Cai. In fact Cai in [8]
had estimated the number of ends of a non compact manifold which its Ricci
curvature is non-negative out-side of a compact set by means of a lower bound
of the Ricci curvature in the compact set and the diameter of the set. Recently
Wu applied this method to get an upper estimate for the number of ends
of a weighted manifold by the similar conditions on the Bakry–Emery Ricci
tensor Ricf and some conditions on the energy function [32]. First we recall
the definition of an end of a manifold.

Definition 7.1 [8]. Let γ1, γ2 be two rays starting from a fixed point p ∈ M .
γ1, γ2 are co-final if for each R > 0 and any t ≥ R, γ1(t) and γ2(t) are in
the same component of M\B(x0, r). Each equivalence class of co-final rays is
called an end of M . The end included the ray γ is noted by [γ].

To get the estimate, we extend the following lemmas for the extended
Ricci tensor. The proofs of the following lemmas are similar to the corre-
sponding proof for Ricci [8] or weighted Ricci tensor [32], so they have been
omitted.

Lemma 7.2. Let N be a δ−tubular neighborhood of a line γ. Suppose that from
every point p in N, there are asymptotic rays to γ± such that Ric−Trace(A)

(X,AX) ≥ 0 on both asymptotic rays. Then through every point in N, there is
a line α which if it is parameterized properly, then it satisfies

b+
γ (α+(t)) = t and b−

γ (α−(t)) = t.

Lemma 7.3. With the same assumptions as in Theorem 1.6, M can not admit
a line γ with the following property

d(γ(t), B(x0, r)) ≥ |t| + 2R for all t.

Similar to [8] the following Proposition can be obtained.

Proposition 7.4. With the same assumption as in Theorem 1.6, if [γ1] and [γ2]
are two different ends of M , then d(γ1(4R), γ2(4R)) > 2R.
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Proof of Theorem 1.6. Let [γ1] , . . . , [γk] be k distinct ends of M where γ1, . . . ,

γk are rays from the fixed point p. Let {pj}L
j=1 be the maximal set of points

on ∂B (p, 4R) such that balls B
(
pj ,

R
2

)
are disjoint. As mentioned in [8,32]

Proposition 7.4 implies that k ≤ L.
By considering

B

(
pj ,

R

2

)
⊆ B

(
p,

9R

2

)
⊆ B

(
pj ,

17R

2

)
,

we get

N(A,M,R) ≤ volA
(
B(pj ,

17R
2 )
)

volA
(
B(pj ,

R
2 )
) ,

and with the extended volume comparison Theorem 1.4, the following estimate
is obtained,

N(A,M,R) ≤ volAhA

(
B(pj ,

17R
2 )
)

volA
hA

(
B(pj ,

R
2 )
) ≤ e17R/2 volm

′
−HB(17R/2)

volm
′

−HB(R/2)
,

where

m′ =
[

δn(n−1)+4(K1+K′
1)

δ1

]
+ 2,

K1 = sup
x∈B(pj ,17R/2)

∣∣fA (x)
∣∣ ,

K ′
1 := sup

x∈B(pj ,17R/2)

|Trace(A) (x)| .

But for all j, we have B(pj , 17R/2) ⊆ B(x0, 25R/2), so the result follows by
the following inequality,

∫ αr

0
sinhm−1(βt)dt∫ r

0
sinhm−1(βt)dt

≤ 2m

m − 1
(βr)−m exp (α (m − 1) βr) .

�
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[3] Aĺıas, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Ap-
plications. Springer, Berlin (2016)

[4] Anderson, M.T.: Short geodesics and gravitational instantons. J. Diff. Geom.
31(1), 265–275 (1990)
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