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imax un-compactly supported density estimation on R

d with Lp risk over
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1. Introduction

Density estimation has a long history [1,3]. In 1996, Donoho et al. [4] es-
tablished an adaptive and optimal estimate (up to a logarithmic factor) for
compactly supported density functions on R

1 with Lp risk (1 ≤ p < ∞) over
Besov spaces by using a non-linear wavelet estimator.

It is quite remarkable that if the assumption that the underlying density
has compact support is disappearance, then the minimax behavior becomes
completely different. In particular, Kerkyacharian and Picard [10] defined a
linear estimator by an orthogonal scaling function and discussed the conver-
gence rates of Lp risk for 1 ≤ p < ∞ over one-dimensional Besov spaces in
1992. Although their density functions do not have compact support, the above
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estimation is non-adaptive and needs an additional condition (Condition N)
for 1 ≤ p < 2.

How about adaptive estimation for un-compactly supported density func-
tions? Juditsky and Lambert-Lacroix [9] studied the optimal convergence rates
of Lp risk (1 ≤ p < ∞) by using a biothogonal wavelet estimator, which den-
sity functions are in one-dimensional Hölder spaces. Seven years later, the
L2 risk estimation in one-dimensional Besov spaces was investigated [18]. In
2014, Goldenshluger and Lepski [5] addressed this problem on R

d with Lp risk
(1 < p < ∞) over anistropic Nikol’skii classes. They constructed an adaptive
estimator based on a data-driven selection rule from a fixed family of kernel es-
timators, and there are four different regions (convergence rates) with respect
to the minimax behavior which is (nearly) optimal.

Compared with kernel estimators, the wavelet ones provide more local
information which are effective for the estimation of density function with
cusps, because they have the properties of time-frequency localization and
multiresolution (see [2,12–14]). Recently, this fact has been verified by nu-
merical experiments in tables and figures in lots of literatures, including both
density [7,22] and regression estimates [6,11]. What’s more, the fast wavelet
algorithm is important in many practical fields and the algorithm advantage
of wavelet is based on filter banks and Pyramid algorithm (see [15,20,21]).

In this current paper, we use the orthornormal scaling function to con-
struct a data-driven estimator on isotropic Besov spaces and obtain the same
upper bounds as Goldenshluger and Lepski [5]. Compared with their work, our
auxiliary estimators are more concise. Furthermore, motivated by the work of
Rebells [19], we provide another better convergence rates with density func-
tions having independence hypothesis. It should be pointed out that this esti-
mation reduces the dimension disaster effectively.

1.1. Wavelets and Besov Spaces

We begin with a classical concept in wavelet analysis. A multiresolution anal-
ysis (MRA, [17]) is a sequence of closed subspaces {Vj}j∈Z of the square inte-
grable function space L2(Rd) satisfying the following properties:

(i) . Vj ⊂ Vj+1, j ∈ Z;
(ii) .

⋃
j∈Z

Vj = L2(Rd) (the space
⋃

j∈Z
Vj is dense in L2(Rd));

(iii) . f(2·) ∈ Vj+1 if and only if f(·) ∈ Vj for each j ∈ Z;
(iv) . There exists ϕ ∈ L2(Rd) (scaling function) such that {ϕ(·−k), k ∈ Z

d}
forms an orthonormal basis of V0 = span{ϕ(· − k), k ∈ Zd}.

When d = 1, a wavelet function ψ can be constructed from the scaling
function ϕ in a simple way such that {2j/2ψ(2j · −k), j, k ∈ Z} constitutes an
orthonormal basis (wavelet basis) of L2(R). Examples include the Daubechies
wavelets [8], which have compact supports in time domain. For d ≥ 2, the
tensor product method gives an MRA {Vj} of L2(Rd) from one-dimensional
MRA. In fact, with a scaling function ϕ of tensor products, we find 2d − 1
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wavelet functions ψ� (� = 1, 2, · · · , 2d − 1) such that

{2jd/2ψ�(2j · −k), j ∈ Z, k ∈ Z
d, � = 1, 2, · · · , 2d − 1}

constitutes an orthonormal basis (wavelet basis) of L2(Rd).
Let Pj be the orthogonal projection operator from L2(Rd) onto the scaling

space Vj with the orthonormal basis {ϕjk(·) = 2jd/2ϕ(2j · −k), k ∈ Z
d}. Then

for each f ∈ L2(Rd),

Pjf =
∑

k∈Zd

αjkϕjk (1.1)

with αjk:=〈f, ϕjk〉. Specially, when a scaling function ϕ is m-regular, the iden-
tity (1.1) holds in Lp(Rd) for p ≥ 1 [8]. Here and after, m-regular means that
ϕ ∈ Cm(Rd) and |Dαϕ(x)| ≤ cl(1 + |x|2)− l

2 (|α| = 0, 1, . . . ,m) for each l ∈ Z

and some independent positive constants cl. The Daubechies scaling function
D2N × · · · × D2N︸ ︷︷ ︸

d times

with N > m + d is an example, and the tensor product of

D2N with large N is used in the whole paper.
One of advantages of wavelet bases is that they can characterize Besov

spaces, which contain Hölder and L2-Sobolev spaces as special examples. The
next lemma provides an equivalent definition.

Lemma 1.1. ([17]) Let ϕ be m-regular, ψ� (� = 1, 2, · · · , 2d − 1) be the cor-
responding wavelets and f ∈ Lr(Rd). If αjk:=〈f, ϕjk〉, β�

jk = 〈f, ψ�
jk〉, r, q ∈

[1,∞] and 0 < s < m, then the following assertions are equivalent:

(i) . f ∈ Bs
r,q(R

d);
(ii) . {2js‖Pjf − f‖r} ∈ lq;
(iii) . {2j(s− d

r + d
2 )‖βj·‖lr} ∈ lq.

The Besov norm of f can be defined by

‖f‖Bs
r,q

:=‖αj0·‖lr + ‖(2j(s− d
r + d

2 )‖βj·‖lr )j≥j0‖lq ,

where ‖αj0·‖r
lr

:=
∑

k∈Zd

|αj0k|r and ‖βj·‖r
lr

=
2d−1∑

�=1

∑

k∈Zd

|β�
jk|r.

Moreover, Lemma 1.1 (i) and (ii) shows that ‖Pjf − f‖r � 2−js holds
for f ∈ Bs

r,q(R
d). Here and throughout, the notations A � B denotes A ≤ cB

with some fixed and independent constant c > 0; A � B means B � A; A ∼ B
stands for both A � B and A � B.

When r ≤ p, Lemma 1.1 (i) and (iii) imply that with s′ − d
p = s− d

r > 0,

Bs
r,q(R

d) ↪→ Bs′
p,q(R

d),

where A ↪→ B stands for a Banach space A continuously embedded in another
Banach space B. All these claims can be found in Ref. [23].
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1.2. Wavelet Estimator and Selection Rule

It is well-known that the classical linear wavelet estimator is given by

f̂j(x) =
∑

k

α̂jkϕjk(x)

with α̂jk:= 1
n

∑n
i=1 ϕjk(Xi). Moreover, the parameter j:=j(n) goes to infinity,

as the sample size n → ∞. In general, it depends on the index s of unknown
density function f and the estimator is non-adaptive [8,10]. In this subsec-
tion, we give the selection rule of parameter j only depending on observations
X1, · · · ,Xn, which is so called data-driven version.

Let H:=
{
0, 1, · · · , � 1

d log2
n

ln n�} with �a� denoting the largest integer
smaller or equal to a and

ξn(x, j):=f̂j(x) − Ef̂j(x) (1.2)

be the stochastic error of f̂j . The most important step of the selection rule is
to find a function Un(x, j) such that the moments of random variables

v(x):= sup
j∈H

[
|ξn(x, j)| − Un(x, j)

]

+
(1.3)

are “small” for each x ∈ R
d, where a+:= max{a, 0}. According to Bernstein’s

inequality in Sect. 3, the function Un(x, j) can be defined by

Un(x, j):=

√
λ2jd ln n

n
σj(x) +

λ2jd ln n

n
(1.4)

with some constant λ > (5p + 6)‖Φ‖∞. Moreover, this special choice of λ is
used in Proposition 3.1, (3.15) and (4.1). Here and throughout,

σj(x):=
∫

Rd

Φj(x − t)f(t)dt =
∫

Rd

2jdΦ[2j(x − t)]f(t)dt (1.5)

with Φ ∈ C0(Rd) satisfying Φ ≥ 0 and
∣
∣
∣
∣
∣

∑

k

ϕ(x − k)ϕ(y − k)

∣
∣
∣
∣
∣
≤ Φ(x − y), (1.6)

where C0(Rd) stands for the set of all compactly supported and continuous
functions. Clearly, σj ∈ L1(Rd)∩L∞(Rd) holds for each j ∈ H, if f ∈ L∞(Rd).

Note that Un(x, j) depends on unknown density function f . Hence, we
use a empirical counterpart Ûn(x, j) instead of that, i.e.,

Ûn(x, j):=3

√
λ2jd ln n

n
σ̂j(x) +

3λ2jd ln n

n
, (1.7)

where σ̂j(x):= 1
n

∑n
i=1 Φj(x − Xi). Then it is easy to find Eσ̂j(x) = σj(x).
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Now, the selection rule of j would be shown as follows. For any x ∈ R
d,

let

R̂j(x):= sup
j′∈H

[
|f̂j∧j′(x) − f̂j′(x)| − Ûn(x, j ∧ j′) − Ûn(x, j′)

]

+
,

Û∗
n(x, j):= sup

j′∈H:j′≤j
Ûn(x, j′). (1.8)

Here and after, a ∧ b:= min{a, b} and a ∨ b:= max{a, b}. Compared with the
work of Goldenshluger and Lepski [5], the auxiliary estimator f̂j∧j′ is more
concise than theirs. Thus, the selection of j0 is given by

j0 = j0(x) = arginfj∈H
[
R̂j(x) + 2Û∗

n(x, j)
]
. (1.9)

Obviously, it only depends on the observation data X1, · · · ,Xn for any x ∈ R
d.

With α̂jk = 1
n

∑n
i=1 ϕjk(Xi) and j0 being given in (1.9), a data-driven

wavelet estimator is shown by

f̂n,d(x):=f̂j0(x) =
∑

k

α̂j0kϕj0k(x). (1.10)

Moreover, the estimator f̂n,d(x) is a Borel function thanks to the discrete set
H and the continuity of

∑
k ϕ(x − k)ϕ(y − k) with ϕ = D2N × · · · × D2N︸ ︷︷ ︸

d times

for

large N .

1.3. Main Results

We shall state main theorems of this paper and discuss relations to some other
work in this subsection. For M > 0, the notation Bs

r,q(M) stands for a Besov
ball, i.e.,

Bs
r,q(M):={f ∈ Bs

r,q(R
d), f is density function and ‖f‖Bs

r,q
≤ M}.

Moreover, L∞(M) is defined by the way. Then the following theorem holds.

Theorem 1.1. Let 0 < s < m and r, q ∈ [1,∞]. Then for p ∈ (1,∞), the
estimator f̂n,d in (1.10) satisfies

sup
f∈Bs

r,q(M)∩L∞(M)

E‖f̂n,d − f‖p
p � αn(p, d)

( ln n

n

)β(p,d)p

,

where

αn(p, d):=
{

ln n, p ≤ 2sr+dr
sr+d ;

1, otherwise,
(1.11)
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and

β(p, d):=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s(1− 1
p )

s+d− d
r

, p ≤ 2sr+dr
sr+d ;

s
2s+d , 2sr+dr

sr+d < p < 2sr
d + r;

sr
dp , p ≥ 2sr

d + r, s ≤ d
r ;

s− d
r + d

p

2(s− d
r )+d

, p ≥ 2sr
d + r, s > d

r .

(1.12)

Remark 1.1. When q = ∞, Besov space Bs
r,∞(Rd) reduces to Nikol’skii class

Nr(s, Rd) automatically. Then according to Theorem 3 of Goldenshluger and
Lepski [5], the above estimation is optimal up to a logarithmic factor, since the
lower bound estimation holds for all possible estimators including both kernel
and wavelet ones.

Remark 1.2. For the case s > d
r , the condition L∞(M) is not necessary because

of Bs
r,q(R

d) ⊂ L∞(Rd) in this case [8]. On the other hand, the convergence rates
in (1.11)–(1.12) with d = 1 and p = 2 coincide with Theorem 3 of Reynaud-
Bouret et al. [18]; If d = 1 and r = q = ∞, then Bs

∞,∞(R) = Hs(R) and
Theorem 4 of Juditsky et al. [9] can follows from the above theorem directly.

By a detail observation, the convergence exponents β(p, d) in Theorem
1.1 tend to zero as the dimension d −→ ∞. Motivated by the work of Rebelles
[19], we reduce the influence of the dimension and improve the convergence
rates in Theorem 1.1 by the independence hypothesis of density functions.

As in Ref. [19], denote Id:={1, · · · , d}. For a partition P of Id, a density
function f has the independence structure P, if

f(x) =
∏

I∈P
f|I|(xI) (1.13)

with I = {l1, · · · , l|I|} ∈ P and 1 ≤ l1 < · · · < l|I| ≤ d. Here, xI :=(xl1 , · · · ,

xl|I|) ∈ R
|I| and |I| denotes the cardinality of I. On the other hand, f ∈

Bs
r,q(R

d,P) if and only if f|I| ∈ Bs
r,q(R

|I|) for each I ∈ P; f ∈ L∞(Rd,P)
means f|I| ∈ L∞(R|I|) for each I ∈ P. Furthermore, the following notations
are needed:

Bs
r,q(M,P):={f ∈ Bs

r,q(R
d,P), ‖f|I|‖Bs

r,q
≤ M for any I ∈ P};

L∞(M,P):={f ∈ L∞(Rd,P), f|I| ∈ L∞(M) for any I ∈ P}.

For f|I| ∈ Bs
r,q(R

|I|), the corresponding wavelet estimator f̂n,|I|(xI) is
given by (1.10). Then the estimator f̂n,P for f ∈ Bs

r,q(R
d,P) is defined by

f̂n,P(x) =
∏

I∈P
f̂n,|I|(xI). (1.14)

Next, we are in a position to introduce the most important result of this
paper.
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Theorem 1.2. Let 0 < s < m and r, q ∈ [1,∞]. For any p ∈ (1,∞),

sup
f∈Bs

r,q(M,P)∩L∞(M,P)

E‖f̂n,P − f‖p
p � max

I∈P
αn(p, |I|)

( ln n

n

)β(p,|I|)p
,

where αn(p, |I|) and β(p, |I|) can be found in (1.11) and (1.12) respectively.

Remark 1.3. When P = {{1, . . . , d}}, |I| = d and the result of Theorem 1.1
can be reached directly from Theorem 1.2. For another extreme case P =
{{1}, . . . , {d}}, the convergence order dose not depend on the dimension d and
the influence of the dimension on the accuracy of estimation is gone because
of |I| = 1 in this case.

2. Oracle Inequality

In this section, we shall introduce a point-wise oracle inequality, which is one
of main ingredients in later proofs. Let us begin with the following lemma.

Lemma 2.1. Let Xj(x) =
[
|σ̂j(x) − σj(x)| − Un(x, j)

]

+
with j ∈ H. Then

[
Ûn(x, j) − 13Un(x, j)

]

+
≤ 2Xj(x) and

[
Un(x, j) − Ûn(x, j)

]

+
≤ Xj(x),

where Un(x, j) and Ûn(x, j) are given by (1.4) and (1.7) respectively.

Proof. Define H0:={j ∈ H, σj(x) ≥ 4λ2jd ln n
n }. According to the definition of

Xj(x),

|σ̂j(x) − σj(x)| ≤ Xj(x) + Un(x, j).

This with (1.4) and (1.7) leads to

|Ûn(x, j) − 3Un(x, j)| =

∣
∣
∣
∣
∣
3

√
λ2jd ln n

n

[√
σ̂j(x) −

√
σj(x)

]∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣
3

√
λ2jd ln n

n

σ̂j(x) − σj(x)
√

σ̂j(x) +
√

σj(x)

∣
∣
∣
∣
∣

≤ 3

√
λ2jd ln n

n

Xj(x) + Un(x, j)
√

σj(x)
.

Then for any j ∈ H0, the above inequality reduces to

|Ûn(x, j) − 3Un(x, j)| ≤ 3
2

√
σj(x)

Xj(x) + Un(x, j)
√

σj(x)
≤ 3

2
Xj(x) +

3
2
Un(x, j).

Hence,

Ûn(x, j) − 3Un(x, j) ≤ 3
2
Xj(x) +

3
2
Un(x, j)
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and

3Un(x, j) − Ûn(x, j) ≤ 3
2
Xj(x) +

3
2
Un(x, j).

Furthermore, by a simple calculation, one obtains that
[
Ûn(x, j) − 13Un(x, j)

]

+
≤
[
Ûn(x, j) − 9

2
Un(x, j)

]

+
≤ 3

2
Xj(x) ≤ 2Xj(x)

and
[
Un(x, j) − Ûn(x, j)

]

+
≤
[
Un(x, j) − 2

3
Ûn(x, j)

]

+
≤ Xj(x).

The desired conclusion is established for the case of j ∈ H0.
It remains to show the case of j ∈ H1:=H\H0. Clearly,

Un(x, j) =

√
λ2jd ln n

n
σj(x) +

λ2jd ln n

n
≤ 3λ2jd ln n

n
(2.1)

due to (1.4) and j ∈ H1. This with Ûn(x, j) ≥ 3λ2jd ln n
n in (1.7) implies

[
Un(x, j) − Ûn(x, j)

]

+
= 0. (2.2)

On the other hand, according to the definition of Xj(x),

σ̂j(x) ≤ σj(x) + Xj(x) + Un(x, j) ≤ 7λ2jd ln n

n
+ Xj(x)

thanks to j ∈ H1 and (2.1). This with
√

a + b ≤ √
a +

√
b shows that

Ûn(x, j) := 3

√
λ2jd ln n

n
σ̂j(x) +

3λ2jd ln n

n

≤ 3

√
λ2jd ln n

n
Xj(x) + (3

√
7 + 3)

λ2jd ln n

n
.

Combining it with
√

ab ≤ a+b
2 and Un(x, j) ≥ λ2jd ln n

n in (1.4), one knows

Ûn(x, j) ≤ 3
2
Xj(x) + (3

√
7 +

9
2
)
λ2jd ln n

n
≤ 3

2
Xj(x) + 13Un(x, j).

Then it follows that
[
Ûn(x, j) − 13Un(x, j)

]

+
≤ 2Xj(x). (2.3)

Hence, the lemma also holds for the case of j ∈ H1 thanks to (2.2) and (2.3).
The proof is done. �

To state the point-wise oracle inequality, let Bj(x, f) be the bias of the
estimator f̂j(x), i.e.,

Bj(x, f):=|Ef̂j(x) − f(x)| = |Pjf(x) − f(x)|, (2.4)
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and define

B∗
j (x, f):= sup

j′∈H, j′≥j
Bj′(x, f) and U∗

n(x, j):= sup
j′∈H, j′≤j

Un(x, j′), (2.5)

where Pj and Un(x, j) are given by (1.1) and (1.4) respectively.
The following oracle inequality is the main result of this section.

Theorem 2.1. For any x ∈ R
d, the estimator f̂n,d(x) in (1.10) satisfies that

∣
∣
∣f̂n,d(x) − f(x)

∣
∣
∣ ≤ inf

j∈H
{
5B∗

j (x, f) + 53U∗
n(x, j)

}
+ 5v(x) + 12ω(x),

where v(x) is defined in (1.3) and

ω(x):= sup
j∈H

Xj(x). (2.6)

Proof. It follows from the definition of R̂j(x) in (1.8) that

|f̂j∧j0(x) − f̂j0(x)| ≤ R̂j(x) + Ûn(x, j ∧ j0) + Ûn(x, j0)

≤ R̂j(x) + 2Û∗
n(x, j0) (2.7)

thanks to (1.8). The same arguments as (2.7) show

|f̂j0∧j(x) − f̂j(x)| ≤ R̂j0(x) + 2Û∗
n(x, j). (2.8)

Then combining (1.9) with (2.7)–(2.8), one obtains that

|f̂j0(x) − f(x)| ≤ |f̂j0∧j(x) − f̂j0(x)| + |f̂j0∧j(x) − f̂j(x)| + |f̂j(x) − f(x)|
≤ 2R̂j(x) + 4Û∗

n(x, j) + |f̂j(x) − f(x)|. (2.9)

Clearly, by (1.3),

|ξn(x, j)| ≤
[
|ξn(x, j)| − Un(x, j)

]

+
+ Un(x, j) ≤ v(x) + Un(x, j).

Moreover, it follows from (2.5) that

|f̂j(x) − f(x)| ≤ Bj(x, f) + |ξn(x, j)| ≤ B∗
j (x, f) + v(x) + U∗

n(x, j). (2.10)

On the other hand, according to (1.2) and (2.4),

R̂j(x) = sup
j′∈H

[
|f̂j∧j′(x) − f̂j′(x)| − Ûn(x, j ∧ j′) − Ûn(x, j′)

]

+

≤ sup
j′∈H

[
|Ef̂j∧j′(x) − Ef̂j′(x)| + |ξn(x, j ∧ j′)| − Un(x, j ∧ j′) + |ξn(x, j′)|

−Un(x, j′) + Un(x, j ∧ j′) − Ûn(x, j ∧ j′) + Un(x, j′) − Ûn(x, j′)
]

+
.

This with supj′∈H |Ef̂j∧j′(x) − Ef̂j′(x)| ≤ sup{j′∈H, j′≥j}{Bj∧j′(x, f) + Bj′

(x, f)} leads to

R̂j(x) ≤ 2B∗
j (x, f) + 2v(x) + 2ω(x) (2.11)
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because of (2.5)–(2.6) and the second inequality of Lemma 2.1. Hence, it follows
from (2.9)–(2.11) that

|f̂j0(x) − f(x)| ≤ 5B∗
j (x, f) + 5v(x) + 4ω(x) + 4Û∗

n(x, j) + U∗
n(x, j). (2.12)

Note that the fact
[
supα Fα − supα Gα

]
+

≤ supα

[
Fα − Gα

]
+
. Then

Û∗
n(x, j) − 13U∗

n(x, j) ≤
[
Û∗

n(x, j) − 13U∗
n(x, j)

]

+
≤ 2 sup

j∈H
Xj(x) = 2ω(x)

thanks to the first inequality of Lemma 2.1 and (2.6). Therefore, Û∗
n(x, j) ≤

13U∗
n(x, j) + 2ω(x). This with (2.12) shows that

|f̂j0(x) − f(x)| ≤ 5B∗
j (x, f) + 53U∗

n(x, j) + 5v(x) + 12ω(x)

holds for any j ∈ H. Furthermore,

|f̂n,d(x) − f(x)| = |f̂j0(x) − f(x)|
≤ inf

j∈H
{
5B∗

j (x, f) + 53U∗
n(x, j)

}
+ 5v(x) + 12ω(x)

due to f̂n,d(x) = f̂j0(x) in (1.10), which finishes the proof. �

3. Two Propositions

This section is devoted to prove two necessary propositions. The following
classical inequality is needed to prove Proposition 3.1.
Bernstein’s inequality ([16]). Let Y1, · · · , Yn be i.i.d. random variables with
EY 2

i ≤ σ2 and |Yi| ≤ M (i = 1, 2, · · · , n). Then for any x > 0,

P

{∣
∣
∣
∣
∣

1
n

n∑

i=1

(Yi − EYi)

∣
∣
∣
∣
∣
≥
√

2σ2x

n
+

4Mx

3n

}

≤ 2e−x.

Now, we state the first proposition, which plays an important role in the
proof of the second one.

Proposition 3.1. Let v(x) and ω(x) be given by (1.3) and (2.6) respectively.
Then for each γ > 0, there exists λ > (5γ + 6)Φ∞ such that

∫

Rd

E[v(x)]γdx � n− γ
2 and

∫

Rd

E[ω(x)]γdx � n− γ
2 ,

where Φ∞ = ‖Φ‖∞ and Φ is defined in (1.5).

Proof. According to the definitions v(x) and ω(x), one only needs to prove
the first inequality and the second one is similar. Moreover, one will show∫
Rd E[v(x)]γdx � n− γ

2 in two steps.
Step 1. Define F (x):=f ∗ I[−1, 1]d(x) and

Un(x, j):=

√
Φ∞2jd+1σj(x)

n
λj +

Φ∞2jd+2

3n
λj , (3.1)
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where λj = max
{

1
4 , (γ + 1)jd ln 2 + ln(F−1(x) ∧ nl)

}
with l = 3γ

2 + 2.
Note that λ ln n ≥ 2Φ∞λj follows from λ > (5γ+6)Φ∞ and (γ+1)jd ln 2+

ln(F−1(x) ∧ nl) ≤ [(γ + 1) + l] ln n with j ∈ H. Then Un(x, j) ≤ Un(x, j) due
to (1.4) and (3.1). Furthermore,

[
|ξn(x, j)| − Un(x, j)

]

+
≤
[
|ξn(x, j)| − Un(x, j)

]

+
. (3.2)

For each t ≥ 0,

P
{[|ξn(x, j)| − Un(x, j)

]
+

> t
}

= P
{|ξn(x, j)| − Un(x, j) > t

}
.

Hence,

E
[
|ξn(x, j)| − Un(x, j)

]γ

+
= γ

∫ ∞

0

tγ−1P
{|ξn(x, j)| − Un(x, j) > t

}
dt.

This with variable substitution t = vω and ω:=
√

Φ∞2jd+1σj(x)
n + Φ∞2jd+2

3n shows

E
[
|ξn(x, j)| − Un(x, j)

]γ

+
≤ γ

∫ ∞

0

(vω)γ−1×

P

{

|ξn(x, j)| >

√
Φ∞2jd+1σj(x)

n
(
√

v + λj) +
Φ∞2jd+2

3n
(v + λj)

}

ωdv (3.3)

thanks to v +
√

λj ≥√v + λj and λj ≥ 1
4 .

On the other hand,

ξn(x, j):=f̂j(x) − Ef̂j(x) =
1
n

n∑

i=1

[Kj(x,Xi) − EKj(x,Xi)]

with K(x, y) =
∑

k ϕ(x − k)ϕ(y − k). Then by (1.6),

|Kj(x,Xi)| ≤ 2jdΦ∞ and EK2
j (x,Xi) ≤ 2jdΦ∞σj(x).

Combining these with Bernstein’s inequality, one concludes that

P

{

|ξn(x, j)|>
√

Φ∞2jd+1σj(x)
n

(
√

v + λj) +
Φ∞2jd+2

3n
(v + λj)

}

≤ 2e−(v+λj).

This with (3.3) implies that

E
[
|ξn(x, j)| − Un(x, j)

]γ

+

≤ 2γωγ

∫ ∞

0

vγ−1e−(v+λj)dv = 2γωγe−λj

∫ ∞

0

vγ−1e−vdv

= 2γΓ(γ)ωγe−λj = 2Γ(γ + 1)

[√
Φ∞2jd+1σj(x)

n
+

Φ∞2jd+2

3n

]γ

e−λj
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due to ω:=
√

Φ∞2jd+1σj(x)
n + Φ∞2jd+2

3n . Note that σj(x) =
∫
Rd Φj(t−x)f(t)dt �

2jd and e−λj ≤ 2−jd(γ+1)[F (x) ∨ n−l]. Then

∑

j∈H
E
[
|ξn(x, j)| − Un(x, j)

]γ

+
�
∑

j∈H

( 2jd

√
n

)γ

2−jd(γ+1)[F (x) ∨ n−l]

� n− γ
2 [F (x) ∨ n−l].

It follows from (1.3) and (3.2) that

E[v(x)]γ ≤
∑

j∈H
E
[
|ξn(x, j)| − Un(x, j)

]γ

+
� n− γ

2 [F (x) ∨ n−l]. (3.4)

Step 2. The second step is devoted to prove
∫
Rd E[v(x)]γdx � n− γ

2 by
Step 1 . Denote

T1:=
{
x ∈ R

d, F (x) > n−l
}

and T2 = R
d\T1.

Then with (3.4), one obtains
∫

T1

E[v(x)]γdx � n− γ
2

∫

Rd

F (x)dx � n− γ
2 (3.5)

thanks to F (x):=f ∗ I[−1, 1]d(x) ∈ L1(Rd).
Next, the main work is to prove

∫
T2

E[v(x)]γdx � n− γ
2 . Define

U(x):=
d∏

i=1

[xi − 1, xi + 1], D̂(x):=

{
n∑

i=1

I{Xi ∈ U(x)} < 2

}

and D̂(x) = [D̂(x)]c, where Ac means the complement of the set A.
Without loss of the generality, supp Φ ⊆ [−1, 1]d is assumed in this

paper. Then

E|Kj(x,Xi)| ≤
∫

Rd

Φj(x − t)f(t)dt ≤ 2jd

∫

U(x)

Φ(2j(x − t))f(t)dt

≤ 2jdΦ∞F (x)

because of (1.6) and F (x) =
∫
Rd IU(x)(t)f(t)dt. Moreover,

|ξn(x, j)|I{D̂(x)} ≤ 1
n

n∑

i=1

[|Kj(x,Xi)| + E|Kj(x,Xi)|
]
I{D̂(x)}

≤ Φ∞2jd[n−1 + F (x)].

By l ≥ 1 and λ > (5γ + 6)Φ∞ > 2Φ∞, for each x ∈ T2,

|ξn(x, j)|I{D̂(x)} ≤ Φ∞2jd(n−1 + n−l) ≤ Φ∞2jd+1n−1 < Un(x, j),
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which implies that supj∈H
[|ξn(x, j)|−Un(x, j)

]
+

·I{D̂(x)} = 0 holds for x ∈ T2.
Hence,

∫

T2

E[v(x)]γI{D̂(x)}dx = 0. (3.6)

For the case
∫

T2
E[v(x)]γI{

D̂(x)
}dx. Note that |ξn(x, j)| � ‖Kj‖∞ �

2jd ≤ n follows from j ∈ H. Then with v(x):= supj∈H
[|ξn(x, j)|−Un(x, j)

]
+
,

∫

T2

E[v(x)]γI{
D̂(x)

}dx ≤
∫

T2

E

[

sup
j∈H

|ξn(x, j)|
]γ

I{
D̂(x)

}dx

� nγ

∫

T2

P
{

D̂(x)
}

dx. (3.7)

According to Markov’s inequality, for each z > 0,

P
{

D̂(x)
}

= P

{
n∑

i=1

I{Xi ∈ U(x)} ≥ 2

}

≤ E[exp(z
∑n

i=1 I{Xi ∈ U(x)})]
e2z

.

On the other hand,

E

[

exp

(

z

n∑

i=1

I{Xi ∈ U(x)}
)]

≤
[∫

t∈U(x)

ezf(t)dt +
∫

t/∈U(x)

f(t)dt

]n

= [ezF (x) + 1 − F (x)]n.

These with (t + 1)n ≤ ent imply that

P
{

D̂(x)
}

≤ e−2z[(ez − 1)F (x) + 1]n ≤ exp{−2z + (ez − 1)nF (x)}. (3.8)

Put z = ln 2 − ln(nF (x)). Then z > 0 by l ≥ 1 and F (x) ≤ n−l in T2.
Furthermore, (3.8) reduces to

P
{

D̂(x)
}

� n2F 2(x)e−nF (x) � n2F 2(x) � n2−lF (x)

thanks to 0 ≤ nF (x) ≤ n−l+1 with x ∈ T2. This with (3.7) leads to
∫

T2

E[v(x)]γI{
D̂(x)

}dx � nγ+2−l

∫

Rd

F (x)dx � nγ+2−l � n− γ
2 (3.9)

because of F ∈ L1(Rd) and l = 3γ
2 + 2.

Finally, the desired conclusion follows from (3.5), (3.6) and (3.9). The
proof is completed. �

Before giving another proposition, we need three more notations. Define

Uf (x):= inf
j∈H

{B∗
j (x, f) + U∗

n(x, j)}, (3.10)

Ωm:={x ∈ R
d, 2mδn < Uf (x) ≤ 2m+1δn}, (3.11)

Ω−
m0

:={x ∈ R
d, Uf (x) ≤ 2m0δn}, (3.12)
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where δn = (C ln n
n )

s
2s+d and m0 ∈ Z satisfies c′δ

sr+d
sr+dr−d
n ≤ 2m0 ≤ c′′δ

sr+d
sr+dr−d
n

with some constants 1 < c′ < c′′ < ∞ and C > 0.
Note that Uf (x) ≤ c0:= supx Uf (x). Then there exists

m2:= min{m ∈ Z, 2mδn ≥ c0} (3.13)

such that Ωm = ∅ for each m > m2. Clearly, m0 < 0 < m2 for large n.

Proposition 3.2. Denote

J−
m0

:=E

∫

Ω−
m0

|f̂n,d(x) − f(x)|pdx and Jm:=E

∫

Ωm

[Uf (x)]pdx.

Then the following statements hold:
(1). For each p > 1,

J−
m0

� (ln n)(2m0δn)p−1 + n− p
2 ;

(2). Let f ∈ Bs
r,q(M) ∩ L∞(M) and m ∈ Z satisfy m0 ≤ m ≤ 0. Then

Jm � 2m(p− 2sr+dr
sr+d )δp

n;

(3). Let f ∈ Bs
r,q(M) ∩ L∞(M) and m ∈ Z satisfy 0 ≤ m ≤ m2. Then

Jm � 2m(p−r− 2sr
d )δp

n;

Moreover, if s > d
r and r ≤ p, then with s′:=s − d

r + d
p ,

Jm � 2− 2ms′p
d δ

s′
s p

n .

Proof. (1). According to Theorem 2.1,

|f̂n,d(x) − f(x)| � Uf (x) + Δ(x),

where Δ(x) = v(x) + ω(x) and Uf (x) is given by (3.10). Then for each p > 1,

J−
m0

= E

∫

Ω−
m0

|f̂n,d(x) − f(x)|pdx

� E

∫

Ω−
m0

[Uf (x) + Δ(x)]p−1|f̂n,d(x) − f(x)|dx.

Moreover, Uf (x) ≤ 2m0δn follows from (3.12). Hence,

J−
m0

� (2m0δn)p−1E‖f̂n,d − f‖1 + E

∫

Ω−
m0

[Δ(x)]p−1[2m0δn + Δ(x)]dx.

(3.14)

On the other hand, |f̂n,d(x)| ≤ 1
n

∑n
i=1 Φj0(x − Xi) due to f̂n,d(x) =∑

k α̂j0kϕj0k(x) and |∑k ϕ(x − k)ϕ(y − k)| ≤ Φ(x − y). Then

‖f̂n,d‖1 ≤ 1
n

∑n
i=1

∫
Rd Φj0(x − Xi)dx

= 1
n

∑n
i=1

∫
∪j∈H {x, j0(x)=j} Φj(x − Xi)dx ≤ ‖Φ‖1 ln n
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because of H is a discrete set and the cardinality of H is no more than lnn.
Therefore,

‖f̂n,d − f‖1 ≤ ‖f̂n,d‖1 + ‖f‖1 � ln n.

This with (3.14) and Proposition 3.1 leads to

J−
m0

� (ln n)(2m0δn)p−1 + 2m0δnn− p−1
2 + n− p

2 . (3.15)

It follows from 2m0 ∼ δ
sr+d

sr+dr−d
n that 2m0δnn− p−1

2 � n− p
2 holds for sr−dr+d >

0 and 2m0δnn− p−1
2 � (2m0δn)p−1 holds for sr−dr+d ≤ 0 and p > 1. Combining

these with (3.15), one concludes that

J−
m0

� (ln n)(2m0δn)p−1 + n− p
2 ,

which is the first desired conclusion.
(2). Clearly, by Ωm = {x ∈ R

d, 2mδn < Uf (x) ≤ 2m+1δn},

Jm =
∫

Ωm

[Uf (x)]pdx ≤ (2m+1δn)p|Ωm|, (3.16)

where |Ωm| stands for the Lebesgue measure of the set Ωm. On the other hand,
(3.10) tells that Uf (x) = infj∈H{B∗

j (x, f) + U∗
n(x, j)}. Then for each j ∈ H,

|Ωm| ≤ |{x ∈ R
d, U∗

n(x, j) > 2m−1δn}|
+

∑

j′∈H, j′≥j

|{x ∈ R
d, Bj′(x, f) > 2m−1δn}|

:=J1
m(j) + J2

m(j), (3.17)

since B∗
j (x, f) = supj′∈H, j′≥j Bj′(x, f). Moreover, (3.16) reduces to

Jm ≤ (2m+1δn)p[J1
m(j) + J2

m(j)]. (3.18)

If 1 ≤ r < ∞, by using Chebyshev’s inequality and f ∈ Bs
r,q(M),

J2
m(j) ≤

∑
j′∈H, j′≥j ‖Bj′(·, f)‖r

r

(2m−1δn)r
� 2−mrδ−r

n

∑

j′∈H, j′≥j

2−j′sr

� 2−mrδ−r
n 2−jsr. (3.19)

To estimate J1
m(j), one chooses j1 ∈ Z satisfying

c12
md(2−r)

sr+d δ
− d

s
n ≤ 2j1d ≤ c22

md(2−r)
sr+d δ

− d
s

n

with two constants c2 > c1 > 1. Thus, j1 ∈ H for m0 ≤ m ≤ 0 and large n. In
fact, if r > 2, then

1 < c1δ
− d

s
n ≤ 2j1d ≤ c22

m0d(2−r)
sr+d δ

− d
s

n ≤ c2c
′ d(2−r)

sr+d δ
−( d

s + d(r−2)
sr+dr−d )

n <
n

ln n
(3.20)
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thanks to the choice of 2m0 and s
2s+d (d

s + d(r−2)
sr+dr−d ) < 1. If 1 ≤ r ≤ 2, then

1 < c1c
′ d(2−r)

sr+d δ
−( d

s + d(r−2)
sr+dr−d )

n ≤ c12
m0d(2−r)

sr+d δ
− d

s
n ≤ 2j1d ≤ c2δ

− d
s

n <
n

ln n
(3.21)

due to the choice of 2m0 , d
s + d(r−2)

sr+dr−d > 0 and c1, c
′ > 1. Hence, j1 ∈ H follows

from (3.20) and (3.21).

Recall that c′δ
sr+d

sr+dr−d
n ≤ 2m0 ≤ c′′δ

sr+d
sr+dr−d
n and δn = (C ln n

n )
s

2s+d . Then
by choosing C such that max{1, (2M)

d
s } < c1 < c2 < C

4λ ,

λ2j1d ln n

n
≤ c2λ

ln n

n
2

md(2−r)
sr+d δ

− d
s

n = c2λC−12
md(2−r)

sr+d δ2
n < 2m−2δn (3.22)

because of m ≥ m0 and c′ > 1.
Furthermore, according to the definition of U∗

n(x, j) and j1 ∈ H, one
obtains that

J1
m(j1) ≤

∣
∣
∣
∣
∣

{

x ∈ R
d, sup

j′≤j1

√
λ2j′d ln n

n
σj′(x) +

λ2j1d ln n

n
> 2m−1δn

}∣
∣
∣
∣
∣

≤
∑

j′≤j1

∣
∣
∣
∣
∣

{

x ∈ R
d,

√
λ2j′d ln n

n
σj′(x) > 2m−2δn

}∣
∣
∣
∣
∣

=
∑

j′≤j1

∣
∣
∣
{

x ∈ R
d, σj′(x) > 22m−4δ2

nλ−12−j′d n

ln n

}∣
∣
∣ ,

where (3.22) is used in the second inequality. Moreover, it follows from ‖σj‖1 �
1 and (3.22) that

J1
m(j1) ≤

(
22m−4δ2

nλ−1 n

ln n

)−1 ∑

j′≤j1

‖σj′‖12j′d � 2j1d2−2mδ−2
n

ln n

n
. (3.23)

For the case 1 ≤ r < ∞, combining (3.18) with (3.23) and (3.19), one
knows that

Jm ≤ (2m+1δn)p[J1
m(j1) + J2

m(j1)]

� 2mpδp
n

(
2−mrδ−r

n 2−j1sr + 2j1d2−2mδ−2
n

ln n

n

)
.

This with the choice of j1 yields

Jm � 2m(p− 2sr+dr
sr+d )δp

n.

If r = ∞, then c1(2mδn)− d
s ≤ 2j1d ≤ c2(2mδn)− d

s also due to the choice
of j1. Moreover, f ∈ Bs

∞,q ⊆ Bs
∞,∞ follows from lq ↪→ l∞. Then

sup
j′≥j1

Bj′(x, f) ≤ sup
j′≥j1

‖Bj′(·, f)‖∞ ≤ M2−j1s ≤ Mc
− s

d
1 2mδn ≤ 2m−1δn

(3.24)
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by choosing c1 ≥ max{1, (2M)
d
s }. Therefore, in view of (3.17),

J2
m(j1) = 0.

This with (3.18) and (3.23) shows

Jm ≤ (2m+1δn)p[J1
m(j1) + J2

m(j1)] � 2mpδp
n2j1d2−2mδ−2

n

ln n

n
� 2m(p−2− d

s )δp
n.

The proof of the second estimation is completed.
(3). Take j2 satisfying c322mδ

− d
s

n ≤ 2j2d ≤ c422mδ
− d

s
n . Then by σj(x) =∫

Rd Φj(t − x)f(t)dt < L, there exist two positive constants

max{1, (2M)
d
s } < c3 < c4 < min

{
C

4c2
0

, C(2
√

λL + 2λ)−2

}

such that j2 ∈ H and U∗
n(x, j2) ≤ 2m−1δn for 0 < m ≤ m2. In fact, (3.13) tells

that 2m2 ≤ 2c0δ
−1
n . Then due to c4 < C

4c20
,

1 < c3δ
− d

s
n ≤ 2j2d ≤ c422m2δ

− d
s

n ≤ 4c4c
2
0δ

−( d
s +2)

n <
n

ln n
.

Hence, j2 ∈ H. On the other hand, according to j2 ∈ H and c4 < C(2
√

λL +
2λ)−2,

U∗
n(x, j2) = sup

j′≤j2

{√
λ2j′d ln n

n
σj(x) +

λ2j′d ln n

n

}

≤ (
√

λL + λ)

√
2j2d ln n

n

≤ (
√

λL + λ)

√

c422mδ
− d

s
n

ln n

n
≤ (

√
λL + λ)

√
c4/C2mδn ≤ 2m−1δn.

This with (3.17) implies

J1
m(j2) = 0. (3.25)

When 1 ≤ r < ∞, substituting (3.19) and (3.25) into (3.18), one obtains
that

Jm ≤ (2m+1δn)p[J1
m(j2) + J2

m(j2)] � 2m(p−r)δp−r
n 2−j2sr � 2m(p−r− 2sr

d )δp
n.

For the case r = ∞, it follows from (3.24) and 0 < m ≤ m2 that

sup
j′≥j2

Bj′(x, f) ≤ M2−j2s ≤ Mc
− s

d

3 2− 2ms
d δn ≤ 2m−1δn

due to the choice of c3. Thus, J2
m(j2) = 0 because of (3.17). This with (3.18)

and (3.25) leads to

Jm ≤ (2m+1δn)p[J1
m(j2) + J2

m(j2)] = 0.
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To finish the proof of proposition, the case of s > d
r and r ≤ p is consid-

ered. Note that Bs
r,q ⊆ Bs′

p,q with s′ = s − d
r + d

p . Similar to (3.19),

J2
m(j) ≤

∑
j′∈H, j′≥j ‖Bj′(·, f)‖p

p

(2m−1δn)p
� 2−mpδ−p

n

∑

j′∈H, j′≥j

2−j′s′p

� 2−mpδ−p
n 2−js′p.

Substituting this above estimate and (3.25) into (3.18), one concludes that

Jm ≤ (2m+1δn)p[J1
m(j2) + J2

m(j2)] � (2mδn)p2−mpδ−p
n 2−j2s′p � 2− 2ms′p

d δ
s′
s p

n

thanks to 2j2d
∼ 22mδ

− d
s

n . The proof is done. �

Remark 3.1. By a careful check of the above proofs, the choice of C in δn =
(C ln n

n )
s

2s+d should be chosen large in order to ensure the existence of the
constants c1, c2, c3, c4. In particular, when r �= 1 and r �= ∞, we can choose
C = 1 (i.e., δn = ( ln n

n )
s

2s+d ), because the lower bound max{1, (2M)
d
s } of the

constants c1, c3 is unnecessary for 1 < r < ∞.

4. Proofs

Now, we are ready to prove Theorem 1.1 and Theorem 1.2 respectively.

4.1. Proof of Theorem 1.1

Proof. According to Theorem 2.1, one obtains that

|f̂n,d(x) − f(x)| � Uf (x) + v(x) + ω(x),

where Uf (x) is given by (3.10). This with Proposition 3.1 implies

E‖f̂n,d − f‖p
p = E

∫

Ω−
m0

|f̂n,d(x) − f(x)|pdx +
∞∑

m=m0

E

∫

Ωm

|f̂n,d(x) − f(x)|pdx

� E

∫

Ω−
m0

|f̂n,d(x) − f(x)|pdx +
m2∑

m=m0

E

∫

Ωm

[Uf (x)]pdx + n− p
2

= J−
m0

+
m2∑

m=m0

Jm + n− p
2 . (4.1)

Here, J−
m0

and Jm are defined in Proposition 3.2.
To complete the proof, one divides (4.1) into four regions. Recall that

2m0 ∼ δ
sr+d

sr+dr−d
n , 2m2 ∼ δ−1

n and δn ∼ ( ln n
n )

s
2s+d by (3.12)–(3.13). Then with

Proposition 3.2, the following estimations are established.
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(i). For p ≤ 2sr+dr
sr+d ,

J−
m0

+
m2∑

m=m0

Jm ≤ J−
m0

+
0∑

m=m0

Jm +
m2∑

m=0

Jm

� (ln n)(2m0δn)p−1 + 2m0(p− 2sr+dr
sr+d )δp

n + δp
n + n− p

2

� (ln n)
( ln n

n

) s(p−1)
s+d− d

r . (4.2)

Next, one continues to show the proofs of the rest regions based on the
fact that (2m0δn)p−1 < δp

n follows from p > 2sr+dr
sr+d .

(ii). For 2sr+dr
sr+d < p < 2sr

d + r,

J−
m0

+
m2∑

m=m0

Jm ≤ J−
m0

+
0∑

m=m0

Jm +
m2∑

m=0

Jm

� (ln n)(2m0δn)p−1 + δp
n + δp

n + n− p
2

�
( ln n

n

) sp
2s+d

. (4.3)

(iii). For p ≥ 2sr
d + r,

J−
m0

+
m2∑

m=m0

Jm ≤ J−
m0

+
0∑

m=m0

Jm +
m2∑

m=0

Jm

� (ln n)(2m0δn)p−1 + δp
n + 2m2(p−r− 2sr

d )δp
n + n− p

2

�
( ln n

n

) sr
d

. (4.4)

(iv). For the case p ≥ 2sr
d + r and s > d

r . Take m1 ∈ Z satisfying

2m1 ∼ δ

s′p( 1
s

− 1
s′ )

( 2s′
d

+1)p− 2sr
d

−r

n

by balancing 2m1(p−r− 2sr
d )δp

n and 2− 2m1s′p
d δ

s′
s p

n . Then it follows from r < p and
s > d

r that 0 < m1 < m2. Hence,

J−
m0

+
m2∑

m=m0

Jm ≤ J−
m0

+
0∑

m=m0

Jm +
m1∑

m=0

Jm +
m2∑

m=m1

Jm

� (ln n)(2m0δn)p−1 + δp
n + 2m1(p−r− 2sr

d )δp
n

+2− 2m1s′p
d δ

s′
s p

n + n− p
2 .

Then due to the choice of 2m1 , δn ∼ ( ln n
n )

s
2s+d and s′ = s − d

r + d
p , the above

inequality reduces to

J−
m0

+
m2∑

m0

Jm �
( ln n

n

) s′p

2(s− d
r
)+d . (4.5)
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The proof of Theorem 1.1 is finished thanks to (4.1)–(4.5). �

4.2. Proof of Theorem 1.2

Proof. It is easy to show that
∣
∣
∣
∣
∣

m∏

i=1

ai −
m∏

i=1

bi

∣
∣
∣
∣
∣
≤ m max

i∈{1,··· ,m}
{|ai|m−1, |bi|m−1} · max

i∈{1,··· ,m}
|ai − bi|.

This with (1.13) and (1.14) leads to

|f̂n,P(x) − f(x)|
� max

I∈P

{
|f̂n,|I|(xI)||P|−1, |f|I|(xI)||P|−1

}
· max

I∈P
|f̂n,|I|(xI) − f|I|(xI)|.

(4.6)

Obviously, |f̂n,|I|(xI)| ≤ |f̂n,|I|(xI) − f|I|(xI)| + |f|I|(xI)| and

|f̂n,|I|(xI) − f|I|(xI)|(|P|−1)p ≤
[
|f̂n,|I|(xI) − f|I|(xI)| + 1

](d−1)p

� |f̂n,|I|(xI) − f|I|(xI)|(d−1)p + 1. (4.7)

On the other hand, |f|I|(xI)| � 1 follows from f|I| ∈ L∞(M). Combining
this with (4.6) and (4.7), one concludes that

|f̂n,P(x) − f(x)|p

�
[

max
I∈P

|f̂n,|I|(xI) − f|I|(xI)|(d−1)p + 1
]

· max
I∈P

|f̂n,|I|(xI) − f|I|(xI)|p.

Note that |f̂n,|I|(xI) − f|I|(xI)|(d−1)p and |f̂n,|I|(xI) − f|I|(xI)|p attain
their maximum values for the same I. Therefore,

|f̂n,P(x) − f(x)|p � max
I∈P

|f̂n,|I|(xI) − f|I|(xI)|dp + max
I∈P

|f̂n,|I|(xI) − f|I|(xI)|p,
which implies that

E‖f̂n,P − f‖p
p � max

I∈P

{
E‖f̂n,|I| − f|I|‖pd

pd + E‖f̂n,|I| − f|I|‖p
p

}
. (4.8)

According to Theorem 1.1 and f ∈ Bs
r,q(M,P) ∩ L∞(M,P), one obtains

that

E‖f̂n,|I| − f|I|‖pd
pd � αn(pd, |I|)

( ln n

n

)β(pd,|I|)pd

(4.9)

and

E‖f̂n,|I| − f|I|‖p
p � αn(p, |I|)

( ln n

n

)β(p,|I|)p
. (4.10)

Moreover, it follows from (1.11) that for each I ∈ P,

αn(pd, |I|) ≤ αn(p, |I|). (4.11)

Hence, in order to conclude the final conclusion of Theorem 1.2, it is sufficient
to show β(pd, |I|)d ≥ β(p, |I|) for each I ∈ P because of (4.8)–(4.11).
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It is equivalent to prove that β(pd, �)d ≥ β(p, �) holds for each � ∈
{1, · · · , d}. By (1.12),

β(pd, �)d =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds(1− 1
pd )

s+�− �
r

, pd ≤ 2sr+�r
sr+� ;

ds
2s+� ,

2sr+�r
sr+� < pd < 2sr

� + r;
sr
p� , pd ≥ 2sr

� + r, s ≤ �
r ;

d(s− �
r + �

pd )

2(s− �
r )+�

, pd ≥ 2sr
� + r, s > �

r .

Therefore, (i). For p ≥ 2sr
� + r and s > �

r ,

β(pd, �)d =
d(s − �

r + �
pd )

2(s − �
r ) + �

≥
s − �

r + �
p

2(s − �
r ) + �

= β(p, �);

(ii). For p ≥ 2sr
� + r and s ≤ �

r ,

β(pd, �)d =
sr

p�
= β(p, �);

(iii). If 2sr+�r
sr+� < p < 2sr

� +r, then the possible values of β(pd, �)d are
d(s− �

r + �
pd )

2(s− �
r )+�

(for s > �
r ), sr

p� (for s ≤ �
r ) and ds

2s+� . Clearly,

d(s − �
r + �

pd )

2(s − �
r ) + �

≥
s − �

r + �
p

2(s − �
r ) + �

≥ s

2s + �
and

min
{

sr

p�
,

ds

2s + �

}

≥ s

2s + �
. (4.12)

Hence, β(pd, �)d ≥ s
2s+� = β(p, �) holds in this region.

(iv). If p ≤ 2sr+�r
sr+� , then the possible values of β(pd, �)d are

d(s− �
r + �

pd )

2(s− �
r )+�

(for s > �
r ), sr

p� (for s ≤ �
r ), ds

2s+� and
ds(1− 1

pd )

s+�− �
r

. Due to (4.12) and d ≥ 1,

min
{

d(s− �
r + �

pd )

2(s− �
r )+�

, sr
p� ,

ds
2s+�

}

≥ s
2s+� ≥ s(1− 1

p )

s+�− �
r

and
ds(1− 1

pd )

s+�− �
r

≥ s(1− 1
p )

s+�− �
r

.

Therefore, β(pd, �)d ≥ s(1− 1
p )

s+�− �
r

= β(p, �) follows in this region.
The proof is done. �
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[8] Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets. Approxi-
mation and Statistical Applications. Springer, New York (1998)

[9] Juditsky, A., Lambert-Lacroix, S.: On minimax density estimation on R.
Bernoulli 10, 187–220 (2004)

[10] Kerkyacharian, G., Picard, D.: Density estimation in Besov spaces. Statt.
Probab. Lett. 13, 15–24 (1992)

[11] Kou, J.K., Liu, Y.M.: Non parametric regression estimations over Lp risk based
on biased data. Commun. Stat. Theory Methods 46, 2375–2395 (2017)

[12] Liu, Y.M., Zeng, X.C.: Asymptotic normality for wavelet deconvolution density
estimators. Appl. Comput. Harmon. Anal. 48, 321–342 (2020)

[13] Madych, W.R.: Some elementary properties of multiresolution analyses of
L2(Rn). In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications.
Academic Press, Boston (1992)

[14] Mallat, S.: Multiresolution approximations and wavelet orthonormal bases for
L2(R). Trans. Am. Math. Soc. 315, 69–87 (1989)

[15] Mallat, S.: A theory for multiresolution signal decomposition: the wavelet rep-
resentation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

[16] Massart, P.: Concentration inequalities and model selection. In: Lectures from
the 33rd Summer School on Probability Theory held in Saint-Flour. Springer,
Berlin (2007)

[17] Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge
(1992)

[18] Reynaud-Bouret, P., Rivoirard, V., Tuleau-Malot, C.: Adaptive density estima-
tion: a curse of support? J. Stat. Plan. Inference 141, 115–139 (2011)

[19] Rebelles, G.: Pointwise adaptive estimation of a multivariate density under in-
dependence hypothesis. Bernoulli 21, 1984–2023 (2015)

[20] Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press,
Wellesley (1996)



Vol. 76 (2021) Adaptive Wavelet Density. . . Page 23 of 23 196

[21] Vetterli, M., Herley, C.: Wavelets and filter banks: theory and design. IEEE.
Trans. Signal Proc. 40, 2207–2232 (1992)

[22] Wu, C., Zeng, X.C., Mi, N.: Adaptive and optimal pointwise deconvolution den-
sity estimations by wavelets. Adv. Comput. Math. 47(2021), Artile Number:
14

[23] Zeng, X.C.: A note on wavelet deconvolution density estimation. Int. J. Wavelets
Multiresolut. Inf. Process. 15(2017), Article Number: 1750055

Kaikai Cao
School of Mathematics and Information Science
Weifang University
Weifang 261061
China

Xiaochen Zeng
College of Mathematics, Faculty of Science
Beijing University of Technology
Beijing 100124
China
e-mail: zengxiaochen@bjut.edu.cn

Received: July 23, 2021.

Accepted: August 18, 2021.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	Adaptive Wavelet Density Estimation Under Independence Hypothesis
	Abstract
	1. Introduction
	1.1. Wavelets and Besov Spaces
	1.2. Wavelet Estimator and Selection Rule
	1.3. Main Results

	2. Oracle Inequality
	3. Two Propositions
	4. Proofs
	4.1. Proof of Theorem 1.1
	4.2. Proof of Theorem 1.2

	Acknowledgements
	References




