1422-6383/21/030001-20 published online July 15, 2021 https://doi.org/10.1007/s00025-021-01472-9

Results in Mathematics

Weighted Approximation of Functions by the Szász-Mirakjan-Kantorovich Operator

Ivan Gadjevo and Parvan E. Parvanov

Abstract. We investigate the weighted approximation of functions in L_p norm by Kantorovich modifications of the classical Szász–Mirakjan operator, with weights of type $(1+x)^{\alpha}$, $\alpha \in \mathbb{R}$. By defining an appropriate
K-functional we prove direct inequality for them.

Mathematics Subject Classification. 41A36, 41A25, 41A27, 41A17.

Keywords. Szász–Mirakjan operator, *K*-functional, weighted approximation, Szász–Mirakjan–Kantorovich operator.

1. Introduction

The classical Szász–Mirakjan operator (see [9,10]) is defined for bounded functions f(x) in $[0,\infty)$ by the formula

$$S_n f(x) = S_n(f; x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) s_{n,k}(x), \quad x \ge 0, \tag{1.1}$$

where

$$s_{n,k}(x) = e^{-nx} \frac{(nx)^k}{k!}$$

and the Kantorovich modification of S_n is defined (see, for instance, [3, Chapter 9]) by

$$\tilde{S}_n f(x) = \tilde{S}_n(f; x) = \sum_{k=0}^{\infty} s_{n,k}(x) \, n \int_{\frac{k}{2}}^{\frac{k+1}{n}} f(u) du, \quad x \ge 0.$$
 (1.2)

This operator is well-defined for every function f(x), which is summable on any finite closed subinterval of $[0, \infty)$.

There are many papers about weighted approximation of functions by S_n in uniform norm—see, for instance, the bibliography of [6]. That is not the case about weighted approximation of functions by Kantorovich modifications of S_n . The best results, to our knowledge, are the next inequalities of weak type in terminology of [2], proved in [3, p.159, Theorem 10.1.3.].

Let $w^*(x) = x^{\gamma(0)}(1+x)^{\gamma(\infty)}$ where $\gamma(\infty)$ is arbitrary and $-1/p < \gamma(0) < 1 - 1/p$ for $1 \le p \le \infty$, for p = 1 and $p = \infty$ $\gamma(0)$ may also be equal to zero.

Theorem 1.1. Suppose $w^* f \in L_p[0,\infty)$ and either $1 \leq p \leq \infty$ and $\alpha < 1$, or $1 and <math>\alpha \leq 1$. Then for \tilde{S}_n^* the next equivalency is true.

$$\left\|w^*\left(\tilde{S}_nf-f\right)\right\|_{L_p[0,\infty)}=O\left(n^{-\alpha}\right)\Leftrightarrow \left\|w^*\Delta^2_{h\sqrt{\varphi}}f\right\|_{L_p[2h^2,\infty)}=O\left(h^{2\alpha}\right).$$

Here $\| \circ \|_{p(J)}$ stands for the usual L_p -norm on the interval $J, \ \varphi(x) = x$ and

$$\Delta^2_{h\sqrt{\varphi(x)}}(f,x) = f\left(x - h\sqrt{\varphi(x)}\right) - 2f(x) + f\left(x + h\sqrt{\varphi(x)}\right).$$

Our goal in this paper is to investigate the approximation of functions in the L_p -norm by the Szász–Mirakjan–Kantorovich operator. We prove Jackson-type inequality for the weighted error of approximation and by defining an appropriate K-functional we prove direct inequality for it.

Before stating our main result, let us introduce the needed notations. The weights under consideration in our survey are

$$w(x) = (1+x)^{\alpha}, \quad \alpha \in \mathbb{R}.$$
 (1.3)

By $\varphi(x) = x$ we denote the weight which is naturally connected with the second moment of the Szász–Mirakjan operator. The first derivative operator is denoted by $D = \frac{d}{dx}$. Thus, Dg(x) = g'(x) and $D^kg(x) = g^{(k)}(x)$ for every natural k. We define the second order differential operator \tilde{D} by the formula

$$\tilde{D}g(x) = D(\varphi Dg)(x) = xg''(x) + g'(x).$$

The space $AC_{loc}(0,\infty)$ consists of the functions which are absolutely continuous in [a,b] for every $[a,b] \subset (0,\infty)$. We also set

$$\begin{split} L_p(w) &= \{f: f, Df \in AC_{loc}(0, \infty), \ w(x)f(x) \in L_p[0, \infty)\}, \\ W_p(w) &= \begin{cases} \{f: f, Df \in AC_{loc}(0, \infty), w(x)\tilde{D}f \in L_p[0, \infty), \lim_{x \to 0_+} \varphi(x)Df(x) = 0\}, \alpha \leq 0 \\ \{f: f, Df \in AC_{loc}(0, \infty), w(x)\tilde{D}f \in L_p[0, \infty), \lim_{x \to 0_+, \infty} \varphi(x)Df(x) = 0\}, \alpha > 0 \end{cases}, \\ L_p(w) + W_p(w) &= \{f: f = f_1 + f_2, \ f_1 \in L_p(w), \ f_2 \in W_p(w)\}. \end{split}$$

Also, we define a K-functional $K_w(f,t)_p$ for t>0, by

$$K_w(f,t)_p = \inf \left\{ \|w(f-g)\|_p + t \|w\tilde{D}g\|_p : f - g \in L_p(w), \ g \in W_p(w) \right\}.$$
(1.4)

The relation " $\theta_1(f,t)$ is equivalent to $\theta_2(f,t)$ ", in notation: $\theta_1(f,t) \sim \theta_2(f,t)$, means that there exists a positive constant C independent of f and t such that

$$C^{-1}\theta_1(f,t) \le \theta_2(f,t) \le C\theta_1(f,t).$$

Above and throughout C denotes a positive constant, not necessarily the same at each occurrence, which is independent of the function f(x) (or g(x)), and the parameter n (or t) in the specified range.

Our main results are the following theorems. The first one is a Jackson-type inequality. It shows that the rate of convergence of \tilde{S}_n is at least n^{-1} if the approximated function is smooth enough.

Theorem 1.2. Let \tilde{S}_n be defined by (1.2), w(x) by (1.3) and $1 \leq p \leq \infty$. Then there exist absolute constant C > 0 such that for all $f \in W_p(w)$ and all $n \in \mathbb{N}$ there hold

$$\left\| w \left(\tilde{S}_n f - f \right) \right\|_p \le \frac{C(\alpha)}{n} \left\| w \tilde{D} f \right\|_p.$$

Theorem 1.3. Let \tilde{S}_n be defined by (1.2), the K-functional be given by (1.4), w(x) by (1.3) and $1 \le p \le \infty$. Then there exist absolute constant C > 0 such that for all $f \in L_p(w) + W_p(w)$ and all $n \in \mathbb{N}$ there hold

$$||w(\tilde{S}_n f - f)||_p \le CK_w \left(f, \frac{1}{n}\right)_p.$$

Remark 1.4. The inequalities in Theorems 1.2 and 1.3 are stronger than the results mentioned above. They are stronger even for w(x) = 1 - see [8, p. 4]

Remark 1.5. Very important question is how to characterize the K-functionals $K_w(f,t)_p$ by appropriate moduli of smoothness. To our knowledge it is completely open even for w(x)=1. In series of papers [4,5,7] the authors introduced new moduli of smoothness and characterized the next weighted K-functionals

$$K_w^*(f,t)_p = \inf \left\{ \|w(f-g)\|_p + t \left\|wD^2g\right\|_p : f-g, D^2g \in L_p(w) \right\},$$

which are different from $K_w(f,t)_p$. But under some additional restrictions on the functions f, for p > 1, they could be used in order to characterize the K-functionals $K_w(f,t)_p$. For p = 1 probably new moduli are needed, even in the unweighted case, i.e. w(x) = 1.

2. Auxiliary Results

In this section we collect some properties of S_n , \tilde{S}_n and $s_{n,k}$, which can be found in [3,11,12], or verified by direct computation. Here we also prove all the lemmas we need to establish the main result.

We begin with the relations:

$$\sum_{k=0}^{\infty} s_{n,k}(x) = 1, \quad x \ge 0, \tag{2.1}$$

$$\sum_{k=0}^{\infty} k \, s_{n,k}(x) = nx, \quad x \ge 0, \tag{2.2}$$

$$\int_{0}^{\infty} s_{n,k}(x) \, dx = \frac{1}{n}.$$
 (2.3)

The first several moments of the operators S_n and \tilde{S}_n are

$$S_n(1,x) = 1, \quad S_n(\circ - x, x) = 0, \quad S_n((\circ - x)^2, x) = \frac{\varphi(x)}{\eta};$$
 (2.4)

$$\tilde{S}_n(1,x) = 1, \quad \tilde{S}_n(\circ - x, x) = \frac{1}{2n}, \quad \tilde{S}_n((\circ - x)^2, x) = \frac{\varphi(x)}{n} + \frac{1}{2n^2}.$$
 (2.5)

Generally, it was shown in [3, (9.4.14)]

$$S_n\left((\circ - x)^{2m}, x\right) \le C(m) \left(\frac{\varphi(x)}{n}\right)^m \quad \text{for} \quad x \ge \frac{1}{n}, \quad m \in \mathbb{N}.$$
 (2.6)

Also, in [3] the next inequalities are proved. In [3, p.161, section 10.2] the next inequality about the boundedness of \tilde{S}_n in weighted norm is proved, i.e. for every function $f \in L_p(w)$ the next inequality is true

$$\left\| w\tilde{S}_n f \right\|_p \le C(\alpha) \left\| w f \right\|_p, \tag{2.7}$$

and in [3, p.163]

$$\sum_{k=0}^{\infty} s_{n,k}(x) \left(1 + \frac{k}{n} \right)^m \le C(1+x)^m \quad \text{where} \quad m \in \mathbb{Z}.$$
 (2.8)

We need to prove some additional lemmas. The first one is a simple generalization of inequality (2.8).

Lemma 2.1. For $\alpha \in \mathbb{R}$ there exists a constant $C(\alpha)$ such that for every natural $n \geq |\alpha|$ and every $x \in [0, \infty)$

$$\sum_{k=0}^{\infty} \left(1 + \frac{k}{n} \right)^{\alpha} s_{n,k}(x) \le C(\alpha)(1+x)^{\alpha}. \tag{2.9}$$

Proof. Let $m \in \mathbb{N}$ be the smallest integer such that $m > |\alpha|$. By Holder's inequality we have

$$\sum_{k=0}^{\infty} s_{n,k}(x) \left(1 + \frac{k}{n} \right)^{\alpha} \le \left\{ \sum_{k=0}^{\infty} s_{n,k}(x) \left(1 + \frac{k}{n} \right)^{sign(\alpha)m} \right\}^{\frac{|\alpha|}{m}} \left\{ \sum_{k=0}^{\infty} s_{n,k}(x) \right\}^{1 - \frac{|\alpha|}{m}}.$$
and the lemma follows from (2.8) and (2.4).

We need the next very important technical result.

Lemma 2.2. For every integer m there exists a constant C(m) such that for every naturals n and k, n > |m| the next inequalities are true

$$1 - \frac{C(m)}{n\left(1 + \frac{k}{n}\right)^2} \le \frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_0^\infty s_{n,k}(x) (1+x)^m dx \le 1.$$
 (2.10)

Proof. We consider two cases.

1. m > 0.

Obviously the inequalities are true for m = 0. And for m > 0 we have

$$\int_0^\infty s_{n,k}(x)(1+x)^{m+1}dx = \int_0^\infty s_{n,k}(x)(1+x)^m dx + \frac{k+1}{n} \int_0^\infty s_{n,k+1}(x)(1+x)^m dx$$

and consequently

$$\frac{n^{m+2}(n+k)!}{(n+k+m+1)!} \int_0^\infty s_{n,k}(x)(1+x)^{m+1} dx$$

$$= \frac{n}{n+k+m+1} \frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_0^\infty s_{n,k}(x)(1+x)^m dx$$

$$+ \frac{k+1}{n+k+1} \frac{n^{m+1}(n+k+1)!}{(n+k+m+1)!} \int_0^\infty s_{n,k+1}(x)(1+x)^m dx.$$

Now, inductively we have

$$\frac{n^{m+2}(n+k)!}{(n+k+m+1)!} \int_0^\infty s_{n,k}(x) (1+x)^{m+1} dx < \frac{n}{n+k+m+1} + \frac{k+1}{n+k+1} < 1$$
and
$$\frac{n^{m+2}(n+k)!}{(n+k+m+1)!} \int_0^\infty s_{n,k}(x) (1+x)^{m+1} dx$$

$$> \frac{n}{n+k+m+1} \left[1 - \frac{C_1(m)}{n\left(1+\frac{k}{n}\right)^2} \right] + \frac{k+1}{n+k+1} \left[1 - \frac{C_2(m)}{n\left(1+\frac{k+1}{n}\right)^2} \right]$$

$$= \frac{n}{n+k+m+1} + \frac{k+1}{n+k+1} - \frac{C_3(m)}{n\left(1+\frac{k}{n}\right)^2}$$

$$= 1 - \frac{m}{n\left(1+\frac{k+1}{n}\right)\left(1+\frac{k+m+1}{n}\right)} - \frac{C_3(m)}{n\left(1+\frac{k}{n}\right)^2} = 1 - \frac{C(m)}{n\left(1+\frac{k}{n}\right)^2}.$$

2. m < 0.

Let us denote

$$I_{k,m} = \int_0^\infty s_{n,k}(x)(1+x)^m dx.$$

We have

$$I_{k,m} = \frac{n}{k} I_{k-1,m+1} - \frac{n}{k} I_{k-1,m}$$
 (2.11)

and after integrating by parts

$$I_{k,m} = I_{k-1,m} + \frac{m}{n} I_{k,m-1}.$$
 (2.12)

Multiplying (2.12) by $\frac{n}{k}$ and summing with (2.11) we obtain

$$I_{k,m} = \frac{n}{n+k} I_{k-1,m+1} + \frac{m}{n+k} I_{k,m-1}$$
 (2.13)

and consequently

$$I_{k,m} \le \frac{n}{n+k} I_{k-1,m+1}.$$
 (2.14)

2a. $k \ge |m|$.

Applying (2.14) m times and using (2.3) we have

$$I_{k,m} \le \frac{n}{n+k} \dots \frac{n}{n+k+m+1} I_{k+m,0} = \frac{(n+k+m)!}{n^{m+1}(n+k)!}$$
 (2.15)

i.e

$$\frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_0^\infty s_{n,k}(x) (1+x)^m dx \le 1.$$

From (2.15) we have

$$I_{k,m-1} \le \frac{(n+k+m-1)!}{n^m(n+k)!}$$

and than from (2.13) it follows

$$I_{k,m} \ge \frac{n}{n+k} I_{k-1,m+1} + \frac{m}{n+k} \frac{(n+k+m-1)!}{n^m(n+k)!}$$

or

$$\frac{n^{m+1}(n+k)!}{(n+k+m)!}I_{k,m} \ge \frac{n^{m+2}(n+k-1)!}{(n+k+m)!}I_{k-1,m+1} + \frac{mn}{(n+k)(n+k+m)} \frac{(n+k+m-1)!}{n^m(n+k)!}$$

i.e.

$$\frac{n^{m+1}(n+k)!}{(n+k+m)!}I_{k,m} \ge \frac{n^{m+2}(n+k-1)!}{(n+k+m)!}I_{k-1,m+1} + \frac{C(m)}{n\left(1+\frac{k}{n}\right)^2}.$$

Applying this inequality m times we obtain (2.10).

2b. k < |m|.

Applying (2.14) k times

$$I_{k,m} \le \frac{n^k n!}{(n+k)!} I_{0,m+k}.$$

But

$$I_{0,m+k} = \int_0^\infty s_{n,0}(x)(1+x)^{m+k}dx < \int_0^\infty s_{n,0}(x)dx = \frac{1}{n}$$

and consequently

$$I_{k,m} \le \frac{n^{k-1}n!}{(n+k)!} \le \frac{(n+k+m)!}{n^{m+1}(n+k)!},$$

i.e.

$$\frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_0^\infty s_{n,k}(x) (1+x)^m dx \le 1.$$

We have

$$\begin{split} n \int_0^\infty s_{n,k}(x) (1+x)^m dx &> n \int_0^\infty \frac{e^{-(n-m)} (nx)^k}{k!} dx \\ &= \left(\frac{n}{n-m}\right)^k n \int_0^\infty s_{n-m,k}(x) dx \\ &= \left(\frac{n}{n-m}\right)^k > 1 + \frac{km}{n-m} > 1 - \frac{C(m)}{n}. \end{split}$$

Then

$$\frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_0^\infty s_{n,k}(x)(1+x)^m dx > \prod_{k=0}^{|m|-1} \left(1 + \frac{k-i}{n}\right) \left(1 - \frac{C(m)}{n}\right) > 1 - \frac{C(m)}{n}.$$

The lemma is proved.

The next lemma is an elementary consequence of this lemma.

Lemma 2.3. For w(x) defined by (1.3) the next inequality is true

$$\int_{0}^{\infty} w(x) s_{n,k}(x) dx \le \frac{C(\alpha)}{n} w\left(\frac{k}{n}\right). \tag{2.16}$$

Proof. By Holder's inequality applied for the smallest integer m such that $m > |\alpha|$ we have

$$\int_0^\infty w(x)s_{n,k}(x)dx \le \left\{ \int_0^\infty s_{n,k}(x)(1+x)^{sign(\alpha)m}dx \right\}^{\frac{|\alpha|}{m}} \left\{ \int_0^\infty s_{n,k}(x)dx \right\}^{1-\frac{|\alpha|}{m}}$$
 and the lemma follows from (2.10) and (2.3).

We need more technical results. Let us denote by ϕ the function $\phi(z) =$ $\ln z$. In [8, p.7, 2.20 and p.11, 2.26] the next two estimations for \tilde{S} are proved

$$\left\| \tilde{S}_n \phi - \phi \right\|_1 \le \frac{C}{n} \tag{2.17}$$

and

$$\left\| x \left(\tilde{S}_n \phi - \phi \right) \right\|_{\infty} \le \frac{C}{n}.$$
 (2.18)

Lemma 2.4. Let $1 \leq p \leq \infty$. Then for all $f \in W_p(w)$ and $n \in \mathbb{N}$ there holds

$$\left\| \varphi w \left(\tilde{S}_n \phi - \phi \right) Df \right\|_p \le \frac{C(\alpha)}{n} \left\| w \tilde{D} f \right\|_p.$$

Proof. We consider the cases $\alpha \leq 0$ and $\alpha > 0$ separately.

1. $\alpha \leq 0$.

We have

$$\begin{aligned} |\varphi(x)w(x)Df(x)| &= |xw(x)Df(x)| \\ &= \left| w(x) \int_0^x \tilde{D}f(t)dt \right| \leq \int_0^x \left| w(t)\tilde{D}f(t) \right| dt, \end{aligned}$$

and consequently

$$|\varphi(x)w(x)Df(x)| \le \left|\int_0^\infty w(t)\tilde{D}f(t)dt\right| = \left\|w\tilde{D}f\right\|_1$$

and

$$|\varphi(x)w(x)Df(x)| \le x \|w\tilde{D}f\|_{\infty}$$
.

Then for p=1

$$\left\| w\varphi \left(\tilde{S}_n \phi - \phi \right) Df \right\|_1 \le \left\| w\tilde{D}f \right\|_1 \left\| \tilde{S}_n \phi - \phi \right\|_1 \le \frac{C}{n} \left\| w\tilde{D}f \right\|_1$$

where for the last inequality we used the estimation (2.17). For $p = \infty$

$$\left\| w\varphi\left(\tilde{S}_n\phi - \phi\right)Df \right\|_{\infty} \le \left\| w\tilde{D}f \right\|_{1} \left\| \varphi\left(\tilde{S}_n\phi - \phi\right) \right\|_{\infty} \le \frac{C}{n} \left\| w\tilde{D}f \right\|_{\infty}$$

where for the last inequality we used the estimation (2.18).

2. $\alpha > 0$.

For L_1 we use the representation

$$|\varphi(x)w(x)Df(x)| = \left|w(x)\int_{x}^{\infty} \tilde{D}f(t)dt\right| \le \int_{y}^{\infty} \left|w(t)\tilde{D}f(t)\right| dt.$$

Then as above

$$\left\| w\varphi\left(\tilde{S}_n\phi - \phi\right)Df \right\|_1 \le \left\| w\tilde{D}f \right\|_1 \left\| \tilde{S}_n\phi - \phi \right\|_1 \le \frac{C}{n} \left\| w\tilde{D}f \right\|_1.$$

For L_{∞} we consider two cases. 2a. $x \leq 1$.

In this case $(1+x)^{\alpha} \leq 2^{\alpha}(1+t)^{\alpha}$ for $0 \leq t \leq 1$. Consequently,

$$\left| \varphi(x)w(x) \left(\tilde{S}_n(\phi; x) - \phi(x) \right) Df(x) \right| = \left| w(x) \int_0^x \tilde{D}f(t)dt \left[\tilde{S}_n(\phi; x) - \phi(x) \right] \right|$$

$$\leq 2^{\alpha} \int_0^x \left| w(t)\tilde{D}f(t) \right| dt \left| \tilde{S}_n(\phi; x) - \phi(x) \right|$$

$$\leq C(\alpha) \left\| w\tilde{D}f \right\|_{\infty} \left| x \left(\tilde{S}_n(\phi; x) - \phi(x) \right) \right|$$

$$\leq C(\alpha) \left\| w\tilde{D}f \right\|_{\infty} \left\| \varphi \left(\tilde{S}_n\phi - \phi \right) \right\|_{\infty}$$

$$\leq \frac{C(\alpha)}{n}$$

where we used again the estimation (2.18). 2b. x > 1.

In this case $(1+x)^{\alpha} \sim x^{\alpha}$. And for $0 < \alpha < 1$ by using the Hardy's inequality and the estimation (2.18) we obtain

$$\begin{aligned} & \left| w(x)\varphi(x) \left(\tilde{S}_n(\phi; x) - \phi(x) \right) Df(x) \right| \\ & \leq \left| \frac{w(x)}{x} \int_0^x \tilde{D}f(t)dt \right| \left| x \left(\tilde{S}_n(\phi; x) - \phi(x) \right) \right| \\ & \leq C \left(\frac{1}{x^{1-\alpha}} \int_0^x \left| t \tilde{D}f(t) \right| \frac{dt}{t} \right) \left\| \varphi \left(\tilde{S}_n \phi - \phi \right) \right\|_{\infty} \\ & \leq \frac{C(\alpha)}{n} \left\| w \tilde{D}f \right\|_{\infty}. \end{aligned}$$

For $\alpha \geq 1$ again, using the Hardy's inequality and the estimation (2.18), we obtain

$$\begin{aligned} & \left| w(x)\varphi(x) \left(\tilde{S}_n(\phi, x) - \phi(x) \right) Df(x) \right| \\ & \leq \left| \frac{w(x)}{x} \int_x^{\infty} \tilde{D}f(t)dt \right| \left| x \left(\tilde{S}_n(\phi; x) - \phi(x) \right) \right| \\ & \leq C \left(x^{\alpha - 1} \int_x^{\infty} \left| t \tilde{D}f(t) \right| \frac{dt}{t} \right) \left\| \varphi \left(\tilde{S}_n \phi - \phi \right) \right\|_{\infty} \\ & \leq \frac{C(\alpha)}{n} \left\| w \tilde{D}f \right\|_{\infty}. \end{aligned}$$

Lemma 2.5. For every $x \in [0, \infty)$ and $n \in \mathbb{N}$ there holds

$$\left| w(x)\tilde{S}_n\left(\frac{(\cdot)-x}{w(\cdot)};x\right) \right| \le \frac{C}{n}.$$

Proof. We have by using the Lagrange's formula

$$\left| w(x)\tilde{S}_n \left(\frac{(\cdot) - x}{w(\cdot)}; x \right) \right| = \left| w(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} \frac{t - x}{w(t)} dt \right|$$

$$\leq \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} (t - x) dt \right|$$

$$+ w(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t - x| \left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} dt$$

where

$$\xi \in \left\lceil \frac{k}{n}, \frac{k+1}{n} \right\rceil$$
.

Now

$$\left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} (t-x) dt \right|$$

$$\leq \frac{1}{2n} \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} + \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\frac{k}{n} - x\right) \right|.$$

From (2.9)

$$\frac{1}{2n} \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \le \frac{C}{n}.$$
(2.19)

Since

$$s_{n,k}(x)\frac{k}{n} = xs_{n,k-1}(x)$$

it follows again from (2.9) that

$$\left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\frac{k}{n} - x\right) \right| \le xw(x) \sum_{k=0}^{\infty} s_{n,k}(x) \left| w^{-1} \left(\frac{k+1}{n}\right) - w^{-1} \left(\frac{k}{n}\right) \right|$$

$$\le \frac{Cxw(x)}{n} \sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{\alpha+1}} \le \frac{Cx}{n(1+x)} \le \frac{C}{n}.$$

$$(2.20)$$

The second inequality above follows from the easily proved inequality

$$\left| \left(1 + \frac{k+1}{n} \right)^{\beta} - \left(1 + \frac{k}{n} \right)^{\beta} \right| \le \frac{C}{n} \left(1 + \frac{k}{n} \right)^{\beta - 1} \quad \text{where} \quad \beta \in \mathbb{R}.$$

From (2.19) and (2.20) we obtain

$$\left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} (t-x) dt \right| \le \frac{C}{2n}. \tag{2.21}$$

Now, for $t \in \left[\frac{k}{n}, \frac{k+1}{n}\right]$

$$\left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} \le \frac{C}{n \left(1 + \frac{k}{n} \right) w\left(\frac{k}{n} \right)}$$

and

$$|t-x| \le \left| \frac{k}{n} - x \right| + \left| \frac{k+1}{n} - x \right|.$$

So

$$\begin{split} & \left| w(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t-x| \left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} dt \right| dt \\ & \leq \frac{Cw(x)}{n} \sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{\alpha+1}} \left| \frac{k}{n} - x \right| + \frac{Cw(x)}{n} \sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{\alpha+1}} \left| \frac{k+1}{n} - x \right|. \end{split}$$

We will estimate the first term. The estimation of the second is similar.

By applying Cauchy's inequality we get

$$\sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{\alpha+1}} \left| \frac{k}{n} - x \right| \le \left[\sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{2(\alpha+1)}} \right]^{1/2} \left[\sum_{k=0}^{\infty} s_{n,k}(x) \left(\frac{k}{n} - x \right)^2 \right]^{1/2}.$$

From (2.9)

$$\sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{2(\alpha+1)}} \le \frac{C}{(1+x)^{2(\alpha+1)}},$$

from (2.4)

$$\sum_{k=0}^{\infty} s_{n,k}(x) \left(\frac{k}{n} - x\right)^2 = \frac{x}{n},$$

and consequently

$$\frac{Cw(x)}{n} \sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{\left(1 + \frac{k}{n}\right)^{\alpha+1}} \left| \frac{k}{n} - x \right| \le \frac{C\sqrt{x}}{(1+x)n^{3/2}} \le \frac{C}{n}.$$

Lemma 2.6. For every $x \in [0, \infty)$ and $n \in \mathbb{N}$ there holds

$$\left| xw(x)\tilde{S}_n\left(\frac{\ln x - \ln(\cdot)}{w(\cdot)}; x\right) \right| \le \frac{C}{n}.$$

Proof. Again, by using the Lagrange's formula we have

$$\left| xw(x)\tilde{S}_n \left(\frac{(\cdot) - x}{w(\cdot)}; x \right) \right|$$

$$\leq x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} (\ln x - \ln t) dt \right|$$

$$+ xw(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} |\ln x - \ln t| \left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} dt.$$

For the last term in the RHS using

$$x|\ln x - \ln t| \le |t - x|$$

we have

$$xw(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} |\ln x - \ln t| \left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} dt$$

$$\leq w(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t - x| \left| t - \frac{k}{n} \right| \frac{|w'(\xi)|}{w^2(\xi)} dt$$

and we already estimated it in the previous lemma.

For the first term we have

$$x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} (\ln x - \ln t) dt \right|$$

$$\leq x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\ln \frac{k+1}{n} - \ln x \right) \right| + Cx \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \frac{1}{k}.$$

The last inequality follows from

$$n\int_{\frac{k}{n}}^{\frac{k+1}{n}} \left(\ln x - \ln t\right) dt = \ln x - \ln \frac{k+1}{n} + O\left(\frac{1}{k}\right).$$

Since

$$x\sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \frac{1}{k} \le \frac{C}{n}$$

it follows that

$$xw(x)\left|\tilde{S}_n\left(\frac{\ln x - \ln(\cdot)}{w(\cdot)} : x\right)\right| \le x\left|\sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\ln \frac{k+1}{n} - \ln x\right)\right| + \frac{C}{n}.$$

Now we consider two cases.

$$1. \ x \le \frac{1}{n}.$$

In this case:

$$\left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\ln \frac{k+1}{n} - \ln x \right) \right| \leq x \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\ln(k+1) - \ln(nx) \right)$$

$$\leq x \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \ln(k+1) + x |\ln(nx)| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)}$$

$$\leq x \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} (k+1) + Cx |\ln(nx)| \leq C \left(nx^2 + x + \frac{1}{n} \right) \leq \frac{C}{n}$$

because of (2.9), (2.2) and the simple inequalities

$$nx^2 \le \frac{1}{n}$$
 and $x|\ln(nx)| \le \frac{1}{n}$.

2. $x > \frac{1}{n}$.

By Taylor's formula

$$\ln \frac{k+1}{n} = \ln x + \frac{1}{x} \left(\frac{k+1}{n} - x \right) - \int_{x}^{\frac{k+1}{n}} \left(\frac{k+1}{n} - t \right) \frac{dt}{t^2}$$

and consequently

$$x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\ln \frac{k+1}{n} - \ln x \right) \right|$$

$$\leq \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\frac{k+1}{n} - x \right) \right|$$

$$+ x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \int_{x}^{\frac{k+1}{n}} \left(\frac{k+1}{n} - t \right) \frac{dt}{t^{2}} \right|. \tag{2.22}$$

The estimation of the first term in RHS of (2.22) is analogous to the estimation of

$$\left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w\left(\frac{k}{n}\right)} \left(\frac{k}{n} - x\right) \right|$$

in the previous lemma.

For the second term in RHS of (2.22) since

$$\int_{x}^{\frac{k+1}{n}} \left(\frac{k+1}{n} - t \right) \frac{dt}{t^{2}} \le \left| \frac{k+1}{n} - x \right| \int_{x}^{\frac{k+1}{n}} \frac{dt}{t^{2}} = \frac{n}{(k+1)x} \left(\frac{k+1}{n} - x \right)^{2}$$

we have by applying the Cauchy's inequality, (2.9) and (2.6)

$$x \left| \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w(\frac{k}{n})} \int_{x}^{\frac{k+1}{n}} \left(\frac{k+1}{n} - t \right) \frac{dt}{t^{2}} \right|$$

$$\leq \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w(\frac{k}{n})} \frac{n}{k+1} \left(\frac{k+1}{n} - x \right)^{2}$$

$$= \frac{w(x)}{x} \sum_{k=0}^{\infty} \frac{s_{n,k+1}(x)}{w(\frac{k}{n})} \left(\frac{k+1}{n} - x \right)^{2}$$

$$\leq \frac{w(x)}{x} \left[\sum_{k=0}^{\infty} \frac{s_{n,k+1}(x)}{w(\frac{k}{n})} \right]^{1/2} \left[\sum_{k=0}^{\infty} s_{n,k+1}(x) \left(\frac{k+1}{n} - x \right)^{4} \right]^{1/2}$$

$$\leq \frac{w(x)}{x} \left[\sum_{k=0}^{\infty} \frac{s_{n,k}(x)}{w(\frac{k}{n})} \right]^{1/2} \left[\sum_{k=0}^{\infty} s_{n,k+1}(x) \left(\frac{k+1}{n} - x \right)^{4} \right]^{1/2}$$

$$\leq \frac{w(x)}{x} \left[\frac{C}{w(x)} \right]^{1/2} \left[C \left(\frac{x}{n} \right)^{2} \right]^{1/2} = \frac{C}{n}.$$

Lemma 2.7. Let $1 \leq p \leq \infty$. Then for all $f \in W_p(w)$ and $n \in \mathbb{N}$ there holds

$$\left\| w(x)\tilde{S}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D}f(u) du \right) \right\|_p \le \frac{C(\alpha)}{n} \left\| w \tilde{D}f \right\|_p.$$

Proof. We have

$$\begin{aligned} & \left| w(x)\tilde{S}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D}f(u) du \right) \right| \\ &= w(x) \sum_{k=0}^{\infty} s_{n,k}(x) n \int_{\frac{k}{n}}^{\frac{k+1}{n}} \left(\int_x^t \left[\ln t - \ln u \right] \frac{w(u)\tilde{D}f(u)}{w(u)} du \right) dt \\ &\leq C \sum_{k=0}^{\infty} s_{n,k}(x) \frac{w(x)}{w(k/n)} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} \left(\int_x^t \left[\ln t - \ln u \right] \left| w(u)\tilde{D}f(u) \right| du \right) dt \\ &= C \sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^{\alpha} b_{k,1} \end{aligned}$$

where

$$b_{k,1} = n \int_{\frac{k}{-}}^{\frac{k+1}{n}} \left(\int_{x}^{t} \left[\ln t - \ln u \right] \left| w(u) \tilde{D} f(u) \right| du \right) dt.$$

Let μ be the smallest integer such that $\mu > |\alpha|$. By Holder's inequality we have

$$\begin{split} &\sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^{\alpha} b_{k,1} \\ &\leq \left\{ \sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^{sign(\alpha)\mu} b_{k,1} \right\}^{\frac{|\alpha|}{\mu}} \left\{ \sum_{k=0}^{\infty} s_{n,k}(x) b_{k,1} \right\}^{1-\frac{|\alpha|}{\mu}}. \end{split}$$

We define a new operator $\tilde{S}_{n,\alpha}$ by the formula

$$\tilde{S}_{n,\alpha}f(x) = \int_0^\infty K_n(x,t)f(t)dt = \sum_{k=0}^\infty s_{n,k}(x)(1+x)^m \frac{n^{m+1}(n+k)!}{(n+k+m)!} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt$$

where $m = sign(\alpha)\mu$.

For the estimation of the L_1 -norm by applying the Holder's inequality again we have

$$\left\| \sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^{\alpha} b_{k,1} \right\|_{1} \\ \leq \left\| \sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^{m} b_{k,1} \right\|_{1}^{\frac{|\alpha|}{\mu}} \left\| \sum_{k=0}^{\infty} s_{n,k}(x) b_{k,1} \right\|_{1}^{1-\frac{|\alpha|}{\mu}}$$

For the second term in RHS we can use the estimation (2.17) - simply replacing $\tilde{D}f$ by $w\tilde{D}f$. For the first term since

$$\left(\frac{n}{n+k}\right)^m \le C \frac{n^m(n+k)!}{(n+k+m)!}$$

we have

$$\left\| \sum_{k=0}^{\infty} s_{n,k}(x) \left[\frac{n(1+x)}{n+k} \right]^m b_{k,1} \right\|_1$$

$$\leq C \left\| \tilde{S}_{n,\alpha} \left(\int_x^{(\cdot)} \left[\ln(\cdot) - \ln u \right] \left| w(u) \tilde{D} f(u) \right| du \right) \right\|_1$$

$$= C \left(\int_0^x + \int_x^{\infty} \right) = C \left(I_1(x) + I_2(x) \right).$$

Changing the order of integration twice in both of the integrals we obtain

$$\int_0^\infty I_1(x)dx = \int_0^\infty \left| w(u)\tilde{D}f(u) \right| \left(\int_u^\infty \tilde{S}_{n,\alpha} \left([\ln u - \ln(\cdot)]_+; x \right) dx \right) du$$

and

$$\int_0^\infty I_2(x)dx = \int_0^\infty \left| w(u)\tilde{D}f(u) \right| \left(\int_0^u \tilde{S}_{n,\alpha} \left([\ln(\cdot) - \ln u]_+; x \right) dx \right) du$$

where

$$[f(z)]_{+} = \frac{1}{2} (|f(z)| + f(z)).$$

Consequently,

$$\int_{0}^{\infty} I_{1}(x)dx + \int_{0}^{\infty} I_{2}(x)dx = \int_{0}^{\infty} \left| w(u)\tilde{D}f(u) \right| I(u)du$$

where

$$I(u) = \int_u^\infty \tilde{S}_{n,\alpha} \left([\ln u - \ln(\cdot)]_+; x \right) dx + \int_0^u \tilde{S}_{n,\alpha} \left([\ln(\cdot) - \ln u]_+; x \right) dx.$$

We have by equation (2.10) of Lemma 2.2 for every function $h(x) \in \mathbb{L}_1[0,\infty)$

$$\left\| \tilde{S}_{n,\alpha} h \right\|_{1} = \sum_{k=0}^{\infty} \frac{n^{m} (n+k)!}{(n+k+m)!} \int_{0}^{\infty} s_{n,k}(x) (1+x)^{m} dx \int_{\frac{k}{n}}^{\frac{k+1}{n}} h(t) dt \le \|h\|_{1}$$

and

$$\begin{split} \left\| \tilde{S}_{n,\alpha} h \right\|_1 &\geq \sum_{k=0}^{\infty} \left(1 - \frac{C}{n \left(1 + \frac{k}{n} \right)^2} \right) \int_{\frac{k}{n}}^{\frac{k+1}{n}} h(t) dt \\ &= \|h\|_1 - \frac{C}{n} \sum_{k=0}^{\infty} \frac{1}{\left(1 + \frac{k}{n} \right)^2} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |h(t)| dt. \end{split}$$

Also,

$$\sum_{k=0}^{\infty} \frac{1}{\left(1 + \frac{k}{n}\right)^2} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |h(t)| dt \le \sum_{k=0}^{\infty} \frac{1}{\left(1 + \frac{k}{n}\right)^2} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |\ln t| dt$$

$$\le \frac{1}{n} \sum_{k=0}^{\infty} \frac{\left|\ln \frac{k+1}{n}\right|}{\left(1 + \frac{k}{n}\right)^2} \le \frac{C}{n}$$

i.e.

$$\int_0^\infty \tilde{S}_{n,\alpha}\left([\ln u - \ln(\cdot)]_+; x\right) dx = \int_0^u \left(\ln u - \ln x\right) dx + O\left(\frac{1}{n}\right).$$

Since

$$\int_{0}^{\infty} \tilde{S}_{n,\alpha} dx = \int_{0}^{u} \tilde{S}_{n,\alpha} dx + \int_{u}^{\infty} \tilde{S}_{n,\alpha} dx$$

it follows that

$$\int_{u}^{\infty} \tilde{S}_{n,\alpha} \left([\ln u - \ln(\cdot)]_{+}; x \right) dx$$

$$= \int_{0}^{u} \left(\ln u - \ln x \right) dx - \int_{0}^{u} \tilde{S}_{n,\alpha} \left([\ln u - \ln(\cdot)]_{+}; x \right) dx + O\left(\frac{1}{n}\right).$$

Consequently,

$$I(u) = \int_0^u (\ln u - \ln x) \, dx + \int_0^u \tilde{S}_{n,\alpha} \left([\ln(\cdot) - \ln u]_+ - [\ln u - \ln(\cdot)]_+; x \right) \, dx$$

$$+ O\left(\frac{1}{n}\right)$$

$$= \int_0^u (\ln u - \ln x) \, dx + \int_0^u \tilde{S}_{n,\alpha} \left(\ln(\cdot) - \ln u; x \right) \, dx + O\left(\frac{1}{n}\right)$$

$$= \int_0^u \left(\tilde{S}_{n,\alpha} \left(\ln(\cdot); x \right) - \ln x \right) \, dx + + O\left(\frac{1}{n}\right)$$

$$\leq \int_0^\infty \left(\tilde{S}_{n,\alpha} \left(\ln(\cdot); x \right) - \ln x \right) \, dx + + O\left(\frac{1}{n}\right)$$

$$= \left\| \tilde{S}_{n,\alpha} \ln(\cdot) - \ln(\cdot) \right\|_1 + O\left(\frac{1}{n}\right)$$

$$\leq \left\| \tilde{S}_{n,\alpha} \ln(\cdot) - \tilde{S}_n \ln(\cdot) \right\|_1 + \left\| \tilde{S}_n \ln(\cdot) - \ln(\cdot) \right\|_1 + O\left(\frac{1}{n}\right)$$

and by using the estimate (2.17) and Lemma 2.2 we complete the proof of lemma for p=1.

Now we estimate the L_{∞} -norm. We have

$$\left| w(x)\tilde{S}_n \left(\int_x^{(\cdot)} (\ln(\cdot) - \ln x) \tilde{D}f(u) du; x \right) \right|$$

$$\leq \left\| w \tilde{D}f \right\|_{\infty} \left\| w(x)\tilde{S}_n \left(\int_x^{(\cdot)} \frac{\ln(\cdot) - \ln u}{w(u)} du; x \right) \right\|_{\infty}.$$

From the obvious $w^{-1}(u) \leq w^{-1}(\cdot) + w^{-1}(x)$ for u between (\cdot) and x it follows that

$$\left\| w(x)\tilde{S}_{n} \left(\int_{x}^{(\cdot)} \frac{\ln(\cdot) - \ln u}{w(u)} du; x \right) \right\|_{\infty}$$

$$\leq \left| \tilde{S}_{n} \left(\int_{x}^{(\cdot)} (\ln(\cdot) - \ln u) du; x \right) \right| + \left\| w(x)\tilde{S}_{n} \left(\int_{x}^{(\cdot)} \frac{\ln(\cdot) - \ln u}{w(\cdot)} du; x \right) \right\|_{\infty} .$$

$$(2.23)$$

For the first term in the RHS of (2.23) we have

$$\tilde{S}_n\left(\int_x^{(\cdot)} (\ln(\cdot) - \ln u) du; x\right) = \frac{1}{2n} - x\left(\tilde{S}_n(\ln(\cdot); x) - \ln x\right)$$

and by using the estimation (2.18) we obtain the needed estimate.

For the second term in the RHS of (2.23) we have

$$w(x)\tilde{S}_n\left(\int_x^{(\cdot)} \frac{\ln(\cdot) - \ln u}{w(\cdot)} du; x\right)$$

$$= w(x) \left[x\tilde{S}_n\left(\frac{\ln x - \ln(\cdot)}{w(\cdot)}; x\right) + \tilde{S}_n\left(\frac{(\cdot) - x}{w(\cdot)}; x\right) \right]$$

$$= xw(x)\tilde{S}_n\left(\frac{\ln x - \ln(\cdot)}{w(\cdot)}; x\right) + w(x)\tilde{S}_n\left(\frac{(\cdot) - x}{w(\cdot)}; x\right).$$

By using Lemma 2.5 and Lemma 2.6 we complete the proof of lemma for $p = \infty$.

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. We follow the argument in [1, pp. 41–42]. We have for x, t > 0

$$f(t) = f(x) + \varphi(x) \left(\phi(t) - \phi(x)\right) Df(x) + \int_{x}^{t} \left(\phi(t) - \phi(u)\right) \tilde{D}f(u) du.$$

П

Applying \tilde{S}_n to both sides with regard to t and using (2.5), we obtain

$$\tilde{S}_n(f;x) - f(x)$$

$$= \varphi(x) \left[\tilde{S}_n(\phi(\cdot);x) - \phi(x) \right] Df(x) + \tilde{S}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D}f(u) du \right)$$

and

$$w(x) \left[\tilde{S}_n(f, x) - f(x) \right] = w(x)\varphi(x) \left[\tilde{S}_n(\phi(\cdot); x) - \phi(x) \right] Df(x)$$
$$+ w(x) \tilde{S}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D}f(u) du \right).$$

Consequently

$$\left\| w \left(\tilde{S}_n f - f \right) \right\|_p$$

$$\leq \left\| w \varphi \left(\tilde{S}_n \phi - \phi \right) D f \right\|_p + \left\| w(x) \tilde{S}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D} f(u) du \right) \right\|_p.$$

By using Lemmas 2.4 and 2.7 we complete the proof.

Proof of Theorem 1.3. To recall, we denote by C positive constants, not necessarily the same at each occurrence, which are independent of f, g, n, and l. We prove the theorem by means of a standard argument.

Let $1 \leq p \leq \infty$. For any $g \in \tilde{W}_p(w)$ such that $f - g \in L_p(w)$ we have in virtue of (2.7) and Theorem 1.2

$$\left\| w(f - \tilde{S}_n f) \right\|_p \le \left\| w(f - g) \right\|_p + \left\| w \tilde{S}_n (f - g) \right\|_p + \frac{C}{n} \left\| w \tilde{D} g \right\|_p$$

$$\le C \left(\left\| w(f - g) \right\|_p + \frac{1}{n} \left\| w \tilde{D} g \right\|_p \right).$$

Taking the infimum on q we arrive at the left-hand side inequality in the theorem.

References

- [1] Berens, H., Xu, Y.: On Bernstein-Durrmeyer Polynomials with Jacobi-Weights, Approximation Theory and Functional Analysis. Academic Press, New York (1990)
- [2] Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–111
- [3] Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, Berlin (1987)
- [4] Draganov, B.R., Ivanov, K.G.: A new characterization of weighted Peetre Kfunctionals. Constr. Approx. 21, 113–148 (2005)

- [5] Draganov, B.R., Ivanov, K.G.: A new characterization of weighted Peetre Kfunctionals (II). Serdica Math. J. 33, 59–124 (2007)
- [6] Draganov, B.R., Ivanov, K.G.: Natural weights for uniform approximation by the Szász-Mirakjan operator. Constr. Theory Funct. Sozopol 2013, 1–27 (2014)
- [7] Draganov, B.R., Ivanov, K.G.: A new characterization of weighted Peetre Kfunctionals (III). Constr. Theory Funct. Sozopol 2016, 75–97 (2018)
- [8] Draganov, B.R., Gadjev, I.: Approximation of functions by the Szasz-Mirakjan-Kantorovich operator. Numer. Funct. Anal. Optim. 40, 7 (2019)
- [9] Mirakjan, G.M.: Approximation of continuous functions with the aid of polynomials... Dokl. Akad. Nauk SSSR 31, 201–205 (1941)
- [10] Szász, O.: Generalization of S. Bernstein's polynomials to the infinite interval. Y. Res. Nat. Bur. Standards Sect. B 45, 239–245 (1950)
- [11] Totik, V.: Approximation by Szász-Mirakjan-Kantorovich Operators in $L^p(p>1)$. Anal. Math. 9, 147–167 (1983)
- [12] Totik, V.: Uniform aproximation by Szász-Mirakjan-type operators. Acta Math. Hung. 41(3–4), 291–307 (1983)

Ivan Gadjev and Parvan E. Parvanov
Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia
Bulgaria

e-mail: gadjev@fmi.uni-sofia.bg; pparvan@fmi.uni-sofia.bg

Received: January 15, 2021. Accepted: July 7, 2021.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.