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Abstract. We investigate the weighted approximation of functions in L,-
norm by Kantorovich modifications of the classical Szdsz—Mirakjan oper-
ator, with weights of type (1 + z)%, o € R. By defining an appropriate
K-functional we prove direct inequality for them.

Mathematics Subject Classification. 41A36, 41A25, 41A27, 41A17.

Keywords. Szasz—Mirakjan operator, K-functional, weighted approxima-
tion, Szész—Mirakjan—Kantorovich operator.

1. Introduction

The classical Szdsz—Mirakjan operator (see [9,10]) is defined for bounded func-
tions f(x) in [0, 00) by the formula

Suf(z) = Su(fso) =D f <:) sni(z), x>0, (1.1)
k=0
where
nx k
s p(z) = o—na k!)

and the Kantorovich modification of S, is defined (see, for instance, [3, Chapter
9]) by

S, f(x)=8,(f;x) = ank(x)n/T f(u)du, x>0. (1.2)
k=0

k
n

This operator is well-defined for every function f(z), which is summable on
any finite closed subinterval of [0, co).
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There are many papers about weighted approximation of functions by
Sp in uniform norm—see, for instance, the bibliography of [6]. That is not the
case about weighted approximation of functions by Kantorovich modifications
of S,,. The best results, to our knowledge, are the next inequalities of weak
type in terminology of [2], proved in [3, p.159, Theorem 10.1.3.].

Let w* (z) = 27 (14+2)7(>) where y(c0) is arbitrary and —1/p < v(0) <
1—1/pfor 1 <p<oo,for p=1andp=ocov(0) may also be equal to zero.

Theorem 1.1. Suppose w*f € L,[0,00) and either 1 < p < oo and o < 1, or
1 <p<ooanda<1. Then for S} the next equivalency is true.

o (50 = )]0y = 007 8] sy = O0)

Here || o ||,y stands for the usual L,-norm on the interval J, o(z) ==
and

L,[0,00)

N2 lfa) =1 (o= V/e(@)) = 2£() + f (2 + 0 /e@)).

Our goal in this paper is to investigate the approximation of functions in
the L,-norm by the Szész—Mirakjan—-Kantorovich operator. We prove Jackson-
type inequality for the weighted error of approximation and by defining an
appropriate K-functional we prove direct inequality for it.

Before stating our main result, let us introduce the needed notations. The
weights under consideration in our survey are

wx)=14+2)% «aecR. (1.3)
By ¢(xz) = x we denote the weight which is naturally connected with the

second moment of the Szdsz—Mirakjan operator. The first derivative operator

is denoted by D = %. Thus, Dg(z) = ¢'(x) and DFg(z) = ¢g'¥) (x) for every

natural k. We define the second order differential operator D by the formula
Dg(x) = D(¢Dg)(z) = z¢"(z) + ¢'(x).

The space ACj,.(0, 00) consists of the functions which are absolutely continu-
ous in [a,b] for every [a,b] C (0,00). We also set

Lp(w) = {f: f,Df € ACi5c(0,00), w(z)f(x) € Lp[0,00)},
{f : fv Df S AClOC(O7OO)7w($)Df € Lp[O, OO), mli%l @(Q)Df(w) = U},Oé <0
Wy (w) = {f:f,Df € AC10c(0,00),w(z)Df € LP[O,m),wJ%mww(w)Df(w) =0},aa>0"

Ly(w) + Wp(w) = {f: f=fi+ fa, f1 € Lp(w), f2 € Wp(w)}.

Also, we define a K-functional K,,(f,t), for t > 0, by

K10 = nt { (£ = )l + 1| wDa]] - 9 € Lytw). g € W)}

(1.4)
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The relation “O1(f,t) is equivalent to O2(f,t)”, in notation: 61 (f,t) ~
02(f,t), means that there exists a positive constant C' independent of f and ¢
such that

C01(f,t) < 0a(f.1) < COL(f,1).

Above and throughout C denotes a positive constant, not necessarily the same
at each occurrence, which is independent of the function f(x) (or g(z)), and
the parameter n (or t) in the specified range.

Our main results are the following theorems. The first one is a Jackson-
type inequality. It shows that the rate of convergence of S, is at least n= 1 if
the approximated function is smooth enough.

Theorem 1.2. Let S,, be defined by (1.2), w(z) by (1.3) and 1 < p < co. Then
there exist absolute constant C' > 0 such that for all f € W,(w) and alln € N
there hold

_ O

p n

e (51

oo

.
Theorem 1.3. Let S, be defined by (1.2), the K-functional be given by (1.4),

w(z) by (1.3) and 1 < p < co. Then there exist absolute constant C > 0 such
that for all f € Ly(w) + Wy(w) and all n € N there hold

(ot = Dl < CK (£:7)

Remark 1.4. The inequalities in Theorems 1.2 and 1.3 are stronger than the
results mentioned above. They are stronger even for w(z) =1 - see [8, p. 4]

Remark 1.5. Very important question is how to characterize the K-functionals
K, (f, t)p by appropriate moduli of smoothness. To our knowledge it is com-
pletely open even for w(xz) = 1. In series of papers [4,5,7] the authors in-
troduced new moduli of smoothness and characterized the next weighted K-
functionals

K5(f,6)p = inf {[lw(f = g)llp + ¢ [wD?g]|, : £ — g, D% € Ly(w)}

which are different from K, (f,t),. But under some additional restrictions on
the functions f, for p > 1, they could be used in order to characterize the
K-functionals K, (f,t),. For p = 1 probably new moduli are needed, even in
the unweighted case, i.e. w(z) = 1.

2. Auxiliary Results

In this section we collect some properties of S, S, and Sn,k, Which can be
found in [3,11,12], or verified by direct computation. Here we also prove all
the lemmas we need to establish the main result.
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We begin with the relations:

o0
an,k(x) =1, x>0, (2.1)
k=0
Z kspi(x)=nz, x>0, (2.2)
k=0

/°° Spk(x)de = l (2.3)
0 n

The first several moments of the operators S,, and S’n are

Sp(lL,z) =1, Sp(o—z,2)=0, S,((c—2)?z)= @; (2.4)
G _1 & _ Ll g o y_plx) 1
Sn(lvx) - la Sn(o - Z‘,JJ) - %7 Sn((o —.Z‘) ,.13) - T + m (25)

Generally, it was shown in [3, (9.4.14)]

m
1
Sp ((0 = 2)*™, x) < C(m) ((p(a:)) for z>—-, meN.  (2.6)
n n
Also, in [3] the next inequalities are proved. In [3, p.161, section 10.2] the
next inequality about the boundedness of S, in weighted norm is proved, i.e.
for every function f € L,(w) the next inequality is true

[wsas| < c@lwr,. (2.7)

and in [3, p.163]
Z S k() <1 + 7]2) <C(1+2z)™ where m € Z. (2.8)

k=0

We need to prove some additional lemmas. The first one is a simple
generalization of inequality (2.8).

Lemma 2.1. For a € R there exists a constant C(«) such that for every natural
n > |a| and every x € [0, 00)

(oo} k [e3
Z <1 + ) snk(x) < Cla)(1+ ). (2.9)
k=0 "
Proof. Let m € N be the smallest integer such that m > |a|. By Holder’s
inequality we have
la]

g;)sn,k(x) (1 + S)a < {;smk(x) (1 n i:)sign(a)m}'ii {gsmk(@}lm |

and the lemma follows from (2.8) and (2.4). O
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We need the next very important technical result.

Lemma 2.2. For every integer m there exists a constant C(m) such that for
every naturals n and k, n > |m| the next inequalities are true

. C(m) - n™H(n + k)
n(1+%)2 ~ (n+k+m)
Proof. We consider two cases.
1. m>0.

!! /000 Spok(x)(1 4 2)"de < 1. (2.10)

Obviously the inequalities are true for m = 0. And for m > 0 we have

Oos T )" e = Oosn T z)"dx
| sea@ray i = [ o @+ ama

E+1 [
+ — Sn k41 (2) (1 + z)"dx
nJo
and consequently
n™*2(n + k)! e m
(n+k+m+1)! /0 ()1 + o)™ do

n ™t (n+ k) [
— " 1 'Hld
n+kz+m+1(n+k+m)!/o sne(@)(1+ )" da
E+1 nm™M(n+k+1)
n+k+1(n+k+m+1)

Now, inductively we have

' o0
; / Sp k1 (2) (14 z)"da.
"Jo

n"t2(n + k)! o0 n k+1
(n+k4(rﬂj+)1)!/0 S"”“(x)(1+x)m+ld$<n+k+m+1+n+jl:+1<1
and
m+2 )
(nn—f— k —(Fnrr—l_ f)i)! /0 sni(@)(L+2)™ " de
y n _ CGi(m) k1 [, Ca(m) ]
n+k+m+1 n(1+%)2 n+k+1 n(1+%)2
_ n n k+1  Cs(m)
n+k+m+1 n+k+1 n(1+§)2
1 m __Gm) O
n(L+55) L+ 555 1+ k)’ n(1+E)?

2. m<QO.

Let us denote

Iy = / Spk(x) (14 x)"dx.
0
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We have
n n
Ik' m = *[k—l m+1 — *Ik—l m
) k El + k ’

2a.

and after integrating by parts
m
Ik,m = kal,m + ;Ik,mfb

Multiplying (2.12) by * and summing with (2.11) we obtain

3
n m
Igym = ——I— + —— Tk
k,m n+k k—1m+1 n+k km—1
and consequently
n
Ik:,'m < mlk—l,m-‘rl-
k> |m].

Applying (2.14) m times and using (2.3) we have

[ n 7 _ (n+Ek+m)
P kR kA m4 1 0T et (4 k)
ie
nmH(n+ k) [
-_— n 1 Mdr < 1.
(n+k:+m)!/0 sne(@)(1+2)"dz <

From (2.15) we have

(n+k+m-—1)!
n™(n+ k)!

Ik,mfl >

and than from (2.13) it follows

m (n+k+m-—1)!
n+k nm(n+k)!

n
Ik,m 2 n+ klkfl,erl +

or
nm2(n+k—1)!

n™H(n + k)! Y
(n—l—k—i—m)' k—1m+1

Tim >
(n+k—+m) =" =

Results Math

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

mn (n+k+m-—1)!

_|_
(n+k)(n+k+m) nm(n+k)
ie.
n™*(n + k)! < n™*2(n+k—1)!

Y n C(m)
(TL I k + m)! km Z k—1m+1

n

Applying this inequality m times we obtain (2.10).

(n+k+m)! n(l4k '

>2
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2b. k < |m|.

Applying (2.14) k times
Enl

n"n!
Iym < Iomtk-
S (NS T

But
1o mtk = / $mo(z)(1 4 2)™ Fde < / Spo(x)dr =
0 0

and consequently

1
n

el (k4 m)!
km > (n+k)' - nm+1(n+k)|a
i.e.
nm+1(n+k)| oo N
(n—l—k—i—m)!/o Spi(x)(1+2)"de < 1.
We have
h o0 g=(n—m) k
n [ sap@ e s [ )y,
0 , 0 k!
k o0
- ( - ) n/ Snfm,k(l')dx
n—m 0
k
k
= < > >1+ m >1— C(m)
" - n
Then

[m|—1

m/ooo Spk ()1 4+ 2)"dx > kl;[O <1+ k;’) <1 e

C(m).

n

>1-—

The lemma is proved.

The next lemma is an elementary consequence of this lemma.

Lemma 2.3. For w(z) defined by (1.3) the next inequality is true

/0OO w(w)sn,k(7)dr < %w (k) .

n n

8

n

(2.16)

Proof. By Holder’s inequality applied for the smallest integer m such that

m > |a| we have
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L] le

and the lemma follows from (2.10) and (2.3). O

We need more technical results. Let us denote by ¢ the function ¢(z) =
Inz. In [8, p.7, 2.20 and p.11, 2.26] the next two estimations for S are proved

‘ n

f(se0-)], < =

c
< — .
<o (2.17)

and

Lemma 2.4. Let 1 < p < oo. Then for all f € W,(w) and n € N there holds

_ Cla _
Jow (526 -0) 1] < S o
P n
Proof. We consider the cases a < 0 and « > 0 separately.
1. a<0.
We have

lp(z)w(@)Df(2)| = lew(z )Df(:v)l

ot [ Drioa < [

and consequently

lp(z)w(z)Df(z)] <

(D () dt.

| wobsoa| = ups],
0
and
[e()u()Df ()| <z |wDf|
Then for p =1
o 50-4) ],

where for the last inequality we used the estimation (2.17).
For p =00

e (810-0) 1] < 1], o (8w o), < T 1]

where for the last inequality we used the estimation (2.18).

<5 oo,

oo
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2. a>0.

For L; we use the representation

w(z) /:o Df(t)dt‘ < /:o ‘w(t)Df(t)’ dt

lp(z)w(z)Df(z)| =
Then as above

e (810 -0) 1], < uDr], 800~ o], < uDr],-

For L., we consider two cases.
2a. r < 1.

In this case (1 4+ x)* <2%(14t)® for 0 < ¢ < 1. Consequently,

/Df dt )}
<2¢ / ‘w YD f(t ‘dt‘anﬁx qzﬁ(x)‘
< C(a) [wbs]|_ o (Sutéia) - o))
<C(

) |wbs]_ [l (3:6-9)||
C(a)

n

[e(@)w(@) (Sn(@i2) - é(@)) Df ()] =

A

where we used again the estimation (2.18).
2b. z > 1.

In this case (1 + z)® ~ 2% And for 0 < a < 1 by using the Hardy’s
inequality and the estimation (2.18) we obtain

[w(a)p(e >(~ (¢32) — Bl )) Df(x )\

‘ / Df(t dt
co( [

o,

o)

)H@( Su=)|.
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For o > 1 again, using the Hardy’s inequality and the estimation (2.18),

we obtain
[w(@)¢(@) (8u(6,2) - 6(x)) Df(a)|
<[ [7 broya] [« (3u052) - o(0))

<C (xa_l /:O ‘tf?f(t)‘ C?) H%" (SW - ¢) Hoo

<3 Jwpr].

g
Lemma 2.5. For every x € [0,00) and n € N there holds
-~ (()—=x C
w(z)S, ( w() @<
Proof. We have by using the Lagrange’s formula
o] kt1
~ (()—=z ) o t—
w(z)S, (;x =|w(z) Y sn, (x)n/ ——dt
‘ w(:) ; S ()
< is (z) w(z) n/k”1 (t—a)dt
>~ n,k -
pard w(i) Js
[e9) k41
" k| Jw' ()
n t— t— — dt
)Ly R
where
E k+1
g |:TL, n :| .
Now
ank(x)wz n/ (t—ax)dt
k=0 w (5) E
I & w(x) > w(z) [k
< — > spi(x) + Sk () ( - x)
o 2 g
From (2.9)
1 & w(z) _C
— ) spi(x) < —. (2.19)
2n = w(y) —n
Since
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it follows again from (2.9) that

Sty (&) o Ermiole (1) o )

C:Ew > S k() Cx C
— Z a+1 B <.
(1+3) "

P “n(l+x)
(2.20)
The second inequality above follows from the easily proved inequality
k+1 K\’ ¢ A
‘(1++) (1+> S(l—i—) where (€ R.
n n n
From (2.19) and (2.20) we obtain
e c
x n
— < —. .
&) L (t—az)dt| < o™ (2.21)
Now, for t € [% %]
- &l c
nfw &) (143w ()
and
k+1
[t —z| < ‘ ‘ + ’+ ‘
n
So
S = [w'(€)]
x)zsn,k(x)n/ =1 ‘t— ’ WOl gl gt
k=0 " 2(€)
Cw(z) o=  snr(z) |k Cw(z) o=  snr(x) |k+1
< Z atT |, Tt Z ot -z
=T N (N
We will estimate the first term. The estimation of the second is similar.
By applying Cauchy’s inequality we get
1/2

> S k()

From (2.9)

T

0

2 a+1) 2(a+1)?
il ( (1+x)
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from (2.4)

| 8

IS () -2

and consequently

Cw(x) ad S k()
n Z (1+Z)a+1

k=0

k
Z gzl <
n

ovE

_Cye _C
(1+x)n32 ~ n

Lemma 2.6. For every x € [0,00) and n € N there holds
- /Inz —In(-
sw(2)Sn (nwnﬂx) <C
w(-)

n
Proof. Again, by using the Lagrange’s formula we have

iﬁw(x)gn <<i}(_)x,m) N
isn,k(ff)ww(?)nén (Inz —Int)dt

+

+ zw(z ank / [lna — Int| ’t—‘ (€ £>)|dt.
k

<z

For the last term in the RHS using
z|lnz —Int| < |t — x|

we have
k41

" k Iw’(§)|
ank /C |Inz — Int| ’t— 2 dt
3l

o k+1

Sw@%sn,mx)n/ﬁ” [t = l\’f‘ i 2(¢)

and we already estimated it in the previous lemma.
For the first term we have

dt

0o k41

w(x) ™ I
];)Sn,k(f)w(g)n/i (Inz —Int)dt

25"’“ oy (m 5 - me)

The last 1nequahty follows from
k+1

n 1 1
n/ (lnm—lnt)dtzlnm—lnk+ +O(>.
n

T

—i—Cstnk a;)

<z

k

n
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Since

it follows that

(00

Now we consider two cases.

l.x< L
- n

In this case:

X 3 S xr w(x) nki— nr X S x) n n\nr
kzzon’k( )w(%) (1 — 1 ) < an w (D) (In(k + 1) — In(nz))

In(k +1) + z|In(nx)| » spi(x
2y 1) s
(

oo

< JZZ S k() v

part w ()

because of (2.9), (2.2) and the simple inequalities

1
(k+ 1)+ Czxlln(nz)| < C (nx2+x+ n) < %

1
and z|ln(nz)| <

z? < -
n’

1
n
2. x>%.

By Taylor’s formula

k+1 1 (k+1 k41 dt
In— =Inx + — —x | — — =t =
n x n - n 2

and consequently

z gsn,k(az)gé? <ln kzl —lnx)
gsn,k(@fé?) (k S x)
e [ (507

<

+x

(2.22)
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The estimation of the first term in RHS of (2.22) is analogous to the
estimation of

SRS

in the previous lemma.

For the second term in RHS of (2.22) since

k+1

v (k+1 dt k+1
-1 < 7—37

ac n t2

we have by applying the Cauchy’s inequality, (2.9) and (2.6)

Lo (50
- 2sn,k<m>;“g?) o (k::1 . )z
e el
e G
2[EaE] o (2]
<[] @] =S

O

Lemma 2.7. Let 1 < p < oo. Then for all f € W,(w) and n € N there holds

. ) .
w(@)$, ( / 6() — p(u) Df(u)du>

gw\

p
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Proof. We have

w(x)}ismk(x)n/nk:l /: [lnt — Inu] w(u )(Dj;( ) >dt

<C§snk(x) Qz}]ig/cr)l)n/kkil (/t Int—Inw ‘w Df( )‘ >dt
=0 w z

_ C];)Smk(x) {”Sj;)rb .

where
k+1

by = n/ (/: Int — Inu] ‘w(u)f)f(u)‘ du> dt.

Let p be the smallest integer such that pu > |a|. By Holder’s inequality we
have

+ )]
> snate) [
1—lel

0o n(l + 2 sign(o)p 7 o Iz
< {Z S,k () {Ez—i—k)] br,1 Z Snk(2)bg 1 .

k=0 =0
We define a new operator S’ma by the formula
k+1

m nm+1(n + k)! n
naf / Kn(z,t)f ank )1+ x) mL f(t)dt

where m = sign(a)u.
For the estimation of the Li-norm by applying the Holder’s inequality
again we have

(1+=z
ank [ e

1
1+x)
ZS“ ] e

For the second term in RHS we can use the estimation (2.17) - simply replacing
Df by wDf. For the first term since

(7)< o

1_lal

)b 1

1 1
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we have

o [S]
S,m</(.)[1n() Inu] ‘w )Df ()] d )
el )-enirean

Changing the order of integration twice in both of the integrals we obtain

" h()de = Oo‘w(u)Df(u)‘ T Ga (= (s 2)dz ) du
0 0 u

<C

1

and
/0 Iy(z)de = /0 ‘w(u)[)f(u)‘ (/0 S (In(-) = Inuly; 2) d:c) du
where
PG, = 515G+ 7).
Consequently,
/Ooo I(x)dz + /OOO L (x)dz = /OOC ) D7 ()] 1)
where

= [ B = (i) do+ / S (I0() — ] 3 2) da

We have by equation (2.10) of Lemma 2.2 for every function h(z) € L1[0, 00)

k41

- o + k)! o0 m n
|8, Zn+’;+m snp(@)(1+2) dx/k h(t)dt < 1Al
k=0 n
and
0o C kj{l
Spah| > 1—7/ h(t)dt
e, ,;)< n(1+5)2> s M

o k+1

C 1 "
el = Y [ et

o (1+ 5)2 "
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Also,
[e’e) 1 k’ k’+1
R — (t)|dt < / | In¢|dt
kz::o (1+%)° / kzo %)
- T’ ¢
PN RESE
— E n
i.e.

/OOO Sno (Inw —In(-)]4; 2) do = /Ou (lnu —Inz)dr + O <71z> )

/ §n7adm = / Sn,ada: +/ Sn,adx
0 0 u
it follows that

/OO Spo (Inu —1In(-)]y;z) do

- /Ou (Inw —Inz)dx — /Ou Spo (Inu —In(-)];2) de + O (i) .

Consequently,

Since

I(u) = /Ou (Inu—Inz)de + /Ou Sp.o (In(-) =Inuly — Inu — In(-)]4; x) da
e (1)
= /Ou (Inu —Inx)dr + /Ou Sp.o (In(-) = Inwu; z)dz + O (i)
- /Ou (SW (In(-); ) — m) dz + +0 (i)
< /Om (S*n,a (In(-); z) — 1nx> dz + +0 (i)

= [[Snam) - hl(')Hl O (i)
e 8], s o], +0(2)

and by using the estimate (2.17) and Lemma 2.2 we complete the proof of
lemma for p = 1.

IA
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Now we estimate the L,,-norm. We have

- Q) .
w(x)Sy (/ (In(+) — lnx)Df(u)du;x)‘

~ O In(-) —Inu
w(x)Sy, (/ %du;x)

From the obvious w™!(u) < w™!(-) +w~!(x) for u between (-) and z it follows
that

= ) In nu
o ([
_ )
Sp (/ (In(+) — lnu)du;x>

For the first term in the RHS of (2.23) we have

S, (/x(‘)(ln(-) - lnu)du;x> = % -z (Sn(ln(),a?) - 1nac)

and by using the estimation (2.18) we obtain the needed estimate.
For the second term in the RHS of (2.23) we have

o), </I<~) Wdu;$>
i (B0) . (35

= ruta)s, (2 )*w”( )

By using Lemma 2.5 and Lemma 2.6 we complete the proof of lemma for
p = 00. U

< [[wps]

< +

~ O In(-) — Inu )
w(x)S, </x ) du,x) .

(2.23)

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. We follow the argument in [1, pp. 41-42].
We have for x,t >0

f(t) = f(@) + () (6(t) — d(x)) Df () + / (¢(t) = ¢(w)) Df (u)du.
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Applying S, to both sides with regard to ¢ and using (2.5), we obtain
Su(fi@) = f(x)
- ~ Q .
= () [Su(0():2) - 6()] DF() + 5, ( | et - otu Df(u)du)

w(@) [Su(f,2) = [(@)] = w@)p(@) [$a(6()i ) - é(x)| Df()
. Q) .
(@), ( ORI Df(U)dU> .

Consequently
oo (S =),

< ||we (826 =) D1 | +|w(@)S, ( / 7 160) — ofu) Df(u)du>

P
By using Lemmas 2.4 and 2.7 we complete the proof. g

Proof of Theorem 1.3. To recall, we denote by C' positive constants, not nec-
essarily the same at each occurrence, which are independent of f, g, n, and [.
We prove the theorem by means of a standard argument.

Let 1 <p < 0. For any g € Wp(w) such that f — g € L,(w) we have in
virtue of (2.7) and Theorem 1.2

oot = 3., < luts = )l +[[wSuts = 9|+ ]|

<C (w(f —9)lp + % HM)ng) '

Taking the infimum on g we arrive at the left-hand side inequality in the
theorem. ]
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