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Abstract. Over the past decades, the split inverse problem has been widely
studied, and one of the objectives of those researches is to invent some
efficient algorithms for approximating solutions. Most of those algorithms
depend on the norms of bounded linear operators; however, the calcula-
tion of the operator norms is not an easy task in general practice. In
this article, we study and investigate the split fixed point problem for
multi-valued mappings in Hilbert spaces. We introduce a self-adaptive
algorithm without prior knowledge of the operator norm for two demi-
contractive multi-valued mappings, and establish a strong convergence
theorem of the proposed method under some suitable conditions. Our
main result in this paper generalizes and improves many results in the
literature.
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1. Introduction

The split feasibility problem (SFP) which was introduced by Censor and Elfving
[14] in 1994, is the first instance of the split inverse problem. In general, this
split problem is the problem of finding a point of a closed convex subset of
a Hilbert space such that its image under a bounded linear operator belongs
to a closed convex subset of another Hilbert space. The SFP was studied
by many authors (see [2,30,38,46,47]) because its applications are desirable
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and can be used in real-world applications such as in signal processing, in
image reconstruction, in the intensity-modulated radiation therapy, etc., see
[3,7,12,15,30]. Recently, various split problems were introduced and studied
(see [6,16,17,22,26]) and one of the important generalizations of the SFP is
the split common fixed point problem (SCFPP) which was first introduced by
Censor and Segal [17] in 2009 for the class of directed mappings in Euclidean
spaces. After that, many researchers studied the SCFPP for various classes
of mappings in Hilbert spaces (even in Banach spaces), see [5,9,18,19,23,24,
27,29,35–37,39,40,42,48] for instance. The SCFPP requires to find a common
fixed point of a family of mappings in a Hilbert space whose image under a
considered bounded linear operator is a common fixed point of another family
of mappings in the image space. Let us recall the SFP and the SCFPP, and
review the well-known methods, in order to approximate solutions of these
problems. Simultaneously, the motivation and purpose of this paper are also
presented.

Let H and K be two real Hilbert spaces, and let A : H → K be a bounded
linear operator. The SFP is to find a point

x ∈ C such that Ax ∈ Q, (1.1)

where C ⊆ H and Q ⊆ K are nonempty closed convex subsets. Byrne [2]
proposed the so-called CQ algorithm for solving the SFP (1.1) as follows:

xn+1 = PC (xn − γA∗(I − PQ)Axn) , n ≥ 1, (1.2)

where γ ∈
(
0, 2

‖A‖2

)
, and A∗ denotes the adjoint operator of A and PC , PQ

are the projections onto C and Q, respectively.
Let Si : H → H (i = 1, 2, . . . , s) and Tj : K → K (j = 1, 2, . . . , t) be

mappings with nonempty fixed point sets Fix(Si) and Fix(Tj), respectively.
The SCFPP is formulated as finding a point

x ∈
s⋂

i=1

Fix(Si) such that Ax ∈
t⋂

j=1

Fix(Tj). (1.3)

In the case s = 1 = t, the SCFPP (1.3) is reduced to find a point

x ∈ Fix(S) such that Ax ∈ Fix(T ), (1.4)

where S : H → H and T : K → K are two mappings with nonempty fixed
point sets Fix(S) and Fix(T ), respectively. Problem (1.4) is usually called the
split fixed point problem (SFPP).

In order to solve the SFPP (1.4), Censor and Segal [17] introduced fol-
lowing iterative method for two directed mappings S and T :

xn+1 = S (xn − γA∗(I − T )Axn) , n ≥ 1, (1.5)
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where γ ∈
(
0, 2

‖A‖2

)
, and obtain a convergence theorem under the closedness

principle. Moudafi [35] introduced the relaxed algorithm for two demicontrac-
tive mappings S and T with coefficients κ1 and κ2, respectively as follows:{

yn = xn − γA∗(I − T )Axn,

xn+1 = (1 − αn)yn + αnSyn, n ≥ 1,
(1.6)

where γ ∈
(
0, 1−κ2

‖A‖2

)
and αn ∈ (0, 1). He proved a weak convergence result of

this algorithm under the demiclosedness principle and some suitable control
condition. It is well known that the class of demicontractive mappings [13,
20,21,31] includes several common types of classes of mappings occurring in
nonlinear analysis and optimization problems.

It is observed that the parameters γ in Algorithms (1.2), (1.5) and (1.6)
depend on the norm of A. So these algorithms have a drawback in the sense
that the implementation of them requires to calculate or estimate the operator
norm ‖A‖, which is not an easy task in general practice. López et al. [30]
proposed one of the ways to select the stepsize

γn :=
λn‖(I − T )Axn‖2

‖A∗(I − T )Axn‖2 , (1.7)

where T := PQ and λn ∈ (0, 2), for replacing the parameter γ in Algorithm
(1.2), in order to solve the SFP (1.1). One can see that the choice of the stepsize
γn in (1.7) does not depend on ‖A‖, but it depends on xn. In the case of the
SFPP (1.4), many authors introduced self-adaptive algorithms by selecting the
stepsizes in the similar way to (1.7), see [5,10,18,24,37,39,41]. Moreover, it is
illustrated in [24, Example 6.1] that an algorithm whose stepsize is defined by
(1.7) requires the smaller number of iterations than an algorithm depending
on the operator norm.

In 2016, the SCFPP in the case of multi-valued mappings was first con-
sidered by Latif and Eslamian [29]. They proposed a viscosity-type algorithm
for solving the SCFPP for finite families of quasi-nonexpansive multi-valued
mappings, and proved a strong convergence result. In 2019, Jailoka and Suan-
tai [23] introduced an algorithm for solving the SCFPP for two infinite families
of demicontractive multi-valued mappings, and proved a strong convergence
theorem. However, those algorithms in [23,29] still depend on the operator
norms.

It is worth mentioning that the fixed point theory [4,8,25,43] plays an
important role in nonlinear analysis, and it can be applied in a variety of
problems because the solutions of those problems can be explained in terms of
fixed points of some mappings. We also note that the SCFPP includes other
convex optimization problems as special cases such as the split variational
inequality problem (SVIP) [16], the split common null point problem (SCNPP)
[6], the split equilibrium problem (SEP) [26], the proximal split feasibility
problem (PSMP) and the convex feasibility problem (CFP).
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In this paper, motivated by above-mentioned researches, we are interested
in studying the split fixed point problem (SFPP) for multi-valued mappings
in Hilbert spaces. Our main objective is to invent a strongly convergent algo-
rithm without prior knowledge of the operator norm for solving the SFPP for
the class of demicontractive mappings. The paper is organized as follows. In
Sect. 2, basic definitions, notations, and some useful lemmas for proving our
main result are given. Our main result is in Sect. 3. In this section, we intro-
duce a self-adaptive algorithm based on the viscosity approximation method
by selecting the stepsize in the similar adaptive way to (1.7) for solving the
SFPP for two demicontractive multi-valued mappings, and establish a strong
convergence theorem of the proposed algorithm under some suitable condi-
tions. Some consequences of our main result are also given in Sect. 4. At last,
in Sect. 5, we provide a numerical result to support our main result and to
demonstrate the convergence behavior of our algorithm.

2. Preliminaries

Throughout this paper, we assume that H and K are real Hilbert spaces with
inner products 〈·, ·〉 and the induced norms ‖ · ‖. The following notations are
adopted:

• R : the set of real numbers,
• N : the set of positive integers,
• I : the identity operator on a Hilbert space,
• xn ⇀ x : {xn} converges weakly to x,
• xn → x : {xn} converges strongly to x.

Let x, y ∈ H and α ∈ [0, 1]. Then the following properties hold on H:

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2; (2.1)
‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (2.2)

Property (2.1) is known as the strong convexity of ‖ · ‖2.
Let D ⊆ H be a nonempty closed convex set. The projection from H onto

D denoted by PD is defined for each x ∈ H, PDx is the unique element in D
such that

‖x − PDx‖ = d(x,D) := inf{‖x − y‖ : y ∈ D}.

Let x ∈ H and u ∈ D. It is known that u = PDx if and only if

〈x − u, y − u〉 ≤ 0, ∀y ∈ D.

A mapping F : H → H is called a μ-contraction with respect to D, where
μ ∈ [0, 1) if

‖Fx − Fy‖ ≤ μ‖x − y‖, ∀x ∈ H,∀y ∈ D.

If F is a μ-contraction with respect to D, then PDF is also a μ-contraction
with respect to D.
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A fixed point of a mapping S : H → H is a point in H, which is mapped
to itself by S, and the set of all fixed points of S is denoted by Fix(S) := {x ∈
H : x = Sx}. A mapping S : H → H having a fixed point is said to be

(i) directed if

‖Sx − u‖2 ≤ ‖x − u‖2 − ‖x − Sx‖2, ∀x ∈ H,∀u ∈ Fix(S),

(ii) quasi-nonexpansive if

‖Sx − u‖ ≤ ‖x − u‖, ∀x ∈ H,∀u ∈ Fix(S),

(iii) demicontractive ([20,31]) if there exists κ ∈ [0, 1) such that

‖Sx − u‖2 ≤ ‖x − u‖2 + κ‖x − Sx‖2, ∀x ∈ H,∀u ∈ Fix(S).

It can be seen that the class of demicontractive mappings includes the
class of quasi-nonexpansive mappings and the class of directed mappings.
Next, we recall some notations and definitions on multi-valued mappings.

Let S : H → 2H be a multi-valued mapping. An element u ∈ H is called a fixed
point of S if u ∈ Su. The set of all fixed points of S is also denoted by Fix(S).
We say that S satisfies the endpoint condition if Su = {u} for all u ∈ Fix(S).
The Pompeiu-Hausdorff metric on CB(H) is defined by

H(D,E) := max
{

sup
x∈D

d(x,E), sup
y∈E

d(y,D)
}

for all D,E ∈ CB(H), where CB(H) denotes the family of all nonempty closed
bounded subsets of H.

A class of demicontractive multi-valued mappings was first introduced in
[13,21] in the following way:

Definition 2.1. ([13,21]). A multi-valued mapping S : H → CB(H) is said to
be demicontractive if Fix(S) �= ∅, and there exists κ ∈ [0, 1) such that

H(Sx, Su)2 ≤ ‖x − u‖2 + κ d(x, Sx)2, ∀x ∈ H,∀u ∈ Fix(S). (2.3)

In particular, if κ = 0, then S is called quasi-nonexpansive.

Example 2.2. A multi-valued mapping S : R → CB(R) defined by Sx =[
|x|
4 , |x|

]
is quasi-nonexpansive with Fix(S) = [0,∞).

The following example shows that the class of demicontractive multi-
valued mappings properly contains the class of quasi-nonexpansive multi-valued
mappings.

Example 2.3. ([23]). For each i ∈ N, we define Si : R → CB(R) by

Six =

{
[ − (2i+1)x

2 ,−(i + 1)x], if x ≤ 0,

[ − (i + 1)x,− (2i+1)x
2 ], if x > 0.

Thus, Fix(Si) = {0}. Hence, Si is demicontractive with a coefficient κi =
4i(i+2)
(2i+3)2 ∈ (0, 1) and it is not quasi-nonexpansive for all i ∈ N.
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The following lemma gives the properties of a demicontractive multi-
valued mappings having an endpoint.

Lemma 2.4. ([23]). Let S : H → CB(H) be a κ-demicontractive multi-valued
mapping. If u ∈ Fix(S) such that Su = {u}, then the following inequalities
hold: for all x ∈ H, y ∈ Sx,

(i) 〈x − y, u − y〉 ≤ 1+κ
2 ‖x − y‖2;

(ii) 〈x − y, x − u〉 ≥ 1−κ
2 ‖x − y‖2.

For a demicontractive mapping S : H → CB(H), the fixed point set
Fix(S) is always closed. It is shown in [41, Lemma 2.3] that if S satisfies
the endpoint condition, then Fix(S) is convex. The following lemma gives
a sufficient condition for the convexity of the solution set of the SFPP for
demicontractive multi-valued mappings.

Lemma 2.5. ([23]). Let A : H → K be a bounded linear operator. Let S : H →
CB(H) and T : K → CB(K) be two demicontractive multi-valued mappings.
Suppose that Γ := Fix(S) ∩ A−1(Fix(T )) �= ∅. Then, we have

(i) Γ is closed;
(ii) If Su = {u} and T (Au) = {Au} for all u ∈ Γ, then Γ is convex.

We recall the notion of the so-called demiclosedness principle.

Definition 2.6. Let S : H → CB(H) be a multi-valued mapping. We say that
I −S is demiclosed at 0 if for any sequence {xn} in H which converges weakly
to u ∈ H and the sequence {‖xn − yn‖} converges to 0, where yn ∈ Sxn, then
u ∈ Fix(S).

We end this section with the following two useful lemmas for proving our
strong convergence theorem.

Lemma 2.7. ([44]). Suppose that {an} is a sequence of nonnegative real num-
bers such that

an+1 ≤ (1 − βn)an + βnσn + νn, n ∈ N,

where {βn}, {σn} and {νn} satisfy the following conditions:
(i) βn ∈ [0, 1],

∑∞
n=1 βn = ∞;

(ii) lim sup
n→∞

σn ≤ 0 or
∑∞

n=1 |βnσn| < ∞;

(iii) νn ≥ 0 and
∑∞

n=1 νn < ∞.
Then, lim

n→∞ an = 0.

Lemma 2.8. ([33]). Let {an} be a sequence of real numbers such that there
exists a subsequence {ni} of {n} which satisfies ani

< ani+1 for all i ∈ N.
Define a sequence of positive integers {τ(n)} by

τ(n) := max{m ≤ n : am < am+1}
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for all n ≥ n0 (for some n0 large enough). Then {τ(n)} is a nondecreasing
sequence such that τ(n) → ∞ as n → ∞, and it holds that

aτ(n) ≤ aτ(n)+1 and an ≤ aτ(n)+1.

3. Main Result

In this section, we present an iterative approximation method which is inde-
pendent of the operator norm for solving the SFPP for multi-valued mappings,
and prove its strong convergence theorem for two demicontractive mappings.

We now focus on the SFPP for two multi-valued mappings S : H → 2H

and T : K → 2K as follows: Find a point

x ∈ Fix(S) such that Ax ∈ Fix(T ), (3.1)

where A : H → K is a bounded linear operator. The solution set of (3.1) is
denoted by Γ. If Γ is nonempty, let F : H → H be a contraction with respect
to Γ. Here, a self-adaptive method for solving the SFPP (3.1) is introduced as
follows.

Algorithm 1: Self-Adaptive Method for the SFPP (3.1)

Initialization: Let {λn}, {δn}, {αn} be real sequences in (0, 1).
Take x1 ∈ H arbitrarily.
Iterative step: For n ≥ 1, calculate xn+1 as follows:
Step I. Choose wn ∈ T (Axn), then compute

γn =

{
λn‖Axn−wn‖2

‖A∗(Axn−wn)‖2 , if Axn �= wn,

0, otherwise,
(3.2)

yn = xn − γnA∗(Axn − wn). (3.3)

Step II. Choose zn ∈ Syn, then compute

un = (1 − δn)yn + δnzn, (3.4)

xn+1 = αnF (xn) + (1 − αn)un. (3.5)

Update n := n + 1 and go to Step I.

A strong convergence result of Algorithm 1 is established below.

Theorem 3.1. Let A : H → K be a bounded linear operator. Let S : H →
CB(H) and T : K → CB(K) be demicontractive multi-valued mappings with
coefficients κ and κ′, respectively, such that I − S and I − T are demiclosed
at 0. Assume that Γ �= ∅ and Su = {u}, T (Au) = {Au} for all u ∈ Γ.
Let F : H → H be a μ-contraction with respect to Γ. Then, any sequence
{xn} generated by Algorithm 1 converges strongly to a point x∗ ∈ Γ, where
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x∗ = PΓF (x∗) provided that the sequences {λn}, {δn} and {αn} satisfy the
following conditions:
(Ci) 0 < a ≤ λn ≤ b < 1 − κ′;
(Cii) 0 < c ≤ δn ≤ d < 1 − κ;
(Ciii) lim

n→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Proof. By Lemma 2.5, Γ is closed and convex, and hence PΓF is a contraction
on Γ. By Banach fixed point theorem, there is a unique point x∗ ∈ Γ such that
x∗ = PΓF (x∗). It follows from the characterization of PΓ that

〈Fx∗ − x∗, u − x∗〉 ≤ 0, ∀u ∈ Γ. (3.6)

Since x∗ ∈ Γ, then x∗ ∈ Fix(S) and Ax∗ ∈ Fix(T ). We first show that {xn}
is bounded. Suppose that Axn �= wn. Here, the stepsize γn defined by (3.2) is
well defined. Indeed, if A∗(Axn − wn) = 0, by Lemma 2.4(ii) we have

‖Axn − wn‖2 ≤ 2
1 − κ′ 〈Axn − wn, Axn − Ax∗〉

=
2

1 − κ′ 〈A∗(Axn − wn), xn − x∗〉 = 0,

that is Axn = wn, which is a contradiction. Thus, A∗(I − T )Ax �= 0. Now, we
consider

‖yn−x∗‖2 = ‖xn−x∗‖2−2γn〈A∗(Axn−wn), xn−x∗〉 + γ2
n‖A∗(Axn − wn)‖2

= ‖xn−x∗‖2−2γn〈Axn−wn, Axn − Ax∗〉 + γ2
n‖A∗(Axn − wn)‖2

≤ ‖xn − x∗‖2 − (1 − κ′)γn‖Axn − wn‖2 + γ2
n‖A∗(Axn − wn)‖2

= ‖xn − x∗‖2 − (1 − κ′ − λn)λn
‖Axn − wn‖4

‖A∗(Axn − wn)‖2
(3.7)

≤ ‖xn − x∗‖2 − (1 − κ′ − λn)λn

‖A‖2
‖Axn − wn‖2. (3.8)

Clearly, (3.7) still holds when Axn = wn. By the demicontractivity of S with
the coefficient κ and by using (2.1) and (3.7), we have

‖un − x∗‖2 = ‖(1 − δn)(yn − x∗) + δn(zn − x∗)‖2

= (1 − δn)‖yn − x∗‖2 + δn‖zn − x∗‖2 − δn(1 − δn)‖yn − zn‖2

= (1 − δn)‖yn − x∗‖2 + δnd(zn, Sx∗)2 − δn(1 − δn)‖yn − zn‖2

≤ (1 − δn)‖yn − x∗‖2 + δnH(Syn, Sx∗)2 − δn(1 − δn)‖yn − zn‖2

≤ (1 − δn)‖yn − x∗‖2 + δn

(‖yn − x‖2 + κ d(yn, Syn)2
)

− δn(1 − δn)‖yn − zn‖2

≤ (1 − δn)‖yn − x∗‖2 + δn

(‖yn − x‖2 + κ‖yn − zn‖2
)

− δn(1 − δn)‖yn − zn‖2

= ‖yn − x∗‖2 − (1 − δn − κ)δn‖yn − zn‖2 (3.9)
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≤ ‖xn − x∗‖2 − (1 − κ′ − λn)λn

‖A‖2
‖Axn − wn‖2

− (1 − δn − κ)δn‖yn − zn‖2. (3.10)

It follows that ‖un − x∗‖ ≤ ‖xn − x∗‖. Thus,

‖xn+1 − x∗‖ = ‖αn(Fxn − x∗) + (1 − αn)(un − x∗)‖
≤ αn‖Fxn − x∗‖ + (1 − αn)‖un − x∗‖
≤ αn‖Fxn − Fx∗‖ + αn‖Fx∗ − x∗‖ + (1 − αn)‖un − x∗‖
≤ αnμ‖xn − x∗‖ + αn‖Fx∗ − x∗‖ + (1 − αn)‖xn − x∗‖

= (1 − αn(1 − μ))‖xn − x∗‖ + αn(1 − μ)
‖Fx∗ − x∗‖

1 − μ

≤ max
{

‖xn − x∗‖,
‖Fx∗ − x∗‖

1 − μ

}
.

By mathematical induction, we obtain

‖xn − x∗‖ ≤ max
{

‖x1 − x∗‖,
‖Fx∗ − x∗‖

1 − μ

}
, ∀n ∈ N.

This means that {xn} is bounded. From (2.1) and (3.10), we have

‖xn+1 − x∗‖2 = ‖αn(Fxn − x∗) + (1 − αn)(un − x∗)‖2

≤ αn‖Fxn − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖Fxn − x∗‖2 + ‖xn − x∗‖2 − (1 − κ′ − λn)λn

‖A‖2
‖Axn − wn‖2

− (1 − δn − κ)δn‖yn − zn‖2.

So, above inequality leads to the following two inequalities:

(1−κ′−λn)λn

‖A‖2
‖Axn − wn‖2 ≤ αn‖Fxn − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

(3.11)

and

(1−δn−κ)δn‖yn − zn‖2 ≤ αn‖Fxn − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

(3.12)

Here, we consider the rest of the proof into two cases.
Case I. Suppose that there exists n0 ∈ N such that {‖xn − x∗‖}n≥n0 is

either nonincreasing or nondecreasing. Then, {‖xn−x∗‖} is convergent because
it is bounded. This implies that ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0 as n → ∞.
Taking the limit as n → ∞ into (3.11) and (3.12) yields

lim
n→∞ ‖Axn − wn‖ = 0 (3.13)
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and

lim
n→∞ ‖yn − zn‖ = 0. (3.14)

We show that ‖yn − xn‖ → 0 as n → ∞. If Axn = wn, then ‖yn − xn‖ = 0.
Thus, we assume that Axn �= wn. From (3.9), we get ‖un − x∗‖ ≤ ‖yn − x∗‖.
By using (3.7), we have

‖xn+1 − x∗‖2 ≤ αn‖Fxn − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖Fxn − x∗‖2 + ‖yn − x∗‖2

≤ αn‖Fxn − x∗‖2 + ‖xn − x∗‖2

− (1 − κ′ − λn)λn
‖Axn − wn‖4

‖A∗(Axn − wn)‖2
,

which implies that

(1 − κ′ − λn)λn
‖Axn − wn‖4

‖A∗(Axn − wn)‖2
≤ αn‖Fxn − x∗‖2

+ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Taking n → ∞ into above inequality yields ‖Axn−wn‖4

‖A∗(Axn−wn)‖2 → 0 as n → ∞.

Since ‖yn − xn‖2 = λ2
n

‖Axn−wn‖4

‖A∗(Axn−wn)‖2 , we have

lim
n→∞ ‖yn − xn‖ = 0. (3.15)

We next show that

lim sup
n→∞

〈Fx∗ − x∗, xn − x∗〉 ≤ 0.

To show this, let {xnk
} be a subsequence of {xn} such that

lim
k→∞

〈Fx∗ − x∗, xnk
− x∗〉 = lim sup

n→∞
〈Fx∗ − x∗, xn − x∗〉.

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} and u ∈ H

such that xnkj
⇀ u. Without loss of generality, we assume that xnk

⇀ u.
Then, 〈w,Axnk

− Au〉 = 〈A∗w, xnk
− u〉 → 0 as k → ∞, for all w ∈ K, that

is, Axnk
⇀ Au. By the demiclosedness principle of T with (3.13), we have

Au ∈ Fix(T ). Since xnk
⇀ u, it follows from (3.15) that ynk

⇀ u. By the
demiclosedness principle of S with (3.14), we get u ∈ Fix(S) and hence u ∈ Γ.
Since x∗ solves the variational inequality (3.6), we get

lim sup
n→∞

〈Fx∗−x∗, xn−x∗〉= lim
k→∞

〈Fx∗−x∗, xnk
−x∗〉 = 〈Fx∗ − x∗, u − x∗〉 ≤ 0.

By using (2.2), we have

‖xn+1 − x∗‖2 = ‖(1 − αn)(un − x∗) + αn(Fxn − x∗)‖2

≤ (1 − αn)2‖un − x∗‖2 + 2αn〈Fxn − x∗, xn+1 − x∗〉
= (1 − αn)2‖un − x∗‖2 + 2αn〈Fxn − Fx∗, xn+1 − x∗〉
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+ 2αn〈Fx∗ − x∗, xn+1 − x∗〉
≤ (1 − αn)2‖xn − x∗‖2 + 2αnμ‖xn − x∗‖‖xn+1 − x∗‖

+ 2αn〈Fx∗ − x∗, xn+1 − x∗〉
≤ (1 − αn)2‖xn − x∗‖2 + αnμ

(‖xn − x∗‖2 + ‖xn+1 − x∗‖2
)

+ 2αn〈Fx∗ − x∗, xn+1 − x∗〉,
which implies that

‖xn+1 − x∗‖2 ≤ (1 − αn)2 + αnμ

1 − αnμ
‖xn − x∗‖2 +

2αn

1 − αnμ
〈Fx∗ − x∗, xn+1 − x∗〉

=
(

1 − (1 − μ)αn

1 − αnμ

)
‖xn − x∗‖2 +

(αn − (1 − μ))αn

1 − αnμ
‖xn − x∗‖2

+
2αn

1 − αnμ
〈Fx∗ − x∗, xn+1 − x∗〉

≤
(

1 − (1 − μ)αn

1 − αnμ

)
‖xn − x∗‖2

+
(1 − μ)αn

1 − αnμ

{(
αn

1 − μ
− 1

)
M +

2
1 − μ

〈Fx∗−x∗, xn+1−x∗〉
}

= (1 − βn)‖xn − x∗‖2 + βnσn, (3.16)

where M = sup{‖xn−x∗‖2 : n ∈ N}, βn = (1−μ)αn

1−αnμ , and σn =
(

αn

1−μ − 1
)

M+
2

1−μ 〈Fx∗−x∗, xn+1−x∗〉. Obviously, βn ∈ [0, 1],
∑∞

n=1 βn = ∞ and lim sup
n→∞

σn

≤ 0. In view of (3.16), we can conclude by using Lemma 2.7 that xn → x∗ as
n → ∞.

Case II. Assume that {‖xn − x∗‖} is not a monotone sequence. Then,
there exists a subsequence {ni} of {n} such that ‖xni

− x∗‖ < ‖xni+1 − x∗‖
for all i ∈ N. Let {τ(n)} be a positive integer sequence defined by

τ(n) := max {m ≤ n : ‖xm − x∗‖ < ‖xm+1 − x∗‖}
for all n ≥ n0 (for some n0 large enough). By Lemma 2.8, {τ(n)} is a nonde-
creasing sequence such that τ(n) → ∞ as n → ∞ and

‖xτ(n) − x∗‖2 − ‖xτ(n)+1 − x∗‖2 ≤ 0 (3.17)

for all n ≥ n0. By (3.11) and (3.12), we get

lim
n→∞ ‖Axτ(n) − wτ(n)‖ = 0 (3.18)

and

lim
n→∞ ‖yτ(n) − zτ(n)‖ = 0. (3.19)

From (3.18), (3.19) and by the same proof as in Case I, we obtain

lim sup
n→∞

〈Fx∗ − x∗, xτ(n) − x∗〉 ≤ 0.
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By the same computation as in Case I, we also get

‖xτ(n)+1 − x∗‖2 ≤ (
1 − βτ(n)

) ‖xτ(n) − x∗‖2 + βτ(n)στ(n), (3.20)

where βτ(n) = (1−μ)ατ(n)

1−ατ(n)μ
, στ(n) =

(
ατ(n)

1−μ − 1
)

M̃+ 2
1−μ 〈Fx∗−x∗, xτ(n)+1−x∗〉

and M̃ = sup{‖xτ(n) − x∗‖2 : n ∈ N}. Clearly, lim sup
n→∞

στ(n) ≤ 0. By looking

at (3.20) and using (3.17), we have ‖xτ(n) − x∗‖2 ≤ στ(n). This implies that
‖xτ(n) −x∗‖ → 0 as n → ∞. Thus, it follows from Lemma 2.8 and (3.20) that

0 ≤ ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖ → 0

as n → ∞. Therefore, {xn} converges strongly to x∗ ∈ Γ. The proof is com-
plete. �

Remark 3.2. It is worth mentioning the inspiration for designing Algorithm 1
as follows:

(i) In Step I, the choice of γn defined by (3.2) was inspired by the technique
of choosing the stepsize in [30, Algorithm 3.1] for the SFP. Using the
concept of the Landweber operator [2,10,28], we then defined Equation
(3.3).

(ii) Step II was motivated by the so-called viscosity approximation method
[32,45] for finding a fixed point of a mapping U : H → H (if such a point
exists) as follows:

xn+1 = αnf(xn) + (1 − αn)Uxn, n ≥ 1, (3.21)

where f : H → H is a contraction and {αn} is a sequence in (0, 1).
It is known that if U corresponds to a property such as the nonexpan-
sivity (see [45, Theorem 3.2]) and the strong quasi-nonexpansivity with
the demiclosedness principle (see [1, Corollary 3.5] and [42, Theorem
3.1]), then {xn} defined by (3.21) with some mild control conditions on
{αn} converges strongly to a fixed point of U . However, larger classes
of mappings may not get strong convergence of (3.21). Mainge [34] em-
ployed a relaxation of a quasi-nonexpansive mapping S : H → H, i.e.,
U := (1 − ω)I + ωS, where ω ∈ (0, 1), to obtain strong convergence of
(3.21) (also see [42, Corollary 3.2] in the case of demicontractive map-
pings). The readers can study the properties of the relaxation of mappings
from [8,11]. So, defining Equations (3.4) and (3.5) is conceptualized by
[1,8,11,32,34,42,45].

Remark 3.3. We have some observations on Theorem 3.1.
(i) The stepsize γn defined by (3.2) does not depend on ‖A‖; however, it

depends on xn.
(ii) If F ≡ x0 is constant, then Algorithm 1 becomes the Halpern-type algo-

rithm. In particular, if x0 = 0, then {xn} converges to x∗, where x∗ is
the minimum norm solution in Γ.



Vol. 76 (2021) On Split Fixed Point Problems for Multi-Valued Mappings. . . Page 13 of 21 133

(iii) The assumption “Su = {u}, T (Au) = {Au} for all u ∈ Γ” in Theo-
rem 3.1 is weaker than the statement “both S and T satisfy the endpoint
condition”.

(iv) Taking κ = 0 = κ′ in Theorem 3.1, we get a strong convergence result
for quasi-nonexpansive multi-valued mappings.

4. Corollaries

A subset D of H is called proximal if for each x ∈ H, there exists y ∈ D such
that ‖x−y‖ = d(x,D). Denote by PB(H) the family of all nonempty proximal
bounded subsets of H. For a multi-valued mapping S : H → PB(H), the best
approximation operator of S is defined by BS(x) := {y ∈ Sx : ‖x − y‖ =
d(x, Sx)}.

Using the properties of the best approximation operator, we have the
following corollary.

Corollary 4.1. Let A : H → K be a bounded linear operator. Let S : H →
PB(H) and T : K → PB(K) be two multi-valued mappings such that BS

and BT are demicontractive multi-valued mappings with coefficients κ and κ′,
respectively. Suppose that I −BS and I −BT are demiclosed at 0. Assume that
Γ �= ∅ and let F : H → H be a μ-contraction with respect to Γ. Let {xn} be a
sequence generated iteratively by x1 ∈ H and

⎧
⎪⎨
⎪⎩

yn = xn − γnA∗(Axn − wn),
un = (1 − δn)yn + δnzn,

xn+1 = αnF (xn) + (1 − αn)un, n ≥ 1,

(4.1)

where wn ∈ BT (Axn), zn ∈ BS(yn), the stepsize γn is defined by (3.2) and the
real sequences {λn}, {δn} and {αn} satisfy (Ci)–(Ciii) in Theorem 3.1. Then,
{xn} converges strongly to a point x∗ ∈ Γ, where x∗ = PΓF (x∗).

Proof. One can show that BS and BT satisfy the end point condition and
we also have Fix(S) = Fix(BS) and Fix(T ) = Fix(BT ). Hence, the result is
obtained directly from Theorem 3.1. �

Taking H = K and A = I in Theorem 3.1, we obtain a strong convergence
result for finding a common fixed point of two demicontractive multi-valued
mappings as follows.

Corollary 4.2. Let S, T : H → CB(H) be demicontractive multi-valued map-
pings with coefficients κ and κ′, respectively, such that I − S and I − T are
demiclosed at 0. Assume that Ω := Fix(S) ∩ Fix(T ) �= ∅ and Su = Tu = {u}
for all u ∈ Ω. Let F : H → H be a μ-contraction with respect to Ω. Let {xn}
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be a sequence generated iteratively by x1 ∈ H and
⎧
⎪⎨
⎪⎩

yn = (1 − λn)xn + λnwn,

un = (1 − δn)yn + δnzn,

xn+1 = αnF (xn) + (1 − αn)un, n ≥ 1,

(4.2)

where wn ∈ Txn, zn ∈ Syn and the real sequences {λn}, {δn} and {αn} satisfy
(Ci)–(Ciii) in Theorem 3.1. Then, {xn} converges strongly to a point x∗ ∈ Ω,
where x∗ = PΩF (x∗).

A strong convergence result for solving the SFPP (1.4) is obtained when
S and T in Theorem 3.1 are single-valued mappings as shown below.

Corollary 4.3. Let A : H → K be a bounded linear operator. Let S : H → H
be a κ-demicontractive mapping and T : K → K a κ′-demicontractive mapping
such that both I −S and I −T are demiclosed at 0. Assume that Ω := Fix(S)∩
A−1(Fix(T )) �= ∅. Let F : H → H be a μ-contraction with respect to Ω. Suppose
that {xn} is a sequence generated iteratively by x1 ∈ H and

yn = xn − γnA∗(I − T )Axn,

xn+1 = αnF (xn) + (1 − αn) ((1 − δn)yn + δnSyn) , n ≥ 1, (4.3)

where the stepsize γn is selected in such a way:

γn =

{
λn‖(I−T )Axn‖2

‖A∗(I−T )Axn‖2 , if Axn /∈ Fix(T ),

0, otherwise,
(4.4)

and the real sequences {λn}, {δn} and {αn} satisfy (Ci)–(Ciii) in Theorem 3.1.
Then, {xn} converges strongly to a point x∗ ∈ Ω, where x∗ = PΩF (x∗).

Remark 4.4. Some results in [5,24] are consequences of Corollary 4.3 as follows:

(i) Taking F ≡ x0, λn := 1−κ′
2 and δn := δ ∈ (0, 1 − κ) in Corollary 4.3, we

obtain a result in [5, Theorem 4.1].
(ii) Taking λn := λ ∈ (0, 1 − κ′) and δn := δ ∈ (0, 1 − κ) in Corollary 4.3, we

obtain a result in [24, Theorem 4.2].

5. Numerical Example

In this section, we give a numerical example of Theorem 3.1 to show the
convergence behavior of Algorithm 1.

Example 5.1. Let H = R
3 and K = R with the usual norms. Define S : R3 →

CB(R3) by S(a, b, c) = {(−3a,−3b, c)} and T : R → CB(R) by

Tx =

{[− 3
2x,−2x

]
, if x ≤ 0,[−2x,− 3

2x
]
, if x > 0.
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One can show that S is demicontractive with a constant κ = 1
2 . By Exam-

ple 2.3, T is demicontractive with a constant κ′ = 12
25 . Let A : R3 → R be

defined by A(a, b, c) = −2a + 3b − 5c. We consider Algorithm 1 by setting

wn = −3
2
Axn, zn = Syn, λn =

√
n + 2

4n + 10
, δn =

n

5n + 1
and αn =

1
n + 3

.

An initial point is chosen by x1 = (14,−7, 8) and the stopping criterion for our
testing process is set as: En := ‖xn − xn−1‖ < 10−7 where xn = (an, bn, cn).
The numerical experiment of Algorithm 1 by taking Fx = 1

2x is shown by Ta-
ble 1. Next, in Table 2, we show the number of iterations and the approximate
solution by considering different contractions.

Remark 5.2. By testing the convergence behavior of Algorithm 1 in Exam-
ple 5.1, we note that

(i) The sequence {xn} converges to a solution, i.e., xn → 0 ∈ Γ;
(ii) Choosing non-constant functions makes Algorithm 1 more efficient than

using constant functions in terms of the number of iterations and the
approximate solution. So, our algorithm is more general and desirable
than the Halpern-type algorithm.

6. Conclusion

In this work, we study and investigate the split fixed point problem (SFPP) for
multi-valued mappings emphasized on the class of demicontractive mappings
in Hilbert spaces. To solve this problem, we propose a viscosity-type algorithm
whose stepsize does not depend on any operator norms. We then prove that
the sequence generated by our proposed algorithm converges strongly to a
solution of the considered SFPP under some suitable assumptions and some
mild control conditions. Our main result generalizes and improves many results
in the literature, such as in [5,18,23,24,27,29,35–37,40,42] in terms of the class
of mappings, the type of convergence and the stepsize in the method.
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[33] Maingé, P.E.: Strong convergence of projected subgradient methods for non-
smooth and nonstrictly convex minimization. Set Valued Anal. 16, 899–912
(2008)
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