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Abstract. For each positive integer m and each real finite dimensional
Banach space X, we set β(X, m) to be the infimum of δ ∈ (0, 1] such that
each set A ⊂ X having diameter 1 can be represented as the union of m
subsets of A whose diameters are at most δ. Elementary properties of
β(X, m), including its stability with respect to X in the sense of Banach-
Mazur metric, are presented. Two methods for estimating β(X, m) are in-
troduced. The first one estimates β(X, m) using the knowledge of β(Y, m),
where Y is a Banach space sufficiently close to X. The second estimation
uses the information about βX(K, m), the infimum of δ ∈ (0, 1] such that
K ⊂ X is the union of m subsets having diameters not greater than δ
times the diameter of K, for certain classes of convex bodies K in X. In
particular, we show that β(l3p, 8) ≤ 0.925 holds for each p ∈ [1, +∞] by
applying the first method, and we proved that β(X, 8) < 1 whenever X
is a three-dimensional Banach space satisfying βX(BX , 8) < 221

328
, where

BX is the unit ball of X, by applying the second method. These results
and methods are closely related to the extension of Borsuk’s problem in
finite dimensional Banach spaces and to C. Zong’s computer program for
Borsuk’s conjecture.
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1. Introduction

Let X = (Rn, ‖·‖) be an n-dimensional Banach space with unit ball BX . For
each A ⊂ X, we denote by int A and bdA the interior and the boundary of
A, respectively. When A is nonempty and bounded, we denote by δ (A) the
diameter of A. I.e., δ (A) = sup {‖x − y‖ | x, y ∈ A}. A compact convex subset
of X having interior points is called a convex body. Since any two norms on R

n

induce the same topology, K is a convex body (is bounded, resp.) in X if and
only if it is a convex body (is bounded, resp.) in E

n = (Rn, ‖·‖E), where ‖·‖E is
the Euclidean norm. Let Kn be the set of all convex bodies in E

n. A bounded
subset A of X is said to be complete if x �∈ A ⇒ δ ((A ∪ {x})) > δ (A). It is
clear that each complete set is closed and convex. For each bounded subset A
of X, there always exists a complete set Ac (cf. the begining of Section 2 in [24]
for the existence in the finite-dimensional situation), called a completion of A,
with diameter δ (A) containing A. Note that A may have different completions.
Put

Bn = {A ⊂ R
n | A is bounded and δ (A) > 0}, CX = {A ∈ Bn | A is complete}.

In 1933, Borsuk [5] posed the following:

Problem 1 (Borsuk’s Problem). Is it possible to partition every bounded subset
of En into n + 1 sets of smaller diameter?

The answer is affirmative when n ≤ 3 (cf. [10,14,17], or [16]), is negative
for all n ≥ 64 (cf. [4] and Theorem 1 in [19]).

Progess has been made by providing upper bounds for b(n) = sup
{b(A) | A ∈ Bn}, where b(A), called the Borsuk number of A, is the minimal
positive integer m such that A is the union of m subsets having smaller diam-
eter. For example, L. Danzer (cf. [9]), M. Lassak (cf. [21]), and O. Schramm
(cf. [26] and [6]) showed that

b(n) ≤

√
(n + 2)3(2 +

√
2)n−1

3
, b(n) ≤ 2n−1 + 1, and b(n) ≤ 5n

3
2 (4 + log n)

(
3

2

) n

2
,

respectively.
One can also study Problem 1 via estimating β(n,m) = sup

{β(A,m) | A ∈ Bn}, where m is a positive integer and, for each A ∈ Bn,

β(A,m) = inf

{
1

δ (A)
max
k∈[m]

δ (Ak) | A =
m⋃

k=1

Ak

}
.

Here we used the shorthand notation [m] := {i ∈ Z
+ | 1 ≤ i ≤ m}.

In 2020, C. Zong (cf. [32]) proved that β(A,m) is uniformly continuous on
the space Kn endowed with the Hausdorff metric, and reformulated Problem 1
as the following:
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Table 1. Known estimations on β(n,m)

m
β(n,m)
n 3 4 5 6 7 8

2
√
3
2

√
2
2 ≥ sin π

5 ≤
√
3
3

1
2 ?

3 − ∈ [0.8880, 0.9887] ∈
[√

3
2 , 0.9425

]
≥

√
6
3 ≥

√
2
2 ≥

√
2
2

Problem 2. Does there exists a positive number αn < 1 such that

β(K,n + 1) ≤ αn, ∀K ∈ Dn,

where

Dn =

{
K ∈ Kn | Bn

2 ⊆ K ⊆
√

n/(2n + 2)
1 −

√
n/(2n + 2)

Bn
2

}
?

Some known estimations of β(n,m) are listed in Table 1 below (cf., [12,
14,20], and [13]).

Grünbaum extended Borsuk’s problem to the case of Banach spaces and
asked the following (cf. [15]):

Problem 3. Let A ⊂ X = (Rn, ‖·‖) be bounded. What is the smallest positive
integer m, denoted by bX(A), such that A can be represented as the union of
m sets having smaller diameter.

Put

b(X) = max {bX(A) | A ∈ Bn} = max {bX(A) | A ∈ Kn},

B(n) = max {b((Rn, ‖·‖)) | ‖·‖ is a norm on R
n}.

It is clear that

bX(K) ≤ c(K), ∀K ∈ Kn, (1)

where c(K) is the least number of smaller homothetic copies of K needed to
cover K. Indeed, if {ci + γiK | i ∈ [m]} is a collection of smaller homothetic
copies of K that can cover K, then we have

K =
⋃

i∈[m]

(K ∩ (ci + λiK)) and δ (K ∩ (ci + λiK)) ≤ λiδ (K) , ∀i ∈ [m].

Since Hadwiger’s covering conjecture (see, e.g., [1,3,8,23,31]) asserts that
c(K) ≤ 2n, ∀K ∈ Kn, it is reasonable to make the following conjecture (cf. [2,
p. 75]):

Conjecture 1. For each integer n ≥ 3, B(n) = 2n.
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When X is two-dimensional and A ∈ B2, bX(A) ∈ {2, 3, 4} (cf. [3, §33]).
Therefore, B(2) = 4. Let lnp =

(
R

n, ‖·‖p

)
, where

‖(α1, . . . , αn)‖p =

⎛
⎝∑

i∈[n]

|αi|p
⎞
⎠

1
p

.

L. Yu and C. Zong [30] proved that

b(l3p) ≤ 8, ∀p ∈ [1,+∞]. (2)

By the main result of [18] and (1), there exist universal constants c1 and c2 > 0
such that B(n) ≤ c14ne−c2

√
n, ∀n ≥ 2. Despite this progress, Conjecture 1 is

still open when n ≥ 3.
In this paper, we study Conjecture 1 by estimating

βX(A,m) = inf

{
1

δ (A)
max {δ (Ak) | k ∈ [m]} | A =

m⋃
k=1

Ak

}

for A ∈ Bn, and

β(X,m) = sup {βX(A,m) | A ∈ Bn}.

We focus mainly, but not only, on the case n = 3.
In Sect. 2, we present elementary properties of β(X,m), including its

stability with respect to X in the sense of Banach-Mazur metric. In Sect. 3,
we provide an estimation of β(X, 8) for three-dimensional Banach spaces X
such that βX(BX , 8) is sufficiently small. In Sect. 4, we show that

β(l3p, 8) ≤ 0.925, ∀p ∈ [1,+∞],

which can be viewed as a quantitative version of Yu and Zong’s result (2).

2. Elementary properties of β(X, m)

Proposition 1. For each finite dimensional Banach space X = (Rn, ‖·‖) and
each positive integer m, we have

β(X,m) = sup {βX(A,m) | A ∈ CX}.

Proof. Put β = sup {βX(A,m) | A ∈ CX}. We only need to show that β(X,m) ≤
β. Let A be an arbitrary set in Bn, and Ac be a completion of A. For each
ε > 0, there exists a collection {Bi | i ∈ [m]} of subsets of Ac such that

Ac =
⋃

i∈[m]

Bi, and
1

δ (A)
max {δX(Bk) | k ∈ [m]} ≤ βX(Ac,m) + ε.

It follows that

A = A ∩ Ac =
⋃

i∈[m]

(A ∩ Bi).
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Thus

βX(A,m) ≤ 1
δ (A)

max {δ (A ∩ Bk) | k ∈ [m]} ≤ βX(Ac,m) + ε,

which implies that βX(A,m) ≤ βX(Ac,m). Thus β(X,m) ≤ β as
claimed. �

Let T n be the set of all non-singular linear transformations on R
n. The

(multiplicative) Banach-Mazur metric dM
BM : Kn × Kn �→ R is defined by

dM
BM (K1, K2)

= inf {γ ≥ 1 | ∃T ∈ T n, v ∈ R
n s.t. T (K2) ⊂ K1 ⊂ γT (K2) + v}, ∀K1, K2 ∈ Kn.

The infimum is clearly attained. When both K1 and K2 are symmetric with
respect to o, we have

dM
BM (K1,K2) = inf {γ ≥ 1 | ∃T ∈ T n s.t. T (K2) ⊂ K1 ⊂ γT (K2)}.

In this situation, dM
BM (K1,K2) equals to the Banach-Mazur distance between

the Banach spaces X and Y having K1 and K2 as unit balls, respectively. I.e.,

dM
BM (K1,K2) = dM

BM (X,Y )
:= inf

{
‖T‖ ·

∥∥T−1
∥∥ | T is an isomorphism from X onto

}
Y.

We have the following result showing the stability of β(X,m) with respect
to X in the sense of Banach-Mazur metric.

Theorem 2. If X = (Rn, ‖·‖X) and Y = (Rn, ‖·‖Y ) are two Banach spaces
satisfying dM

BM (X,Y ) ≤ γ for some γ ≥ 1, then

β(X,m) ≤ γβ(Y,m), ∀m ∈ Z
+.

Proof. By applying a suitable linear transformation if necessary, we may as-
sume that

BY ⊆ BX ⊆ γBY .

In this situation we have, for each x ∈ R
n,

‖x‖X = inf {λ > 0 | x ∈ λBX} ≤ inf {λ > 0 | x ∈ λBY }
= ‖x‖Y

= inf {λγ > 0 | x ∈ λγBY }
= γ inf {λ > 0 | x ∈ λγBY }
≤ γ inf {λ > 0 | x ∈ λBX} = γ ‖x‖X .

Hence,

‖x‖X ≤ ‖x‖Y ≤ γ ‖x‖X . (3)
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In the rest of this proof, we denote by δX(A) and δY (A) the diameter of
a bounded subset A of Rn with respect to ‖·‖X and ‖·‖Y , respectively. By (3),
we have

δX(A) ≤ δY (A) ≤ γδX(A), ∀A ∈ Bn. (4)

Let A be a bounded subset of X. Then A is also bounded in Y . Let Ac be
a completion of A in Y . For any ε > 0, there exists a collection {Bi | i ∈ [m]}
of subsets of Ac such that Ac is the union of this collection and that

1
δY (Ac)

max {δY (Bi) | i ∈ [m]} ≤ βY (Ac,m) + ε.

Then

A = A ∩ Ac =
⋃

i∈[m]

(Bi ∩ A),

and, by (4),
1

δX(A)
max {δX(Bi ∩ A) | i ∈ [m]} ≤ γ

δY (A)
max {δY (Bi) | i ∈ [m]}

=
γ

δY (Ac)
max {δY (Bi) | i ∈ [m]}

≤ γ(βY (Ac,m) + ε).

Therefore, βX(A,m) ≤ γβY (Ac,m). It follows that β(X,m) ≤ γβ(Y,m). �

Corollary 3. If X = (Rn, ‖·‖X) and Y = (Rn, ‖·‖Y ) are isometric, then β(X,m)
= β(Y,m).

Proposition 4. Let ln∞ = (Rn, ‖·‖∞). Then β(ln∞, 2n) = 1
2 .

Proof. Put X = ln∞. Then every complete set in X is a homothetic copy of
BX , see [11] and [27]. Therefore,

βX(A, 2n) = βX(BX , 2n), ∀A ∈ CX .

Thus it sufficies to show βX(BX , 2n) = 1
2 .

On the one hand, BX = 1
2BX + 1

2V , where V is the set of vertices of BX .
Since the cardinality of V is 2n, we have βX(BX , 2n) ≤ 1

2 .
On the other hand, suppose that BX is the union of 2n of its subsets

B1, . . . , B2n . For each i ∈ [2n], let Bc
i be a completion of Bi. Then

BX ⊆
⋃

i∈[2n]

Bc
i .

It follows that

vol BX ≤
∑

i∈[2n]

vol Bc
i ≤

∑
i∈[2n]

(
1
2n

)
max {δX(Bc

i ) | i ∈ [2n]} vol BX ,

which implies that max {δX(Bc
i ) | i ∈ [2n]} ≥ 1. Thus βX(BX , 2n) ≥ 1

2 , which
completes the proof. �
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Corollary 5. Let X = (Rn, ‖·‖). If dM
BM (X, ln∞) < 2, then β(X, 2n) < 1.

We end this section with the following result.

Proposition 6. sup {β(X, 4) | X is a two-dimensional Banach space} =
√
2
2 .

Proof. Put η = sup {β(X, 4) | X is a two-dimensional Banach space}. Let K ⊂
R

2 be a planar convex body. By the main result in [22], K can be covered by
four translates of

√
2
2 K. It follows that βX(K, 4) ≤

√
2
2 holds for each two-

dimensional Banach space X. Thus, η ≤
√
2
2 .

Let X = l22 and BX be the unit disk of l22. To show that η ≥
√
2
2 , we only

need to prove βX(BX , 4) ≥
√
2
2 . Suppose the contrary that BX is the union of

A1, A2, A3, A4, where

max {δ (Ai) | i ∈ [4]} <

√
2

2
.

Let v1, v2, v3, and v4 be the vertices of a square inscribed in the unit circle
SX of X. Then for any {i, j} ⊂ [4]

‖vi − vj‖ ≥
√

2.

Assume without loss of generality that v1 ∈ A1 and v2 ∈ A2, then
v1 + v2

‖v1 + v2‖
/∈ A1 ∪ A2.

Assume that v1+v2
‖v1+v2‖ ∈ A3. Then v3, v4 /∈ A1∪A2∪A3, and A4 cannot contain

both v3 and v4, a contradiction. Thus, βX(BX , 4) ≥
√
2
2 as claimed. �

3. Estimating β(X, m) via βX (BX , m)

Let S be an n-dimensional simplex in X = (Rn, ‖·‖). If the distance between
each pair of vertices of S all equals to δ (S), then we say that S is equilateral.

Proposition 7. Let T be a triangle in R
2 and X = (R2, ‖·‖). Then βX(T, 4) ≤

1
2 . If T is equilateral in X, then βX(T, 4) = 1

2 .

Proof. We only need to consider the case when T is equilateral. Assume with-
out loss of generality that δ (T ) = 1. It is clear that βX(T, 4) ≤ 1

2 . Denote by
{a, b, c} the set of vertices of T , and by {p, q, r} the set of midpoints of three
sides of T . Then ‖p − q‖ = ‖p − r‖ = ‖q − r‖ = 1

2 .
Suppose the contrary that βX(T, 4) < 1

2 . Then there exist four subsets
T1, T2, T3, T4 of T such that T =

⋃
i∈[4] Ti and that max {δ (Ti) | i ∈ [4]} <

1
2 . We may assume that a ∈ T1, b ∈ T2, and c ∈ T3. Since {p, q, r} ∩⋃

i∈[3] Ti = ∅, we have {p, q, r} ⊆ T4, which is impossible. Thus βX(T, 4) = 1
2 as

claimed. �
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Proposition 8. Let T be a 3-dimensional simplex in X = (R3, ‖·‖). Then

βX(T, 8) ≤ 9
16

.

Proof. Denote by {vi | i ∈ [4]} the set of vertices of T . Without loss of general-
ity we may assume that o = 1

4

∑
i∈[4] vi. For each i ∈ [4], put Ti = 7

16vi + 9
16T .

Then the portion of T not covered by
⋃

i∈[4] Ti is

T5 =

⎧⎨
⎩
∑
i∈[4]

λivi | λi ∈
[
0,

7
16

]
, ∀i ∈ [4],

∑
i∈[4]

λi = 1

⎫⎬
⎭.

Suppose that
∑

i∈[4] λivi ∈ T5. Then

4
7

∑
i∈[4]

λivi − o =
4
7

∑
i∈[4]

λivi − 1
4

∑
i∈[4]

vi

= −
∑
i∈[4]

(
1
4

− 4
7
λi

)
vi

= −

⎛
⎝∑

j∈[4]

(
1
4

− 4
7
λj

)⎞⎠∑
i∈[4]

1
4 − 4

7λi∑
j∈[4](

1
4 − 4

7λj)
vi

∈ −3
7
T.

It follows that
∑

i∈[4] λivi ∈ − 3
4T . Thus T5 ⊂ − 3

4T . It is not difficult to verify
that T can be covered by 4 translates of 3

4T , which implies that T5 can be
covered by 4 translates of − 9

16T . Therefore, βX(T, 8) ≤ 9
16 . �

Proposition 9. Let T be a 3-dimensional simplex in X = (R3, ‖·‖). Then

βX(T, 9) ≤ 9
17

.

Proof. We use the idea in the proof of Proposition 8. For each i ∈ [4], put
Ti = 8

17vi + 9
17T . Then the portion of T not covered by

⋃
i∈[4] Ti is

T5 =

⎧⎨
⎩
∑
i∈[4]

λivi | λi ∈
[
0,

8
17

]
, ∀i ∈ [4],

∑
i∈[4]

λi = 1

⎫⎬
⎭.

As in the proof of Proposition 8, T5 ⊂ − 15
17T . By using the idea in the proof

of Proposition 8 again, one can show that βX(T, 5) ≤ 3
5 . Therefore, T5 is the

union of 5 subsets of T5 whose diameters are not larger than 9
17δ (T ). It follows

that βX(T, 9) ≤ 9
17 . �

Remark 10. The estimations in Proposition 8 and Proposition 9 are indepen-
dent of the choice of norm on R

3.
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For a convex body K, the Minkowski measure of symmetry, denoted by
s(K), is defined as

s(K) = min {λ > 0 | ∃x ∈ X s.t. K + x ⊂ −λK}.

It is known that

1 ≤ s(K) ≤ n, ∀K ∈ Kn;

the equality on the left holds if and only if K is centrally symmetric, and the
equality on the right holds if and only if K is an n-dimensional simplex (cf.
[29]).

The following lemma shows the stability of βX(K,m) with respect to K.

Lemma 11. Let X = (Rn, ‖·‖), and K and L be two convex bodies in X. If
there exist a number γ ≥ 1 and a point c ∈ R

n such that

K ⊆ L ⊆ γK + c,

then, for each m ∈ Z
+, we have

βX(L,m) ≤ γβX(K,m).

Proof. For each ε > 0, there exists a collection {Ki | i ∈ [m]} of subsets of
γK + c such that

γK + c =
⋃

i∈[m]

Ki

and

δ (Ki) ≤ γδ (K) βX(K,m) + ε ≤ γδ (L) βX(K,m) + ε, ∀i ∈ [m].

Since

L = L ∩ (γK + c) =
⋃

i∈[m]

(L ∩ Ki),

we have

βX(L,m) ≤ γβX(K,m) +
ε

δ (L)
.

Since ε is arbitrary, βX(L,m) ≤ γβX(K,m) as claimed. �

Theorem 12. Let X = (R3, ‖·‖), m ∈ Z
+, and

η = sup
{
βX(T,m) | T is a 3 -dimensional simplex inR3

}
.

We have

β(X,m) ≤ min
ε∈(0,1/3)

max
{(

1 +
4ε

1 − 3ε

)
η,

2(3 − ε)
4 − ε

βX(BX ,m)
}

.
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Proof. Let K be a complete set in X, ε be a number in
(
0, 1

3

)
. We distinguish

two cases.
Case 1. The Banach-Mazur distance from K to three-dimensional sim-

plices is bounded from the above by

1 +
4ε

1 − 3ε
.

Then there exist a tetrahedron T and a point c ∈ R
3 such that

T ⊂ K ⊂
(

1 +
4ε

1 − 3ε

)
T + c.

By Lemma 11, we have

βX(K,m) ≤
(

1 +
4ε

1 − 3ε

)
η.

Case 2. The Banach-Mazur distance from K to three-dimensional simplex
is at least

1 +
4ε

1 − 3ε
.

From Theorem 2.1 in [25], it follows that

s(K) ≤ 3 − ε.

Denote by R(K) the circumradius of K. Theorem 1.1 in [7] shows that

s(K) =
R(K)/δ (K)

1 − R(K)/δ (K)
.

It follows that
R(K)
δ (K)

≤ 3 − ε

4 − ε
.

By a suitable translation if necessary, we may assume that

K ⊆ 3 − ε

4 − ε
δ (K) BX .

For each γ > 0, there exists a collection {Bi | i ∈ [8]} such that

BX =
⋃

i∈[8]

Bi and δ (Bi) ≤ 2βX(BX ,m) + γ, ∀i ∈ [m].

It follows that

βX(K,m) ≤ 2(3 − ε)
4 − ε

βX(BX ,m) +
3 − ε

4 − ε
γ.

Hence

βX(K,m) ≤ 2(3 − ε)
4 − ε

βX(BX ,m).

This completes the proof. �

Corollary 13. Let X = (R3, ‖·‖). If βX(BX , 8) < 221
328 , then β(X, 8) < 1.
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Proof. Since 2(3− 7
57 )

4− 7
57

221
328 = 1 and

2(3 − ε)
4 − ε

= 2 − 2
4 − ε

is continuous with respect to ε on (0, 1
3 ), there exists a number ε0 < 7

57 such
that

2(3 − ε0)
4 − ε0

βX(BX , 8) < 1

It follows that

β(X, 8) ≤ max
{(

1 +
4ε0

1 − 3ε0

)
9
16

,
2(3 − ε0)
4 − ε0

βX(BX , 8)
}

< 1.

�

In particular, Corollary 13 shows that β(l31, 8) < 1 since the unit ball of l31
can be covered by 8 balls having radius 2

3 < 221
328 . By solving the optimization

problem

min
ε∈(0,1/3)

max
{(

1 +
4ε

1 − 3ε

)
9
16

,
2(3 − ε)
4 − ε

2
3

}
,

one can show that β(l31, 8) ≤ 0.989 . . .. This estimation can be improved, see
the next section.

4. An estimation of β
(
l3p, 8

)
Lemma 14. For each p ∈ [1, 2], dM

BM

(
l3p, l

3
∞
)

≤
√
18·19
10 ≈ 1.85.

Proof. Put c1 = (3, 3,−2), c2 = (−2, 3, 3), c3 = (3,−2, 3). Denote by Q the
parallelipiped having⎧⎨

⎩
∑
i∈[3]

σici | σi ∈ {−1, 1}, ∀i ∈ [3]

⎫⎬
⎭

as the set of vertices. We have

max

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑
i∈[3]

σici

∥∥∥∥∥∥
p

| i ∈ [3]

⎫⎪⎬
⎪⎭

= max
{

‖(4, 4, 4)‖p , ‖(−2, 8, −2)‖p , ‖(8, −2, −2)‖p , ‖(2, 2, −8)‖p

}
= max

{
‖(4, 4, 4)‖p , ‖(−2, 8, −2)‖p

}
= ‖(−2, 8, −2)‖p = 2 ‖(−1, 4, −1)‖p = 2 ‖(1, 1, 4)‖p .
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It follows that
1

2 ‖(1, 1, 4)‖p

Q ⊂ B3
p ,

where B3
p is the unit ball of l3p. Let q be the number satisfying

1
p

+
1
q

= 1,

and let f1, f2, f3 be linear functionals defined on l3p such that, for any (α, β, γ) ∈
R

3,

f1((α, β, γ)) =
1

100
(15α − 5β + 15γ),

f2((α, β, γ)) =
1

100
(−5α + 15β + 15γ),

f3((α, β, γ)) =
1

100
(15α + 15β − 5γ).

Then

c3 + span {c1, c2} =
{
x ∈ R

3 | f1(x) = 1
}
,

c2 + span {c1, c3} =
{
x ∈ R

3 | f2(x) = 1
}
,

c1 + span {c2, c3} =
{
x ∈ R

3 | f3(x) = 1
}
.

Thus the distances from the origin o to the facets of Q all equals to
100

‖(15,−5, 15)‖q

.

It follows that

1

2 ‖(1, 1, 4)‖p

Q ⊂ B3
p ⊂ ‖(15, −5, 15)‖q

100
Q =

‖(1, 1, 4)‖p ‖(3, 1, 3)‖q

10

1

2 ‖(1, 1, 4)‖p

Q,

which implies that

dM
BM (l3p, l

3
∞) ≤

‖(1, 1, 4)‖p ‖(3, 1, 3)‖q

10
≤ ‖(1, 1, 4)‖2 ‖(3, 1, 3)‖2

10
=

√
18 · 19
10

.

�

Remark 15. The last inequality in Lemma 14 can be verified in the following
way. Put

f(p) = (4p + 2)
1
p ·
(
2 · 3

p
p−1 + 1

) p−1
p

.

Numerical results show that f ′(p) = 0 has a unique solution p0 ≈ 1.320 in
[1, 2], and

f(p0) ≈ 17.550 < f(2).

Moreover, f(1) < f(2). Thus f(p) is maximized at p = 2.
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Numerical results show that when p ∈ [1, 1.736),

‖(1, 1, 4)‖p ‖(3, 1, 3)‖q

10
≤ 9

5
.

The estimation in Lemma 14 could be improved by choosing points c1, c2, c3
more carefully for different p ∈ [1, 2].

Theorem 16. We have the following estimation:

β
(
l3p, 8

)
≤
{√

18·19
20 , p ∈ [1, 2),

31/p

2 , p ∈ [2,+∞].

Proof. First we consider the case when p ∈ [2,+∞]. By Proposition 37.6 in
[28], dM

BM (l3p, l
3
∞) = 31/p, this together with Theorem 2, implies that β(l3p, 8) ≤

31/p

2 ≤
√
3
2 .

The case when p ∈ [1, 2] follows directly from Lemma 14 and
Theorem 2. �
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