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generalized Fourier–Feynman transform associated with Gaussian process
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this paper are neither centered nor stationary.
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1. Introduction

Let C0[0, T ] denote the classical Wiener space. In [4], Cameron and Storvick
defined the “sequential” Feynman integral by means of finite dimensional ap-
proximations for functionals on the Wiener space C0[0, T ]. The sequential def-
inition for the Feynman path integral was intended to interpret the Feynman’s
uniform measure [12] on continuous paths space C0[0, T ], because there is no
countably additive measure as Lebesgue measure. It is well known that there
is generally no quasi-invariant measure on infinite-dimensional linear spaces,
see [13]. Thus, the Cameron and Storvick’s sequential Feynman integral is a
rigorous mathematical formulation for the Feynman’s path integral. On the
other hand, the concept of the “analytic” Feynman integral on the Wiener
space C0[0, T ] was introduced by Cameron [1]. We refer to the reference [5,
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Section 1] for a heuristic structure of the analytic Feynman integral of func-
tionals on C0[0, T ]. The analytic Feynman integral is not defined in terms of
a countably additive nonnegative measure. Rather, they are defined in terms
of a process of analytic continuation and a limiting procedure. In this reason,
Cameron and Storvick provided the Banach algebra S of analytic Feynman in-
tegrable functionals in [2]. Since then, in [3], Cameron and Storvick expressed
the analytic Feynman integral of functionals in S as the limit of a sequence of
Wiener integrals.

Let D = [0, T ] and let (Ω,B, P ) be a probability space. A generalized
Brownian motion process (GBMP) on Ω × D is a Gaussian process Y ≡
{Yt}t∈D such that Y0 = c almost surely for some constant c ∈ R (in this paper
we set c = 0), and for any 0 ≤ s < t ≤ T ,

Yt − Ys ∼ N
(
a(t) − a(s), b(t) − b(s)

)
,

where N(m,σ2) denotes the normal distribution with mean m and variance
σ2, a(t) is a continuous real-valued function on [0, T ], and b(t) is a monoton-
ically increasing continuous real-valued function on [0, T ]. Thus, the GBMP
Y is determined by the functions a(t) and b(t). For more details, see [14,15].
Note that when a(t) ≡ 0 and b(t) = t, the GBMP is a standard Brownian mo-
tion (Wiener process). We are obliged to point out that a standard Brownian
motion is stationary in time, whereas a GBMP is generally not stationary in
time, and is subject to a drift a(t).

In [8,10], the authors defined the analytic generalized Feynman integral
and the analytic generalized Fourier–Feynman transform (GFFT) on the func-
tion space Ca,b[0, T ], and studied their properties and related topics. The func-
tion space Ca,b[0, T ], induced by a GBMP, was introduced by Yeh in [14], and
was used extensively in [5–11].

In this paper we extend the ideas of [3] to the functionals on the very
general function space Ca,b[0, T ]. But our purpose of this paper is to obtain
an expression of the analytic GFFT as a limit of a sequence of function space
integrals on Ca,b[0, T ]. The result in this paper enables us that the analytic
GFFTs of functionals on the function space Ca,b[0, T ] can be interpreted as a
limit of (non-analytic) function space transform.

The Wiener process used in [1–4] is centered and stationary in time and
is free of drift. However, the Gaussian processes used in this paper, as well as
in [6,7], are neither centered nor stationary.

2. Preliminaries

In this section we first provide a brief background and some well-known results
about the function space Ca,b[0, T ] induced by the GBMP.

Let a(t) be an absolutely continuous real-valued function on [0, T ] with
a(0) = 0 and a′(t) ∈ L2[0, T ], and let b(t) be an increasing and continu-
ously differentiable real-valued function with b(0) = 0 and b′(t) > 0 for each
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t ∈ [0, T ]. The GBMP Y determined by a(t) and b(t) is a Gaussian pro-
cess with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}.
For more details, see [5,7,8,10,14,15]. By Theorem 14.2 in [15], the prob-
ability measure μ induced by Y , taking a separable version, is supported by
Ca,b[0, T ] (which is equivalent to the Banach space of continuous functions x on
[0, T ] with x(0) = 0 under the sup norm). Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), μ)
is the function space induced by Y where B(Ca,b[0, T ]) is the Borel σ-field
of Ca,b[0, T ]. We then complete this function space to obtain the measure
space (Ca,b[0, T ],W(Ca,b[0, T ]), μ) where W(Ca,b[0, T ]) is the set of all μ-
Carathéodory measurable subsets of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρB is W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable
set N is said to be scale-invariant null provided μ(ρN) = 0 for all ρ > 0. A prop-
erty that holds except on a scale-invariant null set is said to hold scale-invariant
almost everywhere (s-a.e.). A functional F is said to be scale-invariant mea-
surable provided F is defined on a scale-invariant measurable set and F (ρ · ) is
W(Ca,b[0, T ])-measurable for every ρ > 0. If two functionals F and G defined
on Ca,b[0, T ] are equal s-a.e., we write F ≈ G.

Remark 2.1. The function space Ca,b[0, T ] reduces to the Wiener space C0[0, T ],
considered in papers [1–4] if and only if a(t) ≡ 0 and b(t) = t for all t ∈ [0, T ].

Let L2
a,b[0, T ] (see [8] and [10]) be the space of functions on [0, T ] which

are Lebesgue measurable and square integrable with respect to the Lebesgue–
Stieltjes measures on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < +∞ and
∫ T

0

v2(s)d|a|(s) < +∞
}

where |a|(·) denotes the total variation function of a(·). Then L2
a,b[0, T ] is a

separable Hilbert space with inner product defined by

(u, v)a,b =
∫ T

0

u(t)v(t)dm|a|,b(t) ≡
∫ T

0

u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by |a|(·) and b(·).
In particular, note that ‖u‖a,b ≡ √

(u, u)a,b = 0 if and only if u(t) = 0 a.e. on
[0, T ]. For more details, see [8,10].

Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let D : C ′

a,b[0, T ] →
L2

a,b[0, T ] be defined by the formula

Dw(t) = z(t) =
w′(t)
b′(t)

. (2.1)
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Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=
∫ T

0

Dw1(t)Dw2(t)db(t)

is a separable Hilbert space. For more details, see [6,7].
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C ′
a,b[0, T ] are

(topologically) homeomorphic under the linear operator given by Eq. (2.1).
The inverse operator of D is given by

(D−1z)(t) =
∫ t

0

z(s)db(s), t ∈ [0, T ].

In the case that a(t) ≡ 0, then the operator D : C ′
0,b[0, T ] → L2

0,b[0, T ] is an
isometry.

In this paper, in addition to the conditions put on a(t) above, we now
add the condition

∫ T

0

|a′(t)|2d|a|(t) < +∞ (2.2)

from which it follows that
∫ T

0

|Da(t)|2d[b(t) + |a|(t)] =
∫ T

0

∣
∣
∣
∣
a′(t)
b′(t)

∣
∣
∣
∣

2

d[b(t) + |a|(t)]

< M‖a′‖L2[0,T ] + M2

∫ T

0

|a′(t)|2d|a|(t) < +∞,

where M = supt∈[0,T ](1/b′(t)). Thus, the function a : [0, T ] → R satisfies
the condition (2.2) if and only if a(·) is an element of C ′

a,b[0, T ]. Under the
condition (2.2), we observe that for each w ∈ C ′

a,b[0, T ] with Dw = z,

(w, a)C′
a,b

=
∫ T

0

Dw(t)Da(t)db(t) =
∫ T

0

z(t)da(t).

Let {en}∞
n=1 be a complete orthonormal set in (C ′

a,b[0, T ], ‖ · ‖C′
a,b

) such
that the Den’s are of bounded variation on [0, T ]. For w ∈ C ′

a,b[0, T ] and x ∈
Ca,b[0, T ], we define the Paley–Wiener–Zygmund (PWZ) stochastic integral
(w, x)∼ as follows:

(w, x)∼ = lim
n→∞

∫ T

0

n∑

j=1

(w, ej)C′
a,b

Dej(t)dx(t)

if the limit exists.
We will emphasize the following fundamental facts. For each w ∈ C ′

a,b[0, T ],
the PWZ stochastic integral (w, x)∼ exists for a.e. x ∈ Ca,b[0, T ]. If Dw = z ∈
L2

a,b[0, T ] is of bounded variation on [0, T ], then the PWZ stochastic inte-

gral (w, x)∼ equals the Riemann–Stieltjes integral
∫ T

0
z(t)dx(t). Furthermore,

for each w ∈ C ′
a,b[0, T ], (w, x)∼ is a Gaussian random variable with mean
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(w, a)C′
a,b

and variance ‖w‖2C′
a,b

. Thus, for an orthogonal set {g1, . . . , gn} of
nonzero functions in (C ′

a,b[0, T ], ‖ · ‖C′
a,b

) and a Lebesgue measurable function
f : Rn → C, it follows that

∫

Ca,b[0,T ]

f
(
(g1, x)∼, . . . , (gn, x)∼)

dμ(x)

=
( n∏

j=1

2π‖gj‖2C′
a,b

)−n/2 ∫

Rn

f(u1, . . . , un)

× exp
{

−
n∑

j=1

[uj − (gj , a)C′
a,b

]2

2‖gj‖2C′
a,b

}
du1 · · · dun

(2.3)

in the sense that if either side of Eq. (2.3) exists, both sides exist and equality
holds. Also we note that for w, x ∈ C ′

a,b[0, T ], (w, x)∼ = (w, x)C′
a,b

.
The following integration formula on the function space Ca,b[0, T ] is also

used in this paper:
∫

R

exp
{ − αu2 + βu

}
du =

√
π

α
exp

{β2

4α

}
(2.4)

for complex numbers α and β with Re(α) > 0.

3. Gaussian Processes

Let C∗
a,b[0, T ] be the set of functions k in C ′

a,b[0, T ] such that Dk is continuous
except for a finite number of finite jump discontinuities and is of bounded
variation on [0, T ]. For any w ∈ C ′

a,b[0, T ] and k ∈ C∗
a,b[0, T ], let the operation


 between C ′
a,b[0, T ] and C∗

a,b[0, T ] be defined by

w 
 k = D−1(DwDk),

where DwDk denotes the pointwise multiplication of the functions Dw and
Dk. Then (C∗

a,b[0, T ],
) is a commutative algebra with the identity b. For a
more detailed study of the operation 
, see [7].

For each t ∈ [0, T ], let Φt(τ) = D−1χ[0,t](τ) =
∫ τ

0
χ[0,t](u)db(u), τ ∈

[0, T ], and for k ∈ C ′
a,b[0, T ] with Dk �= 0 mL-a.e. on [0, T ] (mL denotes the

Lebesgue measure on [0, T ]), let Zk(x, t) be the PWZ stochastic integral

Zk(x, t) = (k 
 Φt, x)∼, (3.1)

let βk(t) =
∫ t

0
{Dk(u)}2db(u), and let αk(t) =

∫ t

0
Dk(u)da(u). Then Zk :

Ca,b[0, T ] × [0, T ] → R is a Gaussian process with mean function
∫

Ca,b[0,T ]

Zk(x, t)dμ(x) =
∫ t

0

Dk(u)da(u) = αk(t)
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and covariance function
∫

Ca,b[0,T ]

(Zk(x, s) − αk(s)
)(Zk(x, t) − αk(t)

)
dμ(x)

=
∫ min{s,t}

0

{Dk(u)}2db(u) = βk(min{s, t}).

In addition, by [15, Theorem 21.1], Zk(·, t) is stochastically continuous in t
on [0, T ]. If Dk is of bounded variation on [0, T ], then, for all x ∈ Ca,b[0, T ],
Zk(x, t) is continuous in t. Also, for any functions k1 and k2 in C ′

a,b[0, T ],
∫

Ca,b[0,T ]

Zk1(x, s)Zk2(x, t)dμ(x)

=
∫ min{s,t}

0

Dk1(u)Dk2(u)db(u) +
∫ s

0

Dk1(u)da(u)
∫ t

0

Dk2(u)da(u).

Of course if k(t) ≡ b(t), then Zb(x, t) = x(t), the continuous sample paths of
the GBMP Y , of which the function space Ca,b[0, T ] consists. Choosing a(t) ≡ 0
and b(t) = t on [0, T ], as commented in Remark 2.1 above, the function space
Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ], and thus the Gaussian
process (3.1) with k(t) ≡ t is an ordinary Wiener process.

From the properties of the PWZ stochastic integral and the operation 

between C ′

a,b[0, T ] and C∗
a,b[0, T ], it follows that for all ρ ∈ R,

ρZk(x, t) = Zρk(x, t) = Zk(ρx, t),

and for any w ∈ C ′
a,b[0, T ] and each k ∈ C∗

a,b[0, T ],

(w,Zk(x, ·))∼ = (w 
 k, x)∼ (3.2)

for μ-a.e. x ∈ Ca,b[0, T ]. Thus, throughout the remainder of this paper, we
require k to be in C∗

a,b[0, T ] for each process Zk.
We define a class of those functions as follows: let

SuppC∗
a,b

[0, T ] = {k ∈ C∗
a,b[0, T ] : Dk �= 0 mL-a.e on [0, T ]}.

Then for any k ∈ SuppC∗
a,b

[0, T ], the Lebesgue–Stieltjes integrals

‖w 
 k‖2C′
a,b

=
∫ T

0

(Dw(t))2(Dk(t))2db(t)

and

(w 
 k, a)C′
a,b

=
∫ T

0

Dw(t)Dk(t)Da(t)db(t) =
∫ T

0

Dw(t)Dk(t)da(t)

exist for all w ∈ C ′
a,b[0, T ].



Vol. 76 (2021) Analytic Generalized Fourier–Feynman Transform Page 7 of 15 108

4. Transforms on the Class of Exponential-Type Functionals

Given a function k ∈ SuppC∗
a,b

[0, T ], we define the generalized Zk-function
space integral (namely, the function space integral associated with the Gauss-
ian paths Zk(x, ·)) for functionals F on Ca,b[0, T ] by the formula

Ik[F ] ≡ Ik,x[F (Zk(x, ·))] =
∫

Ca,b[0,T ]

F
(Zk(x, ·))dμ(x).

Throughout this paper, let C, C+ and C̃+ denote the set of complex num-
bers, complex numbers with positive real part, and non-zero complex numbers
with nonnegative real part, respectively. Furthermore, for each λ ∈ C, λ1/2

denotes the principal square root of λ, i.e., λ1/2 is always chosen to have non-
negative real part.

Definition 4.1. Given a function k ∈ SuppC∗
a,b

[0, T ], let Zk be the Gaussian
process given by (3.1) and let F be a C-valued scale-invariant measurable
functional on Ca,b[0, T ] such that

JF (Zk;λ) = Ik,x[F (λ−1/2Zk(x, ·))]
exists and is finite for all λ > 0. If there exists a function J∗

F (Zk;λ) analytic
on C+ such that J∗

F (Zk;λ) = JF (Zk;λ) for all λ ∈ (0,+∞), then J∗
F (Zk;λ)

is defined to be the analytic Zk-function space integral (namely, the analytic
function space integral associated with the Gaussian paths Zk(x, ·)) of F over
Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write

Ianλ

k [F ] ≡ Ianλ

k,x [F (Zk(x, ·))] ≡
∫ anλ

Ca,b[0,T ]

F
(Zk(x, ·))dμ(x) := J∗

F (Zk;λ).(4.1)

Let q be a non-zero real number and let F be a measurable functional
whose analytic Zk-function space integral J∗

F (Zk;λ) exists for all λ in C+.
If the following limit exists, we call it the analytic generalized Zk-Feynman
integral (namely, the analytic generalized Feynman integral associated with
the paths Zk(x, ·)) of F with parameter q and we write

I
anfq

k [F ] ≡ I
anfq

k,x [F (Zk(x, ·))] = lim
λ→−iq

Ianλ

k,x [F (Zk(x, ·))], (4.2)

where λ approaches −iq through values in C+.

Next we state the definition of the analytic GFFT associated with Gauss-
ian process on function space.

Definition 4.2. Given a function k ∈ SuppC∗
a,b

[0, T ], let Zk be the Gaussian
process given by (3.1) and let F be a scale-invariant measurable functional on
Ca,b[0, T ] such that for all λ ∈ C+ and y ∈ Ca,b[0, T ], the following analytic
Zk-function space integral

Tλ,k(F )(y) = Ianλ

k,x [F (y + Zk(x, ·))]
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exists. Let q be a non-zero real number. For p ∈ (1, 2], we define the Lp analytic
Zk-GFFT (namely, the GFFT associated with the paths Zk(x, ·)), T

(p)
q,k (F ) of

F , by the formula,

T
(p)
q,k (F )(y) = l. i.m.

λ→−iq
λ∈C+

Tλ,k(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq
λ∈C+

∫

Ca,b[0,T ]

∣
∣Tλ,k(F )(ρy) − T

(p)
q,k (F )(ρy)

∣
∣p

′
dμ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic Zk-GFFT, T
(1)
q,k (F ) of F , by

the formula

T
(1)
q,k (F )(y) = lim

λ→−iq
λ∈C+

Tλ,k(F )(y) = I
anfq

k,x [F (y + Zk(x, ·))] (4.3)

for s-a.e. y ∈ Ca,b[0, T ], if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q,k (F ) is defined only s-a.e.. We also note

that if T
(p)
q,k (F ) exists and if F ≈ G, then T

(p)
q,k (G) exists and T

(p)
q,k (G) ≈ T

(p)
q,k (F ).

Moreover, from Eqs. (4.2), (4.1), and (4.3), it follows that

I
anfq

k [F ] ≡ I
anfq

k,x [F (Zk(x, ·))] = T
(1)
q,k (F )(0) (4.4)

in the sense that if either side exists, then both sides exist and equality holds.

Remark 4.3. Note that if k ≡ b on [0, T ], then the analytic generalized Zb-
Feynman integral, I

anfq

b [F ], and the Lp analytic Zb-GFFT, T
(p)
q,b (F ) agree with

the previous definitions of the analytic generalized Feynman integral and the
analytic GFFT respectively [5,8,10].

Let E be the class of all functionals which have the form

Ψw(x) = exp{(w, x)∼} (4.5)

for some w ∈ C ′
a,b[0, T ] and for s-a.e. x ∈ Ca,b[0, T ]. More precisely, since we

shall identify functionals which coincide s-a.e. on Ca,b[0, T ], the class E can
be regarded as the space of all s-equivalence classes of functionals of the form
(4.5).

Given q ∈ R\{0}, τ ∈ C ′
a,b[0, T ], and k ∈ C∗

a,b[0, T ], let Eq,τ,k be the class
of all functionals having the form

Ψ q,τ,k
w (x) = Ka

q,τ,kΨw(x) (4.6)

for s-a.e. x ∈ Ca,b[0, T ], where Ψw is given by Eq. (4.5) and Ka
q,τ,k is a complex

number given by

Ka
q,τ,k = exp

{
i

2q
‖τ 
 k‖2C′

a,b
+ (−iq)−1/2(τ 
 k, a)C′

a,b

}
. (4.7)
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The functionals given by Eq. (4.6) and linear combinations (with complex co-
efficients) of the Ψ q,τ,k

w ’s are called the (partially) exponential-type functionals
on Ca,b[0, T ].

For notational convenience, let Ψ0,τ,k
w (x) = Ψw(x) and let E0,τ,k = E .

Then for any (q, τ, k) ∈ R × C ′
a,b[0, T ] × C∗

a,b[0, T ], the class Eq,τ,k is dense in
L2(Ca,b[0, T ]), see [9,11]. We then define the class E(Ca,b[0, T ]) to be the linear
span of E , i.e., E(Ca,b[0, T ]) = SpanE .

Remark 4.4. (i) One can see that E(Ca,b[0, T ]) = SpanEq,τ,k for every (q, τ, k) ∈
R × C ′

a,b[0, T ] × C∗
a,b[0, T ].

(ii) The linear space E(Ca,b[0, T ]) is a commutative (complex) algebra under
the pointwise multiplication and with identity Ψ0 ≡ 1 because

Ψ q1,τ1,k1
w1

(x)Ψ q2,τ2,k2
w2

(x) = Ka
q1,τ1,k1

Ka
q2,τ2,k2

Ψw1+w2(x)

for μ-a.e. x ∈ Ca,b[0, T ].
(iii) Note that every exponential-type functional is scale-invariant measurable.

Since we shall identify functionals which coincide s-a.e. on Ca,b[0, T ],
E(Ca,b[0, T ]) can be regarded as the space of all s-equivalence classes of
exponential-type functionals.

The following two theorems are due to by Chang and Choi [6].

Theorem 4.5. Let Ψw ∈ E be given by Eq. (4.5). Then for all p ∈ [1, 2], any
non-zero real number q, and each function k in SuppC∗

a,b
[0, T ], the Lp analytic

Zk-GFFT of Ψw, T
(p)
q,k (Ψw) exists and is given by the formula

T
(p)
q,k (Ψw) ≈ Ψ q,w,k

w , (4.8)

where Ψ q,w,k
w is given by Eq. (4.6) with τ replaced with w. Thus, T

(p)
q,k(Ψw) is an

element of E(Ca,b[0, T ]).

Let F be a functional in E(Ca,b[0, T ]). Since E(Ca,b[0, T ]) = SpanE , there
exist a finite sequence {w1, . . . , wn} of functions in C ′

a,b[0, T ], and a sequence
{c1, . . . , cn} in C \ {0} such that

F ≈
n∑

j=1

cjΨwj
. (4.9)

Then for all p ∈ [1, 2], any non-zero real number q, and each function k in
SuppC∗

a,b
[0, T ], the Lp analytic Zk-GFFT of F , T

(p)
q,k (F ) exists and is given by

the formula

T
(p)
q,k (F ) ≈

n∑

j=1

cjT
(p)
q,k (Ψwj

) ≈
n∑

j=1

cjΨ
q,wj ,k
wj

,

where Ψ
q,wj ,k
wj is given by Eq. (4.6) with τ and w replaced with wj and wj , for

each j ∈ {1, . . . , n}, respectively.
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Theorem 4.6. For all p ∈ [1, 2], any q ∈ R \ {0}, and each k ∈ SuppC∗
a,b

[0, T ],

the Lp analytic Zk-GFFT, T
(p)
q,k : E(Ca,b[0, T ]) → E(Ca,b[0, T ]) is an onto

transform.

5. Relationship Between the Zk -Fourier–Feynman Transform
and the Function Space Integral

In this section, we establish a relationship between the analytic Zk-GFFT and
the Zk-function space integral of functionals in the class E(Ca,b[0, T ]).

Throughout this section, for convenience, we use the following notation:
for ζ ∈ C̃+ and n = 1, 2, . . ., let

Gn(ζ, x)

= exp
{[

1 − ζ

2

] n∑

j=1

[(ej , x)∼]2 + (ζ1/2 − 1)
n∑

j=1

(ej , a)C′
a,b

(ej , x)∼
}

,
(5.1)

where {en}∞
n=1 is a complete orthonormal set of functions in C ′

a,b[0, T ].

Lemma 5.1. Let k be a function in SuppC∗
a,b

[0, T ], let {e1, . . . , en} be an or-
thonormal set of functions in C ′

a,b[0, T ], and let w be a function in C ′
a,b[0, T ].

Then for each ζ ∈ C+, and n ∈ N, the functional exp
{
(w 
 k, x)∼}

Gn(ζ, x)
is μ-integrable, where Gn is given by (5.1). Also, it follows that

Wn(w; k; ζ) ≡
∫

Ca,b[0,T ]

exp
{
(w 
 k, x)∼}

Gn(ζ, x)dμ(x)

= ζ−n/2 exp
{

1
2ζ

n∑

j=1

(ej , w 
 k)2C′
a,b

+
1
2

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]

+ζ−1/2
n∑

j=1

(ej , a)C′
a,b

(ej , w 
 k)C′
a,b

+(ew�k
n+1 , a)C′

a,b

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]1/2}
, (5.2)

where

ew�k
n+1 =

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]−1/2

×
{

w 
 k −
n∑

j=1

(ej , w 
 k)C′
a,b

ej

}
.

Proof. We note that given two functions k ∈ SuppC∗
a,b

[0, T ] and w ∈ C ′
a,b[0, T ],

w 
 k is an element of C ′
a,b[0, T ]. Using the Gram–Schmidt process, we obtain
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ew�k
n+1 ∈ C ′

a,b[0, T ] such that {e1, . . . , en, ew�k
n+1 } forms an orthonormal set in

C ′
a,b[0, T ] and

w 
 k =
n∑

j=1

cjej + cn+1e
w�k
n+1

where

cj =

{
(ej , w 
 k)C′

a,b
, j = 1, . . . , n

[‖w 
 k‖2C′
a,b

− ∑n
j=1(ej , w 
 k)2C′

a,b

]1/2
, j = n + 1

.

Next, for ζ ∈ C+, using (5.1), (2.3), the Fubini theorem, and (2.4), it follows
that

∫

Ca,b[0,T ]

exp{(w 
 k, x)∼}Gn(ζ, x)dμ(x)

= (2π)−(n+1)/2

∫

Rn+1
exp

{[
1 − ζ

2

] n∑

j=1

u2
j + (ζ1/2 − 1)

n∑

j=1

(ej , a)C′
a,b

uj

+
n+1∑

j=1

cjuj − 1
2

n∑

j=1

[uj − (ej , a)C′
a,b

]2 − 1
2
[un+1 − (ew�k

n+1 , a)C′
a,b

]2
}

× du1 · · · dundun+1

=

(
n∏

j=1

(2π)−1/2

∫

R

exp
{

− ζ

2
u2

j + [ζ1/2(ej , a)C′
a,b

+ cj ]uj

}
duj

)

×
(

(2π)−1/2

∫

R

exp
{

− 1
2
u2

n+1 + [(ew�k
n+1 , a)C′

a,b
+ cn+1]un+1

}
dun+1

)

× exp
{

− 1
2

n∑

j=1

(ej , a)2C′
a,b

− 1
2
(ew�k

n+1 , a)2C′
a,b

}

= ζ−n/2 exp
{

ζ−1/2
n∑

j=1

(ej , a)C′
a,b

cj +
1
2ζ

n∑

j=1

c2j

+ (ew�k
n+1 , a)C′

a,b
cn+1 +

1
2
c2n+1

}

= ζ−n/2 exp
{

ζ−1/2
n∑

j=1

(ej , a)C′
a,b

(ej , w 
 k)C′
a,b

+
1
2ζ

n∑

j=1

(ej , w 
 k)2C′
a,b

+ (ew�k
n+1 , a)C′

a,b

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]1/2

+
1
2

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]}
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as desired. �

In our next theorem we express the analytic Zk-GFFT of functionals in
E(Ca,b[0, T ]) as the limit of a sequence of Zk-function space integrals.

Theorem 5.2. Let F ∈ E(Ca,b[0, T ]) be given by Eq. (4.9). Given a non-zero
real number q, let {ζn} be a sequence in C+ such that ζn → −iq. Then, for all
p ∈ [1, 2], and each function k in SuppC∗

a,b
[0, T ], it follows that

T
(p)
q,k (F )(y) = lim

n→∞ ζn/2
n

∫

Ca,b[0,T ]

F
(
y + Zk(x, ·))Gn(ζn, x)dμ(x), (5.3)

for s-a.e. y ∈ Ca,b[0, T ], where Gn is given by Eq. (5.1).

Proof. In view of Theorems 4.5 and 4.6 , it will suffice to show that Eq. (5.3)
with p and F replaced with 1 and Ψw holds true.

From Theorem 4.5, we know that the L1 analytic Zk-GFFT of Ψw given
by (4.5), T

(1)
q,k (Ψw), exists. Using (4.5), (3.2), the Fubini theorem, and the first

expression of (5.2) with ζ replaced with ζn, it follows that for all n ∈ N,

ζn/2
n

∫

Ca,b[0,T ]

Ψw

(
y + Zk(x, ·))Gn(ζn, x)dμ(x)

= ζn/2
n exp{(w, y)∼}

[ ∫

Ca,b[0,T ]

exp{(w 
 k, x)∼}Gn(ζn, x)dμ(x)
]

= exp{(w, y)∼}ζn/2
n Wn(w; k; ζn).

(5.4)

Next, using (5.4), (5.2), Parseval’s relation, (4.7), (4.5), (4.6) with τ replaced
with w, and (4.8) with p = 1, it follows that

lim
n→∞ ζn/2

n

∫

Ca,b[0,T ]

Ψw

(
y + Zk(x, ·))Gn(ζn, x)dμ(x)

= exp{(w, y)∼} lim
n→∞ ζn/2

n Wn(w; k; ζn)

= exp
{

(w, y)∼ + lim
n→∞

1
2ζn

n∑

j=1

(ej , w 
 k)2C′
a,b

+
1
2

lim
n→∞

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]

+ lim
n→∞ ζ−1/2

n

n∑

j=1

(ej , a)C′
a,b

(ej , w 
 k)C′
a,b

+ lim
n→∞(en+1, a)C′

a,b

[
‖w 
 k‖2C′

a,b
−

n∑

j=1

(ej , w 
 k)2C′
a,b

]1/2}

= exp{(w, y)∼}Ka
q,w,k

= Ψw(y)Ka
q,w,k
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= Ψ q,τ,k
w (y)

= T
(1)
q,k (Ψw)(y)

for s-a.e. y ∈ Ca,b[0, T ], as desired. �
The following corollary follows immediately from (4.4) and (5.3).

Corollary 5.3. Let F , q and {ζn} be as in Theorem 5.2. Then, for each function
k in SuppC∗

a,b
[0, T ], it follows that

I
anfq

k [F ] = lim
n→∞ ζn/2

n

∫

Ca,b[0,T ]

F
(Zk(x, ·))Gn(ζn, x)dμ(x),

where Gn is given by Eq. (5.1).

We establish our next corollary after a careful examination of the proof
of Theorem 5.2, and by using Eq. (4.1) instead of (4.4).

Corollary 5.4. Let F ∈ E(Ca,b[0, T ]) be given by Eq. (4.9). Let λ ∈ C+, and
let {ζn} be a sequence in C+ such that ζn → λ. Then, for each function k in
SuppC∗

a,b
[0, T ], it follows that

Ianλ

k [F ] = lim
n→∞ ζn/2

n

∫

Ca,b[0,T ]

F
(Zk(x, ·))Gn(ζn, x)dμ(x), (5.5)

where Gn is given by Eq. (5.1).

Our next result, namely a change of scale formula for function space
integrals, now follows easily by Corollary 5.4 above.

Corollary 5.5. Let F ∈ E(Ca,b[0, T ]) be given by Eq. (4.9). Then for any ρ > 0,
and each function k in SuppC∗

a,b
[0, T ], it follows that

∫

Ca,b[0,T ]

F (ρZk(x, ·))dμ(x) = lim
n→∞ ρ−n

∫

Ca,b[0,T ]

F (Zk(x, ·))Gn(ρ−2, x)dμ(x),(5.6)

where Gn is given by Eq. (5.1).

Proof. Note that for every F ∈ E(Ca,b[0, T ]) and all ρ > 0, the function space
integral in the left-hand side of (5.6) exists. To ensure the equality in (5.6),
simply choose λ = ρ−2 and ζn = ρ−2 for every n ∈ N in (5.5). �

6. Concluding Remark

It is known that the class E(Ca,b[0, T ]) is a dense subspace of the space
L2(Ca,b[0, T ]). For a related work, see [9,11]. Thus, using the L2-approximation
[11, Remark 4], one can develop the sequential approximation such as Eq. (5.3)
for functionals F in L2(Ca,b[0, T ]) whose Lp analytic Zk-GFFT T

(p)
q,k (F ) ex-

ists. But, there exists a (bounded) functional F in L2(Ca,b[0, T ]) whose Lp

Zk-GFFT T
(p)
q,k (F ) does not exist, see [5].
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Indeed, the class E(Ca,b[0, T ]) is a very rich class of functionals on Ca,b[0, T ].
It contains many meaningful functionals which discussed in quantum mechan-
ics. We finish this paper with a very simple example for such functionals, which
arises in quantum mechanics.

Example 6.1. Consider the functional FS given by

FS(x) = exp
{∫ T

0

x(t)db(t)
}

for s-a.e. x ∈ Ca,b[0, T ]. Then FS is an element of E(Ca,b[0, T ]) because

FS(x) = exp
{
(Sb, x)∼)

}

where S : C ′
a,b[0, T ] → C ′

a,b[0, T ] is an operator defined by

Sw(t) =
∫ t

0

[w(T ) − w(s)]db(s).

One can see that the adjoint operator S∗ of S is given by

S∗w(t) =
∫ t

0

w(s)db(s).
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