Results Math (2021) 76:108 -c 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG 1422-6383/21/020001-15 *published online* April 30, 2021 published online April 30, 2021
https://doi.org/10.1007/s00025-021-01421-6 **Results in Mathematics**

Relationship Between the Analytic Generalized Fourier–Feynman Transform and the Function Space Integral

Jae G[i](http://orcid.org/0000-0001-6508-9788)l Choio

Abstract. In this paper we investigated a relationship between the analytic generalized Fourier–Feynman transform associated with Gaussian process and the function space integral for exponential type functionals on the function space $C_{a,b}[0,T]$. The function space $C_{a,b}[0,T]$ can be induced by a generalized Brownian motion process. The Gaussian processes used in this paper are neither centered nor stationary.

Mathematics Subject Classification. Primary 46G12; Secondary 28C20, 60G15, 42B10.

Keywords. generalized Brownian motion process, analytic generalized Fourier– Feynman transform, Gaussian process, exponential type functional.

1. Introduction

Let $C_0[0,T]$ denote the classical Wiener space. In [\[4\]](#page-13-0), Cameron and Storvick defined the "*sequential*" Feynman integral by means of finite dimensional approximations for functionals on the Wiener space $C_0[0, T]$. The sequential definition for the Feynman path integral was intended to interpret the Feynman's uniform measure [\[12](#page-14-0)] on continuous paths space $C_0[0,T]$, because there is no countably additive measure as Lebesgue measure. It is well known that there is generally no quasi-invariant measure on infinite-dimensional linear spaces, see [\[13\]](#page-14-1). Thus, the Cameron and Storvick's sequential Feynman integral is a rigorous mathematical formulation for the Feynman's path integral. On the other hand, the concept of the "*analytic*" Feynman integral on the Wiener space $C_0[0,T]$ was introduced by Cameron [\[1\]](#page-13-1). We refer to the reference [\[5,](#page-13-2)

B Birkhäuser

Section 1] for a heuristic structure of the analytic Feynman integral of functionals on $C_0[0,T]$. The analytic Feynman integral is not defined in terms of a countably additive nonnegative measure. Rather, they are defined in terms of a process of analytic continuation and a limiting procedure. In this reason, Cameron and Storvick provided the Banach algebra S of analytic Feynman integrable functionals in [\[2\]](#page-13-4). Since then, in [\[3\]](#page-13-5), Cameron and Storvick expressed the analytic Feynman integral of functionals in $\mathcal S$ as the limit of a sequence of Wiener integrals.

Let $D = [0, T]$ and let (Ω, \mathcal{B}, P) be a probability space. A generalized Brownian motion process (GBMP) on $\Omega \times D$ is a Gaussian process $Y \equiv$ ${Y_t}_{t\in D}$ such that $Y_0 = c$ almost surely for some constant $c \in \mathbb{R}$ (in this paper we set $c = 0$, and for any $0 \leq s < t \leq T$,

$$
Y_t - Y_s \sim N\big(a(t) - a(s), b(t) - b(s)\big),
$$

where $N(m, \sigma^2)$ denotes the normal distribution with mean m and variance σ^2 , $a(t)$ is a continuous real-valued function on [0, T], and $b(t)$ is a monotonically increasing continuous real-valued function on $[0, T]$. Thus, the GBMP Y is determined by the functions $a(t)$ and $b(t)$. For more details, see [\[14](#page-14-2)[,15\]](#page-14-3). Note that when $a(t) \equiv 0$ and $b(t) = t$, the GBMP is a standard Brownian motion (Wiener process). We are obliged to point out that a standard Brownian motion is stationary in time, whereas a GBMP is generally not stationary in time, and is subject to a drift $a(t)$.

In [\[8](#page-14-4)[,10\]](#page-14-5), the authors defined the analytic generalized Feynman integral and the analytic generalized Fourier–Feynman transform (GFFT) on the function space $C_{a,b}[0,T]$, and studied their properties and related topics. The function space $C_{a,b}[0,T]$, induced by a GBMP, was introduced by Yeh in [\[14\]](#page-14-2), and was used extensively in [\[5](#page-13-2)[–11](#page-14-6)].

In this paper we extend the ideas of [\[3](#page-13-5)] to the functionals on the very general function space $C_{a,b}[0,T]$. But our purpose of this paper is to obtain an expression of the analytic GFFT as a limit of a sequence of function space integrals on $C_{a,b}[0,T]$. The result in this paper enables us that the analytic GFFTs of functionals on the function space $C_{a,b}[0,T]$ can be interpreted as a limit of (non-analytic) function space transform.

The Wiener process used in [\[1](#page-13-1)[–4\]](#page-13-0) is centered and stationary in time and is free of drift. However, the Gaussian processes used in this paper, as well as in [\[6,](#page-13-6)[7](#page-14-7)], are neither centered nor stationary.

2. Preliminaries

In this section we first provide a brief background and some well-known results about the function space $C_{a,b}[0,T]$ induced by the GBMP.

Let $a(t)$ be an absolutely continuous real-valued function on $[0, T]$ with $a(0) = 0$ and $a'(t) \in L^2[0,T]$, and let $b(t)$ be an increasing and continuously differentiable real-valued function with $b(0) = 0$ and $b'(t) > 0$ for each

 $t \in [0, T]$. The GBMP Y determined by $a(t)$ and $b(t)$ is a Gaussian process with mean function $a(t)$ and covariance function $r(s, t) = \min\{b(s), b(t)\}.$ For more details, see $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$ $[5,7,8,10,14,15]$. By Theorem 14.2 in [\[15](#page-14-3)], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a,b}[0,T]$ (which is equivalent to the Banach space of continuous functions x on $[0, T]$ with $x(0) = 0$ under the sup norm). Hence, $(C_{a,b}[0, T], \mathcal{B}(C_{a,b}[0, T]), \mu)$ is the function space induced by Y where $\mathcal{B}(C_{a,b}[0,T])$ is the Borel σ -field of $C_{a,b}[0,T]$. We then complete this function space to obtain the measure space $(C_{a,b}[0,T], \mathcal{W}(C_{a,b}[0,T]), \mu)$ where $\mathcal{W}(C_{a,b}[0,T])$ is the set of all μ -Carathéodory measurable subsets of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable provided ρB is $W(C_{a,b}[0,T])$ -measurable for all $\rho > 0$, and a scale-invariant measurable set N is said to be scale-invariant null provided $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). A functional F is said to be scale-invariant measurable provided F is defined on a scale-invariant measurable set and $F(\rho \cdot)$ is $W(C_{a,b}[0,T])$ -measurable for every $\rho > 0$. If two functionals F and G defined on $C_{a,b}[0,T]$ are equal s-a.e., we write $F \approx G$.

Remark 2.1. The function space $C_{a,b}[0,T]$ reduces to the Wiener space $C_0[0,T]$, considered in papers $[1-4]$ $[1-4]$ if and only if $a(t) \equiv 0$ and $b(t) = t$ for all $t \in [0, T]$.

Let $L^2_{a,b}[0,T]$ (see [\[8\]](#page-14-4) and [\[10](#page-14-5)]) be the space of functions on $[0,T]$ which are Lebesgue measurable and square integrable with respect to the Lebesgue– Stieltjes measures on [0, T] induced by $a(\cdot)$ and $b(\cdot)$; i.e.,

$$
L_{a,b}^{2}[0,T] = \left\{ v : \int_{0}^{T} v^{2}(s)db(s) < +\infty \text{ and } \int_{0}^{T} v^{2}(s)d|a|(s) < +\infty \right\}
$$

where $|a|(\cdot)$ denotes the total variation function of $a(\cdot)$. Then $L^2_{a,b}[0,T]$ is a separable Hilbert space with inner product defined by

$$
(u, v)_{a,b} = \int_0^T u(t)v(t)dm_{|a|,b}(t) \equiv \int_0^T u(t)v(t)d[b(t) + |a|(t)],
$$

where $m_{|a|,b}$ denotes the Lebesgue–Stieltjes measure induced by $|a|(\cdot)$ and $b(\cdot)$. In particular, note that $||u||_{a,b} \equiv \sqrt{(u, u)_{a,b}} = 0$ if and only if $u(t) = 0$ a.e. on $[0, T]$. For more details, see $[8, 10]$ $[8, 10]$.

Let

$$
C'_{a,b}[0,T] = \left\{ w \in C_{a,b}[0,T] : w(t) = \int_0^t z(s)db(s) \text{ for some } z \in L^2_{a,b}[0,T] \right\}.
$$

For $w \in C'_{a,b}[0,T]$, with $w(t) = \int_0^t z(s)db(s)$ for $t \in [0,T]$, let $D: C'_{a,b}[0,T] \to$ $L^2_{a,b}[0,T]$ be defined by the formula

$$
Dw(t) = z(t) = \frac{w'(t)}{b'(t)}.
$$
\n(2.1)

Then $C'_{a,b} \equiv C'_{a,b}[0,T]$ with inner product

$$
(w_1, w_2)_{C'_{a,b}} = \int_0^T Dw_1(t)Dw_2(t)db(t)
$$

is a separable Hilbert space. For more details, see [\[6](#page-13-6),[7\]](#page-14-7).

Note that the two separable Hilbert spaces $L^2_{a,b}[0,T]$ and $C'_{a,b}[0,T]$ are (topologically) homeomorphic under the linear operator given by Eq. [\(2.1\)](#page-2-0). The inverse operator of D is given by

$$
(D^{-1}z)(t) = \int_0^t z(s)db(s), \quad t \in [0, T].
$$

In the case that $a(t) \equiv 0$, then the operator $D: C'_{0,b}[0,T] \to L^2_{0,b}[0,T]$ is an isometry.

In this paper, in addition to the conditions put on $a(t)$ above, we now add the condition

$$
\int_0^T |a'(t)|^2 d|a|(t) < +\infty
$$
\n(2.2)

from which it follows that

$$
\int_0^T |Da(t)|^2 d[b(t) + |a|(t)] = \int_0^T \left| \frac{a'(t)}{b'(t)} \right|^2 d[b(t) + |a|(t)]
$$

$$
< M ||a'||_{L^2[0,T]} + M^2 \int_0^T |a'(t)|^2 d|a|(t) < +\infty,
$$

where $M = \sup_{t \in [0,T]} (1/b'(t))$. Thus, the function $a : [0,T] \to \mathbb{R}$ satisfies the condition [\(2.2\)](#page-3-0) if and only if $a(\cdot)$ is an element of $C'_{a,b}[0,T]$. Under the condition [\(2.2\)](#page-3-0), we observe that for each $w \in C'_{a,b}[0,T]$ with $Dw = z$,

$$
(w, a)_{C'_{a,b}} = \int_0^T Dw(t)Da(t)db(t) = \int_0^T z(t)da(t).
$$

Let $\{e_n\}_{n=1}^{\infty}$ be a complete orthonormal set in $(C'_{a,b}[0,T], \|\cdot\|_{C'_{a,b}})$ such that the De_n 's are of bounded variation on [0, T]. For $w \in C'_{a,b}[0,T]$ and $x \in$ $C_{a,b}[0,T]$, we define the Paley–Wiener–Zygmund (PWZ) stochastic integral (w, x) [∼] as follows:

$$
(w, x)^{\sim} = \lim_{n \to \infty} \int_0^T \sum_{j=1}^n (w, e_j)_{C'_{a,b}} D e_j(t) dx(t)
$$

if the limit exists.

We will emphasize the following fundamental facts. For each $w \in C'_{a,b}[0,T]$, the PWZ stochastic integral (w, x) [∼] exists for a.e. $x \in C_{a,b}[0,T]$. If $Dw = z \in$ $L^2_{a,b}[0,T]$ is of bounded variation on $[0,T]$, then the PWZ stochastic integral (w, x) [~] equals the Riemann–Stieltjes integral $\int_0^T z(t) dx(t)$. Furthermore, for each $w \in C'_{a,b}[0,T]$, (w, x) [~] is a Gaussian random variable with mean

 $(w, a)_{C'_{a,b}}$ and variance $||w||^2_{C'_{a,b}}$. Thus, for an orthogonal set $\{g_1, \ldots, g_n\}$ of nonzero functions in $(C'_{a,b}[0,T], \|\cdot\|_{C'_{a,b}})$ and a Lebesgue measurable function $f: \mathbb{R}^n \to \mathbb{C}$, it follows that

$$
\int_{C_{a,b}[0,T]} f((g_1, x)^{\sim}, \dots, (g_n, x)^{\sim}) d\mu(x)
$$
\n
$$
= \left(\prod_{j=1}^n 2\pi \|g_j\|_{C'_{a,b}}^2\right)^{-n/2} \int_{\mathbb{R}^n} f(u_1, \dots, u_n) \times \exp\left\{-\sum_{j=1}^n \frac{[u_j - (g_j, a)_{C'_{a,b}}]^2}{2\|g_j\|_{C'_{a,b}}^2}\right\} du_1 \cdots du_n
$$
\n(2.3)

in the sense that if either side of Eq. (2.3) exists, both sides exist and equality holds. Also we note that for $w, x \in C'_{a,b}[0,T]$, (w, x) [~] = $(w, x)_{C'_{a,b}}$.

The following integration formula on the function space $C_{a,b}[0,T]$ is also used in this paper:

$$
\int_{\mathbb{R}} \exp\left\{-\alpha u^2 + \beta u\right\} du = \sqrt{\frac{\pi}{\alpha}} \exp\left\{\frac{\beta^2}{4\alpha}\right\} \tag{2.4}
$$

for complex numbers α and β with $\text{Re}(\alpha) > 0$.

3. Gaussian Processes

Let $C^*_{a,b}[0,T]$ be the set of functions k in $C'_{a,b}[0,T]$ such that Dk is continuous except for a finite number of finite jump discontinuities and is of bounded variation on [0, T]. For any $w \in C'_{a,b}[0,T]$ and $k \in C^*_{a,b}[0,T]$, let the operation \odot between $C'_{a,b}[0,T]$ and $C^*_{a,b}[0,T]$ be defined by

$$
w \odot k = D^{-1}(DwDk),
$$

where $DwDk$ denotes the pointwise multiplication of the functions Dw and Dk. Then $(C^*_{a,b}[0,T], \odot)$ is a commutative algebra with the identity b. For a more detailed study of the operation \odot , see [\[7\]](#page-14-7).

For each $t \in [0, T]$, let $\Phi_t(\tau) = D^{-1} \chi_{[0,t]}(\tau) = \int_0^{\tau} \chi_{[0,t]}(u) db(u)$, $\tau \in$ [0, T], and for $k \in C'_{a,b}[0,T]$ with $Dk \neq 0$ m_L -a.e. on $[0,T]$ $(m_L$ denotes the Lebesgue measure on $[0, T]$, let $\mathcal{Z}_k(x, t)$ be the PWZ stochastic integral

$$
\mathcal{Z}_k(x,t) = (k \odot \Phi_t, x)^\sim,\tag{3.1}
$$

let $\beta_k(t) = \int_0^t [Dk(u)]^2 db(u)$, and let $\alpha_k(t) = \int_0^t Dk(u)da(u)$. Then \mathcal{Z}_k : $C_{a,b}[0,T] \times [0,T] \to \mathbb{R}$ is a Gaussian process with mean function

$$
\int_{C_{a,b}[0,T]} \mathcal{Z}_k(x,t) d\mu(x) = \int_0^t Dk(u) da(u) = \alpha_k(t)
$$

and covariance function

$$
\int_{C_{a,b}[0,T]} \left(\mathcal{Z}_k(x,s) - \alpha_k(s)\right) \left(\mathcal{Z}_k(x,t) - \alpha_k(t)\right) d\mu(x)
$$
\n
$$
= \int_0^{\min\{s,t\}} \{Dk(u)\}^2 db(u) = \beta_k(\min\{s,t\}).
$$

In addition, by [\[15](#page-14-3), Theorem 21.1], $\mathcal{Z}_k(\cdot,t)$ is stochastically continuous in t on [0, T]. If Dk is of bounded variation on [0, T], then, for all $x \in C_{a,b}[0,T]$, $\mathcal{Z}_k(x,t)$ is continuous in t. Also, for any functions k_1 and k_2 in $C'_{a,b}[0,T]$,

$$
\int_{C_{a,b}[0,T]} \mathcal{Z}_{k_1}(x,s) \mathcal{Z}_{k_2}(x,t) d\mu(x) \n= \int_0^{\min\{s,t\}} Dk_1(u) Dk_2(u) db(u) + \int_0^s Dk_1(u) da(u) \int_0^t Dk_2(u) da(u).
$$

Of course if $k(t) \equiv b(t)$, then $\mathcal{Z}_b(x,t) = x(t)$, the continuous sample paths of the GBMP Y, of which the function space $C_{a,b}[0,T]$ consists. Choosing $a(t) \equiv 0$ and $b(t) = t$ on $[0, T]$, as commented in Remark [2.1](#page-2-1) above, the function space $C_{a,b}[0,T]$ reduces to the classical Wiener space $C_0[0,T]$, and thus the Gaussian process [\(3.1\)](#page-4-1) with $k(t) \equiv t$ is an ordinary Wiener process.

From the properties of the PWZ stochastic integral and the operation \odot between $C'_{a,b}[0,T]$ and $C^*_{a,b}[0,T]$, it follows that for all $\rho \in \mathbb{R}$,

$$
\rho \mathcal{Z}_k(x,t) = \mathcal{Z}_{\rho k}(x,t) = \mathcal{Z}_k(\rho x,t),
$$

and for any $w \in C'_{a,b}[0,T]$ and each $k \in C^*_{a,b}[0,T]$,

$$
(w, \mathcal{Z}_k(x, \cdot))^{\sim} = (w \odot k, x)^{\sim} \tag{3.2}
$$

for μ -a.e. $x \in C_{a,b}[0,T]$. Thus, throughout the remainder of this paper, we require k to be in $C^*_{a,b}[0,T]$ for each process \mathcal{Z}_k .

We define a class of those functions as follows: let

$$
Supp_{C_{a,b}^*}[0,T] = \{k \in C_{a,b}^*[0,T] : Dk \neq 0 \ m_L \text{-a.e on } [0,T] \}.
$$

Then for any $k \in \text{Supp}_{C^*_{a,b}}[0,T]$, the Lebesgue–Stieltjes integrals

$$
||w \odot k||_{C'_{a,b}}^2 = \int_0^T (Dw(t))^2 (Dk(t))^2 db(t)
$$

and

$$
(w \odot k, a)_{C'_{a,b}} = \int_0^T Dw(t)Dk(t)Da(t)db(t) = \int_0^T Dw(t)Dk(t)da(t)
$$

exist for all $w \in C'_{a,b}[0,T]$.

4. Transforms on the Class of Exponential-Type Functionals

Given a function $k \in \text{Supp}_{C_{a,b}^*}[0,T]$, we define the generalized \mathcal{Z}_k -function space integral (namely, the function space integral associated with the Gaussian paths $\mathcal{Z}_k(x, \cdot)$ for functionals F on $C_{a,b}[0,T]$ by the formula

$$
I_k[F] \equiv I_{k,x}[F(\mathcal{Z}_k(x,\cdot))] = \int_{C_{a,b}[0,T]} F(\mathcal{Z}_k(x,\cdot))d\mu(x).
$$

Throughout this paper, let \mathbb{C}, \mathbb{C}_+ and $\widetilde{\mathbb{C}}_+$ denote the set of complex numbers, complex numbers with positive real part, and non-zero complex numbers with nonnegative real part, respectively. Furthermore, for each $\lambda \in \mathbb{C}, \lambda^{1/2}$ denotes the principal square root of λ , i.e., $\lambda^{1/2}$ is always chosen to have nonnegative real part.

Definition 4.1. Given a function $k \in \text{Supp}_{C^*_{a,b}}[0,T]$, let \mathcal{Z}_k be the Gaussian process given by (3.1) and let F be a C-valued scale-invariant measurable functional on $C_{a,b}[0,T]$ such that

$$
J_F(\mathcal{Z}_k; \lambda) = I_{k,x}[F(\lambda^{-1/2} \mathcal{Z}_k(x, \cdot))]
$$

exists and is finite for all $\lambda > 0$. If there exists a function $J_F^*(\mathcal{Z}_k; \lambda)$ analytic on \mathbb{C}_+ such that $J_F^*(\mathcal{Z}_k; \lambda) = J_F(\mathcal{Z}_k; \lambda)$ for all $\lambda \in (0, +\infty)$, then $J_F^*(\mathcal{Z}_k; \lambda)$ is defined to be the analytic \mathcal{Z}_k -function space integral (namely, the analytic function space integral associated with the Gaussian paths $\mathcal{Z}_k(x, \cdot)$ of F over $C_{a,b}[0,T]$ with parameter λ , and for $\lambda \in \mathbb{C}_+$ we write

$$
I_k^{\text{an}}[F] \equiv I_{k,x}^{\text{an}}[F(\mathcal{Z}_k(x,\cdot))] \equiv \int_{C_{a,b}[0,T]}^{\text{an}} F(\mathcal{Z}_k(x,\cdot)) d\mu(x) := J_F^*(\mathcal{Z}_k; \lambda)(4.1)
$$

Let q be a non-zero real number and let F be a measurable functional whose analytic \mathcal{Z}_k -function space integral $J_F^*(\mathcal{Z}_k; \lambda)$ exists for all λ in \mathbb{C}_+ . If the following limit exists, we call it the analytic generalized \mathcal{Z}_k -Feynman integral (namely, the analytic generalized Feynman integral associated with the paths $\mathcal{Z}_k(x, \cdot)$ of F with parameter q and we write

$$
I_k^{\text{anf}_q}[F] \equiv I_{k,x}^{\text{anf}_q}[F(\mathcal{Z}_k(x,\cdot))] = \lim_{\lambda \to -iq} I_{k,x}^{\text{an}_\lambda}[F(\mathcal{Z}_k(x,\cdot))],\tag{4.2}
$$

where λ approaches $-iq$ through values in \mathbb{C}_+ .

Next we state the definition of the analytic GFFT associated with Gaussian process on function space.

Definition 4.2. Given a function $k \in \text{Supp}_{C^*_{a,b}}[0,T]$, let \mathcal{Z}_k be the Gaussian process given by (3.1) and let F be a scale-invariant measurable functional on $C_{a,b}[0,T]$ such that for all $\lambda \in \mathbb{C}_+$ and $y \in C_{a,b}[0,T]$, the following analytic Z_k -function space integral

$$
T_{\lambda,k}(F)(y) = I_{k,x}^{\text{an}_{\lambda}}[F(y + \mathcal{Z}_k(x,\cdot))]
$$

exists. Let q be a non-zero real number. For $p \in (1, 2]$, we define the L_p analytic \mathcal{Z}_k -GFFT (namely, the GFFT associated with the paths $\mathcal{Z}_k(x, \cdot)$), $T_{q,k}^{(p)}(F)$ of F, by the formula,

$$
T_{q,k}^{(p)}(F)(y) = \lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} T_{\lambda,k}(F)(y)
$$

if it exists; i.e., for each $\rho > 0$,

$$
\lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} \int_{C_{a,b}[0,T]} |T_{\lambda,k}(F)(\rho y) - T_{q,k}^{(p)}(F)(\rho y)|^{p'} d\mu(y) = 0
$$

where $1/p + 1/p' = 1$. We define the L_1 analytic \mathcal{Z}_k -GFFT, $T_{q,k}^{(1)}(F)$ of F, by the formula

$$
T_{q,k}^{(1)}(F)(y) = \lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} T_{\lambda,k}(F)(y) = I_{k,x}^{\text{anf}_q}[F(y + \mathcal{Z}_k(x, \cdot))]
$$
(4.3)

for s-a.e. $y \in C_{a,b}[0,T]$, if it exists.

We note that for $1 \le p \le 2$, $T_{q,k}^{(p)}(F)$ is defined only s-a.e.. We also note that if $T_{q,k}^{(p)}(F)$ exists and if $F \approx G$, then $T_{q,k}^{(p)}(G)$ exists and $T_{q,k}^{(p)}(G) \approx T_{q,k}^{(p)}(F)$. Moreover, from Eqs. (4.2) , (4.1) , and (4.3) , it follows that

$$
I_k^{\text{anf}_q}[F] \equiv I_{k,x}^{\text{anf}_q}[F(\mathcal{Z}_k(x,\cdot))] = T_{q,k}^{(1)}(F)(0)
$$
\n(4.4)

in the sense that if either side exists, then both sides exist and equality holds.

Remark 4.3. Note that if $k \equiv b$ on [0, T], then the analytic generalized \mathcal{Z}_{b} -Feynman integral, $I_b^{\text{anf}_q}[F]$, and the L_p analytic \mathcal{Z}_b -GFFT, $T_{q,b}^{(p)}(F)$ agree with the previous definitions of the analytic generalized Feynman integral and the analytic GFFT respectively [\[5](#page-13-2)[,8](#page-14-4)[,10\]](#page-14-5).

Let $\mathcal E$ be the class of all functionals which have the form

$$
\Psi_w(x) = \exp\{(w, x)^\sim\}
$$
\n(4.5)

for some $w \in C'_{a,b}[0,T]$ and for s-a.e. $x \in C_{a,b}[0,T]$. More precisely, since we shall identify functionals which coincide s-a.e. on $C_{a,b}[0,T]$, the class $\mathcal E$ can be regarded as the space of all s-equivalence classes of functionals of the form $(4.5).$ $(4.5).$

Given $q \in \mathbb{R} \setminus \{0\}$, $\tau \in C'_{a,b}[0,T]$, and $k \in C^*_{a,b}[0,T]$, let $\mathcal{E}_{q,\tau,k}$ be the class of all functionals having the form

$$
\Psi_{w}^{q,\tau,k}(x) = K_{q,\tau,k}^{a} \Psi_{w}(x)
$$
\n(4.6)

for s-a.e. $x \in C_{a,b}[0,T]$, where Ψ_w is given by Eq. [\(4.5\)](#page-7-1) and $K^a_{q,\tau,k}$ is a complex number given by

$$
K_{q,\tau,k}^a = \exp\left\{\frac{i}{2q} \|\tau \odot k\|_{C'_{a,b}}^2 + (-iq)^{-1/2} (\tau \odot k, a)_{C'_{a,b}}\right\}.
$$
 (4.7)

The functionals given by Eq. [\(4.6\)](#page-7-2) and linear combinations (with complex coefficients) of the $\Psi_{w}^{q,\tau,k}$'s are called the (partially) exponential-type functionals on $C_{a,b}[0,T]$.

For notational convenience, let $\Psi_w^{0,\tau,k}(x) = \Psi_w(x)$ and let $\mathcal{E}_{0,\tau,k} = \mathcal{E}.$ Then for any $(q, \tau, k) \in \mathbb{R} \times C'_{a,b}[0, T] \times C^*_{a,b}[0, T]$, the class $\mathcal{E}_{q, \tau, k}$ is dense in $L_2(C_{a,b}[0,T])$, see [\[9,](#page-14-8)[11](#page-14-6)]. We then define the class $\mathcal{E}(C_{a,b}[0,T])$ to be the linear span of \mathcal{E} , i.e., $\mathcal{E}(C_{a,b}[0,T]) = \text{Span}\mathcal{E}$.

- *Remark 4.4.* (i) One can see that $\mathcal{E}(C_{a,b}[0,T]) = \text{Span}\mathcal{E}_{a,\tau,k}$ for every $(q,\tau,k) \in$ $\mathbb{R} \times C'_{a,b}[0,T] \times C^*_{a,b}[0,T].$
- (ii) The linear space $\mathcal{E}(C_{a,b}[0,T])$ is a commutative (complex) algebra under the pointwise multiplication and with identity $\Psi_0 \equiv 1$ because

$$
\Psi_{w_1}^{q_1,\tau_1,k_1}(x)\Psi_{w_2}^{q_2,\tau_2,k_2}(x) = K_{q_1,\tau_1,k_1}^a K_{q_2,\tau_2,k_2}^a \Psi_{w_1+w_2}(x)
$$

for μ -a.e. $x \in C_{a,b}[0,T]$.

(iii) Note that every exponential-type functional is scale-invariant measurable. Since we shall identify functionals which coincide s-a.e. on $C_{a,b}[0,T]$, $\mathcal{E}(C_{a,b}[0,T])$ can be regarded as the space of all s-equivalence classes of exponential-type functionals.

The following two theorems are due to by Chang and Choi [\[6\]](#page-13-6).

Theorem 4.5. *Let* $\Psi_w \in \mathcal{E}$ *be given by Eq.* [\(4.5\)](#page-7-1)*. Then for all* $p \in [1,2]$ *, any non-zero real number* q, and each function k in $\text{Supp}_{C_{a,b}^*}[0,T]$, the L_p analytic \mathcal{Z}_k -GFFT of Ψ_w , $T_{q,k}^{(p)}(\Psi_w)$ *exists and is given by the formula*

$$
T_{q,k}^{(p)}(\Psi_w) \approx \Psi_w^{q,w,k},\tag{4.8}
$$

where $\Psi_{w}^{q,w,k}$ *is given by Eq.* [\(4.6\)](#page-7-2) with τ *replaced with* w. Thus, $T_{q,k}^{(p)}(\Psi_{w})$ *is an element of* $\mathcal{E}(C_{a,b}[0,T])$.

Let F be a functional in $\mathcal{E}(C_{a,b}[0,T])$. Since $\mathcal{E}(C_{a,b}[0,T]) = \text{Span}\mathcal{E}$, there exist a finite sequence $\{w_1, \ldots, w_n\}$ of functions in $C'_{a,b}[0,T]$, and a sequence ${c_1,\ldots,c_n}$ in $\mathbb{C}\setminus\{0\}$ such that

$$
F \approx \sum_{j=1}^{n} c_j \Psi_{w_j}.
$$
\n(4.9)

Then for all $p \in [1,2]$, any non-zero real number q, and each function k in Supp_{C^{*}</sup>_a,_b^[0, T], the L_p analytic \mathcal{Z}_k -GFFT of F, $T_{q,k}^{(p)}(F)$ exists and is given by} the formula

$$
T_{q,k}^{(p)}(F) \approx \sum_{j=1}^{n} c_j T_{q,k}^{(p)}(\Psi_{w_j}) \approx \sum_{j=1}^{n} c_j \Psi_{w_j}^{q,w_j,k},
$$

where $\Psi_{w_i}^{q,w_j,k}$ is given by Eq. [\(4.6\)](#page-7-2) with τ and w replaced with w_j and w_j , for each $j \in \{1, \ldots, n\}$, respectively.

5. Relationship Between the \mathcal{Z}_k **-Fourier–Feynman Transform and the Function Space Integral**

In this section, we establish a relationship between the analytic \mathcal{Z}_k -GFFT and the \mathcal{Z}_k -function space integral of functionals in the class $\mathcal{E}(C_{a,b}[0,T])$.

Throughout this section, for convenience, we use the following notation: for $\zeta \in \mathbb{C}_+$ and $n = 1, 2, \ldots$, let

$$
G_n(\zeta, x)
$$

= $\exp\left\{ \left[\frac{1-\zeta}{2} \right] \sum_{j=1}^n [(e_j, x)^\sim]^2 + (\zeta^{1/2} - 1) \sum_{j=1}^n (e_j, a)_{C'_{a,b}} (e_j, x)^\sim \right\},$ (5.1)

where $\{e_n\}_{n=1}^{\infty}$ is a complete orthonormal set of functions in $C'_{a,b}[0,T]$.

Lemma 5.1. Let k be a function in $\text{Supp}_{C_{a,b}^*}[0,T]$, let $\{e_1,\ldots,e_n\}$ be an or*thonormal set of functions in* $C'_{a,b}[0,T]$ *, and let w be a function in* $C'_{a,b}[0,T]$ *. Then for each* $\zeta \in \mathbb{C}_+$ *, and* $n \in \mathbb{N}$ *, the functional* $\exp\{(w \odot k, x)^\sim\}G_n(\zeta, x)$ *is* μ -integrable, where G_n *is given by [\(5.1\)](#page-9-0). Also, it follows that*

$$
\mathcal{W}_n(w;k;\zeta) \equiv \int_{C_{a,b}[0,T]} \exp\left\{ (w \odot k, x)^{\sim} \right\} G_n(\zeta, x) d\mu(x)
$$

\n
$$
= \zeta^{-n/2} \exp\left\{ \frac{1}{2\zeta} \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 + \frac{1}{2} \left[||w \odot k||_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right] \right\}
$$

\n
$$
+ \zeta^{-1/2} \sum_{j=1}^n (e_j, a)_{C'_{a,b}} (e_j, w \odot k)_{C'_{a,b}}
$$

\n
$$
+ (e_{n+1}^{w \odot k}, a)_{C'_{a,b}} \left[||w \odot k||_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right]^{1/2} \right\},
$$
 (5.2)

where

$$
e_{n+1}^{w \odot k} = \left[\|w \odot k\|_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right]^{-1/2}
$$

$$
\times \left\{ w \odot k - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}} e_j \right\}.
$$

Proof. We note that given two functions $k \in \text{Supp}_{C_{a,b}^*}[0,T]$ and $w \in C'_{a,b}[0,T]$, $w \odot k$ is an element of $C'_{a,b}[0,T]$. Using the Gram–Schmidt process, we obtain $e_{n+1}^{w\odot k} \in C'_{a,b}[0,T]$ such that $\{e_1,\ldots,e_n,e_{n+1}^{w\odot k}\}$ forms an orthonormal set in $C'_{a,b}[0,T]$ and

$$
w \odot k = \sum_{j=1}^{n} c_j e_j + c_{n+1} e_{n+1}^{w \odot k}
$$

where

$$
c_j = \begin{cases} (e_j, w \odot k)_{C'_{a,b}} & , j = 1, ..., n \\ \left[\|w \odot k\|_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right]^{1/2} & , j = n+1 \end{cases}.
$$

Next, for $\zeta \in \mathbb{C}_+$, using [\(5.1\)](#page-9-0), [\(2.3\)](#page-4-0), the Fubini theorem, and [\(2.4\)](#page-4-2), it follows that

$$
\int_{C_{a,b}[0,T]} \exp\{(w \odot k, x)^{\sim}\}G_{n}(\zeta, x)d\mu(x)
$$
\n
$$
= (2\pi)^{-(n+1)/2} \int_{\mathbb{R}^{n+1}} \exp\left\{\left[\frac{1-\zeta}{2}\right] \sum_{j=1}^{n} u_{j}^{2} + (\zeta^{1/2} - 1) \sum_{j=1}^{n} (e_{j}, a)_{C'_{a,b}} u_{j}\right.
$$
\n
$$
+ \sum_{j=1}^{n+1} c_{j} u_{j} - \frac{1}{2} \sum_{j=1}^{n} [u_{j} - (e_{j}, a)_{C'_{a,b}}]^{2} - \frac{1}{2} [u_{n+1} - (e_{n+1}^{w \odot k}, a)_{C'_{a,b}}]^{2}\right\}
$$
\n
$$
\times du_{1} \cdots du_{n} du_{n+1}
$$
\n
$$
= \left(\prod_{j=1}^{n} (2\pi)^{-1/2} \int_{\mathbb{R}} \exp\left\{-\frac{\zeta}{2} u_{j}^{2} + [\zeta^{1/2}(e_{j}, a)_{C'_{a,b}} + c_{j}] u_{j}\right\} du_{j}\right)
$$
\n
$$
\times \left((2\pi)^{-1/2} \int_{\mathbb{R}} \exp\left\{-\frac{1}{2} u_{n+1}^{2} + [(e_{n+1}^{w \odot k}, a)_{C'_{a,b}} + c_{n+1}] u_{n+1}\right\} du_{n+1}\right)
$$
\n
$$
\times \exp\left\{-\frac{1}{2} \sum_{j=1}^{n} (e_{j}, a)_{C'_{a,b}}^{2} - \frac{1}{2} (e_{n+1}^{w \odot k}, a)_{C'_{a,b}}^{2}\right\}
$$
\n
$$
= \zeta^{-n/2} \exp\left\{\zeta^{-1/2} \sum_{j=1}^{n} (e_{j}, a)_{C'_{a,b}}^{2} c_{j} + \frac{1}{2\zeta} \sum_{j=1}^{n} c_{j}^{2}\right\}
$$
\n
$$
+ (e_{n+1}^{w \odot k}, a)_{C'_{a,b}}^{2} c_{n+1} + \frac{1}{2} c_{n+1}^{2}\right\}
$$
\n
$$
= \zeta
$$

as desired. \square

In our next theorem we express the analytic \mathcal{Z}_k -GFFT of functionals in $\mathcal{E}(C_{a,b}[0,T])$ as the limit of a sequence of \mathcal{Z}_k -function space integrals.

Theorem 5.2. *Let* $F \in \mathcal{E}(C_{a,b}[0,T])$ *be given by Eq.* [\(4.9\)](#page-8-0)*. Given a non-zero real number* q, let $\{\zeta_n\}$ *be a sequence in* \mathbb{C}_+ *such that* $\zeta_n \to -iq$ *. Then, for all* $p \in [1, 2]$, and each function k in $\text{Supp}_{C_{a,b}^*}[0,T]$, it follows that

$$
T_{q,k}^{(p)}(F)(y) = \lim_{n \to \infty} \zeta_n^{n/2} \int_{C_{a,b}[0,T]} F\big(y + \mathcal{Z}_k(x,\cdot)\big) G_n(\zeta_n, x) d\mu(x), \quad (5.3)
$$

for s-a.e. $y \in C_{a,b}[0,T]$ *, where* G_n *is given by Eq.* [\(5.1\)](#page-9-0)*.*

Proof. In view of Theorems [4.5](#page-8-1) and [4.6](#page-8-2), it will suffice to show that Eq. [\(5.3\)](#page-11-0) with p and F replaced with 1 and Ψ_w holds true.

From Theorem [4.5,](#page-8-1) we know that the L_1 analytic \mathcal{Z}_k -GFFT of Ψ_w given by [\(4.5\)](#page-7-1), $T_{q,k}^{(1)}(\Psi_w)$, exists. Using (4.5), [\(3.2\)](#page-5-0), the Fubini theorem, and the first expression of [\(5.2\)](#page-9-1) with ζ replaced with ζ_n , it follows that for all $n \in \mathbb{N}$,

$$
\zeta_n^{n/2} \int_{C_{a,b}[0,T]} \Psi_w(y + \mathcal{Z}_k(x,\cdot)) G_n(\zeta_n, x) d\mu(x)
$$

=
$$
\zeta_n^{n/2} \exp\{(w, y)^\sim\} \Biggl[\int_{C_{a,b}[0,T]} \exp\{(w \odot k, x)^\sim\} G_n(\zeta_n, x) d\mu(x) \Biggr] \quad (5.4)
$$

=
$$
\exp\{(w, y)^\sim\} \zeta_n^{n/2} \mathcal{W}_n(w; k; \zeta_n).
$$

Next, using (5.4) , (5.2) , Parseval's relation, (4.7) , (4.5) , (4.6) with τ replaced with w, and (4.8) with $p = 1$, it follows that

$$
\lim_{n \to \infty} \zeta_n^{n/2} \int_{C_{a,b}[0,T]} \Psi_w(y + \mathcal{Z}_k(x, \cdot)) G_n(\zeta_n, x) d\mu(x)
$$
\n
$$
= \exp\{(w, y)^\sim\} \lim_{n \to \infty} \zeta_n^{n/2} \mathcal{W}_n(w; k; \zeta_n)
$$
\n
$$
= \exp\left\{(w, y)^\sim + \lim_{n \to \infty} \frac{1}{2\zeta_n} \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 + \frac{1}{2} \lim_{n \to \infty} \left[\|w \odot k\|_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right] + \lim_{n \to \infty} \zeta_n^{-1/2} \sum_{j=1}^n (e_j, a)_{C'_{a,b}} (e_j, w \odot k)_{C'_{a,b}}
$$
\n
$$
+ \lim_{n \to \infty} (e_{n+1}, a)_{C'_{a,b}} \left[\|w \odot k\|_{C'_{a,b}}^2 - \sum_{j=1}^n (e_j, w \odot k)_{C'_{a,b}}^2 \right]^{1/2} \right\}
$$
\n
$$
= \exp\{(w, y)^\sim\} K_{q,w,k}^a
$$
\n
$$
= \Psi_w(y) K_{q,w,k}^a
$$

$$
= \Psi_w^{q,\tau,k}(y)
$$

=
$$
T_{q,k}^{(1)}(\Psi_w)(y)
$$

for s-a.e. $y \in C_{a,b}[0,T]$, as desired. \square

The following corollary follows immediately from [\(4.4\)](#page-7-4) and [\(5.3\)](#page-11-0).

Corollary 5.3. *Let* F , q *and* $\{\zeta_n\}$ *be as in Theorem [5.2.](#page-11-2) Then, for each function* k in $\text{Supp}_{C^*_{a,b}}[0,T]$ *, it follows that*

$$
I_k^{\text{anf}_q}[F] = \lim_{n \to \infty} \zeta_n^{n/2} \int_{C_{a,b}[0,T]} F(\mathcal{Z}_k(x,\cdot)) G_n(\zeta_n,x) d\mu(x),
$$

where G_n *is given by Eq.* (5.1) *.*

We establish our next corollary after a careful examination of the proof of Theorem [5.2,](#page-11-2) and by using Eq. (4.1) instead of (4.4) .

Corollary 5.4. *Let* $F \in \mathcal{E}(C_{a,b}[0,T])$ *be given by Eq.* [\(4.9\)](#page-8-0)*. Let* $\lambda \in \mathbb{C}_+$ *, and let* $\{\zeta_n\}$ *be a sequence in* \mathbb{C}_+ *such that* $\zeta_n \to \lambda$ *. Then, for each function* k *in* $\mathrm{Supp}_{C_{a,b}^*}[0,T],$ *it follows that*

$$
I_k^{\text{an}}[F] = \lim_{n \to \infty} \zeta_n^{n/2} \int_{C_{a,b}[0,T]} F\big(\mathcal{Z}_k(x,\cdot)\big) G_n(\zeta_n,x) d\mu(x),\tag{5.5}
$$

where G_n *is given by Eq.* (5.1) *.*

Our next result, namely a change of scale formula for function space integrals, now follows easily by Corollary [5.4](#page-12-0) above.

Corollary 5.5. *Let* $F \in \mathcal{E}(C_{a,b}[0,T])$ *be given by Eq.* [\(4.9\)](#page-8-0)*. Then for any* $\rho > 0$ *,* and each function k in $\text{Supp}_{C_{a,b}^*}[0,T]$, it follows that

$$
\int_{C_{a,b}[0,T]} F(\rho Z_k(x,\cdot)) d\mu(x) = \lim_{n \to \infty} \rho^{-n} \int_{C_{a,b}[0,T]} F(Z_k(x,\cdot)) G_n(\rho^{-2},x) d\mu(\sigma)
$$

where G_n *is given by Eq.* (5.1) *.*

Proof. Note that for every $F \in \mathcal{E}(C_{a,b}[0,T])$ and all $\rho > 0$, the function space integral in the left-hand side of [\(5.6\)](#page-12-1) exists. To ensure the equality in [\(5.6\)](#page-12-1), simply choose $\lambda = \rho^{-2}$ and $\zeta_n = \rho^{-2}$ for every $n \in \mathbb{N}$ in [\(5.5\)](#page-12-2).

6. Concluding Remark

It is known that the class $\mathcal{E}(C_{a,b}[0,T])$ is a dense subspace of the space $L_2(C_{a,b}[0,T])$. For a related work, see [\[9,](#page-14-8)[11\]](#page-14-6). Thus, using the L_2 -approximation [\[11,](#page-14-6) Remark 4], one can develop the sequential approximation such as Eq. [\(5.3\)](#page-11-0) for functionals F in $L_2(C_{a,b}[0,T])$ whose L_p analytic \mathcal{Z}_k -GFFT $T_{q,k}^{(p)}(F)$ exists. But, there exists a (bounded) functional F in $L_2(C_{a,b}[0,T])$ whose L_p \mathcal{Z}_k -GFFT $T_{q,k}^{(p)}(F)$ does not exist, see [\[5](#page-13-2)].

Indeed, the class $\mathcal{E}(C_{a,b}[0,T])$ is a very rich class of functionals on $C_{a,b}[0,T]$. It contains many meaningful functionals which discussed in quantum mechanics. We finish this paper with a very simple example for such functionals, which arises in quantum mechanics.

Example 6.1. Consider the functional F_S given by

$$
F_S(x) = \exp\left\{ \int_0^T x(t)db(t) \right\}
$$

for s-a.e. $x \in C_{a,b}[0,T]$. Then F_S is an element of $\mathcal{E}(C_{a,b}[0,T])$ because

$$
F_S(x) = \exp\left\{ (Sb, x)^\sim \right\}
$$

where $S: C'_{a,b}[0,T] \to C'_{a,b}[0,T]$ is an operator defined by

$$
Sw(t) = \int_0^t [w(T) - w(s)]db(s).
$$

One can see that the adjoint operator S^* of S is given by

$$
S^*w(t) = \int_0^t w(s)db(s).
$$

Acknowledgements

The author would like to express his gratitude to the editor and the referees for their valuable comments and suggestions which have improved the original paper.

References

- [1] Cameron, R.H.: The ILSTOW and Feynman integrals. J. D'Anal. Math. **10**, 287–361 (1962–63)
- [2] Cameron, R.H., Storvick, D.A.: Some Banach algebras of analytic Feynman integrable functionals. In: Analytic Functions (Kozubnik, 1979), Lecture Notes in Mathematics 798, pp. 18–67. Springer, Berlin (1980)
- [3] Cameron, R.H., Storvick, D.A.: Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo **2**(Suppl. 17), 117–133 (1987)
- [4] Cameron, R.H., Storvick, D.A.: A Simple Definition of the Feynman Integral With Applications. Mem. Amer. Math. Soc. **288**, Amer. Math. Soc. (1983)
- [5] Chang, S.J., Choi, J.G.: Effect of drift of the generalized Brownian motion process: an example for the analytic Feynman integral. Arch. Math. **106**, 591–600 (2016)
- [6] Chang, S.J., Choi, J.G.: Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Commun. Pure Appl. Anal. **19**, 371–389 (2020)
- [7] Chang, S.J., Choi, J.G., Ko, A.Y.: Multiple generalized analytic Fourier– Feynman transform via rotation of Gaussian paths on function space. Banach J. Math. Anal. **9**, 58–80 (2015)
- [8] Chang, S.J., Choi, J.G., Skoug, D.: Integration by parts formulas involving generalized Fourier–Feynman transforms on function space. Trans. Am. Math. Soc. **355**, 2925–2948 (2003)
- [9] Chang, S.J., Chung, H.S., Skoug, D.: Integral transforms of functionals in $L^2(C_{a,b}[0,T])$. J. Fourier Anal. Appl. **15**, 441–462 (2009)
- [10] Chang, S.J., Skoug, D.: Generalized Fourier-Feynman transforms and a first variation on function space. Integral Transforms Spec. Funct. **14**, 375–393 (2003)
- [11] Chang, S.J., Skoug, D., Chung, H.S.: Relationships for modified generalized integral transforms, modified convolution products and first variations on function space. Integral Transforms Spec. Funct. **25**, 790–804 (2014)
- [12] Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. **20**, 367–387 (1948)
- [13] Yamasaki, Y.: Measures on infinite dimensional spaces. World Sci. Ser. Pure Math. **5**, World Scientific Publishing, Singapore (1985)
- [14] Yeh, J.: Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments. Ill. J. Math. **15**, 37–46 (1971)
- [15] Yeh, J.: Stochastic Processes and the Wiener Integral. Marcel Dekker Inc., New York (1973)

Jae Gil Choi School of General Education Dankook University Cheonan 330-714 Republic of Korea e-mail: jgchoi@dankook.ac.kr

Received: October 5, 2020. Accepted: April 20, 2021.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.