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Abstract. In this paper, we consider the stability problem on perturbation
near a physically steady state solution of the 3D generalized incompress-
ible magnetohydrodynamic system in Lei-Lin space. The global stabil-
ity and analytic estimates for small perturbation are established by the
semigroup method in the critical space χ1−2α(R3) with 1

2
≤ α ≤ 1, where

linear terms from perturbation incur much difficulty. By introducing a
diagonalization process we successfully eliminate the linear terms. Then,
by virtue of the analytic estimates for a solution, the temporal decay rate

(1 + t)−( 5
4α

−1) of the global solution is obtained.
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1. Introduction

The 3D generalized incompressible magnetohydrodynamic (MHD) system can
be written as:

⎧
⎪⎨

⎪⎩

∂tU + Λ2αU + (U · ∇)U + ∇P = (B · ∇)B,

∂tB + Λ2αB + (U · ∇)B = (B · ∇)U,

∇ · U = ∇ · B = 0,

(1.1)

for t ≥ 0, x ∈ R
3. We denote U = U(t, x), B = B(t, x) and P = P (t, x)

the velocity field, magnetic field and scalar pressure of the fluid, respectively.
The fractional Laplacian operator Λ2α = (−Δ)α is defined through a Fourier
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transform, namely Λ̂2αf(ξ) = |ξ|2αf̂(ξ). For simplicity, we set the kinematic
viscosity, the magnetic Reynolds number and the corresponding coefficients to
be equal to 1.

This paper considers the stability problem on perturbations near the
special steady solution (ũ, b̃) given by the background magnetic field

ũ(t, x) ≡ (0, 0, 0), b̃(t, x) ≡ (1, 0, 0). (1.2)

It is clear that (ũ, b̃) is a solution of system (1.1). This special equilibrium
has physical significance and the stability of (1.2) for the MHD system was
initiated by Alfvén [1]. To understand the stability problem focused here, we
consider the perturbation (u, b) around this equilibrium with u = U − ũ and
b = B − b̃, and (u, b) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + Λ2αu + (u · ∇)u + ∇P = (b · ∇)b + ∂1b,

∂tb + Λ2αb + (u · ∇)b = (b · ∇)u + ∂1u,

∇ · u = ∇ · b = 0,

u(0, x) = u0(x), b(0, x) = b0(x).

(1.3)

When α = 1, the system (1.1) reduces to the classical MHD system,
which describes the motion of electrically conducting fluids such as plasmas,
liquid metals, and electrolytes. Due to its physical background, mathematical
complexity and wide range of applications, MHD and related models have at-
tracted the interest of many researchers and several important global regularity
results have been established in different spaces (see, e.g., [6–8,13,14,19,23–
25]). For 3D MHD system, Duvaut and Lions [8] established the local existence
and uniqueness in the Sobolev space Hs(R3) with s ≥ 3. Miao et al. [14] es-
tablished the global well-posedness in BMO−1(R3) and local well-posedness in
bmo−1(R3) for small initial data. Wang and Wang [19] established the global
existence of mild solutions in Lei-Lin space χ−1(R3). When b = 0, it is re-
duced to the Navier-Stokes equation. The global well-posedness and long time
behavior of solutions have attracted much attention (see, e.g., [3–5,11,12,16]).

Recently, the MHD system with initial data near equilibrium (1.3) has
gained renewed interests. Ren et al. [15] proved that the global existence and
temporal decay rate of smooth solutions for general perturbations to the sys-
tem in R

2. Ji et al. [10] established the asymptotic linear stability and the
global stability on the 2D MHD system (1.3) with partial dissipation in Sobolev
space. For 3D case, Abidi and Zhang [2], Deng and Zhang [9] obtained the
global solution and large time behavior for (1.3) without magnetic dissipation
via different approaches. Wu and Zhu [20] established the global regularity for
(1.3) with mixed partial dissipation cases.

For the generalized MHD system (1.1), Wu [17,18] studied the global
existence for (1.1) with α ≥ 5

4 in Sobolev space. Ye [26,27] established a small
global solution and large time behavior in the critical space χ1−2α(R3) with
1
2 ≤ α ≤ 1. Later, Wang et al. [21] proved that the global well-posedness and
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analyticity results and we [22] obtained a explicit decay rate (1 + t)−( 5
4α −1) to

the system (1.1).
The main goal of this paper is to establish the global well-posedness,

analytic and decay estimates for small initial data to the system (1.3) in the
critical space χ1−2α(R3) with 1

2 ≤ α ≤ 1. Our main results can be stated as
follows.

Theorem 1.1. Let 1
2 ≤ α ≤ 1. Assume that (u0, b0) ∈ χ1−2α(R3) with the

smallness condition ‖(u0, b0)‖χ1−2α < ε0, then the system (1.3) admits a unique
global solution (u, b) ∈ C(R+;χ1−2α(R3)) ∩ L1(R+;χ1(R3)), and for any 0 ≤
t < ∞, it holds

‖(u, b)‖L̃∞(χ1−2α) + ‖(u, b)‖L1(χ1) � ‖(u0, b0)‖χ1−2α . (1.4)

Furthermore the solution is analytic in the sense that

‖e|D|α√
t(u, b)‖L̃∞(χ1−2α) + ‖e|D|α√

t(u, b)‖L1(χ1) � ‖(u0, b0)‖χ1−2α , (1.5)

where e|D|α√
t is a Fourier multiplier whose symbol is given by e|ξ|α√

t.

Compared with the Navier–Stokes equation [3,4] and MHD system [21],
the difficulty to obtain a priori estimate (1.4) and the analyticity (1.5) for
system (1.3) is the presence of linear terms ∂1u and ∂1b. In fact, if we write
the system (1.3) by Duhamel’s formula in Fourier space, namely

û(t, ξ) = e−t|ξ|2α

û0(ξ) +

∫ t

0
e−(t−τ)|ξ|2α

[
iξ ·

(
−û ⊗ u + b̂ ⊗ b

)
+ iξP̂ + iξ1b̂

]
(τ, ξ)dτ,

(1.6)

b̂(t, ξ) = e−t|ξ|2α

b̂0(ξ) +

∫ t

0
e−(t−τ)|ξ|2α

[
iξ ·

(
−û ⊗ b + b̂ ⊗ u

)
+ iξ1û

]
(τ, ξ)dτ.

(1.7)

and estimate a small global solution directly by the semigroup method, we
would have trouble in dealing with the linear term

∫ t

0

e−(t−τ)|ξ|2α |ξ|
(
|û| + |b̂|

)
(τ, ξ)dτ. (1.8)

Indeed, from (1.8), we are unable to simply estimate ‖(u, b)‖L̃∞(χ1−2α) and
‖(u, b)‖L1(χ1). Therefore, we have to introduce a diagonalization process Propo-
sition 3.1 to eliminate the linear terms. The process appears to be complex,
but it offers a general framework for handling similar and more general situa-
tions. Once we get the global well-posedness and analytic estimates, combined
with the property of a continuous function Lemma 2.2, we can immediately
obtain the decay of ‖(u, b)(t)‖χ1−2α .

Theorem 1.2. Let (u0, b0) ∈ χ1−2α(R3) ∩ L2(R3), (u, b) ∈ C(R+;χ1−2α(R3)) ∩
L1(R+;χ1(R3)) with 1

2 ≤ α ≤ 1 be a small global solution to (1.3) constructed
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in Theorem 1.1, then

‖(u, b)(t)‖χ1−2α � (1 + t)−( 5
4α −1).

The rest of this paper is organized in three sections. In Sect. 2, we intro-
duce two definitions and two lemmas, which will play a key role in this paper.
In Sect. 3, we prove Proposition 3.1 and Theorem 1.1 and in Sect. 4, we give
the proof of Theorem 1.2. Throughout the paper, C stands for a generic pos-
itive constant, which may be different from line to line. Furthermore, we will
use the notation a � d to denote the relation a ≤ Cd, ‖·‖X to denote ‖·‖X(R3),
‖(u, b)‖p

X to denote ‖u‖p
X + ‖b‖p

X and ‖ · ‖L̃q(χs) to denote ‖ · ‖L̃q(R+;χs(R3)) for
conciseness.

2. Preliminaries

In this section, we present two definitions and two preliminary lemmas that
will be used in our proofs. The first one is the definition of Lei-Lin space χs(R3)
(see [12]).

Definition 2.1. For s ∈ R, The functional space χs(R3) is defined by

χs :=
{

f ∈ D′(R3)
∣
∣
∣
∣

∫

R3
|ξ|s|f̂(ξ)|dξ < ∞

}

which is equipped with the norm

‖f‖χs �
∫

R3
|ξ|s|f̂(ξ)|dξ.

The next is the following time dependent spaces.

Definition 2.2. Let s ∈ R and p ∈ [1,∞]. f(t, x) ∈ Lp([0, T ];χs(R3)) if and
only if

‖f‖Lp(χs) �
(∫ T

0

‖f(t, ·)‖p
χsdt

) 1
p

< ∞;

f(t, x) ∈ L̃p([0, T ];χs(R3)) if and only if

‖f‖L̃p(χs) �
∥
∥
∥

(∫ T

0

(
|ξ|s|f̂(t, ξ)|

)p

dt
) 1

p
∥
∥
∥

L1
< ∞.

By the Minkowski inequality it can be deduced that if p > 1 then
L̃p([0, T ];χs(R3)) ↪→ Lp([0, T ];χs(R3)). Clearly if p = 1 then L1([0, T ];χs(R3)) ≡
L̃1([0, T ];χs(R3)).

Finally, two lemmas will be applied in the proof of Theorems 1.1 and 1.2.

Lemma 2.1. ([26, Lemma 2.1]) Assume that 1
2 ≤ α ≤ 1, then the following

inequality holds

|ξ|2(1−α) ≤ 22(1−α)

2
(|η||ξ − η|1−2α + |η|1−2α|ξ − η|) . (2.1)
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for any ξ, η ∈ R
3.

Lemma 2.2. ([5]) Let T > 0 and f : [0, T ] → R
+ be a continuous function such

that

f(t) ≤ M0 + θ1f(θ2t); ∀ 0 ≤ t ≤ T (2.2)

with M0 ≥ 0 and θ1, θ2 ∈ (0, 1). Then

f(t) ≤ M0

1 − θ1
; ∀ 0 ≤ t ≤ T.

Proof. Because f is a positive and continuous function, then there is a time
t0 ∈ [0, T ] such that

0 ≤ f(t0) = max
0≤t≤T

f(t),

applying (2.2) at t = t0, we derive that

f(t0) ≤ M0 + θ1f(θ2t0) ≤ M0 + θ1f(t0),

which implies f(t0) ≤ M0
1−θ1

. We thus complete the proof of Lemma 2.2. �

3. Proof of Theorem 1.1

In this section, our aim is to establish the global well-posedness and analytic
estimates with small initial data. First, we need to prove Proposition 3.1, which
will play an important role in the proof of Theorem 1.1.

Proposition 3.1. The system (1.3) can be represented in the following integral
form

û(t, ξ) =
1
2

(
eλ1(ξ)t + eλ2(ξ)t

)
û0(ξ) + sgn(ξ1)

1
2

(
eλ2(ξ)t − eλ1(ξ)t

)
b̂0(ξ)

+
1
2

∫ t

0

[(
eλ1(ξ)(t−τ) + eλ2(ξ)(t−τ)

)
F̂

+ sgn(ξ1)
(
eλ2(ξ)(t−τ) − eλ1(ξ)(t−τ)

)
Ê
]
(τ, ξ)dτ, (3.1)

and

b̂(t, ξ) = sgn(ξ1)
1
2

(
eλ2(ξ)t − eλ1(ξ)t

)
û0(ξ) +

1
2

(
eλ1(ξ)t + eλ2(ξ)t

)
b̂0(ξ)

+
1
2

∫ t

0

[
sgn(ξ1)

(
eλ2(ξ)(t−τ) − eλ1(ξ)(t−τ)

)
F̂

+
(
eλ1(ξ)(t−τ) + eλ2(ξ)(t−τ)

)
Ê
]
(τ, ξ)dτ, (3.2)

where λ1 = − |ξ|2α − i|ξ1|, λ2 = − |ξ|2α + i|ξ1|, F = −u · ∇u + b · ∇b − ∇P ,
E = −u · ∇b + b · ∇u and

sgn(ξ1) =

{
1, ξ1 > 0,

−1, ξ1 < 0.



73 Page 6 of 14 Y. Xiao and B. Yuan Results Math

Proof. We rewrite (1.3) in the Fourier space as
[
∂tûj(ξ)
∂tb̂j(ξ)

]

=
[−|ξ|2α iξ1

iξ1 −|ξ|2α

] [
ûj(ξ)
b̂j(ξ)

]

+
[
F̂j(ξ)
Êj(ξ)

]

, j = 1, 2, 3, (3.3)

where we have suppressed the t-variable for notational brevity. To diagonalize
the coefficient matrix, we seek the eigenvalues and eigenvectors. Clearly, the
eigenvalues satisfy the corresponding characteristic equation

λ2 + 2|ξ|2αλ + |ξ|4α + |ξ1|2 = 0, (3.4)

and by calculation

λ1 = −|ξ|2α − i|ξ1|, λ2 = −|ξ|2α + i|ξ1|. (3.5)

The associated eigenvectors are given by

m =
[

iξ1
λ1 + |ξ|2α

]

, n =
[

iξ1
λ2 + |ξ|2α

]

. (3.6)

m and n are independent and
[−|ξ|2α iξ1

iξ1 −|ξ|2α

]

g = g

[
λ1 0
0 λ2

]

, (3.7)

where g =
[
m n

]
, and the inverse of the matrix g follows that

g−1 =

⎡

⎣

1
2iξ1

− 1
2i|ξ1|

1
2iξ1

1
2i|ξ1|

⎤

⎦ . (3.8)

If we define
[
Âj(ξ)
D̂j(ξ)

]

= g−1

[
ûj(ξ)
b̂j(ξ)

]

, (3.9)

then Âj(ξ) and D̂j(ξ) satisfy
[
∂tÂj(ξ)
∂tD̂j(ξ)

]

=
[
λ1 0
0 λ2

] [
Âj(ξ)
D̂j(ξ)

]

+ g−1

[
F̂j(ξ)
Êj(ξ)

]

. (3.10)

We further write (3.10) in the integral form

[
Âj(t, ξ)

D̂j(t, ξ)

]

=

⎡

⎣
eλ1(ξ)t 0

0 eλ2(ξ)t

⎤

⎦

[
Â0j(ξ)

D̂0j(ξ)

]

+

∫ t

0

[
eλ1(ξ)(t−τ) 0

0 eλ2(ξ)(t−τ)

]

g−1

[
F̂j(τ, ξ)

Êj(τ, ξ)

]

dτ,

(3.11)
or

[
ûj(t, ξ)
b̂j(t, ξ)

]

= g

[
eλ1(ξ)t 0

0 eλ2(ξ)t

]

g−1

[
û0j(ξ)
b̂0j(ξ)

]

+
∫ t

0

g

[
eλ1(ξ)(t−τ) 0

0 eλ2(ξ)(t−τ)

]

g−1

[
F̂j(τ, ξ)
Êj(τ, ξ)

]

dτ, (3.12)
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where

g

[
eλ1(ξ)t 0

0 eλ2(ξ)t

]

g−1 =

[
eλ1(ξ)t+eλ2(ξ)t

2 sgn(ξ1) e
λ2(ξ)t−eλ1(ξ)t

2

sgn(ξ1) e
λ2(ξ)t−eλ1(ξ)t

2
eλ1(ξ)t+eλ2(ξ)t

2

]

, (3.13)

and

g

[
eλ1(ξ)(t−τ) 0

0 eλ2(ξ)(t−τ)

]

g
−1

=

[
eλ1(ξ)(t−τ)+eλ2(ξ)(t−τ)

2
sgn(ξ1)

eλ2(ξ)(t−τ)−eλ1(ξ)(t−τ)

2

sgn(ξ1)
eλ2(ξ)(t−τ)−eλ1(ξ)(t−τ)

2
eλ1(ξ)(t−τ)+eλ2(ξ)(t−τ)

2

]

. (3.14)

We are then led to the desired representation in Proposition 3.1. �

With Lemma 2.1 and Proposition 3.1 at our disposal, we start to prove
Theorem 1.1.

Proof of Theorem 1.1. Thanks to (3.1) and (3.2) in Proposition 3.1, we have

|û(t, ξ)| + |b̂(t, ξ)| � e−|ξ|2αt
(
|û0(ξ)| + |b̂0(ξ)|

)
+

∫ t

0
e−|ξ|2α(t−τ)

(
|F̂ (τ, ξ)| + |Ê(τ, ξ)|

)
dτ,

(3.15)

where we have used the fact λ1,2 = −|ξ|2α ± i|ξ1| and |e±i|ξ1|t| = 1.
Now we divide the proof of Theorem 1.1 into three steps. The first step

estimates ‖(u, b)‖L̃∞(χ1−2α), the second step estimates ‖(u, b)‖L1(χ1), and the
third step establishes the analytic estimate.
Step 1. ‖(u, b)‖L̃∞(χ1−2α) estimate. Multiplying (3.15) by |ξ|1−2α, we get

|ξ|1−2α|û(t, ξ)| + |ξ|1−2α|b̂(t, ξ)|
≤ e−|ξ|2αt|ξ|1−2α

(
|û0(ξ)| + |b̂0(ξ)|

)

+
∫ t

0

e−|ξ|2α(t−τ)|ξ|2−2α
(
|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|

)
(τ, ξ)dτ.

(3.16)

Under the definition of L̃∞(χ1−2α), we take the L∞−norm in time to (3.16).
By Lemma 2.1 and Young inequality it yields

∫ ∞

0

e−|ξ|2α(t−τ)|ξ|2−2α|û ⊗ u|(τ, ξ)dτ

�
∫ ∞

0

(∫

R3

(|η||ξ − η|1−2α + |η|1−2α|ξ − η|) |û(t, ξ − η)||û(t, η)|dη

)

dt

�
∫ ∞

0

(|ξ|1−2α|û(t, ξ)| ∗ξ |ξ||û(t, ξ)|) dt

�
(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0

|ξ||û(t, ξ)|dt

)

, (3.17)
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similarly

∫ ∞

0

e−|ξ|2α(t−τ)|ξ|2−2α
(
|b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|

)
(τ, ξ)dτ

�
(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0

|ξ||b̂(t, ξ)|dt

)

+
(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0

|ξ||b̂(t, ξ)|dt

)

+
(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0

|ξ||û(t, ξ)|dt

)

. (3.18)

We conclude from the estimates (3.17) and (3.18) that

sup
0≤t<∞

|ξ|1−2α|û(t, ξ)| + sup
0≤t<∞

|ξ|1−2α|b̂(t, ξ)|

� |ξ|1−2α
(
|û0(ξ)| + |b̂0(ξ)|

)
+

(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||û(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||b̂(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||b̂(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||û(t, ξ)|dt

)

. (3.19)

Then taking L1−norm in ξ to (3.19), it follows that

‖(u, b)‖L̃∞(χ1−2α) � ‖(u0, b0)‖χ1−2α + ‖(u, b)‖L̃∞(χ1−2α)‖(u, b)‖L1(χ1). (3.20)

Step 2. ‖(u, b)‖L1(χ1) estimate. Multiplying (3.15) by |ξ|, we have

|ξ||û(t, ξ)| + |ξ||b̂(t, ξ)|
≤ |ξ|2αe−|ξ|2αt|ξ|1−2α

(
|û0(ξ)| + |b̂0(ξ)|

)

+
∫ t

0

|ξ|2αe−|ξ|2α(t−τ)|ξ|2−2α
(
|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ u| + |b̂ ⊗ b|

)
(τ, ξ)dτ.

(3.21)
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Taking the L1−norm in time to (3.21), applying
∫ ∞
0

|ξ|2αe−|ξ|2αtdt ≤ 1 and
arguing similarly to the above, we deduce

∫ ∞

0
|ξ||û(t, ξ)|dt +

∫ ∞

0
|ξ||b̂(t, ξ)|dt

� |ξ|1−2α
(
|û0(ξ)| + |b̂0(ξ)|

)
+

(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||û(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||b̂(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|û(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||b̂(t, ξ)|dt

)

+

(

sup
0≤t<∞

(|ξ|1−2α|b̂(t, ξ)|)
)

∗ξ

(∫ ∞

0
|ξ||û(t, ξ)|dt

)

. (3.22)

Taking the L1−norm in ξ to (3.22), one obtains

‖(u, b)‖L1(χ1) � ‖(u0, b0)‖χ1−2α + ‖(u, b)‖L̃∞(χ1−2α)‖(u, b)‖L1(χ1). (3.23)

Combining (3.20) and (3.23) it gives

‖(u, b)‖L̃∞(χ1−2α) + ‖(u, b)‖L1(χ1)

� ‖(u0, b0)‖χ1−2α +
(
‖(u, b)‖L̃∞(χ1−2α) + ‖(u, b)‖L1(χ1)

)2

. (3.24)

By bootstrap argument, if taking ‖(u0, b0)‖χ1−2α < ε0, we deduce that
‖(u, b)‖L̃∞(χ1−2α)+‖(u, b)‖L1(χ1) < 2ε0, which implies the existence of a global
solution in C(R+;χ1−2α(R3))∩L1(R+;χ1(R3)) for small initial data in χ1−2α(R3).
And we complete the proof of (1.4).
Step 3. Analytic estimate. Let v̂(t, ξ) = e|ξ|α√

tû(t, ξ) and ŵ(t, ξ) = e|ξ|α√
tb̂(t, ξ),

then v̂(t, ξ) and ŵ(t, ξ) satisfy that

|v̂(t, ξ)| + |ŵ(t, ξ)|
≤ e|ξ|α√

t−|ξ|2αt
(
|û0(ξ)| + |b̂0(ξ)|

)

+
∫ t

0

e|ξ|α√
t−|ξ|2α(t−τ)|ξ|

(
|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|

)
(τ, ξ)dτ

≤ e|ξ|α√
t− 1

2 |ξ|2αte− 1
2 |ξ|2αt

(
|û0(ξ)| + |b̂0(ξ)|

)

+
∫ t

0

e|ξ|α(
√

t−√
τ)− 1

2 |ξ|2α(t−τ)e− 1
2 |ξ|2α(t−τ)

e|ξ|α√
τ |ξ|

(
|û ⊗ u| + |b̂ ⊗ b| + |û ⊗ b| + |b̂ ⊗ u|

)
(τ, ξ)dτ. (3.25)
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Since e|ξ|α√
t− 1

2 |ξ|2αt and e|ξ|α(
√

t−√
τ)− 1

2 |ξ|2α(t−τ) are uniformly bounded in
time, then we have

|v̂(t, ξ)| + |ŵ(t, ξ)|

� e
− 1

2 |ξ|2αt
(
|û0(ξ)| + |b̂0(ξ)|

)
+

∫ t

0
e

− 1
2 |ξ|2α(t−τ)|ξ|

[ ∫

R3
e

|ξ−η|α√
τ |û(ξ − η)|e|η|α√

τ |û(η)|dη

+

∫

R3
e

|ξ−η|α√
τ |b̂(ξ − η)|e|η|α√

τ |b̂(η)|dη +

∫

R3
e

|ξ−η|α√
τ |û(ξ − η)|e|η|α√

τ |b̂(η)|dη

+

∫

R3
e

|ξ−η|α√
τ |b̂(ξ − η)|e|η|α√

τ |û(η)|dη
]
dτ

� e
− 1

2 |ξ|2αt
(
|û0(ξ)| + |b̂0(ξ)|

)

+

∫ t

0
e

− 1
2 |ξ|2α(t−τ)|ξ|

(
|v̂ ⊗ v| + |ŵ ⊗ w| + |v̂ ⊗ w| + |ŵ ⊗ v|

)
(τ, ξ)dτ. (3.26)

Therefore, with (3.26) at our disposal, the proof of analyticity (1.5) can be
obtained in the same manner as that of (1.4). Thus, we complete the proof of
Theorem 1.1. �

4. Proof of Theorem 1.2

The proof of Theorem 1.2 follows from that of Theorem 1.4 in our other liter-
ature [22] with some suitable modifications. In this section, for completeness
and reader’s convenience, we prove it concisely. The method lies in decompos-
ing the spectrum of the solution into low and high frequency parts. The details
are as follows.

Proof. We write ‖(u, b)(t)‖χ1−2α = I1 + I2, for any λ > 0, t > 0, where

I1 =
∫

|ξ|≤λ

|ξ|1−2α
(
|û| + |b̂|

)
(t, ξ)dξ

≤
(∫

|ξ|≤λ

|ξ|2(1−2α)dξ

) 1
2

‖(u0, b0)‖L2

� λ
5−4α

2 ‖(u0, b0)‖L2 (4.1)

and

I2 =
∫

|ξ|>λ

e−
√

t/2|ξ|αe
√

t/2|ξ|α |ξ|1−2α
(
|û| + |b̂|

)
(t, ξ)dξ

� e−
√

t/2λα

∫

R3
e
√

t/2|ξ|α |ξ|1−2α
(
|û| + |b̂|

)
(t, ξ)dξ. (4.2)

Here we estimate
∫

R3 e
√

t/2|ξ|α |ξ|1−2α
(
|û| + |b̂|

)
(t, ξ)dξ. For a fixed time t > 0,

setting V (z, x) = u(z + t
2 , x), W (z, x) = b(z + t

2 , x) and H(z, x) = P (z + t
2 , x),

Let ε > 0 such that ε < ε0, according to the assumption of Theorem 1.1, if
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‖(V,W )(0, x)‖χ1−2α < ε, without loss of generality, (V,W ) is the unique global
solution of the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂zV + μΛ2αV + (V · ∇)V + ∇H = (W · ∇)W + ∂1W,

∂zW + νΛ2αW + (V · ∇)W = (W · ∇)V + ∂1V,

∇ · V = ∇ · W = 0,

V (0, x) = u( t
2 , x), W (0, x) = b( t

2 , x).

By the analytic estimate (1.5), we deduce that
∫

R3
e
√

z|ξ|α |ξ|1−2α
(
|V̂ | + |Ŵ |

)
(z, ξ)dξ �

∫

R3
|ξ|1−2α

(
|û| + |b̂|

)(
t

2
, ξ

)

dξ,

(4.3)

or
∫

R3
e
√

z|ξ|α |ξ|1−2α
(
|û| + |b̂|

)(

z +
t

2
, ξ

)

dξ �
∫

R3
|ξ|1−2α

(
|û| + |b̂|

)(
t

2
, ξ

)

dξ.

(4.4)

For z = t
2 , we have

∫

R3
e
√

t/2|ξ|α |ξ|1−2α
(
|û| + |b̂|

)
(t, ξ)dξ � ‖(u, b)

(
t

2

)

‖χ1−2α . (4.5)

Inserting the estimate (4.5) into (4.2) leads to the result

I2 � e−
√

t/2λα‖(u, b)
(

t

2

)

‖χ1−2α . (4.6)

Then

‖(u, b)(t)‖χ1−2α � λ
5−4α

2 ‖(u0, b0)‖L2 + e−
√

t/2λα‖(u, b)
(

t

2

)

‖χ1−2α . (4.7)

Multiplying (4.7) by t
5
4α −1, we obtain

t
5
4α −1‖(u, b)(t)‖χ1−2α

� λ
5−4α

2 t
5
4α −1‖(u0, b0)‖L2 + 2

5
4α −1

(
t

2

) 5
4α −1

e−
√

t/2λα‖(u, b)
(

t

2

)

‖χ1−2α .

(4.8)

One chooses λ > 0 such that 2
5
4α −1e−

√
t/2λα

= 1
2 , then λ =

(
5
√
2 log 2

4α
√

t

) 1
α

,

t
5
4α

−1‖(u, b)(t)‖χ1−2α �
(
5
√
2 log 2

4α

) 5−4α

2α

‖(u0, b0)‖L2 +
1

2

(
t

2

) 5
4α

−1

‖(u, b)

(
t

2

)

‖χ1−2α .

(4.9)
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Applying Lemma 2.2 with

M0 = C

(
5
√

2 log 2
4α

) 5−4α
2α

‖(u0, b0)‖L2 , θ1 = θ2 =
1
2
,

and

f(t) = t
5
4α −1‖(u, b)(t)‖χ1−2α ,

it yields that

lim sup
t→+∞

t
5
4α −1‖(u, b)(t)‖χ1−2α ≤ M0

1 − θ1
= 2M0. (4.10)

The proof of Theorem 1.2 is thus finished. �
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