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Abstract. In this paper we first discuss weighted mean curvature and
volume comparisons on smooth metric measure space (M, g, e−fdv) under

the integral Bakry–Émery Ricci tensor bounds. In particular, we add an
additional condition on the potential function f to ensure the validity of
previous conclusions for some cases proved by the second author. Then,
we apply the comparison results to get a new diameter estimate and

a fundamental group finiteness under the integral Bakry–Émery Ricci
tensor bounds, which sharpens Theorem 1.6 in Wu (J Geom Anal 29:828–
867, 2019) and can be viewed as the extension of the works of Myers and
Aubry.
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1. Introduction

Myers’ theorem [18] is one of classical theorems in Riemannian geometry. It
states that if the Ricci curvature of a complete n-dimensional connected Rie-
mannian manifold (M, g) satisfies Ric ≥ (n − 1)H for some constant H > 0,
then manifold M is compact with finite fundamental group and its diameter
is at most π/

√
H. Since then, many works generalize Myers’ theorem, see for

example [1,4,10,31].
In 1990s, Myers’ theorem was generalized to a integral bound setting for

the Ricci tensor. Petersen and Wei [22,23] extended many classical comparison
theorems and geometrical results of pointwise Ricci tensor condition to the
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integral Ricci tensor bounds. Petersen and Sprouse [21] applied Petersen-Wei’s
comparison results to get a rough diameter bound. Aubry [2] improved this
diameter bound by using Petersen–Wei’s comparison results to star-shaped
domains. For more related results, see [3,5–7,9,11,19,24,26,35] and references
therein.

In 2000s, Myers’ theorem was also generalized by Wei and Wylie [30]
to the smooth metric measure space. Recall that an n-dimensional smooth
metric measure space, denoted by (M, g, e−fdv), is a complete n-dimensional
Riemannian manifold (M, g) coupled with a weighted volume e−fdv for some
f ∈ C∞(M), where dv is the usual Riemannian volume element on (M, g).
The associated Bakry–Émery Ricci tensor, introduced by Bakry and Émery,
is defined as

Ricf := Ric + Hess f,

where Hess f is the Hessian of f . If Ricf =ρg for some ρ∈R, then (M, g, e−fdv)
is a gradient Ricci soliton, which generalizes an Einstein manifold and plays a
fundamental role in the Ricci flow [20]. Wei and Wylie [30] proved that if

Ricf ≥ (n − 1)H > 0 and |f | ≤ k

for some constant k ≥ 0, then M is compact and its diameter has an explicit
upper bound depending only on n, H and k. This upper bound was improved
by Limoncu [14] for large k and furthermore sharpened by Tadano [27] for any
k. Fernández-López and Garćıa-Ŕıo [8] proved that if

Ric +
1
2
LV g ≥ (n − 1)H > 0 and |V | ≤ a

for some constant a ≥ 0, where LV is the Lie derivative in the direction of
smooth vector field V on M , then M is compact. Under the same conditions,
Limoncu [13] gave an explicit upper bound to the diameter of M . Later, the
upper bound was improved by Tadano [28] and then sharpened by the second
author [32] to be

diam(M) ≤ 2a

(n − 1)H
+

π√
H

. (1)

Besides, there have been more Myers’ type theorems involving the Bakry–
Émery Ricci tensor; see [12,15–17,25,36] and references therein for details.

Recently, the second author [33] extended Wei–Wylie’s comparison re-
sults of pointwise Bakry–Émery Ricci tensor [30] condition to the integral
Bakry–Émery Ricci tensor bounds, and also extended the integral Ricci tensor
case [2,22]. Wang and Wei [29] applied comparison results [33] to get local
Sobolev constant estimates and gradient estimates under the integral Bakry–
Émery Ricci tensor bounds.

From the above works, it is natural to ask.
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Question. For a complete smooth metric measure space (M, g, e−fdvg), does
there exist a Myers’ type theorem under the integral Bakry–Émery Ricci tensor
bounds?

In order to study this question, inspired by Aubry’s work [2], we see that
the weighted mean curvature, and the weighted area (volume) comparison
theorems will play an important role in the argument. However, the authors
recently found that there exist some errors in comparison Theorems 1.1 and
3.1 of [33] for the case π

2
√

H
< r < π√

H
, H > 0. In this paper, we first correct

these errors by adding an additional condition on f to ensure that comparison
Theorems 1.1 and 3.1 of [33] remain true for the case π

2
√

H
< r < π√

H
, H > 0.

Meanwhile we correct Theorem 1.6 of [33] correspondingly. These detailed
description and further development will be given in Sect. 2. Then, we apply
the corrected comparison results to obtain a new Myers’ type theorem under
the integral Bakry–Émery Ricci tensor bounds, which improves Theorem 1.6 in
[33]. Our result, in some special cases, obviously includes Myers’ and Aubry’s
diameter estimates.

To state the results, we fix some notations. Fix H ∈ R, and consider
at each point x of (M, g, e−fdv) with the smallest eigenvalue λ(x) of Ricf :
TxM → TxM . We define the amount of Ricf lying below (n − 1)H

RicH
f − := ((n − 1)H − λ(x))+ = max{0, (n − 1)H − λ(x)}.

For a constant a ≥ 0 and a geodesic ball B(x, r) ⊂ M with radius r > 0, center
at x ∈ M , a weighted Lp norm of function φ on (M, g, e−fdv) is defined as

‖φ‖p,f,a(r) := sup
x∈M

(∫
B(x,r)

|φ|pAfe−at dtdθn−1

) 1
p

,

where Af = Af (t, θ) = e−fA(t, θ) is the volume element of weighted form

e−fdv = Af (t, θ)dt ∧ dθn−1

in polar coordinate, A(t, θ) is the standard volume element of the metric g and
dθn−1 is the volume element on the unit sphere Sn−1. Clearly, ‖RicH

f −‖
p,f,a

(r)=

0 if and only if Ricf ≥ (n− 1)H. The following normalized norm of φ is useful
in this paper,

‖φ‖p,f,a(r) := sup
x∈M

(
1

Vf (x, r)

∫
B(x,r)

|φ|pAfe−atdtdθn−1

) 1
p

,

where Vf (x, r) :=
∫

B(x,r)
e−fdv. If r → ∞ above and the limit exists, then we

have a global curvature quantity on M

‖φ‖p,f,a(M) := lim
r→∞ ‖φ‖p,f,a(r).
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Now we can apply weighted volume comparison estimates under the in-
tegral Bakry–Émery Ricci tensor bounds (see Sect. 2) to give a new Myers’
type theorem under the integral Bakry–Émery Ricci tensor bounds.

Theorem 1.1. Let (M, g, e−fdv) be an n-dimensional complete smooth metric
measure space. Given p > n/2 and a ≥ 0, there exists an 0 < ε(n, p, a) < 1
such that if

‖Ric1f −‖
p,f,a

(M) ≤ ε(n, p, a)

and

∂rf = −a or ∂rf ≥ −a − 2(n − 1) cot
(

π − ‖Ric1f −‖
p

2p−1

p,f,a
(M)
)

along all minimal geodesic segments from any x ∈ M , then M is compact with
finite fundamental group π1(M) and

diam(M) ≤ π

(
1 + c(n, p, a)‖Ric1f −‖b

p,f,a
(M)
)

.

for some positive constants c(n, p, a) and b = b(n, p, a).

We give some remarks about Theorem 1.1.

Remark 1.2. For any constant H > 0, a renormalization argument readily

shows that we can replace ‖Ric1f −‖
p,f,a

and cot(π − ‖Ric1f −‖
p

2p−1

p,f,a
(M)) by

‖RicH
f −‖

p,f,a
and

√
H cot(π −‖RicH

f −‖
p

2p−1

p,f,a
(M)), respectively in Theorem 1.1

provided c(n, p, a) and π are replaced by c(n, p, a,H) and π/
√

H, respectively.

Remark 1.3. When f is constant and a = 0, Theorem 1.1 returns to the
Aubry’s result [2]. If we further assume ‖Ric1f −‖

p,f,a
(M) ≡ 0, i.e., Ric ≥ n−1,

then Theorem 1.1 recovers the classical Myers’ theorem [18].

Remark 1.4. In view of the diameter estimate (1), it remains an interesting
question if there exists a Myers’s type theorem for a bound of integral Bakry–
Émery Ricci tensor under only ∂rf ≥ −a for some constant a ≥ 0, along all
minimal geodesic segments r from x ∈ M .

Remark 1.5. We also improve the result of Theorem 1 in [34]. In [34], the
number ε depends on R and ε → 0 as R → ∞, and hence it essentially
applies to compact smooth metric measure spaces; while the small number ε
in Theorem 1.1 is independent of R.

The rest of paper is organized as follows. In Sect. 2, we give some no-
tations and recall some integral comparison theorems [33] on smooth metric
measure spaces. In particular, we give some minor corrections of Theorems 1.1
and 3.1 of [33] for π

2
√

H
< r ≤ R < π√

H
when H > 0; see Theorems 2.1 and
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2.2 below. In Sect. 3, we apply corrected comparison theorems of Sect. 2 to
give some weighted measures for star-shaped domains and geodesic balls under
integral Bakry–Émery Ricci tensor bounds. In Sect. 4, following the Aubry’s
argument in [2], we first give a key local diameter estimate. Then we apply
the local diameter estimate to prove Theorem 1.1. In Appendix, we give an-
other Myers’ theorem under only the integral of m-Bakry–Émery Ricci tensor
bounds.

2. Preliminary

In this section, we recall weighted area and volume comparisons [33] under
the integral Bakry–Émery Ricci tensor bounds. These results can be regarded
as the generalizations of the integral Ricci tensor [2,22]. In particular, we give
some minor corrections of Theorems 1.1 and 3.1 of [33] for π

2
√

H
< r ≤ R < π√

H
when H > 0. These results will be used in the proof of our main result.

The weighted volume of the geodesic sphere S(x, r) = {y ∈ M | d(x, y) =
r} is defined as

Af (x, r) =
∫

Sn−1
Af (r, θ)dθn−1.

For a constant a ≥ 0, the model space (MH , gH), the n-dimensional simply
connected space with constant sectional curvature H, can be modified to the
pointed weighted model space MH,a := (MH , gH , e−hdvgH

, O), where O ∈ MH

is a base point and h(x) = −a · d(x,O). Let Aa
H(r) := earAH(r) be the h-

volume element in (MH , gH), where AH is the volume element in (MH , gH).
We let

Aa
H(r) =

∫
Sn−1

Aa
H(r, θ)dθn−1

be the weighted volume of the geodesic sphere in the weighted model space
MH,a. It is easy to see that Aa

H(r) = earAH(r), where AH(r) is the usual
volume of the geodesic sphere in (MH , gH). Moreover, the weighted volume
of ball B(x, r) ⊂ M and the h-volume of ball B(O, r) ⊂ MH are defined
respectively by

Vf (x, r) =
∫ r

0

Af (x, t)dt and V a
H(r) =

∫ r

0

Aa
H(t)dt.

Obviously, VH(r) ≤ V a
H(r) ≤ earVH(r). When f is constant (and a = 0), all

above notations recover the usual integral quantities on manifolds [22,23].
In (M, g, e−fdv), we assume that ∂rf ≥ −a for some constant a ≥ 0,

along a minimal geodesic segment from x ∈ M . As in [33], we consider the
error function

ϕ := (mf − mH − a)+,
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where mf = m − ∂rf , m is the mean curvature of the geodesic sphere in the
outer normal direction and mH is the mean curvature of the geodesic sphere
in (MH , gH).

The correct statement of comparison Theorem 1.1 in [33] is the following,
also see [34].

Theorem 2.1. Let (M, g, e−fdv) be an n-dimensional smooth metric measure
space. Assume that

∂rf ≥ −a

for some constant a ≥ 0, along a minimal geodesic segment from x ∈ M . For
any p > n/2, H ∈ R (assume r ≤ π

2
√

H
when H > 0),

‖ϕ‖2p,f,a(r) ≤
[
(n − 1)(2p − 1)

(2p − n)
‖RicH

f −‖
p,f,a

(r)
] 1

2

and

ϕ2p−1Af e−ar ≤ (2p − 1)p

(
n − 1
2p − n

)p−1 ∫ r

0

(RicH
f −)pAfe−atdt

along that minimal geodesic segment from x.
Moreover, if π

2
√

H
< r < π√

H
when H > 0 and f further satisfies

∂rf = −a or ∂rf ≥ −a − 2(n − 1)
√

H cot(
√

Hr), (2)

then we have∥∥∥ sin
4p−n−1

2p (
√

Ht) · ϕ
∥∥∥
2p,f,a

(r) ≤
[
(n − 1)(2p − 1)

(2p − n)
‖RicH

f −‖
p,f,a

(r)
] 1

2

and

sin4p−n−1(
√

Hr)ϕ2p−1Afe−ar ≤(2p − 1)p

(
n−1
2p−n

)p−1∫ r

0

(RicH
f −)pAfe−atdt

along that minimal geodesic segment from x.

Proof of Theorem 2.1. Compared with Theorem 1.1 of [33], we add an addi-
tional condition (2) for the case π

2
√

H
< r < π√

H
, H > 0, to make corrections.

Indeed, in the proof of this case (see p. 837 in [33]), the second author made
a mistake from

ϕ′ +
1

n − 1

[
(ϕ + a + ∂rf)(ϕ + 2mH + a + ∂rf)

]
≤ RicH

f −

to

ϕ′ +
ϕ2

n − 1
+

2mHϕ

n − 1
≤ RicH

f −, (3)

because the second author overlooked a fact that mH is negative at this
case. To correct this error, we add an additional condition (2) to ensure
(3) still holds. Note that in the course of discussion, we have used mH =
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(n − 1)
√

H cot(
√

Hr). Then the rest of proof remains correct without any
modification. �

The correction impacts comparison Theorem 3.1 of [33] for the case
π

2
√

H
< r ≤ R < π√

H
, H > 0. The corresponding modification in accordance

with the correction is that.

Theorem 2.2. Let (M, g, e−fdv) be an n-dimensional smooth metric measure
space. Assume that

∂rf ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M .
Let H ∈ R and p > n/2 be given, and when H > 0 assume that R ≤ π

2
√

H
. For

0 < r ≤ R, we have(
Af (x,R)
Aa

H(R)

) 1
2p−1

−
(

Af (x, r)
Aa

H(r)

) 1
2p−1

≤ C(n, p,H,R)
(
‖RicH

f −‖p,f,a(R)
) p

2p−1
,

where

C(n, p,H,R) :=
(

n − 1
(2p − 1)(2p − n)

) p−1
2p−1
∫ R

0

AH(t)− 1
2p−1 dt.

Moreover, if π
2
√

H
< r ≤ R < π√

H
when H > 0 and f further satisfies (2),

then we have(
Af (x,R)
Aa

H(R)

) 1
2p−1

−
(

Af (x, r)
Aa

H(r)

) 1
2p−1

≤
(

n − 1
(2p − 1)(2p−n)

) p−1
2p−1 (

‖RicH
f −‖p,f,a(R)

) p
2p−1
∫ R

r

(
√

H)
n−1
2p−1

sin2(
√

Ht)
dt.

(4)

Moreover, from Theorem 1.3 of [33], we have a weighted volume compar-
ison estimate under the integral Bakry–Émery Ricci tensor bounds.

Theorem 2.3. Let (M, g, e−fdv) be an n-dimensional smooth metric measure
space. Assume that

∂rf ≥ −a

for some constant a ≥ 0, along all minimal geodesic segments from x ∈ M .
Let H ∈ R and p > n/2. For 0 < r ≤ R (assume R ≤ π

2
√

H
when H > 0),(

Vf (x,R)
V a

H(R)

) 1
2p−1

−
(

Vf (x, r)
V a

H(r)

) 1
2p−1

≤ C(n, p,H, a,R)
(
‖RicH

f −‖p
p,f,a(R)

) 1
2p−1

,

(5)
where

C(n, p,H, a,R) :=
(

n − 1
(2p − 1)(2p − n)

) p−1
2p−1
∫ R

0

AH(t)
(

t eat

V a
H(t)

) 2p
2p−1

dt.
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Proof of Theorem 2.3. Compared with Theorem 3.1 of [33], the only difference
is that we add an additional condition (2) for the case π

2
√

H
< r ≤ R < π√

H
,

H > 0, to make corrections. The proof is the same as in [33] except we use the
present Theorem 2.1 instead of the previous Theorem 1.1 of [33]. �

3. Bounds of Weighted Volume of Geodesic Balls

In (M, g), a subset T ⊂ M is called to be a star-shaped set at x, if for any y ∈ T ,
there exists a minimal geodesic connecting x to y contained in T . Clearly the
geodesic ball B(x, r) is a star-shaped set at x. By integrating only along the
direction lies in the start-shaped set at x, we can prove the same comparison
estimates as comparison Theorems 2.1 and 2.2 in Sect. 2 for any star-shaped
set at x, where RicH

f − only needs to integrate on the same star-shaped set.
This will be useful in the following discussion.

In this section we will apply Theorem 2.2 to prove several weighted mea-
sures for star-shaped domains and geodesic balls. When f is constant and
a = 0, these results recover the Aubry’s case [2].

First, we will give a weighted area estimate of a star-shaped domain T
when the Bakry–Émery Ricci tensor concentrates sufficiently above n − 1 on
T , which is the first step of the proof of main theorem.

Lemma 3.1. Let p > n/2. Assume that (M, g, e−fdv) contains a subset T ,
star-shaped at a point x, which satisfies

ε = R2
T ‖Ric1f −‖

p,f,a
(T ) ≤

(π

6

)2− 1
p

and

∂rf = −a or ∂rf ≥ −a − 2(n − 1) cot
(
π − ε

p
2p−1

)
along all minimal geodesic segments from x ∈ M for some constant a ≥ 0,
where RT is constant such that T ⊂ B(x,RT ). There exists an explicit constant
C(n, p) such that for all radius RT ≥ r ≥ π, we have

Af,T (x, r) ≤ C(n, p)
ear

r
ε

p(n−1)
2p−1 Vf (T ), (6)

where Af,T (x, r) is the weighted volume of S(x, r)
⋂

T .

Proof of Lemma 3.1. For RT ≥ r ≥ π, we choose the model space with con-
stant sectional curvature Hr = (π−ε′

r )2 < 1, where ε′ = ε
p

2p−1 . For t ∈
[ π
2(π−ε′)r, r], since cotangent function is monotonic decreasing, then

∂tf + a = 0 or ∂tf + a ≥ −2(n − 1) cot
(
π − ε

′)
≥ −2(n − 1) cot

(
π−ε

′

r t
)
.



Vol. 76 (2021) Myers’ Type Theorem for Integral Page 9 of 24 32

In each case of the above, it implies

(∂tf + a)2 ≥ −2(n − 1)(∂tf + a) cot(
√

Hrt)

for t ∈ [ π
2(π−ε′)r, r]. Then by the weighted area comparison estimate (4) of

Theorem 2.2 for the star-shaped set, we have(
Af,T (x, r)

ear sinn−1(
√

Hrr)

) 1
2p−1

−
(

Af,T (x, t)
eat sinn−1(

√
Hrt)

) 1
2p−1

≤
(

n−1
(2p−1)(2p−n)

) p−1
2p−1 (

‖Ric1f −‖p,f,a(T )
) p

2p−1
∫ r

t

ds

sin2(
√

Hrs)
.

By concavity of the sine function on
√

Hrs ∈ [π
2 , π], we have∫ r

t

ds

sin2(
√

Hrs)
≤ π2(r − t)

4(π − √
Hrt)(π − √

Hrr)
≤ π2(r − t)

4(π − √
Hrt)ε′ ≤ πr

4ε′ ,

where we used a fact that r−t
π−√

Hrt
is decreasing in t. Thus, by the theorem’s

assumption, we have(
Af,T (x, r)

ear sinn−1(
√

Hrr)

) 1
2p−1

−
(

Af,T (x, t)
eat sinn−1(

√
Hrt)

) 1
2p−1

≤
(

n − 1
(2p − 1)(2p − n)

) p−1
2p−1 π

4

(
Vf (T )

r

) 1
2p−1

.

Since

sin
(√

Hrr
)

= sin(π − ε′) = sin(ε′) ≤ ε′

and

sin
(√

Hrt
)

= sin
(

t

r
(π − ε′)

)
,

then for all t ∈ [ π r
2(π−ε′) , r], we further obtain

Af,T (x, r)
1

2p−1 ≤ Af,T (x, t)
1

2p−1

(
ear

eat

) 1
2p−1
(

ε′

sin[(π − ε′) t
r ]

) n−1
2p−1

+
π

4

(
n − 1

(2p − 1)(2p − n)

) p−1
2p−1
(

Vf (T )ear

r

) 1
2p−1

ε′ n−1
2p−1 .

(7)

For t ∈ [ π r
2(π−ε′) ,

5π r
6(π−ε′) ], we have

sin
(

(π − ε′)
t

r

)
≥ sin

π

6
=

1
2
.

When ε′ ≤ π
6 , we have

5π

6(π − ε′)
r ≤ r.
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Combining these estimates and applying the inequality

(a + b)2p−1 ≤ 22p−2(a2p−1 + b2p−1)

for any a, b ≥ 0 to the above inequality (7), we get

Af,T (x, r) ≤ 22p+n−3ε′(n−1) ear

eat
Af,T (x, t)

+
(

n − 1
(2p − 1)(2p − n)

)p−1
π2p−1ear

4p r
ε′(n−1)

Vf (T )

for all t ∈ [ π r
2(π−ε′) ,

5π r
6(π−ε′) ].

By the mean value theorem, there exists t0 ∈ [ π r
2(π−ε′) ,

5π r
6(π−ε′) ] such that

Af,T (x, t0) =
3(π − ε′)

πr

∫ 5πr
6(π−ε′)

πr
2(π−ε′)

Af,T (x, t)dt

≤ 3
r

∫ RT

0

Af,T (x, t)dt

=
3
r
Vf (T ).

Hence,

Af,T (x, r) ≤
[
3 · 22p+n−3 +

π2p−1

4p

(
n − 1

(2p − 1)(2p − n)

)p−1
]

ear

r
ε

p(n−1)
2p−1 Vf (T ),

which completes the estimate. �

Then we will apply Theorem 2.3 to give some estimates for the weighted
relative volume of geodesic balls, which is the second step of the proof of main
theorem.

Lemma 3.2. Let (M, g, e−fdv) be an n-dimensional smooth metric measure
space. Assume that

∂rf ≥ −a

for some constant a ≥ 0 along all minimal geodesic segments from x ∈ M .
For any RT > 0, there exist (computable) constants C(n, p, aRT ) > 0 and
B(n, p, aRT ) such that when M contains a star-shaped subset T ⊂ B(x,RT )
which satisfies

ε0 = R2
T ‖Ric0f −‖

p,f,a
(T ) ≤ B(n, p, aRT ),

then we have
(i) for 0 < r ≤ R ≤ RT ,

Vf,T (x, r)
Vf,T (x,R)

≥
(
1 − C(n, p, aRT )ε

p
2p−1
0

)2p−1 rn

eaRRn
,
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where Vf,T (x, r) is the weighted volume of BT (x, r)
⋂

T , and

C(n, p, aRT ) :=
2n(2p − 1)

2p − n

(
n − 1

(2p − 1)(2p − n)

) p−1
2p−1

(eaRT )
2p+2
2p−1 .

(ii) if T = B(x,R0), y ∈ T and r ≥ 0 satisfy d(x, y) + r ≤ R0, then(
Vf,T (y, r)

Vf,T (x,R0)

) 1
2p−1

≥
(

rn

eaR0Rn
0

) 1
2p′−1

×
⎡
⎣(2

3
− C(n, p, aR0)ε

p′
2p′−1
0

)(
r

R0

) 2n+b(n,p,aR0)
2p′−1

− D(n, p, aR0)ε
p′

2p′−1
0

⎤
⎦ ,

where p′ := max{n, p}, constant b(n, p, aR0) > (2p−n)aR0
(2p−1)2 log 3/2 and

D(n, p, aR0) :=
(2p−1)n
2p−n ( n−1

(2p−1)(2p−n) )
p−1
2p−1 (eaR0)

2p+2
2p−1

1 − (3/2)
2p

2p−n (eaR0)− 1
2p−1

.

Proof of Lemma 3.2. For any t ≤ r ≤ R ≤ RT , by the weighted volume
comparison (5) for a star-sharped set, we have

(
Vf,T (x, R)

V a
0 (R)

) 1
2p−1

−
(

Vf,T (x, r)

V a
0 (r)

) 1
2p−1

≤
(

n − 1

(2p − 1)(2p − n)

) p−1
2p−1 (

‖Ric0f−‖p
p,f,a(R)

) 1
2p−1

∫ R

0

A0(t)

(
t eat

V a
0 (t)

) 2p
2p−1

dt

Using the facts V0(r) ≤ V a
0 (r) ≤ earV0(r), A0(t) = ntn−1ωn and V0(t) = tnωn,

we have∫ R

0

A0(t)
(

t eat

V a
0 (t)

) 2p
2p−1

dt ≤
∫ R

0

A0(t)
(

t eat

V0(t)

) 2p
2p−1

dt

=
∫ R

0

(ntn−1ωn)
(

t eat

tnωn

) 2p
2p−1

dt

≤ (2p − 1)n
2p − n

(eaR)
2p

2p−1 (ωn)− 1
2p−1 R

2p−n
2p−1

and

(
Vf,T (x, R)

V a
0 (R)

) 1
2p−1

−
(

Vf,T (x, r)

V a
0 (r)

) 1
2p−1

≥
(

Vf,T (x, R)

eaRV0(R)

) 1
2p−1

−
(

Vf,T (x, r)

V0(r)

) 1
2p−1

=

(
Vf,T (x, R)

eaRωnRn

) 1
2p−1

−
(

Vf,T (x, r)

ωnrn

) 1
2p−1

,
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where ωn is the volume of the Euclidean unit n-ball. Hence, we have

(
Vf,T (x,R)

eaRRn

) 1
2p−1

−
(

Vf,T (x, r)
rn

) 1
2p−1

≤ D(n, p)(eaR)
2p

2p−1 R
2p−n
2p−1

(
‖Ric0f −‖p

p,f,a(R)
) 1

2p−1
,

(8)

where

D(n, p) :=
(2p − 1)n
2p − n

(
n − 1

(2p − 1)(2p − n)

) p−1
2p−1

.

By letting R = RT and r = R in the above inequality and using the definition
of ε0, we deduce that

(
Vf,T (x,R)
Vf,T (T )

) 1
2p−1

≥
[
1 − D(n, p)(eaRT )

2p+1
2p−1 ε

p
2p−1
0

]( Rn

eaRT Rn
T

) 1
2p−1

for any R ≤ RT . If we further let

ε
p

2p−1
0 ≤ 1

2D(n, p)
(eaRT )− 2p+1

2p−1 ,

then (
Vf,T (x,R)
Vf,T (T )

) 1
2p−1

≥ 1
2

(
Rn

eaRT Rn
T

) 1
2p−1

(9)

for any R ≤ RT .
On the other hand, (8) also implies

(
Vf,T (x, r)
Vf,T (x,R)

) 1
2p−1

≥
(

rn

eaRRn

) 1
2p−1

×
⎡
⎣1 − D(n, p)R

2p
2p−1 (eaR)

2p+1
2p−1

(‖Ric0f −‖p
p,f,a(R)

Vf,T (x,R)

) 1
2p−1
⎤
⎦ .

Using a easy fact ‖Ric0f −‖p,f,a(R) ≤ ‖Ric0f −‖p,f,a(RT ) for any R ≤ RT , we
have

R
2p

2p−1 (eaR)
2p+1
2p−1

(‖Ric0f−‖p
p,f,a(R)

Vf,T (x, R)

) 1
2p−1

≤
(

R

RT

) 2p
2p−1

(eaR)
2p+1
2p−1 RT

2p
2p−1

(‖Ric0f−‖p
p,f,a(RT )

Vf,T (x, RT )

) 1
2p−1 (

Vf,T (x, RT )

Vf,T (x, R)

) 1
2p−1

.
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According to the definition of ε0 and (9) and using R ≤ RT , the above in-
equality can be further simplified as(

Vf,T (x, r)
Vf,T (x,R)

) 1
2p−1

≥
(

rn

eaRRn

) 1
2p−1 [

1 − 2D(n, p)(eaR)
2p+1
2p−1 ε

p
2p−1
0 (eaRT )

1
2p−1

]

≥
(

rn

eaRRn

) 1
2p−1 [

1 − 2D(n, p)ε
p

2p−1
0 (eaRT )

2p+2
2p−1

]
,

which implies (i) of the theorem.
Next, adapting the argument of Aubry [2], we will apply the iteration

trick to get the comparison for non-concentric balls. Let z ∈ B(x,R0), r and
R such that 0 < r ≤ R ≤ R0 − d(x, z). Since B(z,R) ⊂ B(x,R0), dividing by
Vf,T (x,R0)1/(2p−1) in (8), we get

(
Vf,T (z,R)
Vf,T (x,R0)

) 1
2p−1

≤ D(n, p)(eaR)
2p

2p−1 R
2p−n
2p−1

(
‖Ric0f −‖p

p,f,a(R)
) 1

2p−1

×
(

eaRRn

Vf,T (x,R0)

) 1
2p−1

+
(

Vf,T (z, r)
rn

) 1
2p−1

×
(

eaRRn

Vf,T (x,R0)

) 1
2p−1

.

Again using ‖Ric0f −‖p,f,a(R) ≤ ‖Ric0f −‖p,f,a(RT ) and the definition of ε0, we
have (

Vf,T (z,R)
Vf,T (x,R0)

) 1
2p−1

≤ D(n, p)(eaR)
2p+1
2p−1

(
R2ε0
R2

0

) p
2p−1

+
(

eaRRn

rn

) 1
2p−1
(

Vf,T (z, r)
Vf,T (x,R0)

) 1
2p−1

.

(10)

To iterate this estimate with a sequence of balls of increasing size, we will
construct a sequence of increasing balls centered on a minimizing geodesic Bi =
B(yi, Ri) such that B1 = B(y, r), Bk is concentric to B(x,R0), and Bi contains
a ball centered at yi+1 and of radius ri+1 close to Ri. Let γ : [0, d(x, y)] → M
be a minimizing geodesic from x to y and for some α = α(n, p) ∈ [1/2, 1) such
that

−log α ≤ 2 log(2−α), (2−α)2p−nαn < 1, α
n

2p−1 ≥ 2
3
, (2−α)

2p−n
2p−1 <

3
2
. (11)

Denoted �x by the floor function of a real number x which gives the greatest
integer less than or equal to x. We let

k =

⌊
log(1 + d(x,y)

r )
log(2 − α)

⌋
+ 2, and yi = γ(d(x, y) + r − (2 − α)i−1r)
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for i ≤ k − 1, yk = x, ri = α(2−α)i−2r and Ri = (2−α)i−1r. Then, we know

B(yi+1, ri+1) ⊂ B(yi, Ri) ⊂ B(x,R0)

for any i ≤ k−1. Setting z = yi+1, R = Ri+1 and r = ri+1 in (10), by iteration
we have

(
Vf,T (yi+1, Ri+1)

Vf,T (x,R0)

) 1
2p−1

≤ D(n, p)(eaRi+1)
2p+1
2p−1

(
R2

i+1ε0

R2
0

) p
2p−1

+ (eaRi+1)
1

2p−1

(
Ri+1

ri+1

) n
2p−1
(

Vf,T (yi+1, ri+1)
Vf,T (x,R0)

) 1
2p−1

≤ D(n, p)(eaR0)
2p+1
2p−1

(
r2ε0
R2

0

) p
2p−1

(2 − α)
2pi

2p−1

+ (eaR0)
1

2p−1

[
(2 − α)nVf,T (yi, Ri)

αnVf,T (x,R0)

] 1
2p−1

.

For the above inequality, letting αi =
(

Vf,T (yi,Ri)
Vf,T (x,R0)

) 1
2p−1

, β = (2 − α)
2p

2p−1 ,

C = D(n, p)(eaR0)
2p+1
2p−1

(
r2ε0
R2

0

) p
2p−1

and d = (eaR0)
1

2p−1 ( 2−α
α )

n
2p−1 , then the

above inequality becomes a simple form

ai+1 ≤ Cβi + d ai

for any 0 ≤ i ≤ k − 1. Therefore,

ai ≤ di−1

(
a1 +

C

1 − β/d

)
.

This implies that

(
Vf,T (yk−1, Rk−1)

Vf,T (x,R0)

) 1
2p−1

≤
(

2 − α

α

)n(k−2)
2p−1

(eaR0)
k−2
2p−1

×

⎡
⎢⎣
(

Vf,T (y, r)
Vf,T (x,R0)

) 1
2p−1

+
D(n, p)(eaR0)

2p+1
2p−1

(
r2ε0
R2

0

) p
2p−1

1 − (2 − α)
2p−n
2p−1 α

n
2p−1 (eaR0)− 1

2p−1

⎤
⎥⎦ .
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On the other hand, by (i), we have

(
Vf,T (yk−1, Rk−1)

Vf,T (x,R0)

) 1
2p−1

≥
(

Vf,T (yk, rk)
Vf,T (x,R0)

) 1
2p−1

≥
(

rn
k

eaR0Rn
0

) 1
2p−1 [

1 − C(n, p, aRT )ε
p

2p−1
0

]2p−1

≥ α
n

2p−1 (2 − α)
n(k−2)
2p−1

(
rn

eaR0Rn
0

) 1
2p−1 [

1 − C(n, p, aRT )ε
p

2p−1
0

]2p−1

.

Combining the above two estimates on Vf,T (yk−1,Rk−1)
Vf,T (x,R0)

, we conclude that there
exist two constants C(n, p, aRT ) > 0 and B(n, p, aRT ) > 0 such that when
ε0 ≤ B(n, p, aRT ),

(
Vf,T (y, r)

Vf,T (x,R0)

) 1
2p−1

≥
(

αn

eaR0

) k−1
2p−1
(

r

R0

) n
2p−1 [

1 − C(n, p, aRT )ε
p

2p−1
0

]2p−1

−
D(n, p)(eaR0)

2p+1
2p−1

(
r2ε0
R2

0

) p
2p−1

1 − (2 − α)
2p

2p−1 (eaR0)− 1
2p−1

.

By our assumption, we observe that

(
αn

eaR0

) k−2
2p−1

≥
(

αn

eaR0

) log(1+ d(x,y)
r

)
(2p−1) log(2−α)

≥
(

r

r + d(x, y)

) −n log α+aR0
(2p−1) log(2−α)

≥
(

r

R0

) 2n+b(n,p,aR0)
2p−1

,

where b(n, p, aR0) is constant satisfying

b(n, p, aR0) =
aR0

log(2 − α)
>

aR0(2p − n)
(2p − 1)2 log 3/2
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according to (11). Using this estimate and the last inequality of (11), we finally
get(

Vf,T (y, r)
Vf,T (x,R0)

) 1
2p−1

≥
(

rn

eaR0Rn
0

) 1
2p−1

×
⎡
⎣(2

3
− C(n, p, aRT )ε

p
2p−1
0

)(
r

R0

) 2n+b(n,p,aR0)
2p−1

−D(n, p, aR0)ε
p

2p−1
0

]
,

which finishes the proof of (ii). �

4. Diameter Estimate

In this section, we start to apply Lemmas 3.1 and 3.2 to prove a local diameter
estimate, which is a critical step to prove the main theorem.

Theorem 4.1. Assume that (M, g, e−fdv) contains a subset T satisfying the
following conditions:
(1) T is star-shaped at a point of x;
(2) B(x,R0) ⊂ T ⊂ B(x,RT ) for some π < R0 ≤ RT ;
(3) ε = R2

T ‖Ric1f −‖
p,f,a

(T ) ≤ B(n, p, aRT ) for some constant B(p, n, aRT );

(4) ∂rf = −a or ∂rf ≥ −a − 2(n − 1) cot (π − ε
p

2p−1 ) along all minimal
geodesic segments from x ∈ M , for some constant a ≥ 0.

Then M ⊂ T and

diam(M) ≤ π
[
1 + C(n, p, aRT )ε

p(n−1)
(2p−1)(3n−1+b(n,p,a))

]
for some constant C(n, p, aRT ), where the constant b(n, p, a) > 2πa(2p−n)

(2p−1)2 log(3/2) .

Proof of Theorem 4.1. If constant B(p, n, aRT ) is sufficiently small, by
Lemma 3.2, we have

Vf,T (x,R)
Vf (T )

≥ Rn

2(eaRT )Rn
T

.

Hence we may assume T = B(x,R0) and π < R0 ≤ 2π. Fix δ ∈ (0, R0−π
2 ). If

y ∈ M satisfies d(x, y) ≥ π + δ, then

B(y, δ) ⊂ B(x, π + 2δ)\B(x, π).

By Lemma 3.1,

Vf,T (y, δ) ≤
∫ π+2δ

π

Af,T (x, r)dr ≤ 2δC(n, p, aRT )ε
p(n−1)
2p−1 Vf (x,R0),
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where

C(n, p, aRT ) :=

[
3 · 22p+n−3 +

π2p−1

4p

(
n − 1

(2p − 1)(2p − n)

)p−1
]

eaRT .

On the other hand, since

ε0 = R2
T ‖Ric0f −‖

p,f,a
(T ) ≤ R2

T ‖Ric1f −‖
p,f,a

(T ) = ε,

by Lemma 3.2(ii), we get

Vf,T (y, δ)

≥
(

δn

eaR0Rn
0

) n
2p′−1

[
1
2

(
δ

R0

) 2n+b(n,p,aR0)
2p′−1 − D(n, p, aRT )ε

p′
2p′−1

]2p′−1

Vf (x, R0)

≥
(

δn

e2πa(2π)n

) n
2p′−1

[
1
2

(
δ

2πa

) 2n+b(n,p,aR0)
2p′−1 − D(n, p, aRT )ε

p′
2p′−1

]2p′−1

Vf (x, R0),

by taking 2
3 −C(n, p, aRT )ε

p
2p−1
0 ≥ 1

2 and noting that cotϑ ≤ 0 for π
2 ≤ ϑ < π.

From the above lower estimates on Vf,T (y, δ), we can distinguish two
cases:

(i) either

(
δ

2π

) 2n+b(n,p,aR0)
2p′−1

≤ 4D(n, p, aRT )εβ ,

where

β :=
p(n − 1)(2n + b(n, p, aR0))

(2p − 1)(2p′ − 1)(3n − 1 + b(n, p, aR0))
≤ p′

2p′ − 1
,

(ii) or the above inequality becomes

Vf,T (y, δ) ≥ D(n, p, aRT )
(

δ

2π

)n

ε(2p′−1)βVf (x,R0).

Combining the above two estimates about Vf,T (y, δ) gives a bound on δ:

δ ≤ C̃(n, p, aRT )ε
p(n−1)

(2p−1)(3n−1+b(n,p,aR0)) (12)

for some constant C̃(n, p, aRT ) which only depends on n, p and aRT . Therefore
we can infer that M ⊂ B(x,R0). Indeed, if there exists a point y ∈ M such
that d(x, y) > π + δ′, where

C̃(n, p, aRT )ε
p(n−1)

(2p−1)(3n−1+b(n,p,aR0)) < δ′ <
R0 − π

2
,



32 Page 18 of 24 F. Li et al. Results Math

then by the connected property of M , along a minnizing geodesic from x to
y, there exists a point y′ ∈ M which exactly equals to (π + δ′) from x, i.e.,
d(x, y′) = π + δ′. By the estimate (12), we have

δ′ ≤ C̃(n, p, aRT )ε
p(n−1)

(2p−1)(3n−1+b(n,p,aR0)) ,

which contradicts our choice of δ′.
Now let z be any point of (M, g, e−fdv). Since M ⊂ B(x,R0), then

R2
0‖Ric1f −‖

p,f,a
(B(z,R0)) ≤

(
Vf,T (x,R0)
Vf,T (z,R0)

) 1
p

R2
0‖Ric1f −‖

p,f,a
(T )

=
(

Vf,T (x,R0)
Vf,T (z,R0)

) 1
p

ε.

We also observe that

B
(
x,R0 − π − C̃(n, p, aRT )ε

p(n−1)
(2p−1)(3n−1+b(n,p,aR0))

)
⊂ B(z,R0).

Therefore, by Lemma 3.2(i), since π < R0 ≤ 2π, we have

Vf,T (z,R0)
Vf,T (x,R0)

≥
[
R0 − π − C̃(n, p, aRT )ε

p(n−1)
(2p−1)(3n−1+b(n,p,aR0))

]n
2eaR0(2π)n

≥ (R0 − π)n

4eaR0(2π)n

as long as B(p, n, aRT ) in Theorem 4.1 is sufficiently small. Substituting this
into the above inequality yields

R2
0‖Ric1f −‖

p,f,a
(B(z,R0)) ≤

(
4eaR0(2π)n

(R0 − π)n

) 1
p

ε.

This shows that the above argument for the point x can also be suitable for
any point z ∈ M by replacing ε to (4eaR0 )1/p(2π)n/p

(R0−π)n/p ε. So we indeed prove that

d(y, z) < π + δ < R0

for any y, z ∈ M . This completes the proof. �

Finally we will apply Theorem 4.1 and the universal cover argument to
prove Theorem 1.1.

Proof of Theorem 1.1. For complete smooth metric measure space (M, g, e−fdv),
we assume that ‖Ric1f −‖

p,f,a
(M) is finite for some constant a ≥ 0. Let {(B(xi,

2π))}i∈I denote be a maximal family of disjoint balls in (M, g, e−fdv). Con-
sider the Dirichlet domains

Ti := {y ∈ M |d(xi, y) < d(xj , y),∀j �= i}.
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If y ∈ Ti\B(xi, 4π), then there exists xj such that B(xj , 2π)
⋂

B(y, 2π) �= ∅
by the maximum of {(B(xi, 2π))}. If z ∈ B(xj , 2π)

⋂
B(y, 2π), then

d(xj , y) ≤ d(xj , z) + d(xj , z) < 4π.

Hence Ti satisfies the following three facts:
(1) B(xi, 2π) ⊂ Ti ⊂ B(xi, 4π);
(2) Ti is star-shaped at the xi;
(3) M =

⋃
i Ti up to a set of zero measure.

Therefore, we have∫
M

(
Ric1f −

)p

Afe−at =
∑
i∈I

∫
Ti

(
Ric1f −

)p

Afe−at

≥ αp
∑
i∈I

Vf (Ti)

= αpVf (M),

where α :=infi∈I ‖Ric1f −‖
p,f,a

(Ti). If α>B(n,p,a)
32π2 , where B(n, p, a)=B(n, p, 4πa)

is constant defined as in Theorem 4.1, then

Vf (M) ≤
(

B(n, p, a)
32π2

)−p ∫
M

(
Ric1f −

)p

Afe−at.

Elsewhere, there exists a star-shaped set Ti satisfying the assumptions of The-
orem 4.1. In particular,

R2
Ti

‖Ric1f −‖
p,f,a

(Ti) ≤ 16π2‖Ric1f −‖
p,f,a

(Ti) ≤ B(n, p, a)
2

.

So we bound the diameter of M by Theorem 4.1.
Next, we will prove the π1-finiteness when ‖Ric1f −‖

p,f,a
(M) is bounded.

The proof of this result is essentially known in [2]. We give a proof for complete-
ness. In fact we only need to justify that their universal covers are compact.
Applying Theorem 4.1 to the universal Riemannian cover (M̃, g̃), we have to
construct a good star-shaped subset of M̃ on which the Ricci curvature is
controlled by ‖Ric1f −‖

p,f,a
(M). The fundamental group acts freely and iso-

metrically on M̃ . For all x̃ ∈ M̃ and any subset T̃ ⊂ M̃ , which is union of
fundamental domains, we let θT̃ (x̃) denote the cardinality of T̃

⋂
π1(x̃). Set

x̃0 ∈ M̃ and x̃ ∈ B(x̃0, 2π) that maximizes θB(x̃0,2π). By the preceding discus-
sion, we may assume diam(M) ≤ 2π and then

1 ≤ θB(x̃0,2π)(ỹ) ≤ N and θB(x̃0,6π)(ỹ) ≥ N

for all ỹ ∈ B(x̃0, 2π), where N := θB(x̃0,2π)(x̃). For all ỹ ∈ B(x̃0, 2π), we choose
N distinct points ỹ1, . . . , ỹN in π1(ỹ) such that

d(ỹi, x̃0) ≤ inf
z̃∈π1(ỹ)\{ỹ1,...,ỹN }

d(z̃, x̃0)
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for any 1 ≤ i ≤ N , and let T̃ be the union of {ỹ1, . . . , ỹN} for all ỹ ∈ B(x̃0, 2π).
So, on M̃ , we have

B(x̃0, 2π) ⊂ T̃ ⊂ B(x̃0, 6π) and θT = N.

Hence,
1

Vf (T̃ )

∫
T̃

(
R̃ic1f −

)p

Ãfe−at =
1

Vf (M)

∫
M

(
Ric1f −

)p

Afe−at.

Now we show T̃ is a star-shaped subset at x̃ of (M̃, g̃). Set ỹ ∈ T̃ and
let γ be a minimizing geodesic from ỹ to x̃0. Assume there exists z̃ ∈ γ \ T̃ .
Since θT̃ (z̃) = N , there exist distinct nontrivial decktranformations σ1, . . . , σN

such that σi(z̃) ∈ T̃ for all 1 ≤ i ≤ N . But every element of π1(M)\{id} acts
without fixed point on M̃ , thus there exists 1 ≤ i0 ≤ N such that σi0(ỹ) /∈ T̃ .
Since σi0 acts isometrically, then we have

d(x̃0, ỹ) ≤ d(x̃0, σi0(ỹ)), d(x̃0, z̃) ≥ d(x̃0, σi0(z̃)), d(ỹ, z̃) = d(σi0(ỹ), σi0(z̃)).

Now, we have

d(x̃0, ỹ) = d(x̃0, z̃) + d(z̃, ỹ)

≥ d(x̃0, σi0(z̃)) + d(σi0(z̃), σi0(ỹ))

≥ d(x̃0, σi0(ỹ)).

Combining above we have equalities everywhere. We have a minimal geodesics
connecting x̃, σi0(ỹ) which contains σi0(z̃). Hence the geodesic σi0(γ) contain
x̃ and σi0(x̃) = x̃, which contradicts the fact that σi0 has no fixed point. �
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5. Appendix: Myers’ Type Theorem for Integral Bounds of
m-Bakry–Émery Ricci Tensor

In this section, we will state Myers’ type theorem under the only integral m-
Bakry–Émery Ricci tensor bounds. Since the argument is almost the same as
the Aubry’s manifold case, we omit the proof here.

On a smooth metric measure space (M, g, e−fdvg), we can define m-
Bakry–Émery Ricci tensor

Ricm
f := Ricf − 1

m
df ⊗ df



Vol. 76 (2021) Myers’ Type Theorem for Integral Page 21 of 24 32

for some number m > 0, which is another natural generalization of the Ricci
tensor. This curvature tensor is also introduced by Bakry and Émery. Here
m is finite, and we have the Bochner formula for the m-Bakry–Émery Ricci
tensor

1
2
Δf |∇u|2 = |Hessu|2 + 〈∇Δfu,∇u〉 + Ricf (∇u,∇u)

≥ (Δfu)2

m + n
+ 〈∇Δfu,∇u〉 + Ricm

f (∇u,∇u)

for some u ∈ C∞(M), which is regarded as the Bochner formula of the Ricci
curvature of an (n + m)-dimensional manifold. This property makes sure that
many geometrical results for manifolds with Ricci tensor can be easily leads
extended to smooth metric measure spaces with m-Bakry–Émery Ricci tensor
(without any assumption on f), such as Wei and Wylie [30] and Wu [33].

Following Wu [33], on an n-dimensional smooth metric measure space
(M, g, e−fdvg), for each x ∈ M , m > 0, H ∈ R and let λ(x) be the smallest
eigenvalue of Ricm

f : TxM → TxM . We define

Ricm H
f − :=

(
(n + m − 1)H − λ(x)

)
+

and introduce a Lp
f -norm of function φ on the geodesic ball Bx(r)

‖φ‖p,f (r) := sup
x∈M

(∫
Bx(r)

|φ|p · e−fdvg

) 1
p

.

Clearly, ‖Ricm H
f −‖p,f (r) = 0 iff Ricm

f ≥ (n + m − 1)H. The following normal-
ized norm of φ is also useful,

‖φ‖p,f (r) := sup
x∈M

(
1

Vf (x, r)

∫
B(x,r)

|φ|p · e−fdv

) 1
p

,

where Vf (x, r) :=
∫

B(x,r)
e−fdv. If r → ∞ above and the limit exists, then we

have another global curvature quantity on M

‖φ‖p,f (M) := lim
r→∞ ‖φ‖p,f (r).

Applying the comparison theorems in [33], following the above discussion,
we can similarly generalize Aubry’s Myers’ theorem to the case of smooth
metric measure spaces with only the m-Bakry–Émery Ricci tensor integral
bounds.

Theorem 5.1. Let (M, g, e−fdv) be an n-dimensional complete smooth metric
measure space. Given p > n/2 and m > 0, there exists a number 0 < ε(n +
m, p) < 1 such that if

‖Ricm 1
f −‖

p,f
(M) ≤ ε(n + m, p),
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then M is compact with finite fundamental group π1(M) and

diam(M) ≤ π

(
1 + c(n + m, p)‖Ricm 1

f −‖
1
10

p,f
(M)
)

.

for some constant c(n + m, p).

We would like to point out that the above result may be regarded as the
Aubry’s result for (n+m)-dimensional manifolds. The main reason is that the
Bochner formula for the m-Bakry–Émery Ricci tensor can be regarded as the
Bochner formula of the Ricci curvature of an (n + m)-dimensional manifold.
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[14] Limoncu, M.: The Bakry–Émery Ricci tensor and its applications to some com-
pactness theorems. Math. Z. 271, 715–722 (2012)

[15] Lott, J.: Some geometric properties of the Bakry–Émery-Ricci tensor. Comment.
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