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Abstract. We solve the functional equation f(xy) + g(σ(y)x) = h(x)k(y)
for complex-valued functions f, g, h, k on groups or monoids generated
by their squares, where σ is an involutive automorphism. This contains
both classical d’Alembert equations g(x + y) + g(x − y) = 2g(x)g(y) and
f(x+y)−f(x−y) = g(x)h(y) in the abelian case, but we do not suppose
our groups or monoids are abelian. We also find the continuous solutions
on topological groups and monoids.
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1. Introduction

The problem we consider has its roots in d’Alembert’s classical results [2,3]
on the functional equations

f(x + y) + f(x − y) = 2f(x)f(y),

for f : R → R, and

f(x + y) − f(x − y) = g(x)h(y)

for f, g, h : R → R. The first of these equations was generalized by Wilson
[10,11], first to

f(x + y) + f(x − y) = 2f(x)g(y),
and then to

f(x + y) + f(x − y) = 2g(x)h(y)
for f, g, h : R → R.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-020-01335-9&domain=pdf
http://orcid.org/0000-0002-7503-9992
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These functional equations have been further generalized in several ways
(more general domains and/or ranges, more unknown functions) by several
authors. In this article our domain is a monoid (i.e. a semigroup with identity),
and we replace the additive inverse in R by an involutive automorphism of the
monoid. Our research extends results on the functional equations

f(xy) + f(σ(y)x) = 2f(x)f(y)

and

f(xy) − f(σ(y)x) = g(x)h(y)

for f, g, h : S → C, where S is a monoid and σ : S → S is a homomorphism
such that σ(σ(x)) = x for all x ∈ S. The first of these was solved by Stetkær
[9] on semigroups, and the second was solved by Stetkær and the author [5] on
groups and on monoids which are generated by their squares. The Wilson-type
equation

f(xy) + f(σ(y)x) = 2f(x)g(y)

was solved by Fadli et al. [6] on groups and on monoids generated by their
squares. Also the results of Ng et al. [8] include the solution of

f(xy) + g(σ(y)x) = 2f(x)h(y)

on groups.
All of the equations mentioned above are special cases of the functional

equation

f(xy) + g(σ(y)x) = h(x)k(y), x, y ∈ S.

Our main goal is to solve this equation for f, g, h, k : S → K, where K ∈ {R,C},
S is either a group or a monoid generated by its squares, and σ : S → S is a
homomorphism satisfying σ ◦ σ = id. This is a full “Pexiderization” of both
d’Alembert functional equations in the case of an involution that is homo-
morphic (rather than anti-homomorphic). The special case of this equation in
which h = 2f was solved in [4], and several authors [1,7] have treated similar
equations with h = k.

We will see that the sine addition and sine subtraction formulas play a
key role in this investigation. This is not surprising since both d’Alembert’s
and Wilson’s equations have continuous solutions involving cosine and sine
functions.

While all of our results state the continuous solutions on topological
groups and monoids, they include the general (i.e. purely algebraic) solutions
if we take the discrete topology. In fact all of the algebraic results are valid for
functions f, g, h, k : S → K where K is any field with char(K) �= 2.
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2. Notation and Terminology

Throughout this paper S denotes a group or a semigroup. A semigroup S is
a monoid if it contains an identity element, that is an element e such that
ex = xe = x for all x ∈ S.

K denotes a field which could be either R or C, and K
∗ = K\{0}.

A homomorphism σ : S → S is a called involutive (or an involution)
if σ(σ(x)) = x for all x ∈ S, in which case it is an automorphism. It is not
difficult to verify that σ(e) = e for such a morphism.

For any function f : S → K where S is a semigroup with involution σ,
we define fe, fo : S → K by

fe :=
1
2
(f + f ◦ σ) and fo :=

1
2
(f − f ◦ σ).

Then fe is called the even part of f and fo is the odd part of f (with respect
to σ). Clearly f = fe + fo.

An additive function on S is a homomorphism from S into the additive
group (K,+).

A multiplicative function on S is a homomorphism from S into the multi-
plicative monoid (K, ·). Although a non-zero multiplicative function on a group
can never take the value 0, it is possible for a multiplicative function χ : S → K

on a semigroup S to take the value 0 on a non-empty proper subset. If χ �= 0,
then

Iχ := {x ∈ S | χ(x) = 0}
is either empty or a proper subset of S. That χ is multiplicative means Iχ is a
two-sided ideal in S if not empty, and S\Iχ is a subsemigroup of S. The ideals
Iχ play an important role in our investigation on semigroups, and they account
for the somewhat different forms of the solutions of our functional equations
on semigroups and on groups. Where on a group we have a solution containing
the exponential monomial term Aχ with A additive and χ multiplicative, the
corresponding term on a semigroup is

ΨAχ(x) =

{
A(x)χ(x) when x ∈ S\Iχ

0 when x ∈ Iχ

(1)

where A : S\Iχ → K is an additive mapping on a subsemigroup. The notation
ΨAχ always refers to such a function, and ΨA2χ is defined in the same way with
A replaced by A2. One could call such ΨAχ and ΨA2χ exponential piecewise-
monomials on a semigroup. On a group, Iχ is empty so ΨAχ = Aχ and ΨA2χ =
A2χ.

We will usually require our monoids to be generated by their squares.
That means for each x ∈ S there exist an n ∈ N and x1, . . . , xn ∈ S such that
x = x2

1x
2
2 · · · x2

n. If S happens to be commutative then this means that S is
2-divisible. Other conditions on S also suffice, such as S being regular.
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For a topological space S, let C(S,K) denote the algebra of continuous
K-valued functions on S.

We also need a convenient way to deal with solutions of the “homoge-
neous” equation

f(xy) − f(σ(y)x) = 0, x, y ∈ S,

for a given involutive automorphism σ on S. This forms a kind of degenerate
case, since the solutions are highly dependent on the semigroup S. In a semi-
group where st = t for all s and t, the only solutions are the constant functions.
On the other hand if S is commutative and σ is the identity function on S,
then every function is a solution. For this reason we shall find it convenient to
define the nullspace

N (S, σ) := {θ ∈ C(S,K) | θ(xy) = θ(σ(y)x), x, y ∈ S}
as the vector space of all solutions of this equation (normally K = C here
unless K = R is dictated by the context).

3. Preliminaries

We begin by quoting [9, Theorem 2.1], which gives the solution of the variant
of d’Alembert’s most well-known functional equation on semigroups with a
homomorphic involution.

Proposition 3.1. Let S be a topological semigroup with an involutive automor-
phism σ : S → S. If h ∈ C(S,C) satisfies

h(xy) + h(σ(y)x) = 2h(x)h(y), x, y ∈ S, (2)

then

h =
1
2
(χ + χ ◦ σ)

for some multiplicative χ ∈ C(S,C).

We will need the following consequence later.

Corollary 3.2. Let S be a topological semigroup with an involutive automor-
phism σ : S → S, and let c ∈ C

∗. If h ∈ C(S,C) satisfies

h(xy) + h(σ(y)x) = ch(x)h(y), x, y ∈ S,

then

h =
1
c
(χ + χ ◦ σ)

for some multiplicative χ ∈ C(S,C).

Proof. Defining h′ := ch/2 we see that h′ is a solution of (2), and the conclusion
follows immediately.
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The following result, which treats a partial Pexiderization of d’Alembert’s
“other” functional equation, is from [5, Theorems 4.2 and 4.3]. The cases h = 0
or k = 0 are omitted because they are trivial. In either case the other of h, k
is arbitrary and f ∈ N (S, σ).

Proposition 3.3. Let S be a topological group or topological monoid generated
by its squares, let σ : S → S be an involutive automorphism, and let f, h, k ∈
C(S,C) with h �= 0 and k �= 0. Then the solutions of

f(xy) − f(σ(y)x) = h(x)k(y), x, y ∈ S, (3)

belong to the following families, where χ ∈ C(S,C) is a nonzero multiplicative
function, θ ∈ N (S, σ), A ∈ C(S\Iχ,C) is a nonzero additive mapping with
A ◦ σ = −A, with b ∈ C

∗ and b1, b2 ∈ C.

(a) For χ ◦ σ �= χ we have

f = θ + b[b1(χ + χ ◦ σ) + b2(χ − χ ◦ σ)],

h = b1(χ − χ ◦ σ) + b2(χ + χ ◦ σ), k = b(χ − χ ◦ σ).

(b) For χ ◦ σ = χ we have

f = θ + bΨAχ + b1ΨA2χ, h = 2bχ + 4b1ΨAχ, k = ΨAχ.

In the group case Iχ is empty, ΨAχ = Aχ, and ΨA2χ = A2χ.

We also need the following two results dealing with the sine addition
and sine subtraction formulas on groups and semigroups with an involutive
automorphism. The first is (a corollary of) [5, Proposition 3.6].

Proposition 3.4. Let S be a topological group or topological monoid generated
by its squares, let σ : S → S be an involutive automorphism, and let h, k ∈
C(S,C) with h �= 0. Then the solutions of the sine subtraction formula

h(yσ(x)) = h(y)k(x) − k(y)h(x), x, y ∈ S,

belong to the following families, where χ ∈ C(S,C) is a nonzero multiplicative
function, A ∈ C(S\Iχ,C) is a nonzero additive function such that A◦σ = −A,
with constants b ∈ C

∗ and c ∈ C.

(a) If χ �= χ ◦ σ, then

h = b(χ − χ ◦ σ), k =
1
2
(χ + χ ◦ σ) + c(χ − χ ◦ σ).

(b) If χ = χ ◦ σ, then

h = ΨAχ, k = χ + cΨAχ.

In the group case Iχ = ∅ and ΨAχ = Aχ.

The next result is a corollary of [5, Lemma 3.4].
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Proposition 3.5. Let S be a topological group or topological monoid generated
by its squares, and let f, g ∈ C(S,C) with f �= 0. Then the solutions of the sine
addition formula

f(xy) = f(x)g(y) + f(y)g(x), x, y ∈ S,

belong to the following families, where χ, χ1, χ2 ∈ C(S,C) are multiplicative
functions, A ∈ C(S\Iχ,C) is a nonzero additive function, and b ∈ C

∗.
(a) For χ1 �= χ2,

f = b(χ1 − χ2), g =
1
2
(χ1 + χ2).

(b) For χ �= 0,

f = ΨAχ, g = χ.

In the group case Iχ = ∅ and ΨAχ = Aχ.

4. The Main Result

Now we begin to focus on our primary objective, which is to solve the fully
Pexiderized d’Alembert equation

f(xy) + g(σ(y)x) = h(x)k(y), x, y ∈ S. (4)

The solution is given in Theorem 4.6 below.
We attain our goal through a series of four lemmas.

Lemma 4.1. Let S be a topological group or topological monoid generated by
its squares, let σ : S → S be an involutive automorphism, and let f, g, h, k ∈
C(S,C). If h �= 0, h(e) = 0, and k(e) �= 0, then the solutions of (4) are the
following. Here χ ∈ C(S,C) is a nonzero multiplicative function, θ ∈ N (S, σ),
A ∈ C(S\Iχ,C) is a nonzero additive mapping with A◦σ = −A, with a, b ∈ C

∗.
(i) For χ ◦ σ �= χ,

f = θ + abχ, g = −θ − abχ ◦ σ, h = b(χ − χ ◦ σ), k = aχ.

(ii) For χ ◦ σ = χ,

f =θ + aΨAχ + acΨA2χ, g = −θ + aΨAχ − acΨA2χ,

h =2ΨAχ, k = a(χ + 2cΨAχ).

In the group case Iχ = ∅, ΨAχ = Aχ, and ΨA2χ = A2χ.

Proof. With y = e in (4) we find that f + g = k(e)h, so with a = k(e) ∈ C
∗

we have

g = −f + ah.

Now rewrite (4) as

f(xy) − f(σ(y)x) = h(x)k(y) − ah(σ(y)x), x, y ∈ S. (5)
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With x = e here we get
f − f ◦ σ = −ah ◦ σ (6)

since h(e) = 0. Thus

−ah = (f − f ◦ σ) ◦ σ = f ◦ σ − f = ah ◦ σ,

so h = −h ◦ σ = ho is odd (with respect to σ) and (1/2)fo = f − f ◦ σ = ah.
Replacing (x, y) by (σ(y), x) in (5) yields

f(σ(y)x) − f ◦ σ(xy) = h(σ(y))k(x) − ah ◦ σ(xy) = −h(y)k(x) + ah(xy).

Adding this to (5) we get

f(xy) − f ◦ σ(xy) = h(x)k(y) − ah(σ(y)x) − h(y)k(x) + ah(xy),

which reduces to a kind of sine subtraction formula

ah(σ(y)x) = h(x)k(y) − h(y)k(x), x, y ∈ S.

In fact using h ◦ σ = −h we can rewrite the equation as

h(yσ(x)) = h(y) · 1
a
k(x) − 1

a
k(y) · h(x), x, y ∈ S.

By Proposition 3.4 we have two solution families. From family (a) we get

k =
a

2
(χ + χ ◦ σ) + ac(χ − χ ◦ σ), h = b(χ − χ ◦ σ),

for nonzero χ ∈ C(S,C) with χ �= χ ◦ σ and constants b, c with b ∈ C
∗. Now

we have f − f ◦ σ = ah = ab(χ − χ ◦ σ), so defining δ := f − abχ we find that
f = δ + abχ, δ = δ ◦ σ, and g = −f + ah = −δ − abχ ◦ σ. Checking, we find
that (5) is satisfied only if

δ(xy) − δ(σ(y)x) = ab

(
c − 1

2

)
[χ(x) − χ ◦ σ(x)][χ(y) − χ ◦ σ(y)], x, y ∈ S.

This means that θ := δ − ab(c − 1/2)(χ + χ ◦ σ) ∈ N (S, σ) and we have

f =θ + abχ − ab

(
c − 1

2

)
(χ + χ ◦ σ),

g = − θ − abχ ◦ σ + ab

(
c − 1

2

)
(χ + χ ◦ σ).

Inserting these forms into (4) we find after simplification that

(1 − 2c)[χ(x) − χ ◦ σ(x)]χ(y) = 0, x, y ∈ S.

Hence c = 1/2 and we have solution (i).
From family (b) of Proposition 3.4 we have

k = a(χ + cΨAχ), h = ΨAχ.

for nonzero χ ∈ C(S,C) with χ = χ ◦ σ, additive A ∈ C(S\Iχ,C) such that
A◦σ = −A �= 0, and c ∈ C. Here f−f◦σ = ah = aΨAχ = (a/2)[ΨAχ−ΨAχ◦σ],
since ΨAχ ◦ σ = −ΨAχ. Thus the function δ := f − (a/2)ΨAχ is even with
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respect to σ. Now f = δ + (a/2)ΨAχ and g = −f + ah = −δ + (a/2)ΨAχ.
Substituting into (5) we find that

δ(xy) − δ(σ(y)x) +
a

2
ΨAχ(xy) +

a

2
ΨAχ(σ(y)x) = ΨAχ(x)a(χ + cΨAχ)(y).

For x or y in Iχ this means the restriction of δ to Iχ is in the nullspace N (Iχ, σ).
For x, y ∈ S\Iχ the equation reduces to

δ(xy) − δ(σ(y)x) = acA(x)A(y)χ(x)χ(y) =
ac

4
[A2(xy) − A2(σ(y)x)]χ(x)χ(y).

Therefore

δ − ac

4
ΨA2χ =: θ ∈ N (S, σ).

Replacing A by 2A we have solution (ii).
It is easily checked that (i) and (ii) form solutions of (4), and this com-

pletes the proof.

Recall now that φe and φo are, respectively, the even and odd parts of a
function φ (with respect to σ).

Lemma 4.2. Let S be a topological semigroup with an involutive automorphism
σ : S → S, and let f, g, h, k ∈ C(S,C) be a solution of (4) with h(e) �= 0 and
k(e) �= 0. Then we have

(i) g = −f + ah,

(ii) k =
1
b
(2fo + ah ◦ σ),

(iii) fo(y)ho(x) = fo(x)ho(y),

(iv) he =
b

2
(χ + χ ◦ σ),

(v)

2fo(xy) − fo(x)(χ + χ ◦ σ)(y) − fo(y)(χ + χ ◦ σ)(x)

= a[ho(xy) − ho(σ(y)x) − (χ + χ ◦ σ)(x)ho(y)].

where χ ∈ C(S,C) is a nonzero multiplicative function and a, b ∈ C
∗.

Proof. With y = e in (4) we find that f + g = k(e)h, and with a = k(e) ∈ C
∗

this is item (i). Now rewriting (4) as

f(xy) − f(σ(y)x) = h(x)k(y) − ah(σ(y)x), (7)

and putting x = e here we have f − f ◦ σ = h(e)k − ah ◦ σ, which is item (ii)
with b = h(e) ∈ C

∗.
Next rewrite (7) as

f(xy) − f(σ(y)x) = h(x)
1
b
(f − f ◦ σ + ah ◦ σ)(y) − ah(σ(y)x), x, y ∈ S.

Here we replace (x, y) by (σ(y), x) to get

f(σ(y)x) − f ◦ σ(xy) = h(σ(y))
1
b
(f − f ◦ σ + ah ◦ σ)(x) − ah(σ(xy)).
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Adding these two equations we find that

2fo(xy) =
1
b
[2fo(y)h(x) + 2fo(x)h(σ(y))]

+
2a

b
he(x)h ◦ σ(y) − a[h(σ(y)x) + h(σ(xy))]. (8)

Now replacing (x, y) by (σ(x), σ(y)) here we obtain

−2fo(xy) = − 1
b
[2fo(y)h(σ(x)) + 2fo(x)h(y)]

+
2a

b
he(x)h(y) − a[h(yσ(x)) + h(xy)],

and summing these last two equations we arrive at

4
b
[fo(y)ho(x) − fo(x)ho(y)] +

4a

b
he(x)he(y)

= a[h(σ(y)x) + h(σ(xy)) + h(yσ(x)) + h(xy)],

which reduces to

4[fo(y)ho(x) − fo(x)ho(y)] = ab

[
2he(xy) + 2he(σ(y)x) − 4

b
he(x)he(y)

]
.

Under the transformation (x, y) �→ (σ(y), x) the left side of this equation is
negated while the right side is unchanged, therefore both sides are equal to 0.
Thus we have item (iii) and

he(xy) + he(σ(y)x) =
2
b
he(x)he(y).

The solution of the latter equation is found by Corollary 3.2 to be item (iv)
for some multiplicative χ ∈ C(S,C).

Splitting h into he +ho and using items (iii) and (iv) in (8), we find after
some calculation that the pair (fo, ho) also satisfy the equation in item (v).

Finally we note that χ �= 0, because (iv) implies 0 �= h(e) = he(e) =
bχ(e).

Before stating the next lemma we make a simple observation. Let χ : S →
K be multiplicative. If χ + χ ◦ σ = 0 then χ(e) = 0, so χ(x) = χ(x)χ(e) = 0
for all x ∈ S. Thus it is not possible for a nonzero χ to satisfy χ + χ ◦ σ = 0.

Lemma 4.3. Let S be a topological group or topological monoid generated by
its squares, let σ : S → S be an involutive automorphism, and let f, g, h, k ∈
C(S,C). If h(e) �= 0, k(e) �= 0, and either f or h is even with respect to σ,
then the solutions of (4) are the following, where χ ∈ C(S,C) is a nonzero
multiplicative function, θ ∈ N (S, σ), A ∈ C(S\Iχ,C) is an additive mapping
with A ◦ σ = −A, and a, b ∈ C

∗ and c ∈ C.
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(i) For any χ(�= 0),

f = θ +
a

b
(b2 − c2)(χ + χ ◦ σ),

g = −θ +
a

b
(b2 + c2)(χ + χ ◦ σ) + 2ac(χ − χ ◦ σ),

h = b(χ + χ ◦ σ) + c(χ − χ ◦ σ), k = a(χ + χ ◦ σ) − ac

b
(χ − χ ◦ σ).

(ii) For χ = χ ◦ σ,

f = θ − a

4b
ΨA2χ, g = −θ + abχ + aΨAχ +

a

4b
ΨA2χ,

h = bχ + ΨAχ, k = aχ − a

b
ΨAχ.

(iii) For χ �= χ ◦ σ,

f = θ+
ab

4
(χ+χ ◦ σ)+b(χ − χ ◦ σ), g = −θ+

ab

4
(χ+χ ◦ σ) − b(χ − χ ◦ σ),

h =
b

2
(χ + χ ◦ σ), k =

a

2
(χ + χ ◦ σ) + 2(χ − χ ◦ σ).

(iv) For A �= 0 and χ = χ ◦ σ,

f = θ + ΨAχ, g = −θ + abχ − ΨAχ, h = bχ, k = aχ +
2
b
ΨAχ.

In the group case Iχ = ∅, ΨAχ = Aχ, and ΨA2χ = A2χ.

Proof. We have two cases to consider.

Case 1 Suppose f is even. Then fo = 0 and by Lemma 4.2 there exist a, b ∈ C
∗

and nonzero multiplicative χ ∈ C(S,C) such that

g = −f + ah, k =
a

b
h ◦ σ, h = he + ho =

b

2
(χ + χ ◦ σ) + ho,

and

ho(xy) − ho(σ(y)x) = (χ + χ ◦ σ)(x)ho(y). (9)

Since χ + χ ◦ σ �= 0 we may read the solutions from Proposition 3.3 unless
ho = 0. Suppose for the moment that ho �= 0. In solution (a) of Proposition
3.3 we must take θ = 0, b1 = 0, b2 = 1 so that ho = c(χ − χ ◦ σ) for some
c ∈ C. Allowing for c = 0 includes the possibility that ho = 0, so in any case
we now have

h =
b

2
(χ + χ ◦ σ) + c(χ − χ ◦ σ).

Inserting the forms for g, h, k into (4) we find after some calculation that

f(xy) − f(σ(y)x) =
a

b

(
b2

4
− c2

)
[(χ + χ ◦ σ)(xy) − (χ + χ ◦ σ)(σ(y)x)].
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Thus we have

f = θ +
a

b

(
b2

4
− c2

)
(χ + χ ◦ σ)

for some θ ∈ N (S, σ). It follows that

k =
a

b
h ◦ σ =

a

2
(χ + χ ◦ σ) − ac

b
(χ − χ ◦ σ),

g = −f + ah = −θ +
a

b

(
b2

4
+ c2

)
(χ + χ ◦ σ) + ac(χ − χ ◦ σ).

One can check that this quadruplet (f, g, h, k) is a solution of (4). Replacing
(a, b) by (2a, 2b), this is solution (i).

The solution of (9) provided by Proposition 3.3(b) in case ho �= 0 is
ho = ΨAχ with χ = χ ◦ σ and nonzero additive A = −A ◦ σ. Since ho may
vanish here we admit the possibility that A = 0. Now we have

h = bχ + ΨAχ, g = −f + abχ + aΨAχ, k = aχ − a

b
ΨAχ.

Inserting these into (4) and simplifying we get

f(xy) − f(σ(y)x) + aΨAχ(σ(y)x)

= aχ(y)ΨAχ(x) − aχ(x)ΨAχ(y) − a

b
ΨAχ(x)ΨAχ(y).

For x ∈ Iχ or y ∈ Iχ this shows that the restriction of f to Iχ belongs to
N (Iχ, σ). For x, y ∈ S\Iχ we have

f(xy) − f(σ(y)x) = −a

b
A(x)A(y)χ(x)χ(y)

= − a

4b
[A2(xy)χ(σ(y)x) − A2(xy)χ(σ(y)x)],

which means that f + (a/4b)A2χ = θ ∈ N (S, σ). Thus we arrive at solution
(ii).

Case 2 Suppose f is not even; then by hypothesis h is even, so ho = 0. Lemma
4.2 shows that there exist a, b ∈ C

∗ and a nonzero multiplicative χ ∈ C(S,C)
for which

g = −f + ah, k =
1
b
(2fo + ah), h =

b

2
(χ + χ ◦ σ),

and fo satisfies the sine addition formula

fo(xy) = fo(x) · 1
2
(χ + χ ◦ σ)(y) + fo(y) · 1

2
(χ + χ ◦ σ)(x).

Since f is not even we have fo �= 0 and the solutions are given by Proposition
3.5, which provides the following two solution forms.

Form (a) is fo = b(χ1 − χ2) with 1
2 (χ + χ ◦ σ) = 1

2 (χ1 + χ2) for two
multiplicative functions χ1 �= χ2 ∈ C(S,C) and constant b ∈ C

∗. Since χ �= 0
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and distinct nonzero multiplicative functions are linearly independent, we may
without loss of generality take χ1 = χ and χ2 = χ ◦ σ. Thus

fo = b(χ − χ ◦ σ) with χ �= χ ◦ σ.

Updating g, h, k now we have

h =
b

2
(χ + χ ◦ σ), g = −f +

ab

2
(χ + χ ◦ σ),

k = 2(χ − χ ◦ σ) +
a

2
(χ + χ ◦ σ).

Substituting into (4) we can arrange the result as

f(xy) −
(

ab

4
+ b

)
χ(xy) −

(
ab

4
− b

)
χ ◦ σ(xy)

= f(σ(y)x) −
(

ab

4
+ b

)
χ(σ(y)x) −

(
ab

4
− b

)
χ ◦ σ(σ(y)x).

Therefore we have

f = θ +
ab

4
(χ + χ ◦ σ) + b(χ − χ ◦ σ)

for θ ∈ N (S, σ), and this is solution (iii).
Finally, solution form (b) from Proposition 3.5 yields fo = ΨAχ for a

nonzero multiplicative χ ∈ C(S,C) with χ = χ ◦ σ and a nonzero additive
function A ∈ C(S\Iχ,C). In this case we get from Lemma 4.2

g = −f + abχ, k = aχ +
2
b
ΨAχ, h = bχ.

Inserting all into (4) we find that

fe(xy) + ΨAχ(xy) − fe(σ(y)x) − ΨAχ(σ(y)x) = 2χ(x)ΨAχ(y).

For x ∈ Iχ this reduces to fe(xy) = fe(σ(y)x), and the same is true if y ∈ Iχ.
Now supposing x, y ∈ S\Iχ we get

fe(xy) − fe(σ(y)x) = χ(x)[A(y) + A ◦ σ(y)]χ(y).

The solutions of this functional equation are determined by Proposition 3.3(b)
provided that A+A◦σ �= 0, but that solution fits only if A = 0, a contradiction.
Therefore A ◦ σ = −A and fe = θ ∈ N (S, σ). This is solution (iv).

It can be checked that (i)–(iv) form solutions of (4), and with that the
proof is finished.

The next lemma is the last before our main result. For one part of the
proof we need to assume that one of our unknown functions is central in the
case K = C. What this means for a function φ : S → C is that φ(xy) = φ(yx)
for all x, y in the domain of φ.
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Lemma 4.4. Let S be a topological group or topological monoid generated by
its squares, let σ : S → S be an involutive automorphism, and let f, g, h, k ∈
C(S,K). Suppose h(e) �= 0, k(e) �= 0, and neither f nor h is even, so fo �= 0
and ho �= 0. Furthermore we assume that either K = R or that fo is central.
Then the solutions of (4) fall into the following families, where χ ∈ C(S,C) is
a nonzero multiplicative function, θ ∈ N (S, σ), A ∈ C(S\Iχ,C) is a nonzero
additive mapping with A ◦ σ = −A, and a, b, c, d ∈ K

∗.

(i) For χ �= χ ◦ σ,

f = θ +
(

ab

4
+

(2 − ac)cd2

b

)
(χ + χ ◦ σ) + d(χ − χ ◦ σ),

g = −θ +
(

ab

4
− (2 − ac)cd2

b

)
(χ + χ ◦ σ) + (ac − 1)d(χ − χ ◦ σ),

h =
b

2
(χ + χ ◦ σ) + cd(χ − χ ◦ σ),

k =
a

2
(χ + χ ◦ σ) +

(2 − ac)d
b

(χ − χ ◦ σ).

(ii) For χ = χ ◦ σ,

f = θ + ΨAχ +
(2 − ac)c

4b
ΨA2χ,

g = −θ + abχ + (ac − 1)ΨAχ − (2 − ac)c
4b

ΨA2χ,

h = bχ + cΨAχ, k = aχ +
2 − ac

b
ΨAχ.

In the group case Iχ = ∅, ΨAχ = Aχ, and ΨA2χ = A2χ.

Proof. Under the conditions here, Lemma 4.2 (i)–(iv) tells us there exist a
nonzero multiplicative χ ∈ C(S,C) and a, b ∈ K

∗ for which

g = −f + ah, he =
b

2
(χ + χ ◦ σ),

k =
1
b
(2fo + ah ◦ σ), fo(y)ho(x) = fo(x)ho(y).

The last of these equations entails ho = cfo for some c ∈ K
∗ since ho, fo �= 0.

Updating h with this information we find that

h = he + ho =
b

2
(χ + χ ◦ σ) + cfo, (10)

and with this we have

g = −f + acfo +
ab

2
(χ + χ ◦ σ) and k =

2 − ac

b
fo +

a

2
(χ + χ ◦ σ). (11)
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Also Lemma 4.2 (v) provides

2fo(xy) − fo(x)(χ + χ ◦ σ)(y) − fo(y)(χ + χ ◦ σ)(x)

= a[ho(xy) − ho(σ(y)x) − (χ + χ ◦ σ)(x)ho(y)],

and replacing ho here by cfo we find that

(2 − ac)fo(xy) + acfo(σ(y)x)

= fo(x)(χ + χ ◦ σ)(y) + (1 − ac)fo(y)(χ + χ ◦ σ)(x). (12)

Replacing (x, y) by (σ(y), x) we get

(2 − ac)fo(σ(y)x) − acfo(xy)

= (1 − ac)fo(x)(χ + χ ◦ σ)(y) − fo(y)(χ + χ ◦ σ)(x),

since fo is odd. Subtracting ac times this equation from (2−ac) times (12) we
arrive at

2(2 − 2ac + (ac)2)fo(xy)

= (2 − 2ac + (ac)2)[fo(y)(χ + χ ◦ σ)(x) + fo(x)(χ + χ ◦ σ)(y)]. (13)

Now consider two cases.

Case 1 Suppose K = R. Then ac �= 1 ± i and (13) is a sine addition formula

fo(xy) = fo(x) · 1
2
(χ + χ ◦ σ)(y) + fo(y) · 1

2
(χ + χ ◦ σ)(x).

Taking the first solution (form (a)) from Proposition 3.5 we have (as in the
previous lemma) fo = d(χ − χ ◦ σ) for χ �= χ ◦ σ and some d ∈ R

∗. Updating
g, h, k from (10), (11) we get

g = −fe +
ab

2
(χ + χ ◦ σ) + (ac − 1)d(χ − χ ◦ σ),

h =
b

2
(χ + χ ◦ σ) + cd(χ − χ ◦ σ), k =

a

2
(χ + χ ◦ σ) +

(2 − ac)d
b

(χ − χ ◦ σ).

Checking these in (4) we find after some calculation that

fe(xy) −
(

ab

4
+

(2 − ac)cd2

b

)
(χ + χ ◦ σ)(xy)

= fe(σ(y)x) −
(

ab

4
+

(2 − ac)cd2

b

)
(χ + χ ◦ σ)(σ(y)x),

which leads to solution (i).
Solution form (b) for fo �= 0 from Proposition 3.5 is fo = ΨAχ where

χ = χ◦σ and A ∈ C(S\Iχ,C) is a nonzero additive function. The corresponding
forms of g, h, k in this case are

g = −fe + abχ + (ac − 1)ΨAχ, h = bχ + cΨAχ, k = aχ +
2 − ac

b
ΨAχ.
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Putting these into (4) and simplifying we arrive at

fe(xy) + ΨAχ(xy) − fe(σ(y)x) + (ac − 1)ΨAχ(σ(y)x)

= acΨAχ(x)χ(y) + (2 − ac)χ(x)ΨAχ(y) +
(2 − ac)c

b
ΨAχ(x)ΨAχ(y).

For x ∈ Iχ or y ∈ Iχ this tells us that the restriction of fe to Iχ belongs to
N (Iχ, σ). Now for x, y ∈ S\Iχ this equation reduces to

fe(xy)−fe(σ(y)x)=
[
(2 − ac)c

b
A(x)A(y)+(1−ac)(A+A ◦ σ)(y)

]
χ(x)χ(y).

(14)

Under the transformation (x, y) �→ (σ(y)x) in this equation becomes

fe(σ(y)x) − fe(xy)

=
[
(2 − ac)c

b
A(x)A ◦ σ(y) + (1 − ac)(A + A ◦ σ)(x)

]
χ(x)χ(y)

since fe is even. Summing these two equations brings us to

(2 − ac)c
b

A(x)(A + A ◦ σ)(y) = (ac − 1)[(A + A ◦ σ)(x) + (A + A ◦ σ)(y)],

(15)

where we have canceled χ(x)χ(y) since x, y ∈ S\Iχ. Since the right hand side
is symmetric in x and y, the same is true of the left side, therefore

(2 − ac)c
b

[A(x)(A ◦ σ)(y) − A(y)(A ◦ σ)(x)] = 0, x, y ∈ S\Iχ. (16)

We show that A ◦ σ = −A. First, if ac = 2 then (15) shows that

(A + A ◦ σ)(x) + (A + A ◦ σ)(y) = 0, x, y ∈ S\Iχ,

which means A + A ◦ σ = 0. Now suppose ac �= 2. Then (16) gives us

A(x)(A ◦ σ)(y) = A(y)(A ◦ σ)(x), x, y ∈ S\Iχ.

Since A �= 0 there exists x0 ∈ S\Iχ such that A(x0) �= 0. Putting x = x0 in the
last equation we get A ◦ σ = εA for some ε ∈ R

∗. The fact that σ is involutive
implies that ε2 = 1, so ε = ±1. Thus we have either A ◦ σ = −A or A ◦ σ = A.
For a contradiction, suppose A ◦ σ = A. Then (15) becomes

(2 − ac)c
b

A(x)A(y) = (ac − 1)[A(x) + A(y)],

which is impossible for a nonzero additive function A. Therefore A ◦ σ = −A.
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Now (14) reduces to

fe(xy) − fe(σ(y)x)

=
(2 − ac)c

b
A(x)A(y)χ(x)χ(y)

=
(2 − ac)c

4b
[A2(xy)χ(xy) − A2(σ(y)x)χ(σ(y)x)], x, y ∈ S\Iχ.

Hance θ := fe − (2 − ac)c
4b

ΨA2χ ∈ N (S, σ) and we have solution (ii).

Case 2 Suppose K = C; then by hypothesis fo is central. This case leads to
the same solutions as above, but we have to work in a different way.

If ac = 1 then (12) becomes the d’Alembert-type equation

fo(xy) + fo(σ(y)x) = fo(x)(χ + χ ◦ σ)(y).

In this case we invoke Lemma 4.1 with h = g = f = fo and k = χ + χ ◦ σ.
Under these conditions the only solution is fo = 2ΨAχ with χ = χ ◦ σ and
additive A = −A ◦ σ �= 0. As in Case 1 this leads to solution (ii), with ac = 1.

If on the other hand ac �= 1 then we replace y by σ(y) in (12) to get

(2 − ac)fo(xσ(y)) + acfo(yx)

= fo(x)(χ + χ ◦ σ)(y) − (1 − ac)fo(y)(χ + χ ◦ σ)(x).

Since fo is central this can now be written as

acfo(xy) + (2 − ac)fo(σ(y)x)

= fo(x)(χ + χ ◦ σ)(y) − (1 − ac)fo(y)(χ + χ ◦ σ)(x).

Subtracting ac times this equation from (2 − ac) times (12), we arrive at the
familiar sine addition formula

fo(xy) = fo(x) · 1
2
(χ + χ ◦ σ)(y) + fo(y) · 1

2
(χ + χ ◦ σ)(x).

From this point the proof goes as in Case 1 and results in the same solutions.

We include an open problem at this point.

Remark 4.5. The proof above shows that the obstacle in the case K = C occurs
when ac = 1 + i or ac = 1 − i in equation (12). In the case ac = 1 + i for
example, (12) becomes

(1 − i)fo(xy) + (1 + i)fo(σ(y)x) = fo(x)(χ + χ ◦ σ)(y) − ifo(y)(χ + χ ◦ σ)(x).

If this equation could be solved for odd fo (and a similar equation with ac =
1 − i), then one would have a complete result for complex-valued functions
without assuming that fo is central. It is an open problem whether there exist
non-central solutions of this equation.

The next theorem summarizes our principle findings.
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Theorem 4.6. Let S be a topological group or topological monoid generated by
its squares, let σ : S → S be an involutive automorphism, and let f, g, h, k ∈
C(S,K). We also assume that either K = R or that fo is central. Then the so-
lutions of (4) consist of the following families, where χ ∈ C(S,C) is a nonzero
multiplicative function, θ ∈ N (S, σ), A ∈ C(S\Iχ,C) is a nonzero additive
mapping with A ◦ σ = −A, with ai, bi, ci, di ∈ C (i = 1, 2) and a, b ∈ C

∗. (In
the case K = R the constants must be chosen so that f, g, h, k are real-valued.)
(a) h = 0, −g = f = θ, and k is arbitrary.
(b) k = 0, −g = f = θ, and h is arbitrary.
(c) For χ ◦ σ �= χ,

f = θ + a1(χ + χ ◦ σ) + a2(χ − χ ◦ σ), g = −θ + b1(χ + χ ◦ σ)

+ b2(χ − χ ◦ σ),

h = c1(χ + χ ◦ σ) + c2(χ − χ ◦ σ), k = d1(χ + χ ◦ σ) + d2(χ − χ ◦ σ),

where (
c1 c2
c1 −c2

) (
d1 d2
d2 d1

)
=

(
a1 a2

b1 −b2

)
.

(d) For χ ◦ σ = χ,

f = θ +
1
2
(c2d1 + c1d2)ΨAχ +

1
4
c2d2ΨA2χ, h = c1χ + c2ΨAχ,

k = d1χ + d2ΨAχ,

g = −θ + c1d1χ +
1
2
(c2d1 − c1d2)ΨAχ − 1

4
c2d2ΨA2χ.

(e) For χ = χ ◦ σ,

f = θ +
(

ab

2
+ c1

)
χ, g = −θ +

(
ab

2
− c1

)
χ, h = bχ, k = aχ.

In the group case Iχ = ∅, ΨAχ = Aχ and ΨA2χ = A2χ.

Proof. It is verifiable by substitution that the function quadruples (f, g, h, k)
in (a) - (e) satisfy equation (4).

For the converse, if we suppose either h = 0 or k = 0 then the other of
h, k is an arbitrary function and f(xy) + g(σ(y)x) = 0 for all x, y ∈ S. With
y = e we have f + g = 0 and we are in solution (a) or (b). Henceforth we
suppose that h �= 0 and k �= 0.

Putting y = e in (4) we have f + g = k(e)h. If k(e) = 0 then g = −f and
(4) becomes

f(xy) − f(σ(y)x) = h(x)k(y),

with solutions given by Proposition 3.3. These are, respectively, solution (c)
with d1 = 0 and solution (d) with d1 = 0, d2 = 1. Henceforth we assume that
k(e) �= 0.
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If h(e) = 0 then we look to Lemma 4.1 for the solutions of (4). The first
is solution (c) with c1 = 0, d2 = d1, a2 = a1 = d1c2 = b2 = −b1, and the
second is solution (d) with c1 = 0, c2 = 2, d1 �= 0. From here on we assume
that h(e) �= 0.

If either f or h is even, we take the solutions from Lemma 4.3. Concerning
solution (i) there, the case χ = χ ◦ σ leads to solution (e) in our present
theorem; the case χ �= χ◦σ is included in the present solution (c) with a2 = 0.
Solution (ii) from Lemma 4.3 in the case A = 0 is our present solution (d)
with c2 = d2 = 0; in case A �= 0 we are in solution (d) with c2 = 1, c1 �= 0,
and d2 = −d1/c1. Solution (iii) from Lemma 4.3 is our current solution (c)
with c2 = 0, d2 = 2, and b2 = −a2. Lastly from Lemma 4.3, solution (iv) is
our current solution (d) with c2 = 0, c1 �= 0, and d2 = 2/c1.

Finally we take solutions from Lemma 4.4 in the case that neither f nor
h is even. Solutions (i) and (ii) there are our solutions (c) and (d) here with
c1d1 �= 0, and the proof is finished.
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