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Abstract. The concept of penumbra of a convex set with respect to an-
other convex set was introduced by Rockafellar (1970). We study various
geometric and topological properties of penumbras, their role in proper
and strong separation of convex sets, and their relation to polyhedra and
M-decomposable sets.
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1. Introduction

Separation of convex sets by hyperplanes is among the core topics of convexity.
Initiated by Minkowski [7] on the turn of 20th century, it became a useful tool
in many mathematical disciplines, especially in convex analysis and optimiza-
tion, convex geometry, and linear analysis.

In what follows, we consider separation of convex sets in the Euclidean
space Rn. Existing results in this domain either deal with sufficient conditions
for the existence of hyperplanes separating a given pair of convex sets, say
K1 and K2 (see, for instance, [9,10]), or with analytical descriptions of all
hyperplanes separating K1 and K2 (see, e.g., [1,3,4,8] for the case of polytopes
or polyhedra, and [13] for the case of arbitrary convex sets).

In this paper, we describe in geometric terms the locus of all hyperplanes
separating (properly, or strongly) a given pair of nonempty convex sets in
Rn. This description generalizes the existing results, obtained for the case
of polytopes and polyhedral sets, and gives a new geometric insight into the
separation properties of convex sets.

Our approach is based on the properties of penumbras introduced by
Rockafellar [9, p. 22] for the case of disjoint sets. We recall that the penumbra
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K2 K1 P (K1,K2)

Figure 1. Penumbra of K1 with respect to K2

of a convex set K1 with respect to another convex set K2, denoted below
P (K1,K2), is defined by

P (K1,K2) = ∪ (μK1 + (1 − μ)K2 : μ ≥ 1)
= {μx1 + (1 − μ)x2 : μ ≥ 1, x1 ∈ K1, x2 ∈ K2}.

Geometrically, P (K1,K2) is the union of all closed halflines initiated at the
points of K1 in the directions of vectors from K1 − K2 (see Fig. 2).

We study various geometric and topological properties of penumbras
(Sect. 2), their role in proper and strong separation of convex sets (Sects. 3–5),
and their relation to polyhedra and M-decomposable sets (Sect. 6).

We conclude this section with necessary definitions, notation, and auxil-
iary results (see, e. g., [9,10] for details). The elements of Rn are called vectors
(or points). In what follows, o stands for the zero vector of Rn. We denote by
[u, v] and (u, v) the closed and open line segments with endpoints u, v ∈ Rn.
Also, u·v will mean the dot product of u and v.

By an r-dimensional plane L in Rn, where 0 ≤ r ≤ n, we mean a translate
of a suitable r-dimensional subspace S of Rn: L = c + S, where c ∈ Rn. It is
known that a nonempty set M ⊂ Rn is a plane if and only if (1−λ)x+λy ∈ M
whenever x, y ∈ M and λ ∈ R.

The open ρ-neighborhood of a nonempty X ⊂ Rn, denoted Uρ(X), is the
union of all open balls Uρ(x) of radius ρ > 0 centered at x ∈ X. Nonempty sets
X1 and X2 in Rn are called strongly disjoint provided Uρ(X1) ∩ Uρ(X2) = ∅
for a suitable ρ > 0; the latter occurs if and only if the inf -distance δ(X1,X2),
defined by

δ(X1,X2) = inf{‖x1 − x2‖ : x1 ∈ X1, x2 ∈ X2},

is positive. For a nonempty set X ⊂ Rn, the notations clX and intX stand,
respectively, for the closure and interior of X. In a standard way, conv X
and spanX mean, respectively, the convex hull and the span of X, and the
affine span of X, denoted aff X, is defined as the intersection of all planes
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containing X. Clearly, aff X = span X if o ∈ X. The dimension of a nonempty
set X ⊂ Rn, denoted dimX, is defined by the equality dimX = dim (aff X).

A hyperplane in Rn is a plane which can be described as

H = {x ∈ Rn : x·e = γ}, e 
= o, γ ∈ R. (1)

Every hyperplane of the form (1) determines the opposite closed halfspaces

V1 = {x ∈ Rn : x·e ≤ γ} and V2 = {x ∈ Rn : x·e ≥ γ} (2)

and the opposite open halfspaces

W1 = {x ∈ Rn : x·e < γ} and W2 = {x ∈ Rn : x·e > γ}. (3)

We recall that a nonempty set C in Rn is a cone with apex z ∈ Rn if
z+λ(x−z) ∈ C whenever λ ≥ 0 and x ∈ C. (Obviously, this definition implies
that z ∈ C, although a stronger condition λ > 0 can be beneficial; see, e. g.,
[6].) The cone C is called convex if it is a convex set. For a convex set K ⊂ Rn

and a point z ∈ Rn, the generated cone Cz(K) with apex z is defined by

Cz(K) = {z + λ(x − z) : x ∈ K, λ ≥ 0}.

It is known that both sets Cz(K) and clCz(K) are convex cones with apex z.

2. Properties of Penumbras

Theorem 1. For convex sets K1 and K2 in Rn, the assertions below hold.
1) The set P (K1,K2) is convex and K1 ⊂ P (K1,K2).
2) aff P (K1,K2) = aff (K1 ∪ K2).
3) P (K1,K2) ∩ P (K2,K1) = ∅ if and only if K1 ∩ K2 = ∅.
4) δ(P (K1,K2), P (K2,K1)) = δ(K1,K2).

Proof. 1) For the convexity of P (K1,K2), choose any points u, v ∈ P (K1,K2)
and a scalar λ ∈ [0, 1]. Then

u = ηx1 + (1 − η)x2 and v = θy1 + (1 − θ)y2

for suitable scalars η, θ ≥ 1 and points xi, yi ∈ Ki, i = 1, 2. One has

(1 − λ)u + λv = (1 − λ)(ηx1 + (1 − η)x2) + λ(θy1 + (1 − θ)y2)
∈ (1 − λ)(ηK1 + (1 − η)K2) + λ(θK1 + (1 − θ)K2)
= (1 − λ)ηK1 + λθK1 + (1 − λ)(1 − η)K2 + λ(1 − θ)K2.

Put γ = (1 − λ)η + λθ. Clearly, γ ≥ 1. Since αK + βK = (α + β)K whenever
K is convex and αβ ≥ 0 (see, e. g., [9, Theorem 3.2]), we have

(1 − λ)ηK1 + λθK1 = γK1,

(1 − λ)(1 − η)K2 + λ(1 − θ)K2 = (1 − γ)K2.

Therefore,

(1 − λ)u + λv ∈ γK1 + (1 − γ)K2 ⊂ P (K1,K2),
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which proves the convexity of P (K1,K2).
Expressing any point x1 ∈ K1 as x1 = 1x1 + (1 − 1)x2, where x2 ∈ K2,

we obtain the inclusion x1 ∈ P (K1,K2). Hence K1 ⊂ P (K1,K2).
2) The inclusion P (K1,K2) ⊂ aff (K1 ∪ K2) follows from the fact that

any point x ∈ P (K1,K2) is an affine combination of points from K1 ∪ K2.
Consequently,

aff P (K1,K2) ⊂ aff (aff (K1 ∪ K2)) = aff (K1 ∪ K2).

For the opposite inclusion, choose points x1 ∈ K1 and x2 ∈ K2. Put
z = 2x1 − x2. Since z ∈ P (K1,K2) and K1 ⊂ P (K1,K2), one has

x2 = 2x1 + (1 − 2)z ∈ aff (K1 ∪ P (K1,K2)) = aff P (K1,K2).

So, K2 ⊂ aff P (K1,K2). Thus K1 ∪ K2 ⊂ aff P (K1,K2), which gives the
desired inclusion

aff (K1 ∪ K2) ⊂ aff (aff P (K1,K2)) = aff P (K1,K2).

3) If P (K1,K2) ∩ P (K2,K1) = ∅, then K1 ∩ K2 = ∅ due to part 1).
Conversely, let K1 ∩ K2 = ∅. Assume for a moment the existence of a point

u ∈ P (K1,K2) ∩ P (K2,K1).

Then

u = γx1 + (1 − γ)x2 = μy2 + (1 − μ)y1

for suitable scalars γ, μ ≥ 1 and points x1, y1 ∈ K1 and x2, y2 ∈ K2. Clearly,

x1 = (1 − γ−1)x2 + γ−1u, y2 = (1 − μ−1)y1 + μ−1u. (4)

Now, put

ξ =
γ

γ + μ − 1
, η =

μ

γ + μ − 1
, (5)

a =
γ − 1

γ + μ − 1
x2 +

μ − 1
γ + μ − 1

y1 +
1

γ + μ − 1
u. (6)

Obviously, ξ, η ∈ [0, 1]. Based on (4) and the convexity of K1, one has

a = ξ
(
(1 − γ−1)x2 + γ−1u

)
+ (1 − ξ)y1 = ξx1 + (1 − ξ)y1 ∈ K1.

Similarly,

a = (1 − η)x2 + η
(
(1 − μ−1)y1 + μ−1u

)
= (1 − η)x2 + ηy2 ∈ K2.

Thus a ∈ K1 ∩ K2, in contradiction with the hypothesis K1 ∩ K2 = ∅.
4) The inequality

δ(P (K1,K2), P (K2,K1)) ≤ δ(K1,K2)

is trivial. For the opposite one, choose points u ∈ P (K1,K2) and v ∈ P (K2,K1).
Then

u = γx1 + (1 − γ)x2 and v = μy2 + (1 − μ)y1
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for suitable scalars γ, μ ≥ 1 and points x1, y1 ∈ K1 and x2, y2 ∈ K2. Now, put

a1 =
γ − 1

γ + μ − 1
x2 +

μ − 1
γ + μ − 1

y1 +
1

γ + μ − 1
u,

a2 =
γ − 1

γ + μ − 1
x2 +

μ − 1
γ + μ − 1

y1 +
1

γ + μ − 1
v.

With ξ and η defined by (5), we obtain, based on (4), that

a1 = ξx1 + (1 − ξ)y1 ∈ K1, a2 = (1 − η)x2 + ηy2 ∈ K2.

Hence

δ(K1,K2) ≤ ‖a1 − a2‖ =
1

γ + μ − 1
‖u − v‖ ≤ ‖u − v‖,

which implies the desired inequality

δ(K1,K2) ≤ δ(P (K1,K2), P (K2,K1)).

�

Definition 1. Given convex sets K1 and K2 in Rn, let

P0(K1,K2) = ∪ (μK1 + (1 − μ)K2 : μ > 1)
= {μx1 + (1 − μ)x2 : μ > 1, x1 ∈ K1, x2 ∈ K2}.

We will need the following auxiliary lemma.

Lemma 1. ([9], §6) For a convex set K ⊂ Rn, the assertions below hold.

1) A point x ∈ K belongs to rintK if and only if for any point y ∈ K there
is a scalar η > 1 such that ηx + (1 − η)y ∈ K.

2) If x ∈ rint K and y ∈ cl K, then [x, y) ⊂ rintK. Consequently, cl K =
cl (rintK).

�

Topological properties of penumbra are described in the following theo-
rem.

Theorem 2. For convex sets K1 and K2 in Rn, the assertions below hold.

1) rintP (K1,K2) = P0(rint K1, rint K2).
2) P (cl K1, cl K2) ⊂ cl P (K1,K2) = cl P0(rint K1, rint K2).
3) If K2 is bounded and cl K1∩cl K2 = ∅, then P (cl K1, cl K2) = cl P (K1,K2).

Proof. 1) First, we will prove the inclusion

P0(rint K1, rint K2) ⊂ rintP (K1,K2).

For this, choose any point x ∈ P0(rint K1, rint K2). Then x = μx1 + (1 − μ)x2

for a suitable scalar μ > 1 and points x1 ∈ rintK1 and x2 ∈ rintK2. Let y be
any point in P (K1,K2). Then y = γy1 + (1 − γ)y2, where γ ≥ 1, y1 ∈ K1, and
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y2 ∈ K2. The obvious inequality γ −1 > γ −μ implies the existence of a scalar
ϕ0 > 1 such that

γ − 1 > ϕ(γ − μ) ∀ϕ ∈ (1, ϕ0).

Consequently, the scalar η = ϕμ + (1 − ϕ)γ satisfies the inequality η > 1 for
all 1 < ϕ < ϕ0. We are going to show the existence of a scalar ϕ∗ ∈ (1, ϕ0)
such that

z∗ := ϕ∗x + (1 − ϕ∗)y ∈ P (K1,K2).

Indeed, for any 1 < ϕ < ϕ0, let

λ1(ϕ) =
ϕμ

η
, λ2(ϕ) =

ϕ(1 − μ)
1 − η

.

It is easy to see that λ1(ϕ) > 1 and λ2(ϕ) ≥ 1 for all 1 < ϕ < ϕ0, and
that limϕ→1 λi(ϕ) = 1, i = 1, 2. We observe that the inequality λ2(ϕ) ≥ 1 is
equivalent to (1 − γ)(1 − ϕ) ≥ 0; whence λ2(ϕ) = 1 if and only if γ = 1.

Lemma 1 shows the existence of a sufficiently small ϕ∗ ∈ (1, ϕ0) such
that the scalars λ∗

i = λi(ϕ∗) satisfy the conditions: λ∗
1 > 1, λ∗

2 ≥ 1, and

z∗
i = λ∗

i xi + (1 − λ∗
i )yi ∈ Ki, i = 1, 2.

Let

η∗ = ϕ∗μ + (1 − ϕ∗)γ and z∗ = η∗z∗
1 + (1 − η∗)z∗

2 .

Because η∗ > 1, we obtain z∗ ∈ P (K1,K2). Furthermore,

z∗ = η∗z∗
1 + (1 − η∗)z∗

2

= η∗(λ∗
1x1 + (1 − λ∗

1)y1) + (1 − η∗)(λ∗
2x2 + (1 − λ∗

2)y2)
= ϕ∗μx1 + (η∗ − ϕ∗μ)y1 + ϕ∗(1 − μ)x2 + (1 − η∗ − ϕ∗ + ϕ∗μ)y2
= ϕ∗(μx1 + (1 − μ)x2) + (1 − ϕ∗)(γy1 + (1 − γ)y2)
= ϕ∗x + (1 − ϕ∗)y.

Since the point y was arbitrarily chosen in P (K1,K2), Lemma 1 implies the
inclusion x ∈ rintP (K1,K2).

For the opposite inclusion,

rintP (K1,K2) ⊂ P0(rint K1, rint K2),

choose any point x ∈ rintP (K1,K2). Let y be a point in P0(rint K1, rint K2).
Then y = γy1 + (1 − γ)y2, where γ > 1, y1 ∈ rintK1 and y2 ∈ rintK2. By the
above argument, y ∈ rintP (K1,K2).

Since the case x = y is trivial, we may assume that x 
= y. By Lemma 1,
there is a scalar ν > 1 such that the point z = νx + (1 − ν)y belongs to
P (K1,K2). With α = ν−1, we can write x = (1 − α)y + αz, where 0 < α < 1.
Because z ∈ P (K1,K2), one has z = βz1 + (1 − β)z2, where β ≥ 1, z1 ∈ K1,
and z2 ∈ K2. Now, let μ = αβ + (1 − α)γ. Clearly, μ > 1. Next, put

α1 =
αβ

μ
, α2 =

α(1 − β)
1 − μ

.
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It is easy to see that α1, α2 ∈ [0, 1). Therefore, Lemma 1 implies the inclusions

xi := (1 − αi)yi + αizi+ ∈ rintKi, i = 1, 2.

Furthermore, the equalities

x = (1 − α)y + αz

= (1 − α)(γy1 + (1 − γ)y2) + α(βz1 + (1 − β)z2)
= μ((1 − α1)y1 + α1z1) + (1 − μ)((1 − α2)y2 + α2z2)
= μx1 + (1 − μ)x2

give the desired inclusion x ∈ P0(rint K1, rint K2).
2) Let u be any point in P (cl K1, cl K2). Then u = μx1 + (1 − μ)x2 for

a suitable scalar μ ≥ 1 and points x1 ∈ cl K1 and x2 ∈ cl K2. Choose any
scalar ε > 0 and let ρ = ε/(2μ − 1). There are points x′

1 ∈ K1 and x′
2 ∈ K2

such that ‖x1 − x′
1‖ < ρ and ‖x2 − x′

2‖ < ρ. Put u′ = μx′
1 + (1 − μ)x′

2. Then
u′ ∈ P (K1,K2) and

‖u − u′‖ ≤ μ‖x1 − x′
1‖ + (μ − 1)‖x2 − x′

2‖ < (2μ − 1)ρ = ε.

So, u ∈ cl P (K1,K2), as desired.
3) Suppose that K2 is bounded and clK1 ∩ cl K2 = ∅. By the above

argument, it suffices to prove the inclusion

cl P (K1,K2) ⊂ P (cl K1, cl K2).

For this, choose any point u ∈ cl P (K1,K2) and a sequence of points u1, u2, . . .
in P (K1,K2) converging to u. We can write

ui = μixi + (1 − μi)yi, where μi ≥ 1, xi ∈ K1, yi ∈ K2, i ≥ 1.

Therefore,

xi = μ−1
i ui + (1 − μ−1

i )yi, where μ−1
i ∈ (0, 1], i ≥ 1.

By a compactness argument, there is an increasing sequence of integers i1, i2, . . .
such that μ−1

ir
→ α ∈ [0, 1] and yir → y ∈ cl K2 as r → ∞. Consequently, there

exists the limit

x := lim
ir→∞

xir = lim
ir→∞

(μ−1
ir

uir + (1 − μ−1
ir

)yir ) = αu + (1 − α)y. (7)

Clearly, x ∈ cl K1 due to the inclusions xir ∈ K1, r ≥ 1.
We observe that α 
= 0. Indeed, if α = 0, then (7) would give x = y,

contrary to the assumption clK1 ∩ cl K2 = ∅. So, α 
= 0. Then α−1 > 1, and
(7) gives

u = α−1x + (1 − α−1)y ∈ P (cl K1, cl K2),

as desired. Finally, by Lemma 1,

cl P (K1,K2) = cl (rintP (K1,K2)) = cl P0(rint K1, rint K2).

�
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Remark 1. Generally, both inclusions

rintP (K1,K2) ⊂ P (rintK1, rint K2),
P (cl K1, cl K2) ⊂ cl P (K1,K2)

may be proper. Indeed, in the plane R2, consider the closed convex sets

K1 = {(x, 1) : 0 ≤ x ≤ 1} and K2 = {(x, 0) : x ∈ R}.

With M = {(x, y) : y > 1}, one has P (K1,K2) = K1 ∪ M and

rintP (K1,K2) = M 
= rintK1 ∪ M = P (rintK1, rint K2),
P (cl K1, cl K2) = P (K1,K2) 
= cl M = cl P (K1,K2).

3. Penumbras and Separation

We recall that convex sets K1 and K2 in Rn are separated by a hyperplane
H ⊂ Rn provided K1 and K2 lie in the opposite closed halfspaces determined
by H. Furthermore, K1 and K2 are properly separated if K1 ∪ K2 
⊂ H, and
they are nontrivially separated if K1 
⊂ H and K2 
⊂ H. Also, K1 and K2 are
strictly separated by H if K1 ∩ H = K2 ∩ H = ∅. Finally, K1 and K2 are
strongly separated by H if suitable open ρ-neighborhoods Uρ(K1) and Uρ(K2)
of these sets are separated by H (see [9, p. 95]). The following lemma provides
well-known criteria for proper and strong separation.

Lemma 2. ([9], §11) If K1 and K2 are convex sets in Rn, then
1) K1 and K2 are properly separated if and only if rintK1 ∩ rintK2 = ∅,
2) K1 and K2 are strongly separated if and only if δ(K1,K2) > 0.

�

Theorem 3. Let K1 and K2 be convex sets in Rn, and H ⊂ Rn be a hyperplane.
The assertions below hold.

1) H separates K1 and K2 if and only if H separates P (K1,K2) and P (K2,K1).
2) H properly separates K1 and K2 if and only if H nontrivially separates

P (K1,K2) and P (K2,K1).
3) H strictly separates K1 and K2 if and only if H strictly separates P (K1,K2)

and P (K2,K1).
4) H strongly separates K1 and K2 if and only if H strongly separates

P (K1,K2) and P (K2,K1).

Proof. 1) Let H separate K1 and K2. Denote by V1 and V2 the closed halfspaces
determined by H and containing K1 and K2, respectively. Without loss of
generality, we may suppose that V1 and V2 are given by (2).

We assert that P (K1,K2) ⊂ V1. Indeed, choose any point u ∈ P (K1,K2).
Then u = μx1 + (1 − μ)x2 for a suitable scalar μ ≥ 1 and points x1 ∈ K1 and
x2 ∈ K2. Since x1 ∈ V1 and x2 ∈ V2, one has x1·e ≤ γ and x2·e ≥ γ. Therefore,

u·e = μx1 ·e + (1 − μ)x2 ·e ≤ μγ + (1 − μ)γ = γ. (8)
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Hence u ∈ V1, and thus P (K1,K2) ⊂ V1. Similarly, P (K2,K1) ⊂ V2, which
implies that H separates P (K1,K2) and P (K2,K1).

The proof of the “if” part immediately follows from the inclusions K1 ⊂
P (K1,K2) and K2 ⊂ P (K2,K1).

2) Assume that H properly separates K1 and K2 such that K1 ⊂ V1

and K2 ⊂ V2. Let, for instance, K1 
⊂ H. Then P (K1,K2) 
⊂ H due to the
inclusion K1 ⊂ P (K1,K2). Now, choose points x1 ∈ K1 \ H and x2 ∈ K2.
Then x1 ·e < γ, and, with μ > 1, the point v = μx2 + (1 − μ)x1 ∈ P (K2,K1)
satisfies the inequality

v ·e = μx2 ·e + (1 − μ)x1 ·e > μγ + (1 − μ)γ = γ.

Hence P (K2,K1) 
⊂ H, which shows that H nontrivially separates P (K1,K2)
and P (K2,K1). The proof of the “if” part is similar.

The proofs of assertions 3)–4) are similar to that of 1) and use the fol-
lowing refinements of (8):

a) if x1 ·e < γ and x2 ·e > γ, then u·e < γ,
b) if x1 ·e ≤ γ − ε and x2 ·e ≥ γ + ε, where ε > 0, then u·e ≤ γ − ε.

�

Remark 2. Part 2) of Theorem 3 implies that P (K1,K2) and P (K2,K1) are
properly separated by a hyperplane H if and only if they are nontrivially
separated by H.

We recall (see [9, p. 100]) that a hyperplane H ⊂ Rn nontrivially supports
a convex set K ⊂ Rn if H supports K such that K 
⊂ H.

Theorem 4. Let K1 and K2 be convex sets in Rn. If a hyperplane H ⊂ Rn sup-
ports (nontrivially supports) cl P (K1,K2), then H separates (properly separates)
K1 and K2. If, additionally, K1 is bounded, then H supports cl K1.

Proof. Let H support clP (K1,K2). Expressing H in the form (1), we may sup-
pose that the opposite closed halfspaces V1 and V2 determined by H are given
by (2). Assume that cl P (K1,K2) ⊂ V1. By Theorem 1, K1 ⊂ P (K1,K2) ⊂ V1.
Consider the hyperplane H ′ = {x ∈ Rn : x·e = γ′}, where

γ′ = sup {x1 ·e : x1 ∈ K1}.

Clearly, K1 is contained in the closed halfspace V ′
1 = {x ∈ Rn : x·e ≤ γ′}. We

assert that K2 is contained in the opposite closed halfspace V ′
2 = {x ∈ Rn :

x·e ≥ γ′}. Indeed, assume for a moment the existence of a point x2 ∈ K2 \ V ′
2 .

Then x2·e < γ′. Choose a point x1 ∈ K1 so close to H ′ that x2·e < x1·e ≤ γ′.
For a scalar μ ≥ 1, let zμ = μx1 + (1 − μ)x2. Then zμ ∈ P (K1,K2) ⊂ V1. On
the other hand,

zμ ·e = (μx1 + (1 − μ)x2)·e = x2 ·e + μ(x1 − x2)·e > γ

for a sufficiently large μ. Consequently, zμ /∈ V1, in contradiction with the
choice of V1. Summing up, K2 ⊂ V ′

2 .
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So, H ′ separates K1 and K2. Theorem 3 implies that P (K1,K2) ⊂ V ′
1 ⊂

V1. Since H supports cl P (K1,K2), it follows that V1 = V ′
1 and H = H ′, as

desired.
Assume now that H nontrivially supports clP (K1,K2). If K1 ∪ K2 con-

tained in H, then, by Theorem 1, we would have P (K1,K2) = aff (K1,K2) ⊂
H, contrary to the assumption. Hence H properly separates K1 and K2.

The second assertion of the theorem follows from the choice of H ′ and
compactness of cl K1. �

Remark 3. The hyperplane H in Theorem 4 may not support clK1 if K1 is
unbounded. For instance, let the closed convex sets K1 and K2 in R2 be given
by

K1 = {(x, y) : y ≥ 2x + 1} and K2 = {(x, y) : y ≤ 0}.

Then cl P (K1,K2) = {(x, y) : y ≥ 1} and y = 1 is the only line that supports
cl P (K1,K2). On the other hand, this line is asymptotic to K1 (that is, H ∩
K1 = ∅ and δ(H,K1) = 0).

Theorem 5. If convex sets K1 and K2 in Rn satisfy the condition rintK1 ∩
rintK2 = ∅, then cl P (K1,K2) is the intersection of all closed halfspaces con-
taining P (K1,K2) such that their boundary hyperplanes properly separate K1

and K2. If, additionally, K1 is bounded, then the above halfspaces can be chosen
such that their boundary hyperplanes support cl K1.

Proof. First, we assert that cl P (K1,K2) is not a plane. For this, let L =
aff (K1 ∪ K2) and r = dim L. Lemma 2 shows the existence of a hyperplane
H ⊂ Rn properly separating K1 and K2. Denote by V1 and V2 the closed
halfspaces determined by H and containing K1 and K2, respectively. Since
K1 ∪ K2 
⊂ H, the affine span aff (K1 ∪ K20 is not included in H. Then
the plane L = H ∩ aff (K1 ∪ K2) has dimension r − 1 and determines two
closed halfplanes M1 = L ∩ V1 and M2 = L ∩ V2 (see [10], Lemma 2.72 and
Theorem 2.73). By Theorem 3, P (K1,K2) ⊂ M1, while aff P (K1,K2) = L (see
Theorem 1). Hence P (K1,K2) 
= aff P (K1,K2), which implies that P (K1,K2)
is not a plane.

Since P (K1,K2) is not a plane, clP (K1,K2) is the intersection of all
closed halfspaces nontrivially supporting clP (K1,K2) (see [10], Theorem 9.39).
By Theorem 4, the boundary hyperplanes of these halfspaces properly separate
K1 and K2, as desired. If, additionally, K1 is bounded, then the boundary
hyperplanes of these halfspaces support clK1. �

Remark 4. As it shown in the proof of Theorem 5, the penumbra P (K1,K2)
is not a plane if rintK1 ∩ rint K2 = ∅. In this regard, it would be interesting
to know whether P (K1,K2) = aff (K1 ∪ K2) provided rintK1 ∩ rintK2 
= ∅.
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E1(K1,K2)

K1 K2

Figure 2. The set E1(K1,K2)

4. Properly Separating Hyperplanes

Definition 2. Given convex sets K1 and K2 in Rn, denote by H1(K1,K2) (re-
spectively, by H2(K1,K2) and H3(K1,K2)) the family of all hyperplanes prop-
erly (respectively, strictly and strongly) separating K1 and K2. Also, let

Ei(K1,K2) = ∪ (H : H ∈ Hi), i = 1, 2, 3.

A combination of Theorem 5.3 from [13] and the above Theorem 2 implies
the following assertion.

Theorem 6. ([13]) If convex sets K1 and K2 in Rn satisfy the condition rint K1∩
rintK2 = ∅, then

E1(K1,K2) = Rn \ (P0(rint K1, rint K2) ∪ P0(rintK2, rint K1))
= Rn \ (rintP (K1,K2) ∪ rintP (K2,K1)).

Theorem 7. Let K1 and K2 be convex sets in Rn satisfying the condition
rintK1 ∩ rintK2 = ∅. A hyperplane H ⊂ Rn properly separates K1 and K2 if
and only if H ⊂ E1(K1,K2) and H ∩ aff (K1 ∪ K2) 
= ∅.
Proof. Let a hyperplane H properly separate K1 and K2. Then the inclusion
H ⊂ E1(K1,K2) immediately follows from Definition 2. Denote by V1 and V2

the closed halfspaces determined by H and containing K1 and K2, respectively.
Choose distinct points x1 ∈ K1 and x2 ∈ K2 (this is possible due to the
assumption rint K1 ∩ rintK2 = ∅). Then the line through x1 and x2 lies in
aff (K1∪K2) and meets H (see [13, Theorem 2.35]). Hence H ∩aff (K1∪K2) 
=
∅.
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Conversely, let a hyperplane H satisfy the conditions H ⊂ E1(K1,K2)
and H ∩ aff (K1 ∪ K2) 
= ∅. Theorem 6 shows that H is disjoint from the set

Q = P0(rint K1, rint K2) ∪ P0(rint K2, rint K1).

Hence Q ⊂ Rn\H. We assert that P0(rintK1, rint K2) and P0(rint K2, rint K1)
are contained, respectively, in the opposite open halfspaces determined by H.
Indeed, assume for a moment that both sets

P0(rint K1, rint K2) and P0(rint K2, rint K1)

are contained in the same open halfspace W determined by H. By Theorem 1,
both sets rint K1 and rintK2 are contained in W . Expressing H in the form
(1), we may suppose that W is given by

W = {x ∈ Rn : x·e < γ}.

Choose any points x1 ∈ rintK1 and x2 ∈ rintK2. For any scalar μ > 1, one
has

u := μx1 + (1 − μ)x2 ∈ P0(rintK1, rint K2) ⊂ W.

Therefore,

x2 ·e + μ(x1 − x2)·e = (μx1 + (1 − μ)x2)·e = u·e < γ.

These inequalities hold for all μ > 1 only if x1 ·e ≤ x2 ·e. In a similar way,
considering the points

v := μx2 + (1 − μ)x1 ∈ P0(rint K2, rint K1) ⊂ W,

we obtain that x2 ·e ≤ x1 ·e. Hence x1 ·e = x2 ·e for all x1 ∈ rint K1 and
x2 ∈ rintK2. This argument shows that the set rintK1 ∪ rintK2 lies in a
hyperplane H ′ ⊂ W of the form H ′ = {x ∈ Rn : x ·e = γ′}, where γ′ < γ.
Consequently, by Lemma 1,

K1 ∪ K2 ⊂ cl (rint K1) ∪ cl (rintK2) ⊂ H ′,

which gives the inclusion aff (K1 ∪ K2) ⊂ H ′. Because H ∩ H ′ = ∅, the latter
inclusion contradicts the assumption H ∩ aff (K1 ∪ K2) 
= ∅.

Summing up, P0(rintK1, rint K2) and P0(rint K2, rint K1) are contained
in the opposite open halfspaces determined by H. By Theorem 2, P (K1,K2)
and P (K2,K1) are contained in the opposite closed halfspaces determined by
H such that neither of these set lies in H. Theorem 3 shows that H properly
separates K1 and K2. �

The following example illustrates Theorem 7.

Example 1. In the plane R2, consider the closed convex sets

K1 = {(x, 0) : x ≤ 0} and K2 = {(x, 0), x ≥ 1}.

Then P (K1,K2) = K1 and P (K2,K1) = K2. Any horizontal line y = b, where
b 
= 0, lies in E1(K1,K2) = R2 \ (K1 ∪ K2), while only slant lines which meet
the x-axis at the segment {(x, 0) : 0 ≤ x ≤ 1} properly separate K1 and K2.
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Corollary 1. Let K1 and K2 be convex sets in Rn satisfying the condition
cl K1 ∩ cl K2 = ∅. A hyperplane H ⊂ Rn strictly separates cl K1 and cl K2

if and only if H is contained in the set

F2(K1,K2) := Rn \ (P (cl K1, cl K2) ∪ P (cl K2, cl K1))

and H ∩ aff (K1 ∪ K2) 
= ∅.
Proof. Let a hyperplane H strictly separate cl K1 and cl K2. By Theorem 3, H
strictly separates P (cl K1, cl K2) and P (cl K2, cl K1). Hence H ⊂ F2(K1,K2).
Since H properly separates K1 and K2, Theorem 7 shows that H ∩ aff (K1 ∪
K2) 
= ∅.

Conversely, suppose that H ⊂ F2(K1,K2) and H ∩ aff (K1 ∪ K2) 
= ∅.
Then H is disjoint from both P (cl K1, cl K2) and P (cl K2, cl K1), and Theo-
rem 1 shows that H is disjoint from both clK1 and cl K2. By Theorem 7, H
properly separates K1 and K2. Hence H strictly separates cl K1 and cl K2.
�

Remark 5. Corollary 1 shows that E2(K1,K2) is contained in the set F2(K1,K2).
This inclusion may be proper, as illustrated by the convex sets K1 and K2 from
Remark 1. Indeed, for these sets, E2(K1,K2) = {(x, y) : 0 < y < 1}, while

F2(K1,K2) = E2(K1,K2) ∪ {(x, 1) : x < 0} ∪ {(x, 1) : x > 1}.

5. Strongly Separating Hyperplanes

Theorem 8. If K1 and K2 are strongly disjoint convex sets in Rn, then

cl P (K1,K2) = ∩ (P0(Uρ(K1), Uρ(K2)) : ρ > 0).

Proof. For any scalar ρ > 0, both sets Uρ(Ki), i = 1, 2, are open. So, part 1)
of Theorem 2 gives

int P0(Uρ(K1), Uρ(K2)) = P0(int Uρ(K1), int Uρ(K2))
= P0(Uρ(K1), Uρ(K2)).

Hence the set P0(Uρ(K1), Uρ(K2)) also is open. Therefore, the obvious inclu-
sion

P0(rint K1, rint K2) ⊂ P0(Uρ(K1), Uρ(K2))

and the same part 1) give

cl P (K1,K2) = cl P0(rintK1, rint K2) ⊂ P0(Uρ(K1), Uρ(K2)).

Thus

cl P (K1,K2) ⊂ ∩ (P0(Uρ(K1), Uρ(K2)) : ρ > 0).

To prove the opposite inclusion, let

Q =
( ∩ (P0(Uρ(K1), Uρ(K2)) : ρ > 0)

)
.
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Clearly, Q is a convex set as the intersection of convex sets P0(Uρ(K1), Uρ(K2)),
ρ > 0. Assume for a moment the existence of a point u ∈ Q\ cl P (K1,K2) and
denote by z the metric projection of u on cl P (K1,K2). It is known that z is
uniquely determined by u due to the convexity of clP (K1,K2).

Since K1 and K2 are strongly disjoint, Lemma 2 implies the existence
of a hyperplane H ⊂ Rn strongly separating K1 and K2. Denote by W1 and
W2 the opposite open halfspaces determined by H containing K1 and K2,
respectively. Choose a pair of hyperplanes H1 ⊂ W1 and H2 ⊂ W2 which are
parallel to H and each of them strongly separates K1 and K2. Denote by W ′

i

the open halfspace determined by Hi and contained in Wi, i = 1, 2. Choose a
scalar ρ > 0 such that Uρ(Ki) is contained in W ′

i and is strongly disjoint from
Hi, i = 1, 2.

Expressing H in the form (1), we may suppose that

Hi = {x ∈ Rn : x·e = γi}, i = 1, 2,

with γ1 < γ < γ2 and

W ′
1 = {x ∈ Rn : x·e < γ1}, W ′

2 = {x ∈ Rn : x·e > γ2}.

By the above argument, each of the hyperplanes H1 and H2 strongly
separates Uρ(K1) and Uρ(K2). Consequently, Theorem 3 implies that each
of H1 and H2 strongly separates P (Uρ(K1), Uρ(K2)) and P (Uρ(K2), Uρ(K1)).
Hence

P (Uρ(K1), Uρ(K2)) ⊂ W ′
1, P (Uρ(K2), Uρ(K1)) ⊂ W ′

2.

Since the open segment (u, z) lies in Q and is disjoint from clP (K1,K2), we
can choose a point v ∈ (u, z) ⊂ Q so close to z that v ∈ W ′

1. Denote by v1 and
v2 the orthogonal projections of v on H1 and H2, respectively.

For any integer r ≥ 1, we can write

v = μrxr + (1 − μr)yr, where μr > 1, xr ∈ U1/r(K1), yr ∈ U1/r(K2).

Choose an integer r0 such that 1/r0 < ρ. Then xr ∈ W ′
1 and yr ∈ W ′

2 for all
r ≥ r0. In particular, xr 
= yr and the line segment [xr, yr] meets H1 and H2

at distinct points x′
r and y′

r, respectively, r ≥ r0. Since the hyperplanes H1

and H2 are parallel, one has

‖v − x′
r‖/‖x′

r − y′
r‖ = ‖v − v1‖/‖v1 − v2‖.

The equalities

v − yr = μr(xr − yr), r ≥ r0,

give

μr =
‖v − yr‖
‖xr − yr‖ =

‖v − xr‖ + ‖xr − yr‖
‖xr − yr‖ =

‖v − xr‖
‖xr − yr‖ + 1 (9)

≤ ‖v − x′
r‖

‖x′
r − y′

r‖
+ 1 =

‖v − v1‖
‖v1 − v2‖ + 1, r ≥ r0. (10)
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Let G be the hyperplane through z orthogonal to the segment [v, z].
It is well known that G supports cl P (K1,K2) at z and separates v from
cl P (K1,K2). By Theorem 4, G separates K1 and K2. Denote by T1 and T2

the opposite closed halfspaces determined by G and containing K1 and K2,
respectively. Expressing G as

G = {x ∈ Rn : x·c = η}, c 
= o,

we may suppose that T1 and T2 are given by

T1 = {x ∈ Rn : x·c ≤ η} and T2 = {x ∈ Rn : x·c ≥ η}.

Then v ·c > η due to the inclusion v ∈ intT2. Furthermore, dividing both c
and η by ‖c‖, we may assume that c is a unit vector.

Since xr ∈ U1/r(K1), there is a point br ∈ K1 such that ‖xr − br‖ < 1/r.
Consequently,

(xr − br)·c ≤ ‖xr − br‖ < 1/r.

Because br ·c ≤ η due to the inclusion br ∈ K1 ⊂ T1, we obtain that

xr ·c ≤ br ·c + 1/r < η + 1/r.

Similarly, yr ·c > η − 1/r. Hence

v ·c = (μrxr + (1 − μr)yr)·c = μrxr ·c + (1 − μr)yr ·c
< μr(η + 1/r) + (1 − μr)(η − 1/r) = η + (2μr − 1)/r.

Since v ·c > η, one has

μr >
r(v ·c − η) + 1

2
→ ∞ as r → ∞. (11)

Because (10) and (11) contradict each other, our assumption on the ex-
istence of a point u ∈ Q \ cl P (K1,K2) is false, as desired. �

The following lemma will be used in the proof of Theorem 9.

Lemma 3. ([13]) Let M1 and M2 be disjoint convex sets in Rn. If a point z
belongs to the set Rn \ (P0(M1,M2) ∪ P0(M2,M1)), then the generated cones
Cz(M1) and Cz(M2) satisfy the conditions

Cz(M1) ∩ Cz(M2) = {z} and rintCz(M1) ∩ rintCz(M2) = ∅.

Theorem 9. If convex sets K1 and K2 in Rn are strongly disjoint, then

E3(K1,K2) = Rn \ (cl P (K1,K2) ∪ cl P (K2,K1)).

Proof. First, we assert that

E3(K1,K2) ∩ cl P (K1,K2) = ∅. (12)

Indeed, H be a hyperplane strongly separating K1 and K2. By Theorem 3,
H strongly separates P (K1,K2) and P (K2,K1). So, there is a scalar ρ >
0 such that H separates Uρ(P (K1,K2)) and Uρ(P (K2,K1)). Since the set
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Uρ(P (K1,K2)) is open, one has H ∩ Uρ(P (K1,K2)) = ∅. Finally, the inclu-
sion cl P (K1,K2) ⊂ Uρ(P (K1,K2)) shows that H ∩ cl P (K1,K2) = ∅. Conse-
quently, (12) holds.

In a similar way, E3(K1,K2) ∩ clP (K2,K1) = ∅. Therefore,

E3(K1,K2) ⊂ Rn \ (cl P (K1,K2) ∪ cl P (K2,K1)).

For the opposite inclusion, choose any point

z ∈ Rn \ (cl P (K1,K2) ∪ cl P (K2,K1)).

Since K1 and K2 are strongly disjoint, there is a scalar ρ > 0 such that the
sets Uρ(K1) and Uρ(K2) are strongly disjoint. By Theorem 8, the scalar ρ can
be chosen so small that

z ∈ Rn \ (
P0(Uρ(K1), Uρ(K2)) ∪ P0(Uρ(K2), Uρ(K1))

)
.

Lemma 3 implies that

rintCz(Uρ(K1)) ∩ rintCz(Uρ(K2)) = ∅.

Hence Lemma 2 shows the existence of a hyperplane H ⊂ Rn that properly
separates the cones Cz(Uρ(K1)) and Cz(Uρ(K2)). Consequently, H separates
the open sets Uρ(K1) and Uρ(K2). In other words, H strongly separates K1

and K2. So, H ∈ H3(K1,K2) and z ∈ H ⊂ E3(K1,K2), as desired. �

Remark 6. An assertion similar to Theorem 7 and Corollary 1 does not hold
for the case of strong separation. For instance, let the closed convex sets K1

and K2 in R2 be given by

K1 = {(x, y) : x > 0, xy ≥ 1} and K2 = {(x, y) : x < 0, xy ≥ 1}.

Then P (K1,K2) = K1 and P (K2,K1) = K2. Furthermore, the coordinate
axes of R2 are subsets of E3(K1,K2) and meet aff (K1 ∪K2) = R2, while each
of these axes separates K1 and K2 strictly, but not strongly.

6. Further Properties of Penumbra

Theorem 10. If K1 and K2 are convex sets in Rn, then

P (K1,K2) = K1 + Co(K1 − K2).

Furthermore, dim Co(K1 − K2) = dim (aff (K1 ∪ K2)).

Proof. By the definition of P (K1,K2) and Co(K1 − K2),

P (K1,K2) = {μx1 + (1 − μ)x2 : μ ≥ 1, x1 ∈ K1, x2 ∈ K2}
= {x1 + (μ − 1)(x1 − x2) : μ ≥ 1, x1 ∈ K1, x2 ∈ K2}
⊂ {x + λy : λ ≥ 0, x ∈ K1, y ∈ K1 − K2}
= K1 + Co(K1 − K2).
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For the opposite inclusion, choose any point u ∈ K1 + Co(K1 − K2). Then
u = x1 + λ(y1 − y2) for suitable points x1, y1 ∈ K1, y2 ∈ K2, and a scalar
λ ≥ 0. Put

x′
1 =

1
λ + 1

x1 +
λ

λ + 1
y1.

Clearly, x′
1 ∈ [x1, y1] ⊂ K1 due to the convexity of K1. Furthermore,

u = x1 + λ(y1 − y2) = (λ + 1)
( 1
λ + 1

x1 +
λ

λ + 1
y1

) − λy2

= (1 + λ)x′
1 − λy2 ∈ P (K1,K2).

For the second assertion, we observe first that

K1 − K2 ⊂ Co(K1 − K2) ⊂ span (K1 − K2),

which implies the equality spanCo(K1−K2) = span (K1−K2). Consequently,

dim Co(K1 − K2) = dim (span (K1 − K2)) = dim (aff (K1 ∪ K2)),

where the second equality is proved in [13]. �

We recall that a convex set K ⊂ Rn is called M-predecomposable if it
can be expressed as a sum K = B + C, where B is a compact convex set B
and C is a convex cone. If, additionally, the cone C is closed, then K is called
M-decomposable (see [2,5,11,12] for priority publications and further results).

Theorem 11. For convex sets K1 and K2 in Rn, the following assertions hold.
1) If K1 is compact, then P (K1,K2) is an M-predecomposable set.
2) If both K1 and K2 are compact and K1 ∩ K2 = ∅, then P (K1,K2) is an

M-decomposable set.

Proof. 1) If K1 is compact, then, according to Theorem 10, the set P (K1,K2)
is M-decomposable as the sum of K1 and the convex cone Co(K1 − K2).

2) If both K1 and K2 are compact and K1∩K2 = ∅, then o /∈ K1−K2 and
the convex set K1−K2 is compact. Consequently, the generated cone Co(K1−
K2) is closed (see [10], Theorem 5.45). By Theorem 10, the set P (K1,K2) is
M-decomposable. �

Problem 1. Characterize those M-decomposable (M-predecomposable) sets in
Rn which are penumbras of suitable convex sets. In particular, which M-
decomposable sets K1 and K2 satisfy the conditions K1 = P (K1,K2) and
K2 = P (K2,K1)?

The concept of penumbra is routinely extendable to the case of arbitrary
nonempty sets. In this regard, the following assertion holds.

Theorem 12. If X and Y are nonempty sets in Rn, then

conv P (X,Y ) = P (conv X, conv Y ).
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Proof. The obvious inclusion P (X,Y ) ⊂ P (conv X, conv Y ) and the convexity
of P (conv X, conv Y ) (see Theorem 1) give

conv P (X,Y ) ⊂ P (conv X, conv Y ).

For the opposite inclusion, choose any point u ∈ P (conv X, conv Y ). Then
u = μx + (1 − μ)y, where μ ≥ 1, x ∈ conv X, and y ∈ conv Y . We can express
x and y as convex combinations of suitable points from X and Y , respectively:

x = α1x1 + · · · + αpxp, y = β1y1 + · · · + βqyq,

xi ∈ X, yj ∈ Y, αi ≥ 0, βj ≥ 0,

p∑

i=1

αi =
q∑

j=1

βj = 1.

Since

μxi + (1 − μ)yj ∈ μX + (1 − μ)Y, 1 ≤ i ≤ p, 1 ≤ j ≤ q,

the equalities

u =
p∑

i=1

q∑

j=1

αiβj(μxi + (1 − μ)yj), αiβj ≥ 0,

p∑

i=1

q∑

j=1

αiβj = 1,

show that u is a convex combination of points from μX + (1 − μ)Y . By the
definition of P (X,Y ), the set μX + (1 − μ)Y is contained in P (X,Y ) for any
choice of μ ≥ 1. Hence

u ∈ conv (μX + (1 − μ)Y ) ⊂ conv P (X,Y ).

�
We recall that a polyhedron is the intersection of finitely many closed

halfspaces, and a polytope is a bounded polyhedron.

Theorem 13. For convex sets K1 and K2 in Rn, the following assertions hold.
1) If both K1 and K2 in Rn are polyhedra, then cl P (K1,K2) is a polyhedron.
2) If both K1 and K2 are polytopes, then P (K1,K2) is a polyhedron.

Proof. 1) If both K1 and K2 are polyhedra, then (see, e. g., [10, Theorem 13.16])
they can be expressed as Ki = conv (Xi ∪ Yi), where Xi = {xi1, . . . , xipi

} is a
finite set of points and Yi = {hi1, . . . , hiqi} is a finite (possibly, empty) family
of closed halflines, i = 1, 2. By Theorem 12,

P (K1,K2) = P (conv (X1 ∪ Y1), conv (X2 ∪ Y2)) (13)
= conv P ((X1 ∪ Y1), (X2 ∪ Y2)). (14)

Obviously, P ((X1 ∪ Y1), (X2 ∪ Y2)) is the union of finitely many sets of the
form

P (x1r, x2s), P (x1r, h2s), P (h1r, x2s), P (h1r, h2s), (15)

where x1r ∈ X1, x2s ∈ X2, h1r ∈ Y1, and h2s ∈ Y2.
Elementary geometric arguments show that the sets from (15) can be

described as follows (see illustration of cases c), d), and e) in Example 2 below).
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a) P (x1r, x2s) is either a singleton or a closed halfline.
b) P (x1r, h2s) is either a closed halfline, a line, or the convex hull of the

union of two closed halflines with common endpoint.
c) P (h1r, x2s) is either a closed halfline, a line, or the (nonclosed) convex

hull of the union of two closed halflines with distinct endpoints.
d) If the halflines h1r and h2s are contained in a 2-dimensional plane, say

L, then P (h1r, h2s) is either a closed halfline, a line, the convex hull of
the union of two closed halflines, or the whole plane L.

e) If the halflines h1r and h2s are not contained in a 2-dimensional plane,
then P (h1r, h2s) is a 3-dimensional convex set, which is the convex hull
of the union of three closed halflines.

It it easy to show (see, e. g., [10, Theorem 4.2]) that, for any family {Zα}
of sets in Rn, one has

conv (∪Zα) = conv (∪ conv Zα).

This property of convex hulls and the above descriptions a)–e) of particular
penumbras imply that conv P ((X1 ∪ Y1), (X2 ∪ Y2)) is the convex hull of the
union of finitely many points and closed halflines. Consequently (see, e. g., [10,
Theorem 13.18]), the closure of this set is a polyhedron. Equivalently, due to
(14), cl P (K1,K2), is a polyhedron.

2) Suppose that both K1 and K2 are polytopes. Then the set K1 − K2

is a polytope, and Co(K1 − K2) is a polyhedral cone with apex o (see, e. g.,
[10, Theorem 5.46]). Theorem 10 shows that P (K1,K2) is a polyhedron as the
sum of the polytope K1 and the polyhedral cone Co(K1 − K2) (see, e. g., [10,
Theorem13.18]). �

The following example illustrates items c)–e) in the proof of Theorem 13.

Example 2. c) In R2, if h1r = {(x, 0) : x ≥ 0} and x2s = (0, 1), then the
nonclosed set

P (h1r, x2s) = {(0, 1)} ∪ {(x, y) : x ≤ 0, y > 1}
is the convex hull of the union of closed halflines

g1 = {(0, y) : y ≥ 1}, g2 = {(x, 2) : x ≤ 0}.

d) In R2, if h1r = {(x, 0) : x ≥ 0} and h2s = {(x, 1) : x ≤ 1}, then the
set P (h1r, h2s) is R2.

e) In R3, if h1r = {(x, 0, 0) : x ≥ 0} and h2s = {(0, y, 1) : y ≥ 0}, then
the nonclosed set

P (h1r, h2s) = h2s ∪ {(x, y, z) : x ≤ 0, y ≥ 0, z > 1}
is the convex hull of the union of closed halflines

g1 = {(0, 0, z) : z ≥ 1}, g2 = h2s, g3 = {(x, 0, 2) : x ≤ 0}.
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Problem 2. Characterize those polyhedra in Rn which are penumbras of suit-
able polyhedra. In particular, which polyhedra K1 and K2 satisfy the condi-
tions K1 = P (K1,K2) and K2 = P (K2,K1)?
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