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Abstract. We consider kernels of unbounded Toeplitz operators in Hp(C+)
in terms of a factorization of their symbols. We study the existence of a
minimal Toeplitz kernel containing a given function in Hp(C+), we de-
scribe the kernels of Toeplitz operators whose symbol possesses a certain
factorization involving two different Hardy spaces and we establish re-
lations between the kernels of two operators whose symbols differ by a
factor which corresponds, in the unit circle, to a non-integer power of z.
We apply the results to describe the kernels of Toeplitz operators with
non-vanishing piecewise continuous symbols.
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1. Introduction

In [20], Sarason presented the basic theory of unbounded Toeplitz operators in
H2(D) with symbols in L2(T) and, motivated by natural questions that lead
to other types of symbols [13,22,23], of Toeplitz operators with analytic and
co-analytic symbols in more general classes. Unbounded Toeplitz operators
appear naturally, for instance when studying inverses or generalized inverses
of Toeplitz operators with bounded symbols [10,18]. Indeed, the inverse of
a bounded Toeplitz operator, if it exists, is the composition of two Toeplitz
operators which, in general, are unbounded.

We can consider, analogously, Toeplitz operators in the Hardy space
H2(C+) of the upper half-plane C

+, and more generally, in Hp(C+), p > 1,
which arise in many applications [8,15,18,21,24–26]. One may ask, in that

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-020-01323-z&domain=pdf
http://orcid.org/0000-0002-6738-3216


10 Page 2 of 31 M. C. Câmara et al. Results Math

case, what are the natural classes of symbols to consider and what properties
do those operators possess. In particular, we would like to examine their ker-
nels and study what properties are shared with kernels of bounded Toeplitz
operators, which have attracted great interest for their rich structure and the
information that they provide on the corresponding Toeplitz operators (see for
instance the recent survey paper [11]).

We assume here that g is a measurable function and that there exists
a non-zero f ∈ Hp(C+) = H+

p such that gf ∈ Lp(R) = Lp. We define the
Toeplitz operator Tg on the domain

D(Tg) =
{
φ+ ∈ H+

p : gφ+ ∈ Lp

}

by

Tgφ+ = P+gφ+, for φ+ ∈ D(Tg),

where P+ is the Riesz projection from Lp onto H+
p . Then ker Tg consists of

the functions φ+ ∈ H+
p such that

gφ+ = φ− with φ− ∈ H−
p = H+

p .

The kernels of Toeplitz operators are also called Toeplitz kernels. Given
any function φ+ ∈ H+

p , there is always a Toeplitz kernel containing φ+. In
the class of bounded Toeplitz operators, for each φ+ ∈ H+

p \{0} one can find a
minimal kernel Kmin(φ+), which is contained in any other Toeplitz kernel to
which φ+ belongs. If φ+ = I+O+ is an inner-outer factorization of φ+, with
I+ inner and O+ outer in H+

p , then Kmin(φ+) = ker TI+O+/O+
[6]. A first

question that can be asked when we consider unbounded Toeplitz operators is
whether we can also find a minimal kernel containing φ+, for general symbols,
or whether one can find classes of possibly unbounded symbols for which the
minimal kernel of φ+ exists and can be compared with Kmin(φ+), for instance
by inclusion.

A second question is how to determine whether or not kerTg is trivial,
which is equivalent to the question of injectivity of Tg. The nontriviality of the
kernel is directly connected with the existence of certain types of factorization
of the symbol. Indeed the existence of a non-zero function φ+ in kerTg means
that gφ+ = φ− ∈ H−

p \{0}. If φ+ = I+O+ as above, and φ− = I−O− with I−
inner and O− outer in H+

p , we must then have

g = O−IO−1
+ (1.1)

for some inner function I and O+, O− outer in H+
p , and conversely, if g admits

a factorization (1.1) then I+O+ ∈ ker Tg for each I+ that divides I. It is clear
that if I in (1.1) is not a finite Blaschke product, then dim kerTg = ∞. We
will thus consider symbols possessing some factorization of the form (1.1). It
is very difficult, however, to describe the kernels of operators whose symbol
admits such a general representation, without imposing certain conditions on
the inverses of the factors.
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For bounded symbols, it is well known that we can go further and study
their invertibility and Fredholmness based on an appropriate factorization of
their symbols, where conditions are imposed on the factors as well as their
inverses ([3,8,10]). In order to define this factorization, let R denote the set
of rational functions belonging to L∞(R) = L∞, and write

R0 = R ∩ Lp, λ±(ξ) = ξ ± i, r(ξ) =
ξ − i

ξ + i
for ξ ∈ R, and H±

p = λ±H±
p .

Note that (1.1) can be rewritten as a product of the form g = g−Irg+
with g− ∈ H−

p , g−1
+ ∈ H+

p .

Definition 1.1. By a p-factorization of g ∈ L∞ we mean a representation of g
as a product

g = g−rkg+ (1.2)

where k ∈ Z and

g+ ∈ H+
p′ , g−1

+ ∈ H+
p , g− ∈ H−

p , g−1
− ∈ H−

p′

with 1/p + 1/p′ = 1; if moreover

g−1
+ P+g−1

− I : R0 → Lp is bounded, (1.3)

where I denotes the identity operator, then (1.2) is called a Wiener–Hopf p-
factorization. The integer k is called the index of the factorization, and if k = 0
the factorization is said to be canonical.

If g admits a p-factorization then it is unique, apart from constant factors.
The existence of a p-factorization (where condition (1.3) is not taken into
account) allows one to characterize the kernel of Tg and that of T ∗

g ; the operator
Tg, g ∈ L∞, is Fredholm if and only if g admits a Wiener–Hopf p-factorization
and, in that case, its Fredholm index is −k; the operator is invertible if and
only if g admits a canonical Wiener–Hopf p-factorization [3,17].

A p-factorization may not exist, however, when g is not invertible in the
algebra of functions continuous on R∞ = R∪{∞}. This is the case of symbols

as simple as r1/2(ξ) =
√

ξ−i
ξ+i , where we assume a discontinuity at ∞, for p = 2;

it is easy to see that r1/2 does not admit a 2-factorization. We thus generalize
Definition 1.1 and study symbols possessing a (j, s)-factorization, defined in
Sect. 5, which coincides with a p-factorization if j = p , s = p′ with 1/p+1/p′ =
1. This will allow us to describe the kernels of a wide class of Toeplitz operators,
including unbounded symbols and piecewise continuous symbols that do not
admit a p-factorization, and establish criteria for a Toeplitz kernel to be trivial
or not.

A third question regarding the kernels of Toeplitz operators with a pos-
sibly unbounded symbol is the relation between kerTg and kerTrαg, where
α ∈ R. The relation between ker Tg and ker Trkg, with k ∈ Z, was studied
in [2,5] for bounded symbols. It makes sense to ask also what happens if we
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multiply a symbol by some non-integer power of r. Indeed taking for instance
the algebra of all piecewise continuous functions in R∞, every function in that
class can be represented as the product of a continuous function, whose kernel
can be described from a p-factorization, by as many non-integer powers of r
as the number of points of discontinuity in R ([8]).

In this paper we address the three questions mentioned above. In Sect. 2
we begin by recalling some preliminary results on Wiener–Hopf factorizations.
Then in Sect. 3 we present some aspects of the theory of unbounded Toeplitz
operators, with particular reference to domains and kernels. Section 4 is con-
cerned with developing the theory of minimal kernels. In Sect. 5 we introduce
the notion of a factorization based on two indices, giving a generalization of
p-factorization, and Sect. 6 studies the properties of the corresponding factors.
Next, in Sect. 7 we apply the theory of factorization to study the kernels of
Toeplitz operators with both unbounded and bounded symbols. Finally, Sect.
8 addresses questions regarding the relation between kerTg and ker Trαg, where
α ∈ R, obtaining a description of the kernels of Toeplitz operators in Hp with
piecewise continuous symbols that do not possess a p-factorization.

2. Preliminaries

Let GA denote the group of invertible elements in an algebra A and let C(R∞)
represent the algebra of all functions which are continuous in R∞ = R ∪ {∞}
and possess equal limits at ±∞.

For 1 ≤ p < ∞, let Lp denote the Lebesgue space of all complex Lebesgue
measurable functions f which are p-integrable in R and by H+

p the Hardy space
Hp(C+) of the upper half plane Im (z) < 0 , z ∈ C. We define H−

p similarly for
the lower half plane C

− and we identify as usual H±
p with closed subspaces of

Lp. We denote by P± the projections from Lp onto H±
p , parallel to H∓

p .
It is well known that for p, r ∈]1,+∞[, if f ∈ H±

p and g ∈ H±
r then

fg ∈ H±
s with 1

p + 1
r = 1

s . Recall that λ±(ξ) = ξ ± i , r(ξ) = ξ+i
ξ−i . We define,

for p ≥ 1,

Lp = λ+Lp, H±
p = λ±H±

p ,

Bp = λ2
+Lp, B±

p = (λ±)2H±
p .

Then we have ([26])

H+
p ∩ H−

p = C if p > 1; H+
p ∩ H−

p = {0} if p = 1. (2.1)

If f ∈ B+
p ∩ B−

p then there exist f± ∈ H±
p such that ξ+i

ξ−if+ = f−, therefore we

have ξ+i
ξ−i (f+ − f+(i)) = f− − f+(i)

ξ−i , where the left-hand side belongs to H+
p

and the right-hand side belongs to H−
p . It follows from (2.1) that both sides

are equal to a constant which is zero if p = 1. Consequently,

B+
p ∩ B−

p = P1 if p > 1; B+
p ∩ B−

p = C if p = 1, (2.2)
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where P1 represents the space of polynomials with degree less or equal to 1.
We denote by L∞ the space of all essentially bounded functions on R and

by H+
∞ (H−

∞) the space of all functions analytic and bounded in C
+(C−). We

identify H±
∞ with the subspaces of L∞(R) consisting of their (nontangential)

boundary functions on R.
For p > 1, let p′ be defined by 1

p + 1
p′ = 1. In what follows we will always

assume that p ∈]1,+∞[.

Definition 2.1. By a p-factorization of g ∈ L∞ we mean a representation of g
as a product

g = g−rkg+ (2.3)

where k ∈ Z and

g+ ∈ H+
p′ , g−1

+ ∈ H+
p , g− ∈ H−

p , g−1
− ∈ H−

p′ . (2.4)

If moreover,

g−1
+ P+g−1

− I : R0 → Lp is bounded, (2.5)

where R0 denotes the space of all rational functions in C(R∞)∩Lp then (2.3)
is called a Wiener–Hopf (WH) p-factorization, or a generalized factorization
relative to Lp. The integer k in (2.3) is called the factorization index. If k = 0
then the factorization is said to be canonical.

The representation (2.3), if it exists, is unique up to non-zero constant
factors. It is well known [3,4,8,10] that the Toeplitz operator with symbol
g ∈ L∞,

Tg : H+
p → H+

p , Tg(φ+) = P+gφ+ (2.6)

is Fredholm if and only if g admits a WH p-factorization; it is invertible if
and only if the WH p-factorization is canonical and, in that case, T−1

g is the
bounded extension of the operator (2.5) to H+

p :

T−1
g = g−1

+ P+g−1
− : H+

p → H+
p .

If g admits a p-factorization, not necessarily satisfying (2.5), then this is enough
to describe the kernel of the Toeplitz operators Tg and its adjoint T ∗

g = Tg.
We have

ker Tg = 0 if k ≥ 0, ker Tg = g−1
+ Kr|k| if k < 0 (2.7)

where by Krn , n ∈ N, we denote the model space

Krn = span

{
1

ξ + i

(
ξ − i

ξ + i

)j

, j = 0, . . . , n − 1

}

. (2.8)

It may happen that two factorizations of the same function with respect to
different Lp spaces coincide, as it happens with continuous functions. We have
the following
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Theorem 2.2. If g ∈ GC(R∞) then g admits a WH p-factorization, which is
the same for any p > 1. The factorization index is equal to the winding number
of g with respect to the origin.

A p-factorization may not exist, however, for bounded functions as simple
as a non-integer power of r.

For c ∈ R∞, α ∈ C\Z, we define

zα
c = eα log z

where the branch cut connecting 0 to ∞ intersects the unit circle at the point

z0 =
c − i

c + i
, with z0 = 1 if c = ∞, and we take log 1 = 0. Then the function

rα
c (ξ) =

(
ξ − i

ξ + i

)α

c

(2.9)

is continuous for all points of R∞ except for the point c where it has different
finite one-sided limits. Other piecewise continuous functions can be expressed
as products of a continuous function by non-integer powers of r of the form
(2.9). Let PC(R∞) denote the space of all piecewise continuous functions g,
with finite limits at ±∞. Any g ∈ PC(R∞) that does not vanish on R∞ can
be represented as a product

g = h rα∞∞
n∏

j=1

rαj
cj

(2.10)

where h ∈ GC(R∞), cj ∈ R (j = 1, . . . , n) are the points of discontinuity of g
on R and

α∞ =
1

2πi
log

g(+∞)
g(−∞)

with − 1
p

< Re α∞ ≤ 1
p′ , (2.11)

αj =
1

2πi
log

g(c−
j )

g(c+j )
with − 1

p′ < Re αj ≤ 1
p
, (j = 1, . . . , n). (2.12)

([8], see also [3]). Without loss of generality, one may assume that α∞ and αj ,
j = 1, . . . , n, are real. Indeed riIm(αj) is real and positive and therefore admits a
bounded factorization that can be absorbed into h. Denoting by m the number
of exponents αj in (2.10) that satisfy the condition − 1

p′ < Re αj < 1
p , we can

also write (2.10) as

g = h rα∞∞
m∏

j=1

rαj
cj

s∏

j=1

r1/p
cj

. (2.13)

To each g ∈ PC(R∞) and each p > 1 we associate the function [8]

gp(ξ, w) =
g(ξ−) + g(ξ+)

2
+

g(ξ−) − g(ξ+)
2

coth(π(
i

p
+ w)), (2.14)
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ξ ∈ R∞, w ∈ R∪{±∞} = R±∞. Here we take g(∞±) = g(∓∞). If g ∈ C(R∞)
then gp(ξ, w) = g(ξ) for all ξ ∈ R∞, w ∈ R±∞, p > 1. It is easy to see that if
p = 2 then (2.14) takes the form

g2(ξ, w) =
g(ξ−) + g(ξ+)

2
+

g(ξ−) − g(ξ+)
2

tanh(πw). (2.15)

The image of gp in the complex plane is a closed curve Γ obtained by adding
to the image of g(ξ), with ξ ∈ R∞, certain arcs of a circle (or line segments if
p = 2) connecting the points g(ξ−) and g(ξ+) whenever these two values are
different. If

inf
(ξ,w)∈R∞×R±∞

|gp(ξ, w)| > 0,

which means that the image of gp in the complex plane, Γ, is a closed curve
that does not pass by zero, then we say that g is p-nonsingular. In this case, we
associate with gp an integer, ind gp, which is the winding number of Γ around
the origin.

If two functions f and g belonging to PC(R∞) have no common points of
discontinuity and are p-nonsingular, then fg is also non-singular and indp(fg) =
indpf + indpg ( [8]).

We have the following:

Theorem 2.3 [8]. Let g ∈ PC(R∞) of the form (2.10)–(2.12). Then g is p-
nonsingular if and only if − 1

p < Re α∞ < 1
p′ , − 1

p′ < Re αj < 1
p for all

j = 1, . . . , n.

Theorem 2.4 [8]. Let g ∈ PC(R∞). The operator Tg has closed range in H+
p if

and only g is p-nonsingular. In that case Tg is Fredholm, with Fredholm index
−indpg, invertible if indpg = 0, and

g =

⎡

⎣h−(ξ − i)α∞
n∏

j=1

(
ξ − i

ξ − cj

)αj

⎤

⎦ rk

⎡

⎣h+
1

(ξ + i)α∞

n∏

j=1

(
ξ − cj

ξ + i

)αj

⎤

⎦

is a p-factorization of g.

3. Unbounded Toeplitz Operators

Let g be a measurable function on R such that there exists f+ ∈ H+
p \{0} with

gf+ ∈ Lp. We denote this class of functions by σp. Let Tg be the (possibly
unbounded) Toeplitz operator defined on the domain

D(Tg) = {f+ ∈ H+
p : gf+ ∈ Lp} (3.1)

by

Tgf+ = P+(gf+). (3.2)
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Note that, if we assume g to be a measurable function on R without any
further restriction, it is possible for D(Tg) to be {0}. For example, if g(ξ) = eξ2

there is no function f+ ∈ H+
p \{0} with gf+ ∈ Lp. In fact,
∫

R

| log W (t)|
1 + t2

dt < ∞ (3.3)

is a necessary and sufficient condition for there to be an outer function O such
that W = |O| ([19], sections 3.9 and 6.4); explicitly, to within a constant, the
outer function is

O(ξ) = exp
(

1
i π

∫

R

log W (t)
1 + t2

1 + tξ

t − ξ
dt

)
. (3.4)

So, for f+ ∈ H+
p \{0}, we can have log |f+(ξ)|

1+ξ2 ≤ −1 only on a set of finite

measure, so that |f+(ξ)| ≥ exp(−1 − ξ2), i.e., |eξ2
f+(ξ)| ≥ e−1 except on a set

of finite measure and therefore eξ2
f+ cannot lie in Lp.

Proposition 3.1. Tg = 0 if and only if g = 0.

Proof. Assume that Tg = 0. Then there exists f+ ∈ H+
p \{0} such that gf+ ∈

Lp, so rnf+ ∈ D(Tg) for all n ∈ N, and we have gf+ ∈ H−
p , rngf+ ∈ H−

p for
all n ∈ N, implying that gf+ = 0. Since f+ ∈ H+

p \{0}, it follows that g(ξ) = 0
a.e.. �

From now on we assume that g 
= 0 and g ∈ σp.
The kernel of Tg is the subspace

ker Tg =
{
f+ ∈ H+

p : gf+ ∈ H−
p

}
. (3.5)

It is clear that kerTg is nearly S∗-invariant, i.e., a subspace M of H+
p such

that

f ∈ M, r−1f ∈ H+
p ⇒ r−1f ∈ M. (3.6)

Condition (3.3) provides a necessary condition for this kernel to be non-
zero. Indeed, if f+ ∈ H+

p \{0} and gf+ ∈ H−
p , then gf+ ∈ H−

p \{0} and (3.3)
is satisfied for both W = |f+| and W = |gf+|; so we automatically have the
same for W = |g|. We have then the following.

Proposition 3.2. A necessary condition for ker Tg to be different from {0} is
that

∫

R

| log |g(t)||
1 + t2

dt < ∞. (3.7)

Proposition 3.3. If g satisfies (3.7) and O is the outer function defined by
(3.4), with W = |g| = |O|, then

D(Tg) = {f+ ∈ H+
p : Of+ ∈ H+

p }
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Proof. Clearly, {f+ ∈ H+
p : Of+ ∈ H+

p } ⊂ D(Tg). To show the converse, note
that O is the ratio of two H+

p outer functions, obtained by taking W = |gf+|
and W = |f+| in (3.4). Thus O belongs to the Smirnov class Nev+ [19] and if
gf+ ∈ Lp then Of+ ∈ Lp ∩ Nev+ = H+

p . �

Proposition 3.4. If g satisfies (3.7) then there exists an outer function Q,
bounded below, such that f+ → Qf+ is an isometry from D(Tg), endowed
with the norm ‖f+‖Q = ‖Qf+‖p, onto H+

p . Moreover, Tg is bounded on
(D(Tg), ‖ · ‖Q) .

Proof. The result holds provided that f+ ∈ D(Tg) ⇔ Qf+ ∈ H+
p . Suppose

that there is an outer function O, bounded below, with |O| = |g|. Then f+ ∈
D(Tg) ⇔ Of+ ∈ H+

p and the result holds with Q = O. If O is not bounded
below we can choose an outer function Q such that |Q| = 1 + |O| = 1 + |g|,
which is bounded below. If f+ ∈ D(Tg) then f+ ∈ H+

p and Of+ ∈ H+
p , so

Qf+ ∈ H+
p because Qf+ ∈ Lp and Qf+ = f+/Q−1 (where Q−1 is outer in

H+
∞) is in Nev+. Conversely, since Q is bounded below, if Qf+ ∈ H+

p then
f+ ∈ H+

p . Therefore we have that f+ ∈ D(Tg) ⇔ Qf+ ∈ H+
p and the result

holds. �
For g ∈ L∞, ker Tg is a nearly S∗-invariant closed subspace of H+

p [6].
For more general symbols, we have the following.

Corollary 3.5. With the same assumptions as in Proposition 3.4, Qker Tg is a
closed nearly S∗-invariant subspace of H+

p and, for p = 2, ker Tg = Q−1FKθ

where θ is an inner function, Kθ = ker Tθ̄ is the model space defined by θ, F
is an isometric (outer) multiplier from Kθ onto Qker Tg.

Proof. M = ker Tg is a ‖ · ‖Q closed and nearly S∗ - invariant subspace of
D(Tg), so QM is a closed nearly S∗ - invariant subspace of H+

p . In the case
p = 2 the result follows from the Hayashi–Hitt results [12,14]. �

4. Minimal Kernels

Given any f+ ∈ H+
p \{0}, there is always a Toeplitz kernel containing f+;

moreover there exists a minimal kernel that contains f+ and is contained in
any other Toeplitz kernel, with bounded symbol, to which f+ belongs. It is
denoted by Kmin(f+) and we can associate with it a unimodular symbol:

Kmin(f+) = kerTI+O+/O+
(4.1)

([6]). The function f+ is called a maximal function for the kernel in (4.1).
Maximal functions play an important role in the study of Toeplitz kernels,
as they determine the kernel uniquely and can be used as test functions for
various properties [7].

We now study the existence of minimal kernels of Toeplitz operators with
possibly unbounded symbols. We start by considering a class of symbols related
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to Proposition 3.4. Let f+ ∈ H+
p \{0} and let f+ = I+O+ be an inner-outer

factorization (I+ inner, O+ outer). Given an outer function Q such that Q is
bounded away from zero and Qf+ ∈ H+

p , consider the class of symbols h such
that |h| < c|Q| for some c > 0. We denote this class by σQ. We have then
f+ ∈ D(Th).

We denote by KQ
min(f+) the minimal kernel of Toeplitz operators with

symbol in the class σQ. Recall from Sect. 3 that, if f+ ∈ ker Tg, then g satisfies
(3.3) and we can choose Q according to Proposition 3.4., with g ∈ σQ. In the
next theorem we show that this minimal kernel exists and we associate it with
a symbol in σQ.

Theorem 4.1. For f+ ∈ H+
p \{0},
KQ

min(f) = kerT
Q

I+O+
O+

.

Proof. Since Qf+ ∈ H+
p , we have that Qf+ = I+(O+Q) is an inner-outer

factorization and

Q
I+O+

O+
(f+) = Q

I+O+

O+
(I+O+) = QO+ ∈ H−

p , (4.2)

because the left-hand side of (4.2) is in Lp and the right-hand side is the
conjugate of a function in Nev+ (O−1

+ is outer in H+
∞). Therefore

f+ ∈ ker T
Q

I+O+
O+

= ker Tk (with k = Q
I+O+

O+
). (4.3)

Now we have to show that any other Toeplitz kernel kerTh, with h ∈ σQ and
such that f+ ∈ ker Th, contains kerTk, i.e., kerTk ⊂ ker Th. First note that if
h ∈ σQ and f+ ∈ ker Th, then Q−1h ∈ L∞ and Qf+ ∈ ker TQ−1h. So, by (4.1),

ker TQ−1h ⊃ Kmin(Qf+) = kerTQ
Q

I+O+
O+

= ker TQ−1k. (4.4)

Now,

ψ+ ∈ ker Tk ⇔ ψ+ ∈ H+
p , kψ+ = ψ− ∈ H−

p ⇔

⇔ ψ+ ∈ H+
p , kQ−1(Qψ+) = ψ− ∈ H−

p . (4.5)

So, if ψ+ ∈ ker Tk we have, on the one hand,

Qψ+ =
ψ+

Q−1
∈ Nev+

and, on the other hand, Qψ+ = Qψ−/k = ψ−/(Q−1k) ∈ Lp because |Q−1k| =
1 a.e.. Therefore, Qψ+ ∈ Nev+ ∩ Lp = H+

p . Now, from (4.5) and taking (4.4)
into account, we have

Qψ+ ∈ ker TkQ−1 ⊂ ker ThQ−1 ,
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so we conclude that

ψ+ ∈ ker Tk ⇒ Qψ+ ∈ ker ThQ−1 ⇒ hψ+ ∈ H−
p ⇒ ψ+ ∈ ker Th.

�

A natural question that arises from Theorem 4.1 is the relation between
KQ

min(f+) and Kmin(f+). Since the class σQ includes all bounded symbols, we
have that

KQ
min(f+) ⊂ Kmin(f+) ∩ DQ (4.6)

where

DQ = {φ+ ∈ H+
p : Qφ+ ∈ Lp}. (4.7)

To see that the converse of (4.6) also holds, let φ+ ∈ Kmin(f+)∩DQ. Assuming
f+ = I+O+ there exists φ− ∈ H−

p such that

I+O+

O+
φ+ = φ− ⇒ Q

I+O+

O+
φ+ = Qφ− ⇒ Q

I+O+

O+︸ ︷︷ ︸
∈Lp

φ+ =
φ−

(Q)−1

︸ ︷︷ ︸
∈Nev+

∈ H−
p .

So φ+ ∈ ker T
Q

I+O+
O+

and we have the following:

Corollary 4.2. With the same assumptions as in Theorem (4.1), for DQ defined
by (4.7),

KQ
min(f+) = Kmin(f+) ∩ DQ.

Let us now study the existence of a minimal kernel without restricting to
symbols h ∈ σQ for some outer Q. We denote this minimal kernel for general
symbols in σp, if it exists, by K∗

min(f+).
Note that for any Toeplitz kernel Tg to have a non-zero kernel, we must

have gf+ = f− for some f± ∈ H±
p \{0}, so g is always of the form f−/f+. If

f− = IO+ where I is inner and O+ is outer in H+
p , then

ker Tf−/f+ = ker TIO+/f+
⊃ ker TO+/f+

,

so, when looking for a minimal kernel containing f+, it is enough to consider
symbols of the form g = O+/f+ where O+ is outer in H+

p or, equivalently, of
the form

g = O−I+(O+)−1, with O± outer in H±
p . (4.8)

We say that O− is outer in H−
p if O− is outer in H+

p . We start by studying
some kernels of Toeplitz operators with symbols of the form (4.8).

Proposition 4.3. Let g = O−I+(O+)−1 as in (4.8). Then

ker Tg = ker TO−I+(O+)−1 = O+/O−

ker TI+O−/O− ∩ H+
p = O+/O− Kmin(I+O−) ∩ H+

p .



10 Page 12 of 31 M. C. Câmara et al. Results Math

Proof. For φ± ∈ H±
p ,

gφ+ = φ− ⇔ O−
f+

φ+ = φ− ⇔ O−
I+O+

φ+ = φ− ⇔ I+
O−
O−︸ ︷︷ ︸

∈GL∞

O−
O+

φ+

︸ ︷︷ ︸
∈Nev+∩Lp=H+

p

= φ−

⇔ O−
O+

φ+ ∈ ker T
I+

O−
O−

⇔ φ+ ∈ O+

O−
ker T

I+
O−
O−

.

�

Proposition 4.4. Let f+ ∈ H+
p \{0} and let f+ = I+O+ be an inner-outer

factorization. Then f+ ∈ ker TO−I+(O+)−1 if O− is an outer function in H−
p

and, for any h such that f+ ∈ ker Th, we have

ker Th ⊃ ker TO−I+(O+)−1 ∩ D(Th).

Proof. Suppose that f+ ∈ ker Th, i.e., hf+ ∈ H−
p . For any φ+ ∈ ker TO−/f+ ∩

D(Th), by Proposition 4.3 we have φ+ = O+/O−k+ with k+ ∈ Kmin(I+O−) =
ker TI+O−/O− and

hφ+︸︷︷︸
∈Lp

= (hI+O+︸ ︷︷ ︸
∈H−

p

)(I+
O−
O−

k+

︸ ︷︷ ︸
∈H−

p

)
1

O−
∈ Nev+ ∩ Lp = H−

p

�

If kerTO−I+(O+)−1 ⊂ D(Th) for all h such that I+O+ = f+ ∈ D(Th),
then

ker TO−I+(O+)−1 = K∗
min(f+).

As we show next, this holds if I+ is a finite Blaschke product and O− is a
square rigid function in H−

p .
We say that an outer function ψ+ ∈ H+

p is square rigid if and only if ψ2
+

is rigid in H+
p/2 (see, e.g., [6]). (A rigid function f+ ∈ H+

q \{0} is one such that
every function g+ ∈ H+

q with g+/f+ > 0 a.e. on R satisfies g+ = λf+ for some
λ ∈ R

+.) It can be shown that span {ψ+} is a Toeplitz kernel in H+
p if and

only if ψ+ is square rigid and, in that case,

Kmin(ψ+) = ker Tψ+/ψ+
= span {ψ+}

([6,20]). If ψ− ∈ H−
p , we say that ψ− is square rigid if and only if ψ− is square

rigid in H+
p .

Proposition 4.5. Let g = O−B(O+)−1 where B is a finite Blaschke product,
O+ ∈ H+

p is outer and O− is a square rigid function in H−
p . Then, if B is a

constant,

ker Tg = ker TO−(O+)−1 = span {O+} (4.9)
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and, if B is not constant,

ker Tg = ker TO−B(O+)−1

= span {O+} ⊕ ξ − z1
ξ + i

R+O+span {rj , j = 0, · · · , k − 1} (4.10)

where z1 is any one of the zeros of B, k is the number of zeros of B and R+

is rational, invertible in H+
∞, such that B = R−rkR+ with R− = R−1

+ .

Proof. If B is a constant we may assume it to be 1. We have

ker TO−/O+ = O+/O−ker TO−/O− ∩ H+
p = O+/O−span {O−} = span {O+}.

On the other hand, it is easy to see that if B is a finite Blaschke product of
degree k ≥ 1, then we can write B = R−rkR+ with R± rational and invertible
in H±

∞, such that R− = R−1
+ ( [10,18]). We have then KB = R−1

− Krk =
R+
ξ+i span {rj , j = 0, · · · , k − 1}.

Now, from Proposition 4.3, we have that ker TO−B̄(O+)−1 =
O+

O−
ker TBO−/O− ∩ H+

p where ker TBO−/O− = ker TO−/O− ⊕ O−(ξ − z1)KB

by Theorem 6.7 in [6]. Therefore

ker TO−/f+ =
O+

O−

(
ker TO−/O− ⊕ O−(ξ − z1)R+Krk

)
∩ H+

p

=
O+

O−

(
span {O−} ⊕ O−(

ξ − z1
ξ + i

)R+span {rj , j = 0, · · · , k − 1}
)

∩ H+
p

= span {O+} ⊕ (
ξ − z1
ξ + i

)O+R+span {rj , j = 0, · · · , k − 1}.

�

Corollary 4.6. If g = O−I+(O+)−1, where O+ ∈ H+
p is outer, O− ∈ H−

p is
square rigid and I+ is a non-constant inner function, then ker Tg = {0}.
Proof. It is easy to see that, as in the case of bounded symbols [5],

ker TI+g � ker Tg.

Since ker TO−(O+)−1 = span {O+}, we must have ker TI+O−(O+)−1 = {0}. �

From Proposition 4.5 and (4.1) we see that, if O− is square rigid in H−
p ,

then ker TO−B̄(O+)−1 does not depend on O−. We have thus the following:

Corollary 4.7. If g = O−B(O+)−1) where B is a finite Blaschke product, O+ ∈
H+

p is outer and O− is a square rigid function in H−
p , then ker Tg does not

depend on O− and

ker TO−B̄(O+)−1) = O+(ξ + i)KrB
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Proof. If φ+ ∈ ker TO−/f+ then φ+
O+

∈ H+
∞ and φ+

(ξ+i)O+
∈ H+

p . On the other

hand O−
Bφ+
O+

= φ− ∈ H−
p , so

1
ξ − i

Bφ+

O+
=

φ−
O−

∈ Nev+ ∩ Lp = H−
p .

Therefore

rB
φ+

O+(ξ + i)
=

1
ξ − i

B
φ+

O+
∈ H−

p ,

which means that φ+
O+(ξ+i) ∈ ker TrB = KrB , and we conclude that

ker TO−B(O+)−1) ⊂ O+(ξ + i)KrB .

Conversely, if φ+ ∈ O+(ξ + i)KrB then φ+ ∈ H+
p , φ+/O+ ∈ H+

∞ and

rB
φ+

O+(ξ + i)
= φ− ∈ H−

p .

Thus
O−
f+

φ+ =
BO−
O+

φ+

︸ ︷︷ ︸
∈Lp

=
O−

1/(ξ − i)
︸ ︷︷ ︸

∈Nev+

∈ H−
p ,

so φ+ ∈ ker TO−B(O+)−1). �

Theorem 4.8. If f+ = BO+ where B is a finite Blaschke product, then

K∗
min(f+) = ker TO−B(O+)−1) = O+(ξ + i)KrB

where O− is any square rigid outer function in H−
p .

Proof. Obviously, f+ ∈ ker TO−/f+ . Suppose now that f+ ∈ ker Th; we want
to show that ker Th ⊃ ker TO−/f+ .

Since f+ = BO+, by near invariance ([6]) we also have O+ ∈ ker Th. On
the other hand

hBO+ = f− ⇔ hR−rkR+O+ = f− ⇔
∀j∈{0,··· ,k−1} , h

(
ξ − z1
ξ + i

R+rjO+

)

︸ ︷︷ ︸
∈H+

p

=
ξ − z1
ξ + i

R−1
− r−k+j+1f−

︸ ︷︷ ︸
∈H−

p

.

By Proposition 4.5, we conclude that ker TO−/f+ ⊂ ker Th, so K∗
min(f+) =

ker TO−/f+ , and the remaining equalities follow from O−/f+φ+ = φ− with
φ± ∈ H±

p .
Then

1
(ξ − i)f+

φ+ =
1/(ξ − i)φ−

O−
(4.11)
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where the left hand side belongs to Lp because, by Proposition 4.5,

1
(ξ − i)f+

φ+ =
1

(ξ − i)BO+
(O+φ̃+) = B

φ̃+

ξ − i

with φ̃+ ∈ H+
∞, while the right-hand side of (4.11) is in Nev+. Therefore

1
(ξ−i)f+

∈ Lp ∩ Nev+ = H−
p and we conclude that kerTO−/f+ ⊂ ker T 1

(ξ−i)f+
.

The converse can be shown analogously.
Finally, the second equality in this theorem follows from

Corollary 4.7. �

Corollary 4.9. A function f+ ∈ H+
p has an inner factor that is a finite Blaschke

product of degree k if and only if dim (K∗
min(f+)) = k + 1.

Proof. By the previous theorem, if f+ = I+O+ where I+ is a finite Blaschke
product of degree k, then K∗

min(f+) has dimension k + 1. Conversely, if
dim (K∗

min(f+)) = k + 1, by the property of η-near invariance of kernels for
η ∈ H−

∞ ([6]), the inner factor of f+ must be a finite Blaschke product of
degree k. �

As was mentioned before, f+ ∈ H+
p is square rigid if and only if Kmin(f+) =

span {f+}. The next result (proved similarly to Corollary 4.9) provides an anal-
ogous description for outer functions in terms of minimal kernels.

Corollary 4.10. A function f+ ∈ H+
p is outer if and only if K∗

min(f+) =
span {f+}.

5. (j, s)-Factorization

Wiener–Hopf p-factorization, presented in Sect. 2, is of the type considered
above. However, even for simple piecewise continuous symbols, it may not exist.
In that case the range of the Toeplitz operator is not closed, so the operator
is not Fredholm (nor invertible), but the question of describing its kernel and
the kernel of its adjoint still stands. In this section we define a more general
type of factorization which will allow us to describe the kernels of Toeplitz
operators whose symbols may not admit a p-factorization, in particular those
with piecewise continuous symbols.

Definition 5.1. A representation of the form

g = g−rkg+, with k ∈ Z, (5.1)

g− ∈ H−
j , g−1

− ∈ H−
s , (5.2)

g+ ∈ H+
s , g−1

+ ∈ H+
j , (5.3)

where j, s ∈]1,+∞[ , 1/j + 1/s ≤ 1, is called a (j, s)-factorization of g with
index k.
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If k = 0, the factorization is said to be canonical. If j = p , s = p′ then
(5.1) is a p-factorization of g.

It is easy to see that if g admits a p-factorization, then it is unique up to
non-zero multiplicative constants in g± [10,18]. However, this is not true for
general (j, s) factorizations. Assume that g has two (j, s) - factorizations

g = g−rkg+, g = g̃−rk̃g̃+, (5.4)

where k ≥ k̃ and s 
= j′. Then

g+g̃−1
+ rk−k̃ = g̃−g−1

− . (5.5)

If k > k̃, the left-hand side of (5.5) belongs to B+
l , with 1

l = 1
j + 1

s < 1 , and
vanishes at i; the right-hand side belongs to B−

l , so both sides must be equal
to a polynomial A(ξ − i), A ∈ C. So, if k − k̃ ≥ 2, we must have A = 0, which
is impossible.

If k ≤ k̃, then from (5.5) we get that

g−1
+ g̃+rk̃−k = g̃−1

− g− = Ãξ + B̃, Ã, B̃ ∈ C, (5.6)

and if k̃ − k ≥ 2 we must have Ã = B̃ = 0, which is impossible. So we must
have 0 ≤ k − k̃ ≤ 1, and we have the following:

Proposition 5.2. If g admits two (j, s)-factorizations as in (5.4), then

(i) if g+ ∈ H+
j′ , g−1

− ∈ H−
j′ , we have k = k̃ and g+g̃−1

+ = g̃−g−1
− = C ∈ C\{0};

(ii) if g+ ∈ H+
s or g−1

− ∈ H−
s with s 
= j′ then 0 ≤ k − k̃ ≤ 1 and

if k = k̃, then g+g̃−1
+ = g̃−g−1

− = C; (5.7)

if k − k̃ = 1, then g̃+ =
1
C

g+
ξ + i

, g̃− = C(ξ − i)g− , with C ∈ C\{0}.

(5.8)

Proof. Only the second part of (ii) is left to prove. Assume that g+ ∈ H+
s ,

g̃− ∈ H−
j ; then

g+g̃−1
+ rk−k̃ = g−1

− g̃−.

If k = k̃, we have g+g̃−1
+ = g−1

− g̃− = Aξ + B, with A,B ∈ C, by (2.2) and,
analogously,

g−1
+ g̃+ = g−g̃−1

− = Ãξ + B̃,

with Ã, B̃ ∈ C. So we must have A = Ã = 0, B = 1
B̃


= 0.
If k − k̃ = 1, then g+g̃−1

+ r = g−1
− g̃− = A(ξ − i), and it follows that (5.8)

holds. �

Corollary 5.3. If g = g−g+ and g = g̃−g̃+ are two canonical (j, s)-factorizations,
then the factors are unique up to a non-zero multiplicative constant.
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Note that the estimate k − k̃ ≤ 1 in Proposition 5.2 (ii), is optimal.

For example,
(

ξ−i
ξ+i

)1/2

∞
admits two (j, s) - factorizations, for j, s > 2, with

k − k̃ = 1:
(

ξ − i

ξ + i

)1/2

∞
=
√

ξ − i
1√

ξ + i
=

1√
ξ − i

ξ − i

ξ + i

√
ξ + i

In the case where g admits two factorizations, with respect to different
pairs of function spaces, we have the following:

Proposition 5.4. Let g = g−rkg+ be a (p, q)-factorization and g = g̃−rk̃g̃+ be
a (j, s) - factorization. If j = q′, then k ≤ k̃; if s = p′, then k ≥ k̃.

Proof. Suppose that j = q′. From g̃−1
+ g+rk−k̃ = g−1

− g̃−, we see that if k > k̃
then both sides of the previous equality must be zero, which is impossible,
because the left-hand side belongs to B+

1 and vanishes at i, while the right-
hand side belongs to B−

1 . So we have k ≤ k̃. The second part is proved
analogously. �

For example, we have a (p, 2) - factorization, with p > 2,
(

ξ−i
ξ+i

)1/2

∞
=

√
ξ − i 1√

ξ+i
, with index 0, and a (2, s) - factorization, with s > 2,

(
ξ−i
ξ+i

)1/2

∞
=

1√
ξ−i

ξ−i
ξ+i

√
ξ + i, with index 1 > 0.

Corollary 5.5. If g admits a (j, s)-factorization g = g−rkg+, and a (s′, j′) -
factorization g = g̃−rk̃g̃+, then k = k̃ and we have g−g̃−1

− = g−1
+ g̃+ = C ∈

C\{0}.
Proof. From Proposition 5.4, it follows that k = k̃ and thus g−g+ = g̃−g̃+.
Since g−g̃−1

− = g−1
+ g̃+ where the left-hand side is in B−

1 and the right-hand
side is in B+

1 , both sides are equal to a non-zero constant. �

We will also need the following.

Proposition 5.6. If g admits a canonical (j, p′)-factorization g = g̃−g̃+ where
g̃− /∈ H−

p or g̃−1
+ /∈ H+

p , and g also admits a p-factorization g = g−rkg+, then
k = 1 and we have g− = Br−g̃− ∈ H−

j , g−1
+ = Br+g̃−1

+ ∈ H+
j , B ∈ C\{0}.

Proof. From g = g̃−g̃+ = g−rkg+ and Proposition 5.4, it follows that k ≥ 0.
If k = 0, we get g−g̃−1

− = g̃+g−1
+ where g−g̃−1

− ∈ B−
1 and g̃+g−1

+ ∈ B+
1 . From

(2.2), we get g−g̃−1
− = g̃+g−1

+ = C 
= 0 implying that g̃− ∈ H−
p and g̃−1

+ ∈ H+
p ,

which is impossible. So we must have k > 0. Suppose that k > 1; then we
have

rkg−g̃−1
− = g−1

+ g̃+ =
Pk

(ξ + i)k
(5.9)
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where Pk is a polynomial of degree smaller or equal to k. From (5.9) we see
that Pk cannot have zeros in C

+ nor in C
−, and from

g̃−1
+ =

(ξ + i)k

Pk
g−1
+ , k > 1

we see that Pk cannot have zeros in R either; thus Pk = C ∈ C\{0}. In that
case, we would have

g+
g̃−1
+

ξ + i
=

1
C

(ξ + i)k−1, k − 1 > 0

where the left-hand side belongs to H+
s , 1

s = 1
p′ + 1

j < 1, which is impossible
for the right-hand side if k − 1 > 0.

Therefore we can only have k = 1 and in that case

g−rg+ = g̃−g̃+ ⇒ rg−g̃−1
− = g̃+g−1

+ =
Aξ + B

ξ + i
.

Thus Aξ + B cannot have zeros in C
±; on the other hand we have g̃−1

+ g+ =
ξ+i

Aξ+B where the left-hand side belongs to B+
s , s > 1, so Aξ + B cannot have

zeros on R either. Therefore g̃+g−1
+ = B

ξ+i and g̃−1
− g− = B

ξ−i . �

Corollary 5.7. If g admits a canonical (j, p′)-factorization g = g̃−g̃+ where
g̃− /∈ H−

p or g̃−1
+ /∈ H+

p , then g does not admit a canonical p-factorization.

Example 5.8. Let g =
(

ξ−i
ξ+i

)1/2

∞
, which has a canonical (p, 2)-factorization

(p > 2)
(

ξ − i

ξ + i

)1/2

∞
=
√

ξ − i
1√

ξ + i

(with appropriate branches). Since g is 2-singular, it does not admit a Wiener–
Hopf 2-factorization; by Corollary 5.7, it also does not admit a canonical 2-
factorization. Moreover, if g admitted a (non-canonical) 2-factorization, by
Proposition 5.6 its index would be 1; so we would have

g−rg+ =
√

ξ − i
1√

ξ + i
, g±1

− ∈ H−
2 , g±1

+ ∈ H+
2 .

This implies that

rg+
√

ξ + i = g−1
−
√

ξ − i =
A

ξ + i
, A ∈ C,

because g+
√

ξ + i ∈ H+
p for any p > 2, and g−1

−
√

ξ − i ∈ H−
p . Therefore

Ag− = (ξ + i)
√

ξ − i, and we have Ag− ∈ H−
j ⇔ A = 0. We conclude that

(
ξ−i
ξ+i

)1/2

∞
does not admit any 2-factorization.
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6. Properties of (j, s)-Factors

We start by considering the case where j = p , s = p′.

Theorem 6.1. Let 1 < p < ∞. If g± is such that

g± ∈ H±
p′ , g−1

± ∈ H±
p , (6.1)

then log g± ∈ H±
2 .

Proof. Let g+ satisfy (6.1). Then its analytic extension to the upper half plane
C

+ is such that g±1
+ (z) 
= 0, for all z ∈ C

+. Thus we can define an analytic
branch of log g+ in C

+ ([1]). On the other hand for

g̃+ = r
1−2/p′
+ g+ (6.2)

we have

r
2/p′
+ g̃+ = r+g+ ∈ H+

p′ , r
2/p
+ g̃−1

+ = r+g−1
+ ∈ H+

p .

Therefore, defining G̃+(w) = g̃+

(
i 1+w
1−w

)
, w ∈ D, we have G̃+ ∈ Hp′

(D),

G̃−1
+ ∈ Hp(D) ([9,16]). Let log G̃+ be analytic in D; we have log G̃+ ∈ H2(D)

if

sup
0<r<1

∫ π

−π

|Re log G̃+(reiθ)|2 dθ < ∞. (6.3)

Defining, for each r ∈]0, 1[,

I1 = {θ ∈ [−π, π] : |G̃+(reiθ)| ≥ 1}
I2 = {θ ∈ [−π, π] : 0 < |G̃+(reiθ)| < 1},

we have that
∫ π

−π

|Re log G̃+(reiθ)|2 dθ

=
∫ π

−π

log2 |G̃+(reiθ)| dθ

=
∫

I1

log2 |G̃+(reiθ)|
|G̃+(reiθ)|p′ |G̃+(reiθ)|p′

dθ +
∫

I2

log2 |G̃−1
+ (reiθ)|

|G̃−1
+ (reiθ)|p |G̃−1

+ (reiθ)|p dθ

≤ M1

∫

I1

|G̃+(reiθ)|p dθ + M2

∫

I2

|G̃−1
+ (reiθ)|p dθ

≤ M1

∫ π

−π

|G̃+(reiθ)|p dθ + M2

∫ π

−π

|G̃−1
+ (reiθ)|p dθ,

where M1 and M2 are positive constants and we used the fact that log2 x
xp is a

bounded function in ]1,+∞[, for p > 1.
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Since G̃+ ∈ Hp′
(D), G̃−1

+ ∈ Hp(D), it follows that (6.3) holds, and we

conclude that log G̃+ ∈ H2(D). Thus log g+ ∈ H+
2 and, since log r

1−2/p′
+ ∈ H2

(with appropriate branches), we have from (6.2) that log g+ ∈ H+
2 .

The result regarding g− is proved analogously. �

Corollary 6.2. If g = g−g+ where g± satisfy (6.1) for some p > 1, then log g ∈
L2.

Let now Π± be the bounded complementary projections in L2 defined
by

Π± : L2 → H±
2 , Π±ϕ = r−1

+ P±(r+ϕ).

Note that Π−ϕ can be expressed equivalently as

Π−ϕ = r−1
− P−r−ϕ − 1

π

∫

R

ϕ(t)
1 + t2

dt, ϕ ∈ L2.

A simple consequence of the previous results is the following.

Corollary 6.3. If g admits a canonical p-factorization g = g−g+ on R, then
the factors g± are given (up to a multiplicative constant) by

g± = exp(Π± log g)

Proof. If g admits a canonical p-factorization g = g−g+, then by Theorem
6.1 we have log g± ∈ H±

2 and log g− + log g+ = Π+ log g + Π− log g, which is
equivalent to

log g− − Π− log g
︸ ︷︷ ︸

∈H−
2

= Π+ log g − log g+︸ ︷︷ ︸
∈H+

2

so both sides are equal to a constant C 
= 0, and it follows that g± =
C exp(Π± log g). �

Obviously, if g admits a p-factorization with index k, then g = g−rkg+
with g± = exp(Π± log g0), g0 = gr−k.

Corollary 6.3 generalizes a similar result obtained in [26] for piecewise
continuous functions. It might also be obtained by relating a p-factorization
with respect to R with a generalized factorization of g

(
i 1+w
1−w

)
, w ∈ Γ0, in a

weighted Lp space of the unit circle Lp(Γ0, |1 − w|1−2/p) ( [4,10]), and gen-
eralizing to these weighted Lp spaces the existing formulas for the factors in
the case of Lp(Γ), where Γ is a closed rectifiable contour [10,17]). This has
not been done in the published literature, at least explicitly, to the authors’
knowledge, and we take here a different approach, by studying the behavior of
the functions satisfying condition (6.1) on R.

It may happen that a given function a is known to have a factorization
with respect to certain Hardy spaces and, on the other hand, a can be written
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as the product of two other functions b, c, each having a particular factoriza-
tion. The question then arises of how the factorization of a is related to the
factorizations of the factors b and c. We have the following:

Theorem 6.4. Let a admit a canonical (p, q)-factorization a = a−a+, and let
a = bc, where b admits an (m, l)-factorization b = b−b+ and c = c−c+ is a
(j, s)-factorization, with 1

l + 1
s = 1

p′ and 1
m + 1

j = 1
q′ . Then a = (b−c−)(b+c+)

is a canonical (p, q)-factorization of a.

Proof. We start by remarking that if 1
p + 1

q ≤ 1, then 1
p′ + 1

q′ ≤ 1. We have
a = (b−c−)(b+c+), which is a canonical (q′, p′)-factorization by Proposition
5.4, and on the other hand a = a−a+ is a (p, q) - factorization. From Corollary
5.5 it follows that a± = b±c±, up to a constant factor. �

We have moreover the following.

Proposition 6.5. If gn
± ∈ H±

p for every n ∈ N, p > 1, with g±(z) 
= 0 for all
z ∈ C

±, then gα
± ∈ H±

p , for all p > 1, α ∈ R.

Proof. Let n = [α] be the integer part of α; we have

gn
−, gn+1

− ∈ H−
p for every p > 1. (6.4)

Defining, for each y < 0,

R1 = {x ∈ R : 0 < |g−(x + iy)| ≤ 1}
R2 = {x ∈ R : |g−(x + iy)| > 1} ,

we have, for all y < 0,
∫

R

∣
∣
∣
∣
gα

−(x + iy)
x + iy − i

∣
∣
∣
∣

p

dx ≤
∫

R1

∣
∣
∣
∣
gn

−(x + iy)
x + iy − i

∣
∣
∣
∣

p

dx +
∫

R2

∣
∣
∣
∣
∣
gn+1

− (x + iy)
x + iy − i

∣
∣
∣
∣
∣

p

dx

≤
∫

R

∣
∣
∣
∣
gn

−(x + iy)
x + iy − i

∣
∣
∣
∣

p

dx +
∫

R

∣
∣
∣
∣
∣
gn+1

− (x + iy)
x + iy − i

∣
∣
∣
∣
∣

p

dx

and from (6.4) we conclude that r−gα
− ∈ H−

p . The result for gα
+ can be proved

analogously. �
Corollary 6.6. With the same assumptions as in Corollary 6.5 and α ∈ R, we
have that

rα
±g± ∈ H±

p for every α >
1
p
. (6.5)

The assumptions of Theorem 6.4 and Corollaries 6.5 and 6.6 are satisfied,
in particular, if g ∈ GCμ(Ṙ) and these results provide a partial description of
the behavior of the factors g± in a neighborhood of any point in R and at ∞.
In particular in a neighborhood of ∞ they show that although g±

− , g±
+ may

be unbounded, they “grow less than” any positive power of ξ. Corollary 6.6
also means that the domain of the Toeplitz operator Tg+ (in H+

p ) contains all
functions of the form 1

(ξ+i)α with α > 1
p , and analogously for Tg− .
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7. Kernels of Toeplitz Operators in H+
p and

(q, p′)-Factorization

In what follows we assume that g, not necessarily bounded, admits a (q, p′)-
factorization (1 < p ≤ q < ∞)

g = g−rkg+ with k ∈ Z, (7.1)

g− ∈ H−
q , g−1

− ∈ H−
p′ , g+ ∈ H+

p′ , g−1
+ ∈ H+

q . (7.2)

Note that 1 < p ≤ q < ∞ implies that 1
q + 1

p′ ≤ 1.

Theorem 7.1. Let g admit a representation (7.1)–(7.2).
(i) If g− ∈ H−

p , g−1
+ ∈ H+

p , then dim ker Tg = 0 if k ≥ 0, dim ker Tg = |k| if
k < 0 and, in this case, ker Tg = g−1

+ Kr|k| .
(ii) If g− /∈ H−

p or g−1
+ /∈ H+

p , then dim kerTg = 0 if k ≥ −1, dim ker Tg =

|k| − 1 if k ≤ −2 and, in this case, ker Tg = g−1
+

ξ+i Kr|k|−1 .

Before proving Theorem 7.1, note that, by Proposition 5.6, if the assump-
tions of (ii) are satisfied and g also admits a p-factorization, then the latter
has index k + 1.

Proof. We have that ϕ+ ∈ ker Tg if and only ϕ+ ∈ D(Tg) and P+gϕ+ = 0, i.e.
ϕ+ ∈ H+

p and gϕ+ = ϕ− ∈ H−
p . Now, for ϕ± ∈ H±

p ,

gϕ+ = ϕ− ⇔ rk g+ϕ+︸ ︷︷ ︸
∈H+

1

= g−1
− ϕ−
︸ ︷︷ ︸

∈H−
1

. (7.3)

If k ≥ 0, both sides of the last equality must be equal to 0. For k = −1,
both sides must be equal to a function of the form A

ξ−i , with A ∈ C, and it
follows that ϕ− = A

ξ−ig− ∈ H−
p , ϕ+ = A

ξ+ig
−1
+ ∈ H+

p . Therefore, in the

case (i), we have ker Tg = g−1
+ span

{
1

ξ+i

}
and, in case (ii), we have A = 0 and

ker Tg = {0}. For k ≤ −2, both sides of the second equality in (7.3) must be
of the form P|k|−1

(ξ−i)|k| , where P|k|−1 is a polynomial of degree smaller or equal to
|k| − 1. It follows that

ϕ− =
g−

ξ − i

P|k|−1

(ξ − i)|k|−1
∈ H−

p , ϕ+ =
g−1
+

ξ + i

P|k|−1

(ξ + i)|k|−1
∈ H+

p . (7.4)

If the degree of P|k|−1 is equal to |k|−1, then (ξ−i)|k|−1

P|k|−1
is analytic and bounded

in a neighborhood of ∞; since ϕ− ∈ H−
p and, from (7.4), (ξ−i)|k|−1

P|k|−1
ϕ− = g−

ξ−i ∈
H−

q , with q ≥ p, we must have (ξ−i)|k|−1

P|k|−1
ϕ− ∈ H−

p , and therefore g−
ξ−i ∈ H−

p .

We conclude analogously that g−1
+

ξ+i ∈ H+
p . Thus, in the case (ii) the degree of

P|k|−1 must be smaller or equal to |k| − 2.
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Conversely, in the case (i) we see that every ϕ+ of the form given in (7.4)
belongs to kerTg and ker Tg = g−1

+ Kr|k| ; in the case (ii) we see that every

ϕ+ = g−1
+

P|k|−2

(ξ+i)|k| belongs to kerTg and ker Tg = g−1
+

ξ+i Kr|k|−1 . �

It follows from Theorem 7.1 that Toeplitz operators in H+
p with un-

bounded symbols possessing a (q, p′) - factorization, have the same kernel
as a Toeplitz operator with bounded symbol; we have kerTg = ker Tg1 with
g1 = g−1

+ rkg+.
If g ∈ L∞, then Tg is bounded in H+

p and T ∗
g = Tḡ is bounded in H+

p′ . In
that case the factorization (7.1)–(7.2) also allows us to describe ker T ∗

g .

Theorem 7.2. Let g ∈ L∞ be such that (7.1)–(7.2) hold.
(i) If g− ∈ H−

p , g−1
+ ∈ H+

p , we have that dim kerT ∗
g = 0 if k ≤ 0; dim ker T ∗

g =

k if k > 0 and, in this case, ker T ∗
g = g−1

− Krk .
(ii) If g− /∈ H−

p or g−1
+ /∈ H+

p , we have that dim kerT ∗
g = 0 if k ≤ 0;

dim ker T ∗
g = k if k > 0 and either g−1

− /∈ H−
p′ or g+ /∈ H+

p′ ; dim kerT ∗
g =

k + 1 if k > 0, g−1
− ∈ H−

p′ and g+ ∈ H+
p′ .

(i) The result follows from Theorem 7.1, since the existence of a p-
factorization for g is equivalent to the existence of a p′-factorization for ḡ,
with symmetric indices.

[(ii)] If ψ± ∈ H±
p′ and ḡψ+ = ψ−, then we have

r−kḡ−ψ+ = g−1
+ ψ−. (7.5)

If k < 0, both sides of (7.5) must be equal to 0 because the left-hand side
belongs to H+

s and vanishes at i, while the right-hand side is in H−
s ( 1s =

1
p′ + 1

q < 1).
If k ≥ 0, then both sides of (7.5) are equal to Pk

(ξ−i)k , where Pk de-
notes a polynomial of degree smaller or equal to k. Therefore we have ψ+ =

Pk

(ξ+i)k g−1
− , ψ− = Pk

(ξ−i)k g+, and (ii) follows from here analogously as in the
proof of Theorem 7.1. �

Taking a simple example: let us denote
(

ξ−i
ξ+i

)1/2

∞
=
√

ξ−i
ξ+i . Then we have

a canonical (q, 2) - factorization, with q > 2,
√

ξ − i

ξ + i
=
√

ξ − i
1√

ξ + i
(7.6)

(with appropriate branches) where g− =
√

ξ − i /∈ H−
2 , g−1

+ =
√

ξ + i /∈ H+
2 ,

g−1
− = 1√

ξ−i
/∈ H−

2 , and g+ = 1√
ξ+i

/∈ H+
2 . Therefore, by Theorems 7.1 and

7.2, we have for the Toeplitz operator T√ ξ−i
ξ+i

in H+
2

ker T√ ξ−i
ξ+i

= ker T ∗√
ξ−i
ξ+i

= {0}. (7.7)
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Note that not only is (7.6) not a 2-factorization, but moreover
√

ξ−i
ξ+i does not

admit any 2-factorization, whether or not of Wiener–Hopf type. Note also that
(7.7) could also have been obtained from Theorem 7.1 using the non-canonical

(q, 2)-factorization
√

ξ−i
ξ+i =

√
ξ − i ξ+i

ξ−i
1√
ξ+i

.

Another example: consider the unbounded symbol g(ξ) =
6
√

(ξ+i)14

(ξ−i)9 . The
function g admits a (3,2)-factorization of the form

6

√
(ξ + i)14

(ξ − i)9
=
√

ξ − i

(
ξ + i

ξ − i

)2
3
√

ξ + i.

By Theorem 7.1, we have that dim ker Tg = 1 in H+
2 and kerTg = 1

(ξ+i)4/3 span
{

1
ξ+i

}
.

8. Products by Non-integer Powers of r and Piecewise
Continuous Symbols

We start by studying the relations between the kernels of two Toeplitz op-
erators whose symbols differ by a factor which is a non-integer power of r,
motivated by the study of Toeplitz operators with piecewise continuous sym-
bols. For integer exponents, these relations were studied in [2,5], in particular
as regards their dimensions.

Theorem 8.1. Let f ∈ σp and let

g = frα
c with c ∈ R, 0 < α < 1

where rα
c is defined in (2.9). Then D(Tg) = D(Tf ) and

ker Tg =
(

ξ + i

ξ − c

)α

ker Tf ∩ D(Tg).

Proof. Let φ+ ∈ H+
p . We have that φ+ ∈ ker Tg ⇔ gφ+ = φ− ∈ H−

p and

gφ+ = φ− ⇔ frα
c φ+ = φ− ⇔ f

(
ξ − c

ξ + i

)α

φ+

︸ ︷︷ ︸
∈H+

p

=
(

ξ − c

ξ − i

)α

φ−
︸ ︷︷ ︸

∈H−
p

⇒
(

ξ − c

ξ + i

)α

φ+ ∈ ker Tf ⇒ φ+ ∈
(

ξ + i

ξ − c

)α

ker Tf ∩ D(Tg).

Conversely, let φ+ ∈
(

ξ+i
ξ−c

)α

ker Tf ∩ D(Tg). Then φ+ =
(

ξ+i
ξ−c

)α

k+ where

k+ ∈ ker Tf , with fk+ = k− ∈ H−
p , so

gφ+︸︷︷︸
∈Lp

= frα
c φ+ = f

(
ξ − i

ξ − c

)α

k+ =

(
ξ − i

ξ − c

)α

k− = k−/

(
ξ − c

ξ − i

)α

︸ ︷︷ ︸
∈Nev+

∈ Lp ∩ Nev+ = H−
p .
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It follows that φ+ ∈ ker Tg. �

Corollary 8.2. If g = f
∏m

j=1 r
βj
cj , where c1, c2, . . . , cm are distinct points of R

and 0 < βj < 1 for all j = 1, 2, . . . ,m, then

ker Tg =
m∏

j=1

(
ξ + i

ξ − cj

)βj

ker Tf ∩ D(Tg).

Recall from Sect. 2 that piecewise continuous functions can be repre-
sented as products of a continuous function in R∞ by non-integer powers of
r and that, unlike continuous functions, a non-vanishing piecewise continuous
function may not admit a Wiener–Hopf p-factorization, i.e., may be p-singular.
In that case the range of the corresponding Toeplitz operator is not closed, so
the operator is not Fredholm; we may ask however whether another type of
representation of the symbol would allows us to describe the kernel of Toeplitz
operator and its adjoint.

Indeed we show in the following theorem that for every symbol that
can be represented in the form (2.13) where h admits a bounded factoriza-
tion, which includes in particular all non-vanishing piecewise Hölder continu-
ous symbols, we can describe the corresponding Toeplitz kernels based on a
(q, p′)-factorization (assuming the Toeplitz operator defined on H+

p ). Here we
use the notation

∏0
j=1 xj = 1.

Theorem 8.3. Let h = h−rkh+ with h± ∈ GH±
∞, k ∈ Z, and

g = h rα∞∞

⎛

⎝
m∏

j=1

rαj
cj

⎞

⎠

⎛

⎝
s∏

j=1

r
1/p
dj

⎞

⎠

where m, s are non-negative integer numbers, cj (j = 1, . . . ,m) and dj (j =
1, . . . , s) are distinct real numbers,

−1
p

< α∞ ≤ 1
p′ , − 1

p′ < αj <
1
p

for all j = 1, . . . ,m.

Then
(i) if − 1

p < α∞ < 1
p′ , we have dim ker Tg = max {0,−k − s}

= max {0,dim ker Th − s} and, if k < −s,

ker Tg = h−1
+

s∏

j=1

(
ξ + i

ξ − dj

)1/p m∏

j=1

(
ξ + i

ξ − cj

)αj

(ξ + i)α∞ K0

with K0 = {ψ+ ∈ Kr|k| : ψ+(dj) = 0, j = 1, 2, . . . , s}.
(ii) if α∞ = 1

p′ , we have dim kerTg = max {0,−k − s − 1}
= max {0,dim ker Th − s − 1} and, if k < −s − 1,

ker Tg = h−1
+

s∏

j=1

(
ξ + i

ξ − dj

)1/p m∏

j=1

(
ξ + i

ξ − cj

)αj

(ξ + i)1/p′
K̃0
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with K̃0 = {ψ+ ∈ Kr|k|−1 : ψ+(dj) = 0, j = 1, 2, . . . , s}.
We prove this theorem in several steps, using the following Lemmas.

Lemma 8.4. With the same assumptions as in Corollary 8.2, the function

f = h rα∞∞

⎛

⎝
m∏

j=1

rαj
cj

⎞

⎠

admits a (q, p′)-factorization with q ≥ p, of the form f = f−rkf+ with

f− = h−(ξ − i)α∞
m∏

j=1

(
ξ − i

ξ − cj

)αj

, f+ = h+

(
1

ξ + i

)α∞ m∏

j=1

(
ξ − cj

ξ + i

)αj

.

The function admits a p-factorization if and only if α∞ 
= 1
p′ .

Proof. We have

f = f−rkf+

with

f− = h−(ξ − i)α∞
m∏

j=1

(
ξ − i

ξ − cj

)βj

, f+ = h+
1

(ξ + i)α∞

m∏

j=1

(
ξ − cj

ξ + i

)βj

.

It is clear that f+ ∈ H+
p′ , f−1

− ∈ H−
p′ ; on the other hand f− ∈ H−

p , f−1
+ ∈ H+

p

if − 1
p < α∞ < 1

p′ . If α∞ = 1
p′ we have

f−
ξ − i

=
h−

(ξ − i)1/p

m∏

j=1

(
ξ − i

ξ − cj

)βj

with − 1
p′ < βj < 1

p for all j.

Let p < q < min{ 1
βj

, j = 1, · · · ,m} ∩ R
+; then f−

ξ−i ∈ H−
q . Analogously,

f−1
+ ∈ H+

q .
It is left to prove that if α∞ = 1

p′ then f does not have a p-factorization
(note that the non-existence of a WH p-factorization is a well known result).
By Proposition 5.6 it is enough to show that we cannot have f−f+ = G−rG+,
where the right-hand side is a p-factorization. Indeed we would have

f−1
− = A

G−1
−

ξ − i
∈ H−

p′ with f−1
− = h−1

−
1

(ξ − i)1/p′

m∏

j=1

(
ξ − cj

ξ − i

)βj

f+ = A
G+

ξ + i
∈ H+

p′ with f+ = h+
1

(ξ + i)1/p′

m∏

j=1

(
ξ + i

ξ − cj

)βj

which is impossible because h±1
+ ∈ H+

∞, h±1
− ∈ H−

∞. �

Note that, in the previous result, f−1
+

(
ξ+i

ξ−dj

)1/p

/∈ H+
p for any dj ∈ R.
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Lemma 8.5. Let dj, j = 1, 2, . . . , s, be distinct points in R and let

g = f
(∏s

j=1 r
1/p
dj

)
, where we assume that f admits a (q, p′)-factorization with

q ≥ p, of the form

f = f−rkf+ (8.1)

such that, for all j = 1, 2, . . . , s, we have f−1
+

(
ξ+i

ξ−dj

)1/p

/∈ H+
p . Then

(i) ker Tg = 0 if s ≥ dim kerTf ,

(ii) ker Tg =
∏s

j=1

(
ξ+i

ξ−dj

)1/p

f−1
+ K0 with K0 = {ψ+ ∈ Kr|k| : ψ+(dj) =

0, j = 1, 2, . . . , s} if s < dim ker Tf and (8.1) is a p-factorization,

(iii) ker Tg =
∏s

j=1

(
ξ+i

ξ−dj

)1/p f−1
+

ξ+i K̃0 with K̃0 = {ψ+ ∈ Kr|k|−1 : ψ+(dj) =

0, j = 1, 2, . . . , s} if s < dim ker Tf and either f− /∈ H−
p or f−1

+ /∈ H+
p .

(iv) dim ker Tg = max{0,dim ker Tf − s}.
Proof. From Corollary 8.2,

ker Tg =
s∏

j=1

(
ξ + i

ξ − dj

)1/p

ker Tf ∩ H+
p .

If (8.1) is a p-factorization then, from Theorem 7.1 and Corollary 8.2

ker Tg = {0}, if k ≥ 0,

ker Tg =
s∏

j=1

(
ξ + i

ξ − dj

)1/p

f−1
+ Kr|k| ∩ H+

p , if k < 0.

So, for k < 0, since f−1
+ ∈ H+

p and
(

ξ+i
ξ−dj

)1/p

f−1
+ /∈ H+

p , we see that

ker Tg =
s∏

j=1

(
ξ + i

ξ − dj

)1/p

f−1
+ K0

where K0 = {ψ+ ∈ Kr|k| : ψ+(dj) = 0, j = 1, 2, . . . , s} is equal to {0} if
s ≥ |k| = −k and dimK0 = |k| − s if s < |k|. Thus we have ker Tg = {0}
if s ≥ −k, dim ker Tg = |k| − s if s < −k, where −k = |k| = dim ker Tf by
Theorem 7.1 if k < 0.

If (8.1) is not a p-factorization, i.e., f− /∈ H−
p or f−1

+ /∈ H+
p , then we

conclude analogously from Theorem 7.1 and Corollary 8.2 that

ker Tg = {0}, if k ≥ −1,

ker Tg =
s∏

j=1

(
ξ + i

ξ − dj

)1/p f−1
+

ξ + i
Kr|k|−1 ∩ H+

p =
s∏

j=1

(
ξ + i

ξ − dj

)1/p f−1
+

ξ + i
K̃0

where K̃0 = {ψ+ ∈ Kr|k|−1 : ψ+(dj) = 0, j = 1, 2, . . . , s}, if k < −1.
Thus ker Tg = {0} if s ≥ −k−1 and dim kerTg = |k|−1−s if s < −k−1,

where −k − 1 = |k| − 1 = dim ker Tf by Theorem 7.1 if k < −1. �



10 Page 28 of 31 M. C. Câmara et al. Results Math

Proof. (of Theorem 8.3) Let f = h rα∞∞
(∏m

j=1 r
αj
cj

)
. By Lemma 8.4, f has

a (q, p′)-factorization with q ≥ p, which is a p-factorization if and only if
α∞ 
= 1

p′ . Thus, by Lemma 8.5, (i) and (ii) hold. �

The result of Theorem 8.3 has a simple geometric interpretation in the
case of piecewise continuous symbols. Given any piecewise continuous function
in R∞ of the form (2.10), with discontinuity at the points cj , j = 1, 2, . . . , n,
and (possibly) at ∞, the image of the continuous factor h in the complex plane
is a closed contour which does not pass by the origin, with winding number k,
while the image of the function gp associated to g, given by (2.14), is a closed
curve that includes the image of g as well as arcs connecting g(ξ−) and g(ξ+)
whenever these are different. If a point of discontinuity ξ = cj ∈ R is such
that the corresponding exponent αj in (2.10) is 1/p or, for the point ξ = ∞, if
the corresponding exponent α∞ is 1/p′, then the curve connecting g(ξ−) and
g(ξ+) passes by the origin.

Thus we can interpret the result of Theorem 8.3 as saying that dim kerTg

is obtained from the dimension of kerTh (which is zero if k ≥ 0, and equal
to |k| if k < 0) in the following way: if k ≥ 0, dim ker Tg = 0; if k < 0, then
dim ker Tg is obtained by subtracting from |k| the number of arcs passing by
the origin in the image of gp, if the number of these arcs is smaller than |k|;
otherwise dim ker Tg = 0.

We present below some examples illustrating this geometric interpreta-
tion.

1. Consider the function g, given by

g(ξ) =
(ξ + i)3

(ξ − 2i)(ξ − 3i)(ξ − 4i)

√
ξ − i

ξ + i
,

which is a piecewise continuous function with a discontinuity at c = ∞.
We plot the image of g2 (see (2.15)) in the complex plane, which includes
{g(ξ) : ξ ∈ R} as well as the segment connecting g(∞+) and g(∞−),
which passes by the origin. By Theorem 8.3, dim ker Tg = 2 in H+

2 , since
dim ker Th = 3 where h(ξ) = (ξ+i)3

(ξ−2i)(ξ−3i)(ξ−4i) , and we have kerTg =
(ξ + i)1/2Kr2 .

2. Let now G be given by

G(ξ) =

√
ξ − i

ξ + i

(
(ξ + i)2

(ξ − 2i)(ξ − 3i)

)(
ξ − i

ξ + i

)1/2

0

.

G is a piecewise continuous function with a discontinuity at c = 0 and
c = ∞; the image of G2, obtained according to (2.15), is shown in the
figure below. We have that dim kerTG = 0 in H+

2 since dim ker Th = 2,
where h = (ξ+i)2

(ξ−2i)(ξ−3i) (Figs. 1, 2).
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Figure 1. Plot of g2

Figure 2. Plot of G2
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