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Abstract. The purpose of this paper is mainly to prove that if f is a
transcendental entire function of hyper-order strictly less than 1 and
f(z)n + a1f

′(z) + · · · + akf (k)(z) is a periodic function, then f(z) is also
a periodic function, where n, k are positive integers, and a1, · · · , ak are
constants. Meanwhile, we offer a partial answer to Yang’s Conjecture,
theses results extend some previous related theorems.
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1. Introduction and Main Results

Herein let f denote a non-constant meromorphic function and we assume that
the reader is familiar with the fundamental results of Nevanlinna theory and
its standard notation such as m(r, f), N(r, f), T (r, f), etc (see e.g., [4] and
[11]). In the sequel, S(r, f) will be used to denote a quantity that satisfies
S(r, f) = o

(
T (r, f)

)
as r → ∞, outside possibly an exceptional set of r values

of finite linear measure, and a meromorphic function a is said to be a small
function of f if T (r, a) = S(r, f). We use ρ(f) and ρ2(f) to denote the order
and hyper-order of f respectively.

The convergence exponent of zeros of f is defined as

τ(f) = lim sup
r→∞

log N(r, 1
f )

log r
= lim sup

r→∞

log n(r, 1
f )

log r
.

In addition, a complex number a is said to be a Borel exceptional value
of f if

lim sup
r→∞

log+ n
(
r, 1

f−a

)

log r
< ρ(f).
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In this note, we mainly consider the periodicity of entire functions, namely,
if f(z)n + a1f

′(z) + · · · + akf (k)(z) is a periodic function, then f(z) is also a
periodic function.

The motivation of this paper arises from the study of the real transcen-
dental entire solutions of the differential equation

f(z)f (k)(z) = p(z) sin2 z,

where p(z) is a non-zero polynomial. It seems to us that Titchmarsh [9] firstly
proved that the differential equation f(z)f ′′(z) = − sin2 z has no real entire
solutions of finite order other than f(z) = ± sin z. The follow-up works were
due to Li, Lü and Yang in [8], where they considered the similar problem when
f(z) is real and of finite order. They obtained f(z)f ′′(z) = − sin2 z has entire
solutions f(z) = ± sin z and no other solutions. Recently, Yang proposed the
following interesting conjecture, see e.g., [8] and [10].

Yang’s Conjecture. Let f be a transcendental entire function and k (≥ 1) be
an integer. If f(z)f (k)(z) is a periodic function, then f(z) is also a periodic
function.

From then on, a number of papers have focused on Yang’s Conjecture,
see e.g., [6,7] and references therein.

Recently, regarding Yang’s Conjecture, Liu et al. [5] obtained the follow-
ing result.

Theorem A. Let f be a transcendental entire function and n, k be positive inte-
gers. If f(z)nf (k)(z) is a periodic function and one of the following conditions
is satisfied

(i) k = 1;
(ii) f(z) = eh(z), where h is a non-constant polynomial;
(iii) f has a non-zero Picard exceptional value and f is of finite order,

then f(z) is also a periodic function.

A natural question would arise: what will happen if we drop the condition
“ finite order ” in Theorem A. In this note, by considering a different proofs, we
obtain the following result, which offers a partial answer to Yang’s Conjecture,
and improves Theorem A and references therein.

Theorem 1.1. Let f be a transcendental entire function of hyper-order strictly
less than 1, and n, k be positive integers. Suppose that f(z) has a finite Borel
exceptional value b, and f(z)nf (k)(z) is a periodic function, then f(z) is also
a periodic function.

Remark 1.1. If b is a Picard exceptional of f, then b is a Borel exceptional of
f.

In addition, Liu et al. [5] also obtained the following result.
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Theorem B. Let f be a transcendental entire function and n ≥ 2, k ≥ 1 be
integers. If f(z)n + f (k)(z) is a periodic function with period c and one of the
following conditions is satisfied

(i) k = 1;
(ii) f(z + c) − f(z) has no zeros;
(iii) the zeros multiplicity of f(z + c) − f(z) is great than or equal to k; then

f(z) is also a periodic function with period c or 2c.

In this paper, we will prove the following result.

Theorem 1.2. Let f be a transcendental entire function of hyper-order strictly
less than 1, and n (≥ 2), k (≥ 1) be integers. If f(z)n +a1f

′(z)+ · · ·+akf (k)(z)
is a periodic function, where a1, · · · , ak are constants, then f(z) is also a pe-
riodic function.

Remark 1.2. (i) The condition “ n ≥ 2 ” in Theorem 1.2 is necessary. For
example, let f(z) = ze−z. Then

f(z) + f ′(z) + f ′′(z) + f ′′′(z) = 2e−z

is a periodic function, however f(z) = ze−z is not a periodic function.
(ii) Carefully checking the proof of Theorem 1.2, we may find when n = 2 or

n ≥ 4, the hypothesis “ ρ2(f) < 1 ” can be removed from Theorem 1.2.

2. Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (see, e.g., [3]). Let f be a non-constant meromorphic function with
ρ2(f) < 1, c ∈ C. Then

m
(
r,

f(z + c)
f(z)

)
= S(r, f),

outside of a possible exceptional set with finite logarithmic measure.

It is pointed out that if f is of finite order, we have

Lemma 2.1’ (see, e.g., [2]). Let f be a meromorphic function with ρ = ρ(f) <
+∞, c (�= 0) ∈ C. Then for each ε > 0, we have

m
(
r,

f(z + c)
f(z)

)
= O(rρ−1+ε).

By applying Lemma 2.1 and the Logarithmic Derivative Lemma, we have the
following result.
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Lemma 2.2. Let f be a non-constant meromorphic function with ρ2(f) < 1.
Then for c ∈ C and any positive integer k, we have

m
(
r,

f (k)(z + c)
f(z)

)
= S(r, f),

outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3 ([11], Lemma 5.1). Let f denote a non-constant periodic function.
Then ρ(f) ≥ 1.

Lemma 2.4 ([1] ). Let g be a function transcendental and meromorphic in the
plane of order less than 1, and h > 0. Then there exists an ε-set E such that

g′(z + c)
g(z + c)

→ 0,
g(z + c)

g(z)
→ 1 as z → ∞ in C\E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z not in
E the function g has no zeros or poles in |ζ − z| ≤ h.

Remark 2.1. According to the works of Hayman (see, e.g., [4]), an ε set E is
defined to be a countable union of open discs not containing the origin and
subtending angles at the origin whose sum is finite. Suppose that E is an ε set,
then the set of r ≥ 1 for which the circle S(0, r) meets E has finite logarithmic
measure and for almost all real θ the intersection of E with the ray arg z = θ
is bounded.

Lemma 2.5. ( [11], Theorem 1.62) Suppose that fj(j = 1, 2, · · · , n) (n ≥ 3) are
meromorphic functions which are not constants except for fn. Furthermore, let

n∑

j=1

fj = 1.

If fn �≡ 0 and
n∑

j=1

N(r,
1
fj

) + (n − 1)
n∑

j=1

N(r, fj) < (λ + o(1))T (r, fk),

where r ∈ I, I is a set whose linear measure is infinite, k ∈ {1, 2, · · · , n − 1}
and λ < 1, then fn ≡ 1.

3. Proof of Theorem 1.1

Note that b is a finite Borel exceptional value of f. Next, two cases will be
considered.

Case 1. If b = 0, by the Hadamard factorization theorem, we get

f(z) = Q(z)ep(z),
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where Q is the canonical product of f formed with its zeros, and p is a non-
constant entire function satisfying ρ(p) < 1. Using the facts (see., e.g. [11],
Theorem 2.2 and Theorem 2.3 ), it is easy to deduce that

ρ(Q) = τ(Q) = τ(f) < ρ(f).

Thus, ρ(f) = ρ(ep). Besides, since f(z)nf (k)(z) is a periodic function
with period c, then

f(z)nf (k)(z) = f(z + c)nf (k)(z + c). (3.1)

Substituting f(z) = Q(z)ep(z) into (3.1), it follows without difficulty that

[Q(z)ep(z)]nep(z)H1(z) = [Q(z + c)ep(z+c)]nep(z+c)H1(z + c), (3.2)

where H1 is a differential polynomial of Q and p, namely,

H1(z) = Q(k)(z) + A1Q
(k−1)(z)p′(z) + A2Q

(k−2)(z)[p′′(z)]2 + · · · + Q(z)p(k)(z)

with constants Ai (i = 1, 2, · · · ).
Thereby, ρ(H1) ≤ max{ρ(Q), ρ(p)} < ρ(f).
Now, we can rewrite (3.2) as

e(n+1)[p(z)−p(z+c)] =
H1(z + c)

H1(z)
Q(z + c)n

Q(z)n
. (3.3)

In addition, (3.3) shows that ρ(ep(z)−p(z+c)) < +∞ since ρ(H1) < +∞,
ρ(Q) < +∞. This implies p(z)−p(z + c) is a polynomial, say p(z)−p(z + c) =
q0z

m + · · · + qm, where m is a natural number and q0, · · · , qm are constants.
If m > 1, then p(m+1)(z) − p(m+1)(z + c) ≡ 0, which implies p(m+1) is a

periodic function. Therefore, Lemma 2.3 and ρ(p(m+1)) = ρ(p) < 1 show that
p(m+1)(z) is a constant, this leads to p is a polynomial, say p(z) = a0z

m+1 +
· · · + am+1. In this case, it is easy to see ρ(f) = m + 1, and ρ(p) = 0.

Set ρ(Q) = σ. Then ρ(H1) ≤ σ, and σ < m + 1.
Again, applying Lemma 2.1’ to (3.3), we obtain

m(r, e(n+1)[p(z)−p(z+c)]) = m
(
r,

H1(z + c)
H1(z)

Q(z + c)n

Q(z)n

)
,

which implies rm ≤ O(rσ−1+ε). This is impossible since we can choose ε > 0
small enough such that σ − 1 + ε < m.

Thus, p(z) = a0z +a1, where a0, a1 are constants. Furthermore, if we set
e(n+1)a0c = A, then

A =
H1(z + c)

H1(z)
Q(z + c)n

Q(z)n
.

On the other hand, by Lemma 2.4, there exists a ε−set E such that

H1(z + c)
H1(z)

→ 1,
Q(z + c)

Q(z)
→ 1, as z → ∞ in C\E.
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Trivially, A = 1, and
H1(z + c)

H1(z)
Q(z + c)n

Q(z)n
= 1.

It means that H1(z)Q(z)n is a periodic function. Hence ρ(H1(z)Q(z)n) ≥
1 if H1(z)Q(z)n is not a constant. It follows by ρ(H1(z)Q(z)n) < 1 that
H1(z)Q(z)n is a constant. Therefore, Q must be a constant. Thus, we con-
clude that f(z) must be a periodic function with period 2πi

a0
.

Case 2. If b �= 0, then by the Hadamard factorization theorem, we get

f(z) = Q(z)ep(z) + b,

where Q is the canonical product of f − b formed with its zeros, and p is a
non-constant entire function satisfying ρ(p) < 1. Using the same methods as
the proof in Case 1, ρ(Q) = τ(Q) = τ(f − b) < ρ(f − b) = ρ(f) follows. Thus,
ρ(f) = ρ(ep).

Since f(z)nf (k)(z) is a periodic function with period c, then

f(z)nf (k)(z) = f(z + c)nf (k)(z + c). (3.4)

Substituting f(z) = Q(z)ep(z) + b into (3.4), we have

[Q(z)ep(z) + b]nep(z)H1(z) = [Q(z + c)ep(z+c) + b]nep(z+c)H1(z + c),

where H1 is a differential polynomial of Q and p, namely,

H1(z) = Q(k)(z) + A1Q
(k−1)(z)p′(z) + A2Q

(k−2)(z)[p′′(z)]2 + · · · + Q(z)p(k)(z)

with constants Ai(i = 1, 2, · · · ). In this case, we conclude

ρ(H1) ≤ max{ρ(Q), ρ(p)} < ρ(f).

Besides, we find

Q(z)ne(n+1)p(z) + C1
nbQ(z)n−1enp(z) + · · · + Cn−1

n bn−1Q(z)e2p(z) + bnep(z) =

H(z)[Q(z + c)ne(n+1)p(z+c) + C1
nbQ(z + c)n−1enp(z+c)

+ · · · + Cn−1
n bn−1Q(z + c)e2p(z+c) + bnep(z+c)],

where H(z) = H1(z+c)
H1(z)

, and ρ(H) < ρ(f).
Dividing both sides of the above equation by bnep(z) gives

H(z)
bn

e(n+1)p(z+c)−p(z)Q(z + c)n + · · · + H(z)ep(z+c)−p(z)

−Q(z)n

bn
enp(z) − · · · − Cn−1

n

Q(z)
b

ep(z) = 1. (3.5)

Next, we will prove mp(z + c) − p(z) (m = 2, · · · , n + 1) are not constants.
In fact, if p is a non-constant polynomial, it is obvious. Now, we assume that
p is a transcendental entire function. In this case, if mp(z + c) − p(z) = q,
here q is a constant, then mp′(z + c) = p′(z). Noting ρ(p) = ρ(p′) < 1, we
apply Lemma 2.4 to p′ and obtain m = 1, a contradiction. Thereby, mp(z +
c) − p(z)(m = 2, · · · , n + 1) can not be constants. To complete the proof, we
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now employ Lemma 2.5 to (3.5) and have H(z)ep(z+c)−p(z) ≡ 1. It means that
H1(z + c)ep(z+c) = H1(z)ep(z), and

[b + Q(z)ep(z)]n = [b + Q(z + c)ep(z+c)]n

follows. Thus f(z)n = f(z+c)n shows that f is a periodic function with period
c or nc.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

By assumption, f(z)n + a1f
′(z) + · · · + akf (k)(z) is a periodic function with

period c, then

f(z + c)n + a1f
′(z + c) + · · · + akf

(k)(z + c) = f(z)n + a1f
′(z) + · · · + akf

(k)(z),

and thus

f(z + c)n − f(z)n = a1[f ′(z) − f ′(z + c)] + · · · + ak[f (k)(z) − f (k)(z + c)].
(4.1)

Next, we consider three cases.
Case 1. n = 2. In this case, we can rewrite (4.1) as

[f(z + c) + f(z)][f(z + c) − f(z)]

= a1[f ′(z) − f ′(z + c)] + · · · + ak[f (k)(z) − f (k)(z + c)].
(4.2)

If f(z + c) − f(z) ≡ 0, then f(z) is a periodic function with period c.
Next, we may assume that f(z + c) − f(z) �≡ 0. In this case, (4.2) can be

rewritten as

f(z + c) + f(z) = −a1
f ′(z) − f ′(z + c)
f(z) − f(z + c)

− · · · − ak
f (k)(z) − f (k)(z + c)

f(z) − f(z + c)

= −a1
g′(z)
g(z)

− · · · − ak
g(k)(z)
g(z)

,

(4.3)
where

g(z) = f(z) − f(z + c). (4.4)

Define pi(z) = g(i)(z)
g(z) (i = 1, 2, · · · , k), and

H(z) = −a1p1(z) − · · · − akpk(z). (4.5)

Then (4.3) becomes

f(z + c) + f(z) = H(z). (4.6)

Besides, applying the Logarithmic Derivative Lemma to (4.3), we have

T (r,H) = m(r,H) ≤ m(r, p1) + · · · + m(r, pk) + O(1) ≤ S(r, g). (4.7)
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Combining (4.4) and (4.6) yields that

f(z) =
1
2
[H(z) + g(z)], f(z + c) =

1
2
[H(z) − g(z)].

Thus, a routine computation leads to

g(z) + g(z + c) = H(z) − H(z + c). (4.8)

Moreover, (4.8) results in

g(i)(z) + g(i)(z + c) = H(i)(z) − H(i)(z + c). (4.9)

Thereby, it follows by g(i)(z) = pi(z)g(z) and (4.9) that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1(z)g(z) + p1(z + c)g(z + c) = H ′(z) − H ′(z + c),

p2(z)g(z) + p2(z + c)g(z + c) = H ′′(z) − H ′′(z + c),
· · · · · ·
pk(z)g(z) + pk(z + c)g(z + c) = H(k)(z) − H(k)(z + c).

(4.10)

Now, combining (4.5) and (4.10) yields

H(z)g(z) + H(z + c)g(z + c) = −a1[H ′(z) − H ′(z + c)]

− · · · − ak[H(k)(z) − H(k)(z + c)].
(4.11)

Furthermore, substituting g(z + c) = H(z)−H(z + c)− g(z) in (4.11), we find

H(z)g(z) + H(z + c)[H(z) − H(z + c) − g(z)]

= −a1[H ′(z) − H ′(z + c)] − · · · − ak[H(k)(z) − H(k)(z + c)].

If H(z + c) �≡ H(z), we obtain

g(z) =
−a1[H

′(z) − H′(z + c)] − · · · − ak[H
(k)(z) − H(k)(z + c)] + H(z + c)2 − H(z + c)H(z)

H(z) − H(z + c)
.

(4.12)

It follows from (4.7), (4.12) and Lemma 2.2 that

T (r, g) ≤ S(r, g),

which is impossible. Hence, H(z+c) = H(z), and (4.8) gives g(z)+g(z+c) = 0,
this implies that f is a periodic function with period 2c.

Case 2. n = 3. Now, we can rewrite (4.1) as

[f(z + c) − f(z)][f(z + c) − ηf(z)][f(z + c) − η2f(z)]

= a1[f ′(z) − f ′(z + c)] + · · · + ak[f (k)(z) − f (k)(z + c)],
(4.13)

where η(�= 1) is a cube-root of the unity.
If f(z + c) − f(z) ≡ 0, then f is a periodic function with period c.
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If f(z + c) − f(z) �≡ 0, (4.13) can be rewritten as

[f(z + c) − ηf(z)][f(z + c) − η2f(z)]

= −a1
f ′(z) − f ′(z + c)
f(z) − f(z + c)

− · · · − ak
f (k)(z) − f (k)(z + c)

f(z) − f(z + c)

= −a1
g′(z)
g(z)

− · · · − ak
g(k)(z)
g(z)

,

(4.14)

where

g(z) = f(z) − f(z + c). (4.15)

Define pi(z) = g(i)(z)
g(z) , i = 1, 2, · · · , k, and H(z) = −a1p1(z) − · · · − akpk(z).

Then (4.14) becomes

[f(z + c) − ηf(z)][f(z + c) − η2f(z)] = H(z). (4.16)

Besides, the Logarithmic Derivative Lemma gives

T (r,H) = m(r,H) ≤ m(r, p1) + · · · + m(r, pk) + O(1)

= O
(

log(rT (r, g))
)

(r → ∞, r �∈ E0),

where E0 is a set whose linear measure is not greater than 2.
Note that ρ2(f) < 1, T (r, f(z + c)) = T (r, f(z)) + S(r, f) ( see, e.g., [2]

and [3] ). By making use of (4.15), it is easy to see that T (r, g) ≤ O(T (r, f)).
It clearly follows by ρ2(f) < 1 that log T (r, f) ≤ rλ, where λ (< 1) is a
positive number. Hence, T (r,H) ≤ O(log rT (r, g)) ≤ O(rλ), which implies
that ρ(H) < 1. In addition, by the Hadamard factorization theorem, (4.16)
can be changed as

f(z + c) − ηf(z) = Π1(z)eα(z) (4.17)

and

f(z + c) − η2f(z) = Π2(z)e−α(z), (4.18)

where α is a non-constant entire function satisfying ρ(α) < 1, Π1(z) is the
canonical product of f(z + c) − ηf(z) formed with its zeros, Π2(z) is the
canonical product of f(z + c)−η2f(z) formed with its zeros, and Π1(z), Π2(z)
satisfy

Π1(z)Π2(z) = H(z). (4.19)

Using Theorem 2.2 and Theorem 2.3 in [11] , it is easy to deduce that

ρ(Π1) = τ(Π1) ≤ τ(H) ≤ ρ(H) < 1.

By applying the same analysis, we can easily conclude the following result

ρ(Π2) < 1.
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Combining (4.17) and (4.18) yields

f(z) =
Π1(z)eα(z) − Π2(z)e−α(z)

η(η − 1)
, (4.20)

f(z + c) =
ηΠ1(z)eα(z) − Π2(z)e−α(z)

η − 1
. (4.21)

Thus, a routine computation leads to

η2Π1(z)eα(z) − ηΠ2(z)e−α(z) = Π1(z + c)eα(z+c) − Π2(z + c)e−α(z+c).

(4.22)

Now, dividing (4.22) by η2Π1(z)eα(z), we obtain

1
η

Π2(z)
Π1(z)

e−2α(z) +
1
η2

Π1(z + c)
Π1(z)

eα(z+c)−α(z) − 1
η2

Π2(z + c)
Π1(z)

e−α(z+c)−α(z) = 1.

(4.23)

Since α is a non-constant entire function with ρ(α) < 1, then −α(z + c)−α(z)
is not a constant. Otherwise, if −α(z + c) − α(z) is a constant, then α′(z) is
a periodic function, and ρ(α′) = ρ(α) ≥ 1, a contradiction. Now, applying
Lemma 2.5 to (4.23) yields

1
η2

Π1(z + c)
Π1(z)

eα(z+c)−α(z) ≡ 1. (4.24)

On the other hand, dividing (4.22) by ηΠ2(z)e−α(z) implies

η
Π1(z)
Π2(z)

e2α(z) − 1
η

Π1(z + c)
Π2(z)

eα(z+c)+α(z) +
1
η

Π2(z + c)
Π2(z)

e−α(z+c)+α(z) = 1.

(4.25)

Obviously, 2α(z) and α(z+c)+α(z) are not constants. Armed with Lemma 2.5
and (4.25), we deduce

1
η

Π2(z + c)
Π2(z)

e−α(z+c)+α(z) ≡ 1. (4.26)

Combining (4.24) and (4.26) yields

Π1(z + c)Π2(z + c) = Π1(z)Π2(z).

This suggests that H(z + c) = H(z). We conclude from ρ(H) < 1 that H must
be a constant. Thus, f(z + c) − ηf(z), f(z + c) − η2f(z) have no zeros, which
shows that Π1(z), Π2(z) are constants. It follows from (4.24) and (4.26) that

eα(z+c)−α(z) = η2 and e−α(z+c)+α(z) = η,

this results in

α(z + c) − α(z) ≡ C, (4.27)

where C is a constant. Differentiating (4.27) yields α′(z+c)−α′(z) ≡ 0, namely
α′(z) is a periodic function. Noting ρ(α′) = ρ(α) < 1, we know α′(z) must be
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a constant, say, A. Thus, α(z) = Az + B with a constant B. By (4.20), we see
that f is a periodic function with period 2πi

A .
Case 3. n ≥ 4. To complete the proof, we rewrite (4.1) as

[f(z + c)n−1 + f(z + c)n−2f(z) + · · · + f(z)n−1][f(z + c) − f(z)]

= a1[f ′(z) − f ′(z + c)] + · · · + ak[f (k)(z) − f (k)(z + c)].
(4.28)

If f(z + c) − f(z) ≡ 0, then f is a periodic function with period c.
If f(z + c) − f(z) �≡ 0, we change (4.28) into

f(z + c)n−1 + f(z + c)n−2f(z) + · · · + f(z)n−1

= −a1
f ′(z) − f ′(z + c)
f(z) − f(z + c)

− · · · − ak
f (k)(z) − f (k)(z + c)

f(z) − f(z + c)

= −a1
g′(z)
g(z)

− · · · − ak
g(k)(z)
g(z)

,

(4.29)

where

g(z) = f(z) − f(z + c). (4.30)

Define pi(z) = g(i)(z)
g(z) , i = 1, 2, · · · , k, and H(z) = −a1p1(z) − · · · − akpk(z).

Then (4.29) becomes

f(z + c)n−1 + f(z + c)n−2f(z) + · · · + f(z)n−1 = H(z). (4.31)

Now, using the Logarithmic Derivative Lemma, we have

T (r,H) = m(r,H) ≤ m(r, p1) + · · · + m(r, pk) + O(1) ≤ S(r, g).

By (4.30), we conclude

f(z)
(
1 − f(z + c)

f(z)

)
= g(z). (4.32)

Moreover, (4.31) gives

f(z)n−1

(
f(z + c)n−1

f(z)n−1
+

f(z + c)n−2

f(z)n−2
+ · · · +

f(z + c)
f(z)

+ 1
)

= H(z).

(4.33)

Set ω(z) = f(z+c)
f(z) . Obviously, ω �≡ 1. Combining (4.32) and (4.33) yields

(1 − ω(z))n−1

ω(z)n−1 + ω(z)n−2 + · · · + ω(z) + 1
=

g(z)n−1

H(z)
,

and so

(n − 1)T (r, ω) = (n − 1)T (r, g) + S(r, g).

Therefore, equation (4.33) implies

ω(z)n−1 + ω(z)n−2 + · · · + ω(z) + 1 = H(z)
1

f(z)n−1
,
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and, consequently

N
(
r,

1
ωn−1 + ωn−2 + · · · + ω + 1

)
= N

(
r,

1
H

)
≤ T (r,H) = S(r, g) = S(r, ω).

Now, applying the second main theorem gives

(n − 2)T (r, ω) ≤ N
(
r,

1
ω − 1

)
+ N

(
r,

1
ωn−1 + ωn−2 + · · · + ω + 1

)
+ S(r, ω)

≤ N
(
r,

1
ω − 1

)
+ S(r, ω)

≤ T
(
r,

1
ω − 1

)
+ S(r, ω).

Thus, ω (�≡ 1) must be a constant. It follows by (4.32) that T (r, f) = T (r, g)+
S(r, f). A contradiction follows by (4.33) and (n − 1)T (r, f) = T (r,H) +
S(r, f) = S(r, g) = S(r, f) since n ≥ 4.

This finishes the proof of Theorem 1.2.
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