

On the Periodicity of Entire Functions

Weiran Lü and Xiaoxue Zhang

Abstract. The purpose of this paper is mainly to prove that if f is a transcendental entire function of hyper-order strictly less than 1 and $f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z)$ is a periodic function, then $f(z)$ is also a periodic function, where *n*, *k* are positive integers, and a_1, \dots, a_k are constants. Meanwhile, we offer a partial answer to Yang's Conjecture, theses results extend some previous related theorems.

Mathematics Subject Classification. 30D35, 39A10.

Keywords. Periodicity, entire function, order.

1. Introduction and Main Results

Herein let f denote a non-constant meromorphic function and we assume that the reader is familiar with the fundamental results of Nevanlinna theory and its standard notation such as $m(r, f)$, $N(r, f)$, $T(r, f)$, etc (see e.g., [\[4](#page-11-0)] and $[11]$. In the sequel, $S(r, f)$ will be used to denote a quantity that satisfies $S(r, f) = o(T(r, f))$ as $r \to \infty$, outside possibly an exceptional set of r values
of finite linear measure, and a meromorphic function g is said to be a small of finite linear measure, and a meromorphic function a is said to be a small function of f if $T(r, a) = S(r, f)$. We use $\rho(f)$ and $\rho_2(f)$ to denote the order and hyper-order of f respectively.

The convergence exponent of zeros of f is defined as

$$
\tau(f) = \limsup_{r \to \infty} \frac{\log N(r, \frac{1}{f})}{\log r} = \limsup_{r \to \infty} \frac{\log n(r, \frac{1}{f})}{\log r}.
$$

In addition, a complex number a is said to be a Borel exceptional value f of f if

$$
\limsup_{r \to \infty} \frac{\log^+ n\left(r, \frac{1}{f-a}\right)}{\log r} < \rho(f).
$$

B Birkhäuser

In this note, we mainly consider the periodicity of entire functions, namely, if $f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z)$ is a periodic function, then $f(z)$ is also a periodic function periodic function.

The motivation of this paper arises from the study of the real transcendental entire solutions of the differential equation

$$
f(z)f^{(k)}(z) = p(z)\sin^2 z,
$$

where $p(z)$ is a non-zero polynomial. It seems to us that Titchmarsh [\[9](#page-11-2)] firstly
proved that the differential equation $f(z)f''(z) = -\sin^2 z$ has no real entire proved that the differential equation $f(z)f''(z) = -\sin^2 z$ has no real entire solutions of finite order other than $f(z) = +\sin z$. The follow-up works were solutions of finite order other than $f(z) = \pm \sin z$. The follow-up works were due to Li, Lü and Yang in $[8]$ $[8]$, where they considered the similar problem when $f(z)$ is real and of finite order. They obtained $f(z)f''(z) = -\sin^2 z$ has entire solutions $f(z) = \pm \sin z$ and no other solutions. Recently, Yang proposed the following interesting conjecture, see e.g., [\[8\]](#page-11-3) and [\[10](#page-11-4)].

Yang's Conjecture. Let f be a transcendental entire function and $k \geq 1$ be an integer. If $f(z)f^{(k)}(z)$ is a periodic function, then $f(z)$ is also a periodic function function.

From then on, a number of papers have focused on Yang's Conjecture, see e.g., [\[6](#page-11-5),[7\]](#page-11-6) and references therein.

Recently, regarding Yang's Conjecture, Liu et al. [\[5](#page-11-7)] obtained the following result.

Theorem A. *Let* f *be a transcendental entire function and* n, k *be positive integers.* If $f(z)^n f^{(k)}(z)$ *is a periodic function and one of the following conditions*
is satisfied is satisfied

(i) $k = 1$;

(ii) $f(z) = e^{h(z)}$, where h *is a non-constant polynomial*;
(iii) f has a non-zero Picard exceptional value and f is

(iii) f *has a non-zero Picard exceptional value and* f *is of finite order,*

then f(z) *is also a periodic function.*

A natural question would arise: what will happen if we drop the condition " finite order " in Theorem [A.](#page-1-0) In this note, by considering a different proofs, we obtain the following result, which offers a partial answer to Yang's Conjecture, and improves Theorem [A](#page-1-0) and references therein.

Theorem 1.1. *Let* f *be a transcendental entire function of hyper-order strictly less than* ¹, *and* n, k *be positive integers. Suppose that* f(z) *has a finite Borel exceptional value* b, and $f(z)^n f^{(k)}(z)$ *is a periodic function, then* $f(z)$ *is also a periodic function.*

Remark 1.1. If b is a Picard exceptional of f , then b is a Borel exceptional of f . $\frac{1}{\sqrt{2}}$

In addition, Liu et al. [\[5](#page-11-7)] also obtained the following result.

Theorem B. Let f be a transcendental entire function and $n > 2$, $k > 1$ be *integers. If* $f(z)^n + f^{(k)}(z)$ *is a periodic function with period c and one of the*
following conditions is satisfied *following conditions is satisfied*

- *(i)* $k = 1$;
- *(ii)* $f(z + c) f(z)$ *has no zeros:*
- *(iii)* the zeros multiplicity of $f(z + c) f(z)$ is great than or equal to k; then $f(z)$ *is also a periodic function with period c or* 2*c*.

In this paper, we will prove the following result.

Theorem 1.2. *Let* f *be a transcendental entire function of hyper-order strictly less than 1, and* $n \geq 2$, $k \geq 1$ *be integers. If* $f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z)$
is a periodic function, where a_1, \ldots, a_k are constants then $f(z)$ *is also a ne*less than 1, and $n \geq 2$, $k \geq 1$) be integers. If $f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z)$ *is a periodic function, where* a_1, \dots, a_k *are constants, then* $f(z)$ *is also a periodic function riodic function.*

Remark [1.2](#page-2-0). (i) The condition " $n \geq 2$ " in Theorem 1.2 is necessary. For example, let $f(z) = ze^{-z}$. Then

$$
f(z) + f'(z) + f''(z) + f'''(z) = 2e^{-z}
$$

is a periodic function, however $f(z) = ze^{-z}$ is not a periodic function.

(ii) Carefully checking the proof of Theorem [1.2,](#page-2-0) we may find when $n = 2$ or $n \geq 4$, the hypothesis " $\rho_2(f) < 1$ " can be removed from Theorem [1.2.](#page-2-0)

2. Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (see, e.g., [\[3\]](#page-11-8)). *Let* f *be a non-constant meromorphic function with* $\rho_2(f) < 1, c \in \mathbb{C}.$ Then

$$
m\Big(r,\frac{f(z+c)}{f(z)}\Big)=S(r,f),
$$

outside of a possible exceptional set with finite logarithmic measure.

It is pointed out that if f is of finite order, we have

Lemma 2.1' (see, e.g., [\[2](#page-11-9)]). Let f be a meromorphic function with $\rho = \rho(f)$ $+\infty$, $c \neq 0$) $\in \mathbb{C}$. Then for each $\varepsilon > 0$, we have

$$
m\left(r, \frac{f(z+c)}{f(z)}\right) = O(r^{\rho-1+\varepsilon}).
$$

By applying Lemma [2.1](#page-2-1) and the Logarithmic Derivative Lemma, we have the following result.

Lemma 2.2. Let f be a non-constant meromorphic function with $\rho_2(f) < 1$. *Then for* $c \in \mathbb{C}$ *and any positive integer* k, we have

$$
m\left(r, \frac{f^{(k)}(z+c)}{f(z)}\right) = S(r, f),
$$

outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3 ([\[11\]](#page-12-0), Lemma 5.1). *Let* f *denote a non-constant periodic function. Then* $\rho(f) \geq 1$.

Lemma 2.4 ([\[1\]](#page-11-10)). *Let* g *be a function transcendental and meromorphic in the plane of order less than 1, and* $h > 0$. *Then there exists an* ε -set E such that

$$
\frac{g'(z+c)}{g(z+c)} \to 0, \quad \frac{g(z+c)}{g(z)} \to 1 \quad as \quad z \to \infty \quad in \quad \mathbb{C} \backslash E,
$$

uniformly in c for $|c| \leq h$. *Further,* E may be chosen so that for large z not in E the function q has no zeros or poles in $|\zeta - z| < h$.

Remark 2.1. According to the works of Hayman (see, e.g., [\[4](#page-11-0)]), an ε set E is defined to be a countable union of open discs not containing the origin and subtending angles at the origin whose sum is finite. Suppose that E is an ε set, then the set of $r \geq 1$ for which the circle $S(0, r)$ meets E has finite logarithmic measure and for almost all real θ the intersection of E with the ray arg $z = \theta$ is bounded.

Lemma 2.5. ([\[11](#page-12-0)], Theorem 1.62) *Suppose that* $f_i (j = 1, 2, \dots, n)$ ($n \ge 3$) *are meromorphic functions which are not constants except for* f_n . *Furthermore, let*

$$
\sum_{j=1}^{n} f_j = 1.
$$

If $f_n \not\equiv 0$ *and*

$$
\sum_{j=1}^{n} N(r, \frac{1}{f_j}) + (n-1) \sum_{j=1}^{n} \overline{N}(r, f_j) < (\lambda + o(1)) T(r, f_k),
$$

where $r \in I$, *I is a set whose linear measure is infinite*, $k \in \{1, 2, \dots, n-1\}$ *and* $\lambda < 1$ *, then* $f_n \equiv 1$ *.*

3. Proof of Theorem [1.1](#page-1-1)

Note that b is a finite Borel exceptional value of f . Next, two cases will be considered.

Case 1. If $b = 0$, by the Hadamard factorization theorem, we get

$$
f(z) = Q(z)e^{p(z)},
$$

where Q is the canonical product of f formed with its zeros, and p is a nonconstant entire function satisfying $\rho(p) < 1$. Using the facts (see., e.g. [\[11\]](#page-12-0), Theorem 2.2 and Theorem 2.3), it is easy to deduce that

$$
\rho(Q) = \tau(Q) = \tau(f) < \rho(f).
$$

Thus, $\rho(f) = \rho(e^p)$. Besides, since $f(z)^n f^{(k)}(z)$ is a periodic function period c then with period c, then

$$
f(z)^n f^{(k)}(z) = f(z+c)^n f^{(k)}(z+c).
$$
 (3.1)

Substituting $f(z) = Q(z)e^{p(z)}$ into [\(3.1\)](#page-4-0), it follows without difficulty that

$$
[Q(z)e^{p(z)}]^n e^{p(z)} H_1(z) = [Q(z+c)e^{p(z+c)}]^n e^{p(z+c)} H_1(z+c), \quad (3.2)
$$

where H_1 is a differential polynomial of Q and p, namely,

$$
H_1(z) = Q^{(k)}(z) + A_1 Q^{(k-1)}(z) p'(z) + A_2 Q^{(k-2)}(z) [p''(z)]^2 + \dots + Q(z) p^{(k)}(z)
$$

with constants A_i $(i = 1, 2, \dots)$.

Thereby, $\rho(H_1) \leq \max\{\rho(Q), \rho(p)\} < \rho(f)$. Now, we can rewrite [\(3.2\)](#page-4-1) as

$$
e^{(n+1)[p(z)-p(z+c)]} = \frac{H_1(z+c)}{H_1(z)} \frac{Q(z+c)^n}{Q(z)^n}.
$$
\n(3.3)

In addition, [\(3.3\)](#page-4-2) shows that $\rho(e^{p(z)-p(z+c)}) < +\infty$ since $\rho(H_1) < +\infty$, $) < +\infty$ since $\rho(H_1) < +\infty$,
 γ compared $\sup_{t \geq 0} \rho(x) - \rho(x + c)$ $\rho(Q) < +\infty$. This implies $p(z) - p(z + c)$ is a polynomial, say $p(z) - p(z + c) =$
 $q_0 z^m + \cdots + q_m$ where m is a natural number and q_0, \cdots, q_m are constants $q_0z^m + \cdots + q_m$, where m is a natural number and q_0, \cdots, q_m are constants.

If $m > 1$, then $p^{(m+1)}(z) - p^{(m+1)}(z + c) \equiv 0$, which implies $p^{(m+1)}$ is a periodic function. Therefore, Lemma [2.3](#page-3-0) and $\rho(p^{(m+1)}) = \rho(p) < 1$ show that $p^{(m+1)}(z)$ is a constant, this leads to p is a polynomial, say $p(z) = a_0 z^{m+1} +$ $\cdots + a_{m+1}$. In this case, it is easy to see $\rho(f) = m + 1$, and $\rho(p) = 0$.

Set $\rho(Q) = \sigma$. Then $\rho(H_1) \leq \sigma$, and $\sigma \leq m + 1$.

Again, applying Lemma $2.1'$ to (3.3) , we obtain

$$
m(r, e^{(n+1)[p(z)-p(z+c)]}) = m\left(r, \frac{H_1(z+c)}{H_1(z)}\frac{Q(z+c)^n}{Q(z)^n}\right),
$$

which implies $r^m \leq O(r^{\sigma-1+\varepsilon})$. This is impossible since we can choose $\varepsilon > 0$
small enough such that $\sigma - 1 + \varepsilon < m$ small enough such that $\sigma - 1 + \varepsilon < m$.

Thus, $p(z) = a_0 z + a_1$, where a_0 , a_1 are constants. Furthermore, if we set $e^{(n+1)a_0c} = A$, then

$$
A = \frac{H_1(z+c)}{H_1(z)} \frac{Q(z+c)^n}{Q(z)^n}.
$$

On the other hand, by Lemma [2.4,](#page-3-1) there exists a ε -set E such that

$$
\frac{H_1(z+c)}{H_1(z)} \to 1, \quad \frac{Q(z+c)}{Q(z)} \to 1, \quad \text{as} \quad z \to \infty \text{ in } \mathbb{C} \backslash E.
$$

Trivially, $A = 1$, and

$$
\frac{H_1(z+c)}{H_1(z)} \frac{Q(z+c)^n}{Q(z)^n} = 1.
$$

It means that $H_1(z)Q(z)^n$ is a periodic function. Hence $\rho(H_1(z)Q(z)^n) \ge$
 $H_1(z)Q(z)^n$ is not a constant It follows by $\rho(H_1(z)Q(z)^n) < 1$ that 1 if $H_1(z)Q(z)^n$ is not a constant. It follows by $\rho(H_1(z)Q(z)^n) < 1$ that $H_1(z)Q(z)^n$ is a constant. Therefore, Q must be a constant. Thus, we conclude that $f(z)$ must be a periodic function with period $\frac{2\pi i}{a_0}$.

Case 2. If $b \neq 0$, then by the Hadamard factorization theorem, we get

$$
f(z) = Q(z)e^{p(z)} + b,
$$

where Q is the canonical product of $f - b$ formed with its zeros, and p is a
non-constant entire function satisfying $\rho(n) < 1$. Using the same methods as non-constant entire function satisfying $\rho(p) < 1$. Using the same methods as the proof in **Case 1**, $\rho(Q) = \tau(Q) = \tau(f - b) < \rho(f - b) = \rho(f)$ follows. Thus, $\rho(f) = \rho(e^p)$.

Since $f(z)^n f^{(k)}(z)$ is a periodic function with period c, then

$$
f(z)^n f^{(k)}(z) = f(z+c)^n f^{(k)}(z+c).
$$
\n(3.4)

Substituting $f(z) = Q(z)e^{p(z)} + b$ into [\(3.4\)](#page-5-0), we have

$$
[Q(z)e^{p(z)} + b]^n e^{p(z)} H_1(z) = [Q(z+c)e^{p(z+c)} + b]^n e^{p(z+c)} H_1(z+c),
$$

where H_1 is a differential polynomial of Q and p, namely, $H_1(z) = Q^{(k)}(z) + A_1 Q^{(k-1)}(z) p'(z) + A_2 Q^{(k-2)}(z) [p''(z)]^2 + \cdots + Q(z) p^{(k)}(z)$ with constants $A_i(i = 1, 2, \dots)$. In this case, we conclude $\rho(H_1) \leq \max\{\rho(Q), \rho(p)\} \leq \rho(f).$

Besides, we find

$$
Q(z)^n e^{(n+1)p(z)} + C_n^1 b Q(z)^{n-1} e^{np(z)} + \dots + C_n^{n-1} b^{n-1} Q(z) e^{2p(z)} + b^n e^{p(z)} =
$$

\n
$$
H(z) [Q(z+c)^n e^{(n+1)p(z+c)} + C_n^1 b Q(z+c)^{n-1} e^{np(z+c)} + \dots + C_n^{n-1} b^{n-1} Q(z+c) e^{2p(z+c)} + b^n e^{p(z+c)}],
$$

where $H(z) = \frac{H_1(z+c)}{H_1(z)}$, and $\rho(H) < \rho(f)$.

Dividing both sides of the above equation by $b^n e^{p(z)}$ gives

$$
\frac{H(z)}{b^n}e^{(n+1)p(z+c)-p(z)}Q(z+c)^n + \dots + H(z)e^{p(z+c)-p(z)}
$$

$$
-\frac{Q(z)^n}{b^n}e^{np(z)} - \dots - C_n^{n-1}\frac{Q(z)}{b}e^{p(z)} = 1.
$$
(3.5)

Next, we will prove $mp(z + c) - p(z)$ $(m = 2, \dots, n + 1)$ are not constants.
In fact, if n is a non-constant polynomial, it is obvious. Now, we assume that In fact, if p is a non-constant polynomial, it is obvious. Now, we assume that p is a transcendental entire function. In this case, if $mp(z + c) - p(z) = q$, here q is a constant, then $mp'(z + c) = p'(z)$. Noting $\rho(p) = \rho(p') < 1$, we apply Lemma 2.4 to n' and obtain $m - 1$ a contradiction. Thereby $mn(z + c)$ apply Lemma [2.4](#page-3-1) to p' and obtain $m = 1$, a contradiction. Thereby, $mp(z +$ c) – $p(z)(m = 2, \dots, n + 1)$ can not be constants. To complete the proof, we now employ Lemma [2.5](#page-3-2) to [\(3.5\)](#page-5-1) and have $H(z)e^{p(z+c)-p(z)} \equiv 1$. It means that $H_1(z+c)e^{p(z+c)} = H_1(z)e^{p(z)},$ and

$$
[b + Q(z)e^{p(z)}]^n = [b + Q(z + c)e^{p(z+c)}]^n
$$

follows. Thus $f(z)^n = f(z+c)^n$ shows that f is a periodic function with period c or nc c or nc.

This completes the proof of Theorem [1.1.](#page-1-1)

4. Proof of Theorem [1.2](#page-2-0)

By assumption, $f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z)$ is a periodic function with period c then period c, then

$$
f(z+c)^n + a_1 f'(z+c) + \cdots + a_k f^{(k)}(z+c) = f(z)^n + a_1 f'(z) + \cdots + a_k f^{(k)}(z),
$$

and thus

$$
f(z+c)^n - f(z)^n = a_1[f'(z) - f'(z+c)] + \dots + a_k[f^{(k)}(z) - f^{(k)}(z+c)].
$$
\n(4.1)

Next, we consider three cases.

Case 1. $n = 2$. In this case, we can rewrite (4.1) as

$$
[f(z+c) + f(z)][f(z+c) - f(z)]
$$

= $a_1[f'(z) - f'(z+c)] + \dots + a_k[f^{(k)}(z) - f^{(k)}(z+c)].$ (4.2)

If $f(z + c) - f(z) \equiv 0$, then $f(z)$ is a periodic function with period c.

Next, we may assume that $f(z + c) - f(z) \neq 0$. In this case, [\(4.2\)](#page-6-1) can be rewritten as

$$
f(z+c) + f(z) = -a_1 \frac{f'(z) - f'(z+c)}{f(z) - f(z+c)} - \dots - a_k \frac{f^{(k)}(z) - f^{(k)}(z+c)}{f(z) - f(z+c)}
$$

=
$$
-a_1 \frac{g'(z)}{g(z)} - \dots - a_k \frac{g^{(k)}(z)}{g(z)},
$$
(4.3)

where

$$
g(z) = f(z) - f(z + c).
$$
 (4.4)

Define $p_i(z) = \frac{g^{(i)}(z)}{g(z)}$ $(i = 1, 2, \dots, k)$, and

$$
H(z) = -a_1 p_1(z) - \dots - a_k p_k(z). \tag{4.5}
$$

Then [\(4.3\)](#page-6-2) becomes

$$
f(z + c) + f(z) = H(z).
$$
 (4.6)

Besides, applying the Logarithmic Derivative Lemma to [\(4.3\)](#page-6-2), we have

$$
T(r, H) = m(r, H) \le m(r, p_1) + \dots + m(r, p_k) + O(1) \le S(r, g). \tag{4.7}
$$

Combining (4.4) and (4.6) yields that

$$
f(z) = \frac{1}{2}[H(z) + g(z)], \ f(z + c) = \frac{1}{2}[H(z) - g(z)].
$$

Thus, a routine computation leads to

$$
g(z) + g(z + c) = H(z) - H(z + c).
$$
 (4.8)

Moreover, [\(4.8\)](#page-7-0) results in

$$
g^{(i)}(z) + g^{(i)}(z+c) = H^{(i)}(z) - H^{(i)}(z+c).
$$
\n(4.9)

Thereby, it follows by $g^{(i)}(z) = p_i(z)g(z)$ and [\(4.9\)](#page-7-1) that

$$
\begin{cases}\np_1(z)g(z) + p_1(z+c)g(z+c) = H'(z) - H'(z+c), \\
p_2(z)g(z) + p_2(z+c)g(z+c) = H''(z) - H''(z+c), \\
\dots \\
p_k(z)g(z) + p_k(z+c)g(z+c) = H^{(k)}(z) - H^{(k)}(z+c).\n\end{cases} (4.10)
$$

Now, combining (4.5) and (4.10) yields

$$
H(z)g(z) + H(z+c)g(z+c) = -a_1[H'(z) - H'(z+c)]
$$

$$
- \cdots - a_k[H^{(k)}(z) - H^{(k)}(z+c)].
$$

(4.11)

Furthermore, substituting $g(z + c) = H(z) - H(z + c) - g(z)$ in [\(4.11\)](#page-7-3), we find
 $H(z)g(z) + H(z + c)[H(z) - H(z + c) - g(z)]$

$$
H(z)g(z) + H(z + c)[H(z) - H(z + c) - g(z)]
$$

= $-a_1[H'(z) - H'(z + c)] - \cdots - a_k[H^{(k)}(z) - H^{(k)}(z + c)].$

If $H(z + c) \neq H(z)$, we obtain

$$
g(z) = \frac{-a_1[H'(z) - H'(z+c)] - \dots - a_k[H^{(k)}(z) - H^{(k)}(z+c)] + H(z+c)^2 - H(z+c)H(z)}{H(z) - H(z+c)}.
$$
\n
$$
(4.12)
$$

It follows from (4.7) , (4.12) and Lemma [2.2](#page-2-2) that

$$
T(r,g)\leq S(r,g),
$$

which is impossible. Hence, $H(z+c) = H(z)$, and (4.8) gives $g(z)+g(z+c)=0$, this implies that f is a periodic function with period $2c$.

Case 2. $n = 3$. Now, we can rewrite (4.1) as

$$
[f(z+c) - f(z)][f(z+c) - \eta f(z)][f(z+c) - \eta^2 f(z)]
$$

= $a_1[f'(z) - f'(z+c)] + \dots + a_k[f^{(k)}(z) - f^{(k)}(z+c)],$ (4.13)

where $\eta(\neq 1)$ is a cube-root of the unity.

If $f(z + c) - f(z) \equiv 0$, then f is a periodic function with period c.

If $f(z + c) - f(z) \neq 0$, [\(4.13\)](#page-7-5) can be rewritten as $[f(z + c) - nf(z)][f(z + c) - \eta^2 f(z)]$ $=-a_1 \frac{f'(z) - f'(z + c)}{f(z) - f(z + c)}$ $\frac{f(z) - f(z+c)}{f(z) - f(z+c)}$ – $\cdots - a_k$ $\frac{f^{(k)}(z) - f^{(k)}(z+c)}{f(z) - f(z+c)}$ $f(z) - f(z + c)$ $=-a_1 \frac{g'(z)}{g(z)}$ $\overline{g(z)}$ – \cdots – a_k $\frac{g^{(k)}(z)}{g(z)}$ $g(z)$ [,] (4.14)

where

$$
g(z) = f(z) - f(z + c).
$$
 (4.15)

Define $p_i(z) = \frac{g^{(i)}(z)}{g(z)}$, $i = 1, 2, \dots, k$, and $H(z) = -a_1 p_1(z) - \dots - a_k p_k(z)$.
Then $(A, 14)$ becomes Then [\(4.14\)](#page-8-0) becomes

$$
[f(z+c) - \eta f(z)][f(z+c) - \eta^2 f(z)] = H(z). \tag{4.16}
$$

Besides, the Logarithmic Derivative Lemma gives

$$
T(r, H) = m(r, H) \le m(r, p_1) + \dots + m(r, p_k) + O(1)
$$

= $O\left(\log(rT(r, g))\right)(r \to \infty, r \notin E_0),$

where E_0 is a set whose linear measure is not greater than 2.

Note that $\rho_2(f) < 1$, $T(r, f(z + c)) = T(r, f(z)) + S(r, f)$ (see, e.g., [\[2\]](#page-11-9) and [\[3](#page-11-8)]). By making use of [\(4.15\)](#page-8-1), it is easy to see that $T(r, g) \leq O(T(r, f))$. It clearly follows by $\rho_2(f) < 1$ that $\log T(r, f) \leq r^{\lambda}$, where $\lambda \leq 1$ is a positive number. Hence, $T(r, H) \leq O(\log rT(r, g)) \leq O(r^{\lambda})$, which implies that $\rho(H)$ < 1. In addition, by the Hadamard factorization theorem, [\(4.16\)](#page-8-2) can be changed as

$$
f(z + c) - \eta f(z) = \Pi_1(z) e^{\alpha(z)}
$$
 (4.17)

and

$$
f(z+c) - \eta^2 f(z) = \Pi_2(z) e^{-\alpha(z)},
$$
\n(4.18)

where α is a non-constant entire function satisfying $\rho(\alpha) < 1$, $\Pi_1(z)$ is the canonical product of $f(z + c) - \eta f(z)$ formed with its zeros, $\Pi_2(z)$ is the canonical product of $f(z+c)-\eta^2f(z)$ formed with its zeros, and $\Pi_1(z)$, $\Pi_2(z)$ satisfy

$$
\Pi_1(z)\Pi_2(z) = H(z).
$$
 (4.19)

Using Theorem 2.2 and Theorem 2.3 in [\[11](#page-12-0)] , it is easy to deduce that

$$
\rho(\Pi_1) = \tau(\Pi_1) \le \tau(H) \le \rho(H) < 1.
$$

By applying the same analysis, we can easily conclude the following result

$$
\rho(\Pi_2) < 1.
$$

Combining (4.17) and (4.18) yields

$$
f(z) = \frac{\Pi_1(z)e^{\alpha(z)} - \Pi_2(z)e^{-\alpha(z)}}{\eta(\eta - 1)},
$$
(4.20)

$$
f(z+c) = \frac{\eta \Pi_1(z) e^{\alpha(z)} - \Pi_2(z) e^{-\alpha(z)}}{\eta - 1}.
$$
 (4.21)

Thus, a routine computation leads to

$$
\eta^2 \Pi_1(z) e^{\alpha(z)} - \eta \Pi_2(z) e^{-\alpha(z)} = \Pi_1(z+c) e^{\alpha(z+c)} - \Pi_2(z+c) e^{-\alpha(z+c)}.
$$
\n(4.22)

Now, dividing (4.22) by
$$
\eta^2 \Pi_1(z) e^{\alpha(z)}
$$
, we obtain
\n
$$
\frac{1}{\eta} \frac{\Pi_2(z)}{\Pi_1(z)} e^{-2\alpha(z)} + \frac{1}{\eta^2} \frac{\Pi_1(z+c)}{\Pi_1(z)} e^{\alpha(z+c) - \alpha(z)} - \frac{1}{\eta^2} \frac{\Pi_2(z+c)}{\Pi_1(z)} e^{-\alpha(z+c) - \alpha(z)} = 1.
$$
\n(4.23)

Since α is a non-constant entire function with $\rho(\alpha) < 1$, then $-\alpha(z+c) - \alpha(z)$ is not a constant. Otherwise, if $-\alpha(z + c) - \alpha(z)$ is a constant, then $\alpha'(z)$ is
a periodic function and $\rho(\alpha') = \rho(\alpha) > 1$ a contradiction. Now applying a periodic function, and $\rho(\alpha') = \rho(\alpha) \geq 1$, a contradiction. Now, applying Lemma 2.5 to (4.23) vields Lemma 2.5 to (4.23) yields

$$
\frac{1}{\eta^2} \frac{\Pi_1(z+c)}{\Pi_1(z)} e^{\alpha(z+c) - \alpha(z)} \equiv 1.
$$
\n(4.24)

On the other hand, dividing [\(4.22\)](#page-9-0) by $\eta \Pi_2(z) e^{-\alpha(z)}$ implies

$$
\eta \frac{\Pi_1(z)}{\Pi_2(z)} e^{2\alpha(z)} - \frac{1}{\eta} \frac{\Pi_1(z+c)}{\Pi_2(z)} e^{\alpha(z+c) + \alpha(z)} + \frac{1}{\eta} \frac{\Pi_2(z+c)}{\Pi_2(z)} e^{-\alpha(z+c) + \alpha(z)} = 1.
$$
\n(4.25)

Obviously, $2\alpha(z)$ and $\alpha(z+c)+\alpha(z)$ are not constants. Armed with Lemma [2.5](#page-3-2) and [\(4.25\)](#page-9-2), we deduce

$$
\frac{1}{\eta} \frac{\Pi_2(z+c)}{\Pi_2(z)} e^{-\alpha(z+c) + \alpha(z)} \equiv 1.
$$
\n(4.26)

Combining (4.24) and (4.26) yields

$$
\Pi_1(z+c)\Pi_2(z+c) = \Pi_1(z)\Pi_2(z).
$$

This suggests that $H(z + c) = H(z)$. We conclude from $\rho(H) < 1$ that H must
be a constant. Thus $f(z + c) = nf(z)$, $f(z + c) = r^2 f(z)$ have no zeros, which be a constant. Thus, $f(z + c) - \eta f(z)$, $f(z + c) - \eta^2 f(z)$ have no zeros, which shows that $\Pi_1(z)$, $\Pi_2(z)$ are constants. It follows from [\(4.24\)](#page-9-3) and [\(4.26\)](#page-9-4) that

$$
e^{\alpha(z+c)-\alpha(z)} = \eta^2
$$
 and $e^{-\alpha(z+c)+\alpha(z)} = \eta$,

this results in

$$
\alpha(z+c) - \alpha(z) \equiv C,\tag{4.27}
$$

where C is a constant. Differentiating (4.27) yields $\alpha'(z+c)-\alpha'(z) \equiv 0$, namely $\alpha'(z)$ is a periodic function. Noting $\rho(\alpha') = \rho(\alpha) < 1$, we know $\alpha'(z)$ must be $\alpha'(z)$ is a periodic function. Noting $\rho(\alpha') = \rho(\alpha) < 1$, we know $\alpha'(z)$ must be a constant, say, A. Thus, $\alpha(z) = Az + B$ with a constant B. By [\(4.20\)](#page-9-6), we see that f is a periodic function with period $\frac{2\pi i}{A}$.

Case 3. $n \geq 4$. To complete the proof, we rewrite [\(4.1\)](#page-6-0) as

$$
[f(z+c)^{n-1} + f(z+c)^{n-2}f(z) + \cdots + f(z)^{n-1}][f(z+c) - f(z)]
$$

= $a_1[f'(z) - f'(z+c)] + \cdots + a_k[f^{(k)}(z) - f^{(k)}(z+c)].$ (4.28)

If $f(z + c) - f(z) \equiv 0$, then f is a periodic function with period c.
If $f(z+c) - f(z) \neq 0$, we change (4.28) into If $f(z + c) - f(z) \neq 0$, we change [\(4.28\)](#page-10-0) into

$$
f(z+c)^{n-1} + f(z+c)^{n-2} f(z) + \dots + f(z)^{n-1}
$$

= $-a_1 \frac{f'(z) - f'(z+c)}{f(z) - f(z+c)} - \dots - a_k \frac{f^{(k)}(z) - f^{(k)}(z+c)}{f(z) - f(z+c)}$ (4.29)
= $-a_1 \frac{g'(z)}{g(z)} - \dots - a_k \frac{g^{(k)}(z)}{g(z)},$

where

$$
g(z) = f(z) - f(z + c).
$$
 (4.30)

Define $p_i(z) = \frac{g^{(i)}(z)}{g(z)}$, $i = 1, 2, \dots, k$, and $H(z) = -a_1 p_1(z) - \dots - a_k p_k(z)$.
Then (4.20) becomes Then [\(4.29\)](#page-10-1) becomes

$$
f(z+c)^{n-1} + f(z+c)^{n-2}f(z) + \dots + f(z)^{n-1} = H(z).
$$
 (4.31)

Now, using the Logarithmic Derivative Lemma, we have

 $T(r, H) = m(r, H) \leq m(r, p_1) + \cdots + m(r, p_k) + O(1) \leq S(r, q).$

By [\(4.30\)](#page-10-2), we conclude

$$
f(z)\left(1 - \frac{f(z+c)}{f(z)}\right) = g(z).
$$
 (4.32)

Moreover, [\(4.31\)](#page-10-3) gives

$$
f(z)^{n-1} \left(\frac{f(z+c)^{n-1}}{f(z)^{n-1}} + \frac{f(z+c)^{n-2}}{f(z)^{n-2}} + \dots + \frac{f(z+c)}{f(z)} + 1 \right) = H(z). \tag{4.33}
$$

Set $\omega(z) = \frac{f(z+c)}{f(z)}$. Obviously, $\omega \neq 1$. Combining [\(4.32\)](#page-10-4) and [\(4.33\)](#page-10-5) yields

$$
\frac{(1-\omega(z))^{n-1}}{\omega(z)^{n-1}+\omega(z)^{n-2}+\cdots+\omega(z)+1}=\frac{g(z)^{n-1}}{H(z)},
$$

and so

$$
(n-1)T(r,\omega) = (n-1)T(r,g) + S(r,g).
$$

Therefore, equation [\(4.33\)](#page-10-5) implies

$$
\omega(z)^{n-1} + \omega(z)^{n-2} + \dots + \omega(z) + 1 = H(z) \frac{1}{f(z)^{n-1}},
$$

and, consequently

$$
N(r, \frac{1}{\omega^{n-1} + \omega^{n-2} + \dots + \omega + 1}) = N(r, \frac{1}{H}) \le T(r, H) = S(r, g) = S(r, \omega).
$$

Now, applying the second main theorem gives

$$
(n-2)T(r,\omega) \le N\left(r,\frac{1}{\omega-1}\right) + N\left(r,\frac{1}{\omega^{n-1} + \omega^{n-2} + \dots + \omega + 1}\right) + S(r,\omega)
$$

$$
\le N\left(r,\frac{1}{\omega-1}\right) + S(r,\omega)
$$

$$
\le T\left(r,\frac{1}{\omega-1}\right) + S(r,\omega).
$$

Thus, $\omega (\not\equiv 1)$ must be a constant. It follows by [\(4.32\)](#page-10-4) that $T(r, f) = T(r, g) + S(r, f)$. A contradiction follows by (4.33) and $(n - 1)T(r, f) = T(r, H) +$ $S(r, f)$. A contradiction follows by [\(4.33\)](#page-10-5) and $(n - 1)T(r, f) = T(r, H) +$ $S(r, f) = S(r, g) = S(r, f)$ since $n \ge 4$.

This finishes the proof of Theorem [1.2.](#page-2-0)

Acknowledgements

The authors would like to thank the referees for their several important suggestions and for pointing out some typos in our original manuscript.

References

- [1] Bergweiler, W., Langley, J.K.: Zeros of diffenence of meromorphic functions. Math. Proc. Cambridge Philos. Soc. **142**, 133–147 (2007)
- [2] Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane. Ramanujan J. **16**, 105–129 (2008)
- [3] Halburd, R.G., Korhonen, R.J., Tohge, K.: Holomorphic curves with shiftinvariant hyperplane preimages. Trans. Am. Math. Soc. **366**, 4267–4298 (2014)
- [4] Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)
- [5] Liu, K., Wei, Y.M., Yu, P.Y.: Generalized Yang's conjecture on the periodicity of entire functions. Bull. Korean Math. Soc. (2020). [https://doi.org/10.4134/](https://doi.org/10.4134/BKMS.b190934) [BKMS.b190934](https://doi.org/10.4134/BKMS.b190934)
- [6] Liu, K., Yu, P.Y.: A note on the periodicity of entire functions. Bull. Aust. Math. Soc. **100**, 290–296 (2019)
- [7] Li, X.L., Korhonen, R.: The periodicity of transcendental entire functions. Bull. Aust. Math. Soc. (2020). <https://doi.org/10.1017/S0004972720000039>
- [8] Li, P., L¨u, W.R., Yang, C.C.: Entire solutions of certain types of nonlinear differential equations. Houston. J. Math. **45**, 431–437 (2019)
- [9] Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, Oxford (1939)
- [10] Wang, Q., Hu, P.C.: On zeros and periodicity of entire functions. Acta Math. Sci. **38A**(2), 209–214 (2018)

[11] Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Science Press, Beijing/New York (2003)

Weiran Lü and Xiaoxue Zhang College of Science China University of Petroleum Qingdao 266580 Shandong People's Republic of China e-mail: luwr@upc.edu.cn; 1727928459@qq.com

Received: March 23, 2020. Accepted: October 12, 2020.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.