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Abstract. So far there has not been paid attention to frames that are
balanced, i.e. those frames which sum is zero. In this paper we consider
balanced frames, and in particular balanced unit norm tight frames, in
finite dimensional Hilbert spaces. Here we discover various advantages of
balanced unit norm tight frames in signal processing. They give an exact
reconstruction in the presence of systematic errors in the transmitted
coefficients, and are optimal when these coefficients are corrupted with
noises that can have non-zero mean. Moreover, using balanced frames we
can know that the transmitted coefficients were perturbed, and we also
have an indication of the source of the error. We analyze several properties
of these types of frames. We define an equivalence relation in the set of the
dual frames of a balanced frame, and use it to show that we can obtain
all the duals from the balanced ones. We study the problem of finding
the nearest balanced frame to a given frame, characterizing completely
its existence and giving its expression. We introduce and study a concept
of complement for balanced frames. Finally, we present many examples
and methods for constructing balanced unit norm tight frames.
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1. Introduction

A spanning set of vectors in a finite dimensional Hilbert space is called a frame.
The redundancy of these spanning sets is the crucial property in their vast
types of applications in many different areas of pure and applied mathematics
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and sciences, such as efficient representation of vectors and operators, signal
processing, coding theory, communication theory, sampling theory, quantum
information, and computing among others (see e.g. [11,12,24,29,34]).

In this paper we study balanced frames, i.e. those frames which sum is
zero, and several particular cases of them, especially balanced unit norm tight
frames (see e.g. [5] for the concept of unit norm tight frame).

We show that although non balanced unit norm tight frames are optimal
in many situations that appear in applications (see e.g. [5,10,11,16,34] and
the references therein), balanced unit norm tight frames are even optimal in
cases where the non balanced are not the best ones.

In applications, a signal f is usually represented by a sequence of num-
bers which are measurements of f . In frame theory, these measurements are
expressed as inner products of f with the elements of a frame, and will be
called frame coefficients.

As we will explain in this work, the reconstructions using balanced frames
are robust against systematic errors in the frame coefficients. Systematic errors
can come from a wrong calibration of instruments, inexact methods of obser-
vation, or interference of the environment in the measurement, transmission
or reception processes. A systematic error can be produced, for example, by
the incorrect zeroing of an instrument. Another example are measurements by
radar that can be systematically overestimated if we do not take into account
the slowing down of the waves in the air. Systematic errors are not random,
and cannot be reduced by taking the average of many readings. Considering
this, it is important to highlight that balanced frames are immune to these
type of errors. This means that in the presence of a systematic error in the
frame coefficients, balanced frames still give the exact reconstruction.

In signal processing, the frame coefficients can be perturbed with addi-
tive noises. It has been shown [16] that if the mean of these noises is zero, the
reconstruction of the signal with unit norm tight frames is optimal. We prove
that if we use balanced unit norm tight frames, these noises can have a nonzero
mean but the reconstruction is still optimal. Thus we can deal with noises of
different sources. If the mean is non-zero we are under the presence of non-
white noises. Nonzero mean noises appear naturally in certain applications.
Digital watermarking is an application for which the zero mean assumption
for the noises is not realistic [23]. It is a useful tool for multimedia copyright
protection, access control, annotation and authentication [14,25,27]. In cer-
tain cases such as median filtering, a standard signal processing method for
denoising, the noises in the watermarking channel are additive with a non-zero
mean.

Given a frame, each element of the Hilbert space can be expressed as
linear combinations of the elements of the frame using the so called dual frames.
As we will see, another advantage of balanced frames is that they are resilient
against a perturbation of the dual frame by a constant vector, i.e. if we sum
to each element of the dual frame a fixed vector, we still obtain a dual frame.
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We use this fact to define an equivalence relation in the set of dual frames of a
given balanced frame and prove that all the dual frames can be obtained from
the balanced ones.

We show that balanced frames are robust against one erasure, that is,
they remain to be a frame if we delete any of its elements. The dual frames
of these subfamilies are easy to obtain from the dual frames of the original
family.

If we use a balanced frame the sum of the frame coefficients is always
zero. So, if the transmitted numbers do not have zero sum we know that they
were perturbed. Moreover, as we will explain, if we use balanced frames we
can have an indication of when we are in the presence of a systematic error,
of random additive noises or of other sources of perturbation as e.g. erasures.

In [8,34] it is proved that real balanced unit norm tight frames are spher-
ical 2-designs, a mathematical object applied in different areas. We want to
point out that in contrast to what usually occurs in the context of spherical
2-designs, we are not necessarily interested in working with the minimum pos-
sible number of elements since, as observed before, from the point of view of
frame theory redundancy is convenient for the applications. It can be seen in
[6,7] that balanced unit norm tight frames have advantages for sigma-delta
quantization. In [13] tight frames are characterized using balanced sequences
via diagram vectors. Balanced frames are mentioned in [34] in the definition
of simple lift. But this concept has not so far been developed neither their
multiple advantages noticed.

1.1. Contents

In Sect. 2, we briefly review frames.
In Sect. 3 we analyze the various advantages of balanced frames and

balanced unit norm tight frames for applications which were mentioned before.
In Sect. 4 we show that balanced frames and in particular balanced equal

norm frames and balanced unit norm tight frames behave well, in the sense
that they are invariant under various transformations. We find several charac-
terizations of them and analyze properties of their dual frames.

In Sect. 5 we study the closest balanced frame to a given frame in the
�1 and �2 norms. We give necessary and sufficient conditions for the closest
balanced frame to exist, and for the case it exists we give its expression.

In Sect. 6 we introduce a concept of complement that is more suitable for
balanced frames than the definition used so far for frames in general. Properties
of this new notion are given.

In Sect. 7 we give many examples of balanced unit norm tight frames
such as those corresponding to roots of unity in R

2, certain types of harmonic
frames, frames obtained from Hadamard matrices, partition frames and some
that are spherical t-designs.

Finally, in Sect. 8, we present several explicit and painless methods for
constructing balanced unit norm tight frames.
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2. Preliminaries

In this section we recall some concepts of frame theory [11,12,24,29,34]. We
refer to the mentioned works for more details. We begin introducing some
notation.

2.1. Notation

Let d,K ∈ N. Let Hd be a Hilbert space of dimension d over a field F where
F = R or F = C. We write 〈., .〉 and ‖.‖ for the inner product and the norm in
Hd, respectively. Let L(Hd,HK) be the space of linear transformations from Hd

to HK (we write L(Hd) for L(Hd,Hd)). Let Gl(Hd) (U(Hd)) be set of invertible
(unitary) elements in L(Hd). If T ∈ L(Hd,HK), then im(T ), ker(T ) and T ∗

denote the range, the kernel and the adjoint of T, respectively. If T ∈ L(Hd)
and (fk)K

k=1 is a sequence in Hd, we will write T (fk)K
k=1 for (Tfk)K

k=1. The
elements of FK will be considered as column vectors. We write e for the real
vector which entries are all equal to 1.

2.2. Frames

To a sequence F = (fk)K
k=1 in Hd we associate the synthesis operator

TF : FK → Hd, TFc =
∑K

k=1
ckfk,

the analysis operator

T ∗
F : Hd → F

K , T ∗
Ff = (〈f, fk〉)K

k=1,

the frame operator

SF = TFT ∗
F ,

and the Gram operator

GF = T ∗
FTF .

Definition 2.1. Let F = (fk)K
k=1 be a sequence in Hd. F is a frame for Hd if

span F = Hd.

Proposition 2.2. Let F = (fk)K
k=1 be a sequence in Hd. The following asser-

tions are equivalent:
(1) F is a frame for Hd.
(2) TF is onto.
(3) T ∗

F is one to one.
(4) SF is invertible.
(5) rank(GF ) = d.
(6) There exist α, β > 0 such that

α‖f‖2 ≤
K∑

k=1

|〈f, fk〉|2 ≤ β‖f‖2 for all f ∈ H. (2.1)
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We call α and β in (2.1) the frame bounds. The optimal lower frame bound
is λmin(SF ) = ‖S−1

F ‖−1 and the optimal upper frame bound is λmax(SF ) =
‖SF‖ = ‖TF‖2 where λmin(SF ) and λmax(SF ) are the smallest and largest
eigenvalues of SF , respectively.

Definition 2.3. Let F = (fk)K
k=1 be a sequence in Hd. We say that:

(1) F is balanced (B) if
∑K

k=1 fk = 0.
(2) F is real if GF is a real matrix.
(3) F is equal-norm (EN) if ||fk|| = ||fk′ || for k, k′ = 1, . . . , K. F is unit

norm (UN) if ||fk|| = 1 for k = 1, . . . , K.
(4) F is isogonal if F is EN and there exists an a ∈ R such that 〈fk, fl〉 = a

for k, l ∈ {1, . . . , K}, k �= l.

Isogonal vectors appear in [28] in relation with the structure of soap films
and bubbles. They are a particular case of equiangular frames [18,33], i.e., EN
frames for which there exists a ∈ R such that |〈fk, fl〉| = a for k, l ∈ {1, . . . , K},
k �= l. A unit norm frame is a (spherical) m-distance frame if the inner products
between distinct vectors take m real values [34]. A unit norm isogonal frame
is a 1-distance frame. For the case m = 2 see e.g. [4].

Definition 2.4. Let F = (fk)K
k=1 be a frame for Hd.

(1) F is an α-tight frame (α-TF) if SF = αI. F is a Parseval frame (PF) if
SF = I.

(2) F is maximally robust to erasures if every subset of F with d elements is
a basis for Hd.

(3) F is a simplex frame if GF = I − 1
K eet.

Maximally robust to erasures frames appeared first in [30]. They are also
known as generic frames [9] and full spark frames [1].

If Hd = H
d and F is a simplex frame, then F corresponds to the d + 1

vertices of the regular d-simplex in H
d. We note that a 1-simplex is a line

segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and a 4-simplex
is a pentachoron or pentatope.

The following proposition collects some properties of frames.

Proposition 2.5. Let F = (fk)K
k=1 be a frame for Hd.

(1) If F is an α-UNTF then α = K
d .

(2) F is a UNPF if and only if F is an orthonormal basis.
(3) F is a PF with K = d if and only if F is an orthonormal basis.
(4) F is an α-TF if and only if 1

αF is a Parseval frame.
(5) F is Parseval if and only if GF is an orthogonal projection.
(6) S

−1/2
F F is a PF for Hd.

(7) If F is a simplex frame then K = d + 1 and F is an isogonal PF.
(8) Let W be a subspace of Hd and πW be the orthogonal projection onto W.

If F is an α-TF for Hd then πWF is an α-TF for W.
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Definition 2.6. Two frames F and G are complements of each other if the sum
of the Gramians of S

−1/2
F F and S

−1/2
G G is the identity I.

The complement of a frame of K vectors for a space of dimension d is a
frame of K vectors for a space of dimension K − d.

Definition 2.7. Let F = (fk)K
k=1 and G = (gk)K

k=1 be frames for Hd. Then G is
a dual frame of F if the following reconstruction formula holds

f =
∑K

k=1
〈f, fk〉gk, for all f ∈ Hd,

or equivalently,

TGT ∗
F = I.

Let F = (fk)K
k=1 be a frame for Hd. Then (S−1

F fk)K
k=1 is the canonical

dual frame of F .
If F is an α-tight frame for Hd we have the following reconstruction

formula

f =
1
α

∑K

k=1
〈f, fk〉fk, for all f ∈ Hd.

Proposition 2.8. Let F = (fk)K
k=1 be a frame for Hd and G = (gk)K

k=1 be a
sequence in Hd. The following assertions are equivalent:

(1) G is a dual frame of F .
(2) TG = S−1

F TF + R with R ∈ L(FK ,Hd) and RT ∗
F = 0.

(3) TG = S−1
F TF + W (I − T ∗

FS−1
F TF ) with W ∈ L(FK ,Hd).

Note that a sequence (fk)K
k=1 in Hd is a BUNTF if and only if(√

d
K fk

)K

k=1

is a BENPF. In view of this, we will work either with BUNTFs

or BENPFs according to convenience.

3. Applications of Balanced Frames

In this section we describe various advantages of balanced frames and BUNTFs
for applications. We will see that we can gain already very good properties
assuming only balancedness, which is a condition that can be easily obtained.
Note e.g. that if (fk)K

k=1 is a frame then (f1, . . . , fK ,−∑K
k=1 fk) is a balanced

frame.
As we mentioned in the introduction, the measurements of a signal f ,

that in frame theory are expressed as inner products of f with the elements
of a frame, are used to represent it and will be called frame coefficients. In
obtaining these measurements, or in the transmission or reception of them,
different errors or erasures can occur.
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3.1. Robustness of the Reconstructions Under Systematic Errors

Let F = (fk)K
k=1 be a frame for Hd. Any f ∈ Hd can be represented as a linear

combination f =
∑K

k=1 ckfk. If F is balanced we can change the numbers ck

by summing to each of them a constant c and the reconstruction will still be
the desired one, i.e., f =

∑K
k=1(ck +c)fk. This situation occurs in the presence

of systematic errors. The previous considerations show that the reconstruction
using balanced frames is not affected by these type of errors. This is a very
important fact, because repeating the readings numerous times and taking the
average of them will not decrease systematic errors. Note that c can vary with
f , as it happens with the ck, and it can also be random.

3.2. Reconstruction Error Bounds

Let F = (fk)K
k=1 be a BF for Hd. Assume that (〈f, fk〉)K

k=1 is perturbed by
the additive noises (ak)K

k=1, i.e. we have the sequence (〈f, fk〉 + ak)K
k=1. Then

the reconstruction f̂ is

f̂ =
∑K

k=1
(〈f, fk〉 + ak)S−1

F fk = f +
∑K

k=1
akS−1

F fk.

Since the frame is balanced we can give error bounds assuming that the
noises are near a constant that is not necessarily equal to zero:

Proposition 3.1. Let f ∈ Hd and (fk)K
k=1 be a balanced frame for Hd. The

following statements about the norm of the reconstruction error hold:
(1) Suppose that there exists μ such that |ak − μ| < ε for each k = 1, . . . , K.

Let λmax = λ1 ≥ λ2 ≥ . . . ≥ λd = λmin > 0 be the eigenvalues of SF .
Then ||f − f̂ || <

√
K/λminε. Furthermore, if (fk)K

k=1 is a BUNTF for
Hd we can assert that ||f − f̂ || <

√
dε and ||f − f̂ ||∞ < dε.

(2) Assume that there exists μ such that (
∑K

k=1 |ak − μ|2)1/2 < ε. If (fk)K
k=1

is a BUNTF for Hd then ||f − f̂ || <
√

d/Kε.

Proof. For the first inequality we can argue similarly as in the proof of [17,
Proposition 2.1]. Consider the canonical dual of F , G = S−1

F F . Then TG =
S−1

F TF . The reconstruction error is

f − f̂ =
∑K

k=1
akS−1

F (fk) =
∑K

k=1
(ak − μ)S−1

F fk = TGy,

where y = (a1 − μ, . . . , aK − μ)t. Hence

||f − f̂ ||2 = ytT t
GTGy ≤ ρ(T t

GTG)||y||2 < ρ(T t
GTG)Kε2,

where ρ(·) is the spectral radius. But ρ(T t
GTG) = ρ(TGT t

G) = ρ(S−1
F ) = 1

λmin
,

so the first part of (1) follows.
Now assume that (fk)K

k=1 is a BUNTF for Hd. In this case λ1 = λ2 =
. . . = λd = λmin = K

d , so from the previous result ||f − f̂ || <
√

dε. We also
have
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||f − f̂ ||∞ =
∣∣∣∣

∣∣∣∣
∑K

k=1
(ak − μ)

d

K
fk

∣∣∣∣

∣∣∣∣
∞

≤ d

K

∑K

k=1
|ak − μ|||fk||∞ < εd.

For (2) observe that ||f−f̂ || = ||∑K
k=1(ak−μ) d

K fk|| ≤ d
K

√
K
d (

∑K
k=1 |ak−

μ|2)1/2 <
√

d
K ε. �

3.3. Presence of Random Additive Noises Without the Zero Mean Assumption

We can analyze the behavior of the reconstruction error using a statistical
model for noise. Let F = (fk)K

k=1 be a BUNF for H
d with frame bounds α, β.

Assume now that (〈f, fk〉)K
k=1 is perturbed with additive noises (ηk)K

k=1,
and that each noise ηk is a random variable with mean E[ηk] = μ and variance
E[(ηk − μ)2] = σ2. Suppose also that the noises ηk and ηl are uncorrelated for
k �= l, i.e. cov(ηk, ηl) = E[(ηk − μ)(ηl − μ)] = δk,lσ

2 for each k, l. As before,
the receiver will reconstruct the signal as

f̂ =
∑K

k=1
(〈f, fk〉 + ηk)S−1

F fk = f +
∑K

k=1
ηkS−1

F fk.

The advantage of considering the balanced case in what follows is that
the mean of the noises is not required to be zero, an assumption needed for
the non balanced case which has been considered so far in the literature.

The mean square error is MSE := 1
dE[||∑K

k=1 ηkS−1
F fk||2]. Since F is

balanced, we can write

MSE =
1
d
E

[∣∣∣∣

∣∣∣∣
∑K

k=1
(ηk − μ)S−1

F fk

∣∣∣∣

∣∣∣∣
2
]

.

The assumptions on the noises lead to

MSE =
1
d
σ2

∑K

k=1
||S−1

F fk||2.
So,

Kσ2

dβ2
≤ MSE ≤ Kσ2

dα2
.

If d and K are fixed it can be proved, as in [16, Theorem 3.1] but now without
assuming μ = 0, that the MSE is minimal if and only if the frame is tight and
that in this case MSE = d

K σ2.
Sometimes the reconstruction is done using the orthogonal projection of

(〈f, fk〉 + ηk)K
k=1 onto R(T ∗

F ) given by p = T ∗
Ff + T ∗

FS−1
F TF (ηk)K

k=1. Since the
frame is balanced,

p = T ∗
Ff + T ∗

FS−1
F TF (ηk − μe)K

k=1 = T ∗
Ff + p̃.

So, as in [12, Section 8.5] but again without assuming μ = 0, it can be proved
that,

σ2

β
≤ E[|p̃(k)|2] ≤ σ2

α
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where the equality holds if (fk)K
k=1 is a tight frame. In this case, E[|p̃(k)|2] =

d
K σ2.

Note that when considering BUNTFs, if the number of elements of the
frame increases (higher redundancy) both the MSE and the mean of |p̃(k)|2
decrease. This shows the advantage of using redundant BUNTFs.

3.4. Resilience of the Dual Frames Against Fixed Perturbations

Let (fk)K
k=1, (gk)K

k=1 be sequences in Hd where (fk)K
k=1 is balanced. Then∑K

k=1〈f, gk〉fk =
∑K

k=1〈f, (gk + g)〉fk for each g ∈ Hd. As a consequence
of this we obtain:

Proposition 3.2. If F is a balanced frame for Hd and G = (gk)K
k=1 is a dual

frame of F , then (gk + g)K
k=1 is also a dual frame of F for each g ∈ Hd.

Proposition 3.2 says that for a balanced frame F the reconstruction is
not altered if we use a dual which is perturbed by a fixed vector, and can also
be used to define an equivalence relation in the set of dual frames of F .

Definition 3.3. Let F be a balanced frame for Hd. We say that two dual frames
G = (gk)K

k=1 and G̃ = (g̃k)K
k=1 of F are equivalent if there exists g ∈ Hd such

that g̃k = gk + g for each k = 1, . . . , K.

It is clear that if there exists a balanced frame in an equivalence class, it
is the unique balanced one in this class. Let [G] = {(gk + g)K

k=1 : g ∈ Hd} be
the equivalence class of the dual frame G of F . If G is not balanced, the dual
frame (gk − 1

K TGe)K
k=1 is equivalent to G and is balanced. This shows that each

of the equivalence classes contains a unique dual frame which is balanced and
can be considered as the representative of the class. Thus, in order to obtain
all the dual frames of F , we only need to compute those that are balanced,
the others will be in their equivalence classes.

3.5. Presence of Erasures

When some of the frame coefficients are no longer accessible after the trans-
mission, we say that an erasure occurs.

Part (1) of the following proposition says that if one of the frame coeffi-
cients is deleted (or is set equal to zero) we can still recover f exactly. It also
says that a balanced frame (fk)K

k=1 remains to be a frame if we delete one of
its elements. Joining both parts of the proposition we have a characterization
of balanced frames.

Proposition 3.4. Let (fk)K
k=1 be a frame for Hd and (f̃k)K

k=1 be one of its duals.
The following assertions holds:
(1) If (fk)K

k=1 is balanced, then for each l ∈ {1, . . . , K}, (fk)K
k=1,k �=l and

(f̃k − f̃l)K
k=1,k �=l are dual frames.

(2) If there exists l ∈ {1, . . . , K} such that f̃l �= 0, and (fk)K
k=1,k �=l and

(f̃k − f̃l)K
k=1,k �=l are dual frames, then (fk)K

k=1 is balanced.
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Proof. (1) Suppose that (fk)K
k=1 is balanced. Let l ∈ {1, . . . , K}. Then for

each f ∈ Hd,

f =
∑K

k=1
〈f, fk〉f̃k =

∑K

k=1
〈f, fk〉(f̃k − f̃l) =

∑K

k=1,k �=l
〈f, fk〉(f̃k − f̃l).

This last expression says that (fk)K
k=1,k �=l and (f̃k − f̃l)K

k=1,k �=l are dual
frames.

(2) Suppose that l ∈ {1, . . . , K} is such that f̃l �= 0 and that (fk)K
k=1,k �=l and

(f̃k − f̃l)K
k=1,k �=l are dual frames. If f ∈ Hd, then

f =
∑K

k=1,k �=l
〈f, f̃k − f̃l〉fk =

∑K

k=1
〈f, f̃k − f̃l〉fk = f − 〈f, f̃l〉

∑K

k=1
fk.

Taking f = f̃l �= 0, we obtain
∑K

k=1 fk = 0. �

3.6. Error Detection

If (fk)K
k=1 is a balanced frame, then

∑K
k=1〈f, fk〉 = 0. So if the transmitted

numbers (ck)K
k=1 satisfy

∑K
k=1 ck �= 0, we know that (ck)K

k=1 comes from a
perturbation of the frame coefficients (〈f, fk〉)K

k=1. In this way we can easily
detect the presence of a problem.

Furthermore, using balanced frames we can have a hint about the source
of the error. If we are in the presence of a systematic error i.e. ck = 〈f, fk〉 + c

for some constant c, then
∑K

k=1 ck = Kc independently of the signal f . In this
case, although we can know the error, it is not necessary to correct it because
the reconstruction with a balanced dual frame will be the desired one. If the
perturbation is due to random additive noises (ηk)K

k=1 with |ηk − η| ≤ σ for
each k, then ck = 〈f, fk〉 + ηk and

∑K
k=1 ck =

∑K
k=1 ηk fluctuates without any

apparent pattern between two fixed values, also independently of the signal.
If instead the sum of the transmitted numbers is non zero and varies with the
signal, we can suspect that the error arises from other sources. For example,
assume that erasures occur, i.e. we only receive (〈f, fk〉)k∈I where I is a proper
subset of {1, . . . , K}. In this case

∑
k∈I〈f, fk〉 generally varies with the signal

f .

3.7. BUNTFs for H
d and Real Spherical 2-Designs

Real spherical t-designs appear in relation with cubature formulas on the
sphere in H

d [3]. They are sets of points on the unit sphere S
d−1 of Hd such

that the integral on S
d−1 of any homogeneous polynomial of total degree less

than or equal to t in d variables is equal to the mean of the values of the poly-
nomial over these points. In other words, they approximate the unit sphere in
the sense that computing the average of these polynomials only over these sets
of points is identical to taking the average over the entire unit sphere. The
following result can be found in different forms e.g. in [8,32] (see also [34]).

Proposition 3.5. A sequence (fk)K
k=1 of unit vectors in R

d is a spherical 2-
design if and only if it is a BUNTF for R

d.
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Spherical t-designs are used in approximation theory, in numerical inter-
polation, integration, and regularized least squares approximation. They have
connections with many areas of mathematics such as analysis and statistics
(in particular with orthogonal polynomials and moment problems), algebraic
combinatorics (association schemes, design theory, coding theory), group the-
ory (spherical designs which are orbits of a finite group in the real orthogonal
group O(n)), number theory (designs that are shells of Euclidean lattices are
related with modular forms and the Lehmer’s conjecture about the zeros of the
Ramanujan r function), geometry (sphere packing problems) and optimization
(Delsarte’s linear programming method).

3.8. Balanced Sequences and Tight Frames

There is a strong connection between balanced sequences and tight frames
via diagram vectors. Diagram vectors can be used for determining whether a
frame for R

2 is tight or not [19]. This notion has been extended to F
d in [13]

(we refer the reader to this paper for the definition of diagram vectors). By
[13, Proposition 3.6] and Proposition 4.4 below, we have:

Proposition 3.6. Let c1, . . . , cK be nonnegative numbers, which are not all zero.
Let (fk)K

k=1 in F
d and let (f̃k)K

k=1 in F
d the corresponding diagram vectors.

Then (ckfk)K
k=1 is a tight frame for F

d if and only if (c2kf̃k)K
k=1 is balanced.

This result shows that balanced sequences are useful in the study of tight
frames.

4. Properties

In this section we study properties of BFs and in particular of BPFs and
BUNTFs. We consider their behavior under transformations, give several char-
acterizations and analyze duality.

4.1. Invariance Under Certain Transformations

Given a frame, it is important which properties are preserved under certain
transformations. The following are analogous to those presented in [30], here
we analyze them regarding balancedness.

Proposition 4.1. (1) Let A ∈ Gl(Hd) and B ∈ Gl(FK). If Be = e, then F is
a balanced frame if and only if AFB is a balanced frame.

(2) Let a �= 0, U ∈ U(Hd) and V ∈ U(FK) such that V e = e. Then aUFV is
a BTF if and only if F is a BTF.

(3) Let a �= 0, U ∈ U(Hd). Then aUF (UF) is a BENF (BUNF) if and only
if F is a BENF (BUNF).

(4) Let A ∈ G(Hd). Then F is a maximally robust to erasures BF if and only
if AF is a maximally robust to erasures BF.

(5) F is a BUNTF if and only if F is a BUNTF.
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(6) Let W be a subspace of Hd and πW be the orthogonal projection onto W.
If F is an α-BTF for Hd then πWF is an α-BTF for W.

(7) Let A ∈ L(Hd,Hn) be an isometry, i.e., A∗A = I, then F is an α-BUNTF
for Hd if and only if AF is an α-BUNTF for Hn.

Proof. In each case, the proof follows straightforward from the definitions. To
illustrate we show (1):

If A ∈ L(Hd) is injective and B ∈ L(FK) is such that Be = e, then
TFe = 0 if and only if ATFBe = 0. Moreover, if A and B are invertible, TF is
onto if and only if ATFB is onto. �

In view of Proposition 4.1, we define an equivalence relation:

Definition 4.2. Two frames F and G for Hd are unitary equivalent if and only
if there exists a unitary operator U ∈ L(H) such that G = UF .

In the previous equivalence relation, the permutation or numbering of
the elements of F or G will not be considered. Two PFs are unitary equivalent
if and only if they have the same Gram matrix [34, Corollary 2.1].

As a consequence of Proposition 4.1 and Proposition 2.5:

Corollary 4.3. Let F be a frame for Hd. The following assertions are equiva-
lent:
(1) F is a BF for Hd.
(2) S−1

F F is a BF for Hd.
(3) S

−1/2
F F is a BPF for Hd.

4.2. Some Characterizations

The following proposition gives several equivalences for a sequence to be bal-
anced.

Proposition 4.4. Let F = (fk)K
k=1 be a sequence in Hd. The following asser-

tions are equivalent:
(1) F is balanced.
(2) TFe = 0.
(3) GFe = 0.
(4)

∑K
k=1〈fl, fk〉 = 0 for each l ∈ {1, . . . , K}.

(5)
∑K

k,l=1〈fk, fl〉 = 0.
(6)

∑K
k=1〈f, fk〉 = 0 for each f ∈ Hd.

(7)
∑K

k=1 ||f − fk||2 =
∑K

k=1 ||fk||2 + K||f ||2 for each f ∈ Hd.
(8)

∑K
k=1,k �=l ||fl − fk||2 =

∑K
k=1 ||fk||2 + K||fl||2 for each l ∈ {1, . . . , K}.

Proof. Taking into account the definition of balanced sequences and that
ker(TF ) = ker(GF ), (1) ⇔ (2) ⇔ (3) follows immediately.

Considering the entries of the matrix GF , it is immediate that (3) ⇔ (4).
Observe that

∑K
k,l=1〈fk, fl〉 = ||TFe||2. Thus we have (2) ⇔ (5).
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For (1) ⇔ (6) we note that
∑K

k=1 fk = 0 if and only if 〈f,
∑K

k=1 fk〉 = 0
for each f ∈ Hd.

(6) ⇔ (7) follows from ||f − fk||2 = ||fk||2 − 2Re(〈f, fk〉) + ||f ||2 and
||if − fk||2 = ||fk||2 + 2Im(〈f, fk〉) + ||f ||2. Similarly it can be proved (4) ⇔
(8). �

From Proposition 4.4 we can obtain the next well-known basic result
about simplex frames:

Corollary 4.5. If F is a simplex frame then F is balanced.

There exists a bijective correspondence between the BUNTFs for Hd and
the BUNTFs for its dual space. This is a consequence of the following result
which follows from the Riesz representation theorem and Proposition 4.4:

Corollary 4.6. F = (fk)K
k=1 is a BUNTF for Hd if and only if (〈., fk〉)K

k=1 is a
BUNTF for the dual space H

∗
d.

Proposition 3.4 says that a BF is one-robust to erasures. This suggests
the following version of [10, Corollary 5.1]:

Proposition 4.7. Let (ek)K
k=1 be the orthonormal basis for HK and πW be the

orthogonal projection onto a subspace W of HK . The following are equivalent:
(1) (πWek)K

k=1 is a balanced Parseval frame for W.
(2)

∑K
k=1 ek ∈ W⊥.

(3) There exists f ∈ W⊥ such that 〈f, ek〉 = 1 for each k = 1, . . . , K.

Proof. By Proposition 2.5, (πWek)K
k=1 is a Parseval frame for W.

(1) ⇒ (2) Since (πWek)K
k=1 is balanced, πW

∑K
k=1 ek = 0. This shows

that
∑K

k=1 ek ∈ W⊥.
(2) ⇒ (3) Take f =

∑K
k=1 ek.

(3) ⇒ (1) Let f ∈ W⊥ such that 〈f, ek〉 = 1 for each k = 1, . . . , K. Then∑K
k=1 πWek = πW

∑K
k=1〈f, ek〉ek = πWf = 0. �

We have the following versions of the Naimark characterization for BPFs:

Theorem 4.8. A sequence (fk)K
k=1 in Hd is a BPF for Hd if and only if there

is a larger Hilbert space HK ⊇ Hd and an orthonormal basis (gk)K
k=1 for HK

satisfying
∑K

k=1 gk ∈ H
⊥
d so that fk = πHd

gk for each k = 1, . . . , K.

Proof. Any Parseval frame F = (fk)K
k=1 for Hd is unitary equivalent to

(GFek)K
k=1 where (ek)K

k=1 is the standard basis of FK (see [34, Theorem 2.2.]).
In this case, GF is the orthogonal projection onto im(GF ) that has dimension
d. If F is also balanced then, by Proposition 4.4, e =

∑K
k=1 ek ∈ im(GF )⊥. Let

U ∈ L(im(GF ),Hd) unitary such that fk = UGFek for each k = 1, . . . , K. Let
HK such that HK ⊇ Hd and HK = Hd ⊕H

⊥
d . Let Ũ ∈ L(FK ,HK) unitary such

that Ũ|im(GF ) = U . Let gk = Ũek for each k = 1, . . . , K. Then πHd
= ŨGF Ũ∗,

(gk)K
k=1 is an orthonormal basis for HK ,

∑K
k=1 gk ∈ H

⊥
d and fk = πHd

gk for
each k = 1, . . . , K. �
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Remark 4.9. The previous proof is constructive. The theorem follows also from
Proposition 4.7 and Naimark’s theorem [11].

Theorem 4.10. A sequence (fk)K
k=1 in Hd is a BPF for Hd if and only if there

is a larger Hilbert space HK−1 ⊇ Hd and a simplex frame (gk)K
k=1 for HK−1

so that fk = πHd
gk for each k = 1, . . . , K.

Proof. Let F = (fk)K
k=1 be a balanced Parseval frame for Hd. Similar to the

proof of Theorem 4.8, F is unitary equivalent to (GF (ek − 1
K e))K

k=1 where
(ek)K

k=1 is the standard basis of FK . The sequence (ek − 1
K e)K

k=1 is a simplex
frame for span{e}⊥ that has dimension K − 1. The rest follows as in proof of
Theorem 4.8. �

Proposition 4.1 yields a decomposition of BUNTFs:

Proposition 4.11. Let (fk)K
k=1 be a sequence in Hd and I ⊆ {1, . . . , K} such

that fk ⊥ fl = 0 for k ∈ I, l ∈ Ic. Let W := span(fk)k∈I . Then (fk)K
k=1 is

BUNTF for Hd if and only if (fk)k∈I is a BUNTF for W and (fk)k∈Ic is a
BUNTF for W⊥.

The frame graph (or correlation network) of a sequence (fk)K
k=1 in Hd

is the graph with vertices (fk)K
k=1 and an edge between fk and fk′ , k �= k′,

if and only if 〈fk, fk′〉 �= 0 [34]. Each frame can be uniquely decomposed
into a union of frames for orthogonal subspaces, each corresponding to the
vertices of a connected component of the frame graph. Proposition 4.11 gives
a characterization of BUNTFs in terms of the cycles in its frame graph:

Theorem 4.12. A sequence (fk)K
k=1 in Hd is a BUNTF if and only if the ver-

tices of each of the connected components in its frame graph is a BUNTF for
its span.

4.3. Duals of a Balanced Frame

As was explained in Sect. 3.4, in order to obtain the duals of a balanced frame
it is sufficient to consider the balanced ones. Proposition 2.8 leads to different
characterizations of balanced dual frames of a given BF:

Proposition 4.13. Let F = (fk)K
k=1 be a BF for Hd and G = (gk)K

k=1 be a
sequence in Hd. Then the following are equivalent:
(1) G is a balanced dual frame of F .
(2) TG = S−1

F TF + R where R ∈ L(FK ,Hd), RT ∗
F = 0 and Re = 0.

(3) (gk)K
k=1 = (S−1

F fk +rk)K
k=1 with (rk)K

k=1 in Hd such that
∑K

k=1〈f, fk〉rk =
0 for each f ∈ Hd and

∑K
k=1 rk = 0.

(4) TG = S−1
F TF +R, where R ∈ L(FK ,Hd) and span{e}⊕ im(T ∗

F ) ⊂ ker(R).
(5) TG = S−1

F TF + R, where R ∈ L(FK ,Hd) and im(R∗) ⊕ im(T ∗
F ) ⊂

span{e}⊥.
(6) TG = S−1

F TF + W (I − T ∗
FS−1

F TF ), where W ∈ L(FK ,Hd) and We = 0.
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(7) (gk)K
k=1 = (S−1

F fk +hk +
∑K

l=1〈S−1
F fk, fl〉hl)K

k=1 with (hk)K
k=1 in Hd such

that
∑K

k=1 hk = 0.

Corollary 4.14. Let F = (fk)K
k=1 be a BF for Hd. Let G be a balanced dual

frame of F with TG = S−1
F TF + R, where R ∈ L(FK ,Hd). Then rank(R) ≤

K − d − 1.

As a consequence of Proposition 4.13 we also have the following unique-
ness result:

Corollary 4.15. Let F = (fk)K
k=1 be a BF for Hd. Then K = d + 1 if and only

if (S−1
F fk)K

k=1 is the unique balanced dual frame of (fk)K
k=1.

The above corollary suggests that in the family of BFs, those BFs with
K = d + 1 can be seen as the analogous to the bases in the family of frames.

The existence of distinct types of dual frames of a given Parseval frame
is studied in [10]. In particular, it is shown that a Parseval frame is itself its
unique Parseval dual frame. They also consider for a given Parseval frame its
tight dual frames. Here we are interested in balanced tight dual frames of a
given balanced Parseval frame.

Theorem 4.16. Let F = (fk)K
k=1 be a BPF for Hd. If K ≤ 2d the unique

balanced tight dual frame of F is F . If K > 2d there exist infinite non unitary
equivalent balanced tight dual frames of F .

Proof. Let G be a balanced α-tight dual frame of F . Assume TG = TF + R
with R ∈ L(FK ,Hd) such that RT ∗

F = 0 and Re = 0. Then

αIHd
= IHd

+ RR∗.

Thus, α �= 1 (indeed α > 1) if and only if rank(R) = d, and α = 1 if and
only if R = 0.

If rank(R) = d, by Corollary 4.14, K ≥ 2d + 1. So, if K ≤ 2d the unique
balanced tight dual frame of F is F .

Let {e1, . . . , ed} be any orthonormal basis of Hd. If K > 2d, we can
consider any set of equal norm orthogonal vectors {s1, . . . , sd} ⊂ (span{e} ⊕
im(T ∗

F ))⊥. Let R = (rk)K
k=1 with rk =

∑d
i=1 si(k)ei for k = 1, . . . , K. Then

TRe =
∑K

k=1
rk =

∑d

i=1

∑K

k=1
si(k)ei = 0.

If f ∈ Hd,

TRT ∗
Ff =

∑K

k=1
〈f, fk〉rk =

∑d

i=1

∑K

k=1
〈f, fk〉si(k)ei = 0

and

TRT ∗
Rf =

∑K

k=1
〈f, rk〉rk =

∑d

i,i′=1
〈f, ei〉ei′

∑K

k=1
si(k)si′(k)

= ρ
∑d

i=1
〈f, ei〉ei = ρf
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where ρ = ||si||2 for i = 1, . . . , d. Thus (fk + rk)K
k=1 is a balanced (ρ + 1)-tight

dual frame of F with Gram matrix GF + ρI �= GF . This shows that if K > 2d
there exist infinite non unitary equivalent balanced tight dual frames of F .
�

5. The Closest Balanced Frame to a Given Frame

A natural question that arises is: Given a frame, is there a balanced frame that
is closest to it in some norm and how do we find it? The first step to answer this
question is the following theorem, that describes the �1-norm closest balanced
sequence to a given sequence of elements in Hd. We consider the �1-norm of a
sequence in Hd given by ||(fk)K

k=1||1 :=
∑K

k=1 ||fk||.
Theorem 5.1. Let (fk)K

k=1 be a sequence in Hd. Then
∣∣∣∣

∣∣∣∣
∑K

k=1
fk

∣∣∣∣

∣∣∣∣ = inf
{∑K

k=1
||fk − gk|| : (gk)K

k=1 is a balanced sequence in Hd

}
,

and the infimum is attained for the sequences of the form (fk −pk

∑K
l=1 fl)K

k=1,
where 0 < pk < 1 for each k = 1, . . . , K and

∑K
k=1 pk = 1.

Proof. Let (gk)K
k=1 be a balanced sequence in Hd, and 0 < pk < 1 for each

k = 1, . . . , K with
∑K

k=1 pk = 1. We have,
∑K

k=1

∣∣∣∣

∣∣∣∣fk −
(

fk − pk

∑K

l=1
fl

)∣∣∣∣

∣∣∣∣ =
∣∣∣∣

∣∣∣∣
∑K

k=1
fk

∣∣∣∣

∣∣∣∣ =
∣∣∣∣

∣∣∣∣
∑K

k=1
fk −

∑K

k=1
gk

∣∣∣∣

∣∣∣∣

≤
∑K

k=1
||fk − gk||.

Now suppose that (gk)K
k=1 is a balanced sequence in Hd and

∑K
k=1 ||fk −

gk|| = ||∑K
k=1 fk||. Then

∑K
k=1 ||fk−gk|| = ||∑K

k=1(fk−gk)||, and this happens
if and only if there exist positive real numbers c1, . . . , cK−1 such that fk+1 −
gk+1 = ck(f1 − g1) for each k = 1, . . . , K − 1. Setting p1 = 1

1+c1+...+cK−1

and pk+1 = ck

1+c1+...+cK−1
for each k = 1, . . . , K − 1 we have

∑K
k=1 pk = 1,

0 < pk < 1 and gk = fk − pk

∑K
l=1 fl for each k = 1, . . . , K. �

Now we analyze the problem for the �2-norm. Given a sequence (fk)K
k=1

in Hd, the next theorem asserts that (fk − 1
K

∑K
l=1 fl)K

k=1 is the balanced
sequence in Hd closest to (fk)K

k=1 in the �2-norm, where ||(fk)K
k=1||2 :=

(∑K
k=1 ||fk||2

)1/2

. In its proof we use the following equality:

∑

1≤k<k′≤K

||fk − fk′ ||2 +

∣∣∣∣∣

∣∣∣∣∣

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2

= K
K∑

k=1

||fk||2. (5.1)
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Theorem 5.2. Let (fk)K
k=1 be a sequence in Hd. Then

1
K

||
∑K

l=1
fl||2 = inf{

∑K

k=1
||fk − gk||2 : (gk)K

k=1 is a balanced sequence in Hd},

and the infimum is attained for gk = fk − 1
K

∑K
l=1 fl for each k = 1, . . . , K.

Proof. Let (gk)K
k=1 be a balanced sequence in Hd. Using (5.1),

K∑

k=1

∣∣∣∣∣

∣∣∣∣∣fk −
(

fk − 1
K

K∑

l=1

fl

)∣∣∣∣∣

∣∣∣∣∣

2

=
1
K

∣∣∣∣∣

∣∣∣∣∣

K∑

k=1

fk

∣∣∣∣∣

∣∣∣∣∣

2

=
1
K

∣∣∣∣∣

∣∣∣∣∣

K∑

k=1

fk −
K∑

k=1

gk

∣∣∣∣∣

∣∣∣∣∣

2

≤ 1
K

⎡

⎣
∣∣∣∣∣

∣∣∣∣∣

K∑

k=1

(fk − gk)

∣∣∣∣∣

∣∣∣∣∣

2

+
∑

1≤k<k′≤K

||(fk − gk) − (fk′ − gk′)||2
⎤

⎦

=
K∑

k=1

||fk − gk||2.

Now suppose that (gk)K
k=1 is a balanced sequence in Hd and

∑K
k=1 ||fk−gk||2 =

1
K ||∑K

k=1 fk||2. Then
∑K

k=1 ||fk − gk||2 = 1
K ||∑K

k=1(fk − gk)||2. So, by (5.1),
f1−g1 = . . . = fK −gK . Therefore, gk = fk − 1

K

∑K
l=1 fl for each k = 1, . . . , K.

�

Note that if F = (fk)K
k=1 and G = (gk)K

k=1, then
∑K

k=1 ||fk − gk||2 =
‖TF − TG‖2F , where ‖.‖F denotes the Frobenius norm. In order to apply the
above theorems to frames we have the following result.

Lemma 5.3. Let (p1, . . . , pK)t ∈ R
K , where 0 < pk < 1 for each k = 1, . . . , K

and
∑K

k=1 pk = 1. If F = (fk)K
k=1 is a frame for Hd, then (fk −pk

∑K
l=1 fl)K

k=1

is a BF for Hd if and only if (p1, . . . , pK)t /∈ im(T ∗
F ).

Proof. The synthesis operator of (fk −pk

∑K
l=1 fl)K

k=1 is TF (I −e(p1, . . . , pK)).
If F is a frame for Hd, by the Sylvester inequality [22], d − 1 ≤ rank(TF (I −
e(p1, . . . , pK))) ≤ d, and by the Wedderburn’s rank-one reduction formula [22],
rank(TF −TFe(p1, . . . , pK)) = d−1 if and only if (p1, . . . , pK)t ∈ im(T ∗

F ). �

Remark 5.4. Let F = (fk)K
k=1 be a frame for Hd. Let (p1, . . . , pK)t ∈ R

K ,
where 0 < pk < 1 for each k = 1, . . . , K and

∑K
k=1 pk = 1. If there exists

f ∈ Hd such that (p1, . . . , pK)t = T ∗
Ff , then (fk − pk

∑K
l=1 fl)K

k=1 is a BF
for span{f}⊥. Conversely, if there exists f ∈ Hd, f /∈ ker(T ∗

F ), such that
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(fk − pk

∑K
l=1 fl)K

k=1 is a BF for span{f}⊥, then (p1, . . . , pK)t = γT ∗
Ff for

some γ ∈ F, γ �= 0.

We can now give the answer to the question we posed at the beginning
of this section. The following theorem gives necessary and sufficient conditions
for the closest balanced frame to a given frame to exist, and in this case gives
its expression.

Theorem 5.5. Let F = (fk)K
k=1 be a frame for Hd. Then

(1) There exist �1-norm closest to F balanced frames for Hd if and only if F
is not a basis, and in this case they are the frames (fk − pk

∑K
l=1 fl)K

k=1

where 0 < pk < 1,
∑K

k=1 pk = 1 and (p1, . . . , pK)t /∈ im(T ∗
F ).

(2) There exist an �2-norm closest to F balanced frame for Hd if and only if
e /∈ im(T ∗

F ), and in this case it is the frame (fk − 1
K

∑K
l=1 fl)K

k=1.

Proof. If F is a basis, clearly there does not exist an �1-norm (�2-norm) closest
to F balanced sequence which is a frame for Hd, since there does not exist
balanced frames for Hd with K = d elements. Thus we suppose that F is not
a basis.
(1) Since the set {(p1, . . . , pK)t ∈ R

K : 0 < pk < 1 and
∑K

k=1 pk = 1} ∩
im(T ∗

F )c has an infinite number of points, the conclusion follows from
Theorem 5.1 and Lemma 5.3.

(2) By Theorem 5.2 and Lemma 5.3, if e /∈ im(T ∗
F ) then (fk − 1

K

∑K
l=1 fl)K

k=1

is the �2-norm closest to F balanced frame for Hd.
Now suppose that e ∈ im(T ∗

F ). Let G = (gk)K
k=1 be any BF for Hd. We

are going to prove that we can always find another BF for Hd closer to F than
G in the �2-norm.

Suppose without loss of generality that F2 = (fk)K
k=2 still generates Hd,

that is, F2 is a frame for Hd. So, T ∗
F2

is injective.
For ε �= 0 let Fε = (fε,k)K

k=1 where fε,1 = εf1, fε,2 = f2, ...., fε,K = fK .
Since e ∈ im(T ∗

F ), none of the elements of F is the null vector. Also, by
Lemma 5.3, F̃ = (fk − 1

K

∑K
l=1 fl)K

k=1 is not a frame for Hd. So G �= F̃ and,
by Theorem 5.2,

1
K

∣∣∣∣

∣∣∣∣
∑K

k=1
fk

∣∣∣∣

∣∣∣∣
2

<
∑K

k=1
||fk − gk||2.

Take ε such that 0 < |1 − ε| < 1
||f1||

√∑K
k=1 ||fk−gk||2− 1

K ||∑K
k=1 fk||2

1− 1
K

.

Let f ∈ Hd such that T ∗
Ff = e. Then T ∗

F2
f = (1, . . . , 1)t. If there would

exist g ∈ Hd such that T ∗
Fε

g = e, then T ∗
F2

g = (1, . . . , 1)t. Since T ∗
F2

is injective
g = f . So, 〈f, f1〉 = 〈f, εf1〉 = 1. Thus ε = 1 which is absurd. This shows that
e /∈ im(T ∗

Fε
). Hence, by Lemma 5.3, F̃ε = (fε,k − 1

K

∑K
l=1 fε,l)K

k=1 is a BF for
Hd.
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We have,
K∑

k=1

∣∣∣∣∣

∣∣∣∣∣fk −
(

fε,k − 1

K

K∑

l=1

fε,l

)∣∣∣∣∣

∣∣∣∣∣

2

=

∣∣∣∣∣

∣∣∣∣∣(1 − ε)

(
1 − 1

K

)
f1 +

1

K

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2

+
K∑

k=2

∣∣∣∣∣

∣∣∣∣∣
1

K
(ε − 1)f1 +

1

K

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2

= |1 − ε|2
(
1 − 1

K

)2

||f1||2 + 2(1 − ε)
K − 1

K2
Re

(〈
f1,

K∑

l=1

fl

〉)
+

1

K2

∣∣∣∣∣

∣∣∣∣∣

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2

+

K∑

k=2

⎡

⎣ 1

K2
|ε − 1|2||f1||2 + 2

1

K2
(ε − 1)Re

(〈
f1,

K∑

l=1

fl

〉)
+

1

K2

∣∣∣∣∣

∣∣∣∣∣

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2
⎤

⎦

= |1 − ε|2
(
1 − 1

K

)
||f1||2 +

1

K

∣∣∣∣∣

∣∣∣∣∣

K∑

l=1

fl

∣∣∣∣∣

∣∣∣∣∣

2

<

K∑

k=1

||fk − gk||2.

Hence F̃ε is a BF for Hd closer to F in the �2-norm than G. �

6. A New Concept of Complement for Balanced Frames

Let F be a BENPF for Hd and G be any of its complements. Then G is an
ENPF for Hd. Since GGe = e, by Proposition 2.8 G is not balanced. Morevover,
since e ∈ im(T ∗

G), Theorem 5.5 tells us that although G has closest balanced
frames in the �1-norm, it has not a closest balanced frame in the �2-norm.

In order to have complementary frames in the same class, we define an
alternative concept of complements for BPFs. To this end, we first state the
following proposition whose proof is straightforward.

Proposition 6.1. Let F = (fk)K
k=1 be a BPF for Hd. Then I − GF − 1

K eet is
the orthogonal projection onto (im(GF ) ⊕ span{e})⊥.

Note that rank(I − GF − 1
K eet) = K − d − 1 and (I − GF − 1

K eet)e =
0. Based on Proposition 6.1 and Theorem 4.10 we introduce the following
definition:

Definition 6.2. Two PFs F and G are B-complements of each other if the sum
of their Gramians is I − 1

K eet.

In view of Proposition 6.1, the B-complement of a BPF of K vectors for a
space of dimension d is a BPF of K vectors for a space of dimension K −d−1.
For future references we state the following lemma that follows immediately
from the definitions of simplex frame and of B-complement:

Lemma 6.3. F is a simplex frame with K elements if and only if its B-
complement is the frame for the zero vector space given by the zero vector
repeated K times.
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Note that the sum of the Gram matrices of two complementary PFs
is I, which is the Gram matrix corresponding to an orthonormal basis. By
Proposition 2.5, an orthonormal basis can be seen as a “limit case” of a PF:
it is a UNPF or a PF with K = d. In the case of two B-complementary
BPFs, the sum of their Gram matrices is I − 1

K eet, which is the Gram matrix
corresponding to simplex frames. We can think that in the family of BFs,
simplex frames are the analogous to othonormal basis in the family of frames.
This follows from Theorem 6.4 below, which shows that a simplex frame can
be seen as a “limit case” of BPF: it is a BENPF which elements have norm
equal to

√
d

d+1 , or a BPF with K = d + 1.

Theorem 6.4. Let F = (fk)K
k=1 be a sequence in Hd. The following assertions

are equivalent:

(1) F is a simplex frame for Hd.
(2) F is a BPF for Hd and K = d + 1.
(3) F is a BPF for Hd and ||fk||2 = d

d+1 for each k = 1, . . . , K.
(4) F is an isogonal PF for Hd with K > d and ||fk||2 �= 〈fk, fl〉 for each

k = 1, . . . , K, k �= l.
(5) F is a BPF with ker(TF ) = span{e}.

Proof. If F is a simplex frame for Hd then, by Proposition 2.5 and Corol-
lary 4.5, F is an isogonal BPF for Hd and K = d + 1. We also have
diag(GF ) = 1 − 1

K = d
d+1 and ker(TF ) = ker(GF ) = span{e}. So (1) implies

the rest of the assertions.
(2) ⇒ (1). Suppose that F is a BPF with K = d + 1. Let G be a B-

complement of F . Then rank(GG) = K − d − 1 = 0. So, by Lemma 6.3, F is a
simplex frame.

(3) ⇒ (2). Suppose that F is BPF for Hd and ||fk||2 = d
d+1 for each

k = 1, . . . , K. Then (
√

d+1
d fk)K

k=1 is a d+1
d -BUNTF. From Proposition 2.5,

d+1
d = K

d . So, K = d + 1.
(4) ⇒ (1). By hypotheses, G2

F = GF and there exists a, c ∈ R, a �= c,
such that GF = (c−a)I +aeet. GF is a circulant matrix, so its eigenvalues are
c+a(K −1) and c−a with multiplicity K −1 [22]. Since rank(GF ) = d, K > d
and c−a �= 0, we have a = − c

K−1 and K −1 = d. Thus GF = c
K−1 (KI −eet).

Since G2
F = GF , c = K−1

K . Therefore, GF = I − 1
K eet and F is a simplex

frame.
(5) ⇒ (1). By the hypotheses, GF is an orthogonal projection matrix and

im(GF ) = span{e}⊥, so GF = I − 1
K eet and F is a simplex frame. �

Some of the points of the previous theorem can be seen as variations
of statements that appear in [34]. By Corollary 4.15 and Theorem 6.4, the
canonical dual, which in this case it is itself, is the unique balanced dual of a
simplex frame. Moreover, by Theorem 6.4 and Corollary 4.3:
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Corollary 6.5. F is a BF for Hd with K = d + 1 if and only if S
−1/2
F F is a

simplex frame for Hd.

In what follows we consider properties of B-complementary BPFs that
are analogous to properties of complementary PFs that can be found in [34].

Let F be a BPF for Hd. The B-complements of F are unitary equivalent.
Let G be a B-complement of F . Then F is equal-norm (or isogonal or real) if
and only if G is. F and G can not be unitarily equivalent.

We note that if F is a BPF for F
d with K elements and ( 1√

K
e, v1, . . . ,

vK−d−1) is an orthonormal basis for ker(TF ), then the columns of the matrix
which rows are v∗

k, k = 1, . . . , K − d − 1, constitutes a B-complement BPF of
F .

We now introduce B-complementary BFs:

Definition 6.6. Two BFs F and G are B-complements if the PFs S
−1/2
F F and

S
−1/2
G G are B-complements.

Analogous to [34, Proposition 5.1] we have:

Proposition 6.7. Let F = (fk)K
k=1 and G = (gk)K

k=1 be BFs for Hd1 and Hd2 ,
respectively. Then the following are equivalent:

(1) F and G are B-complements.
(2) im(GF ) ⊕ im(GG) = span{e}⊥.
(3) dim(Hd1) + dim(Hd1) = K − 1 and TGT ∗

F = 0.
(4) The inner sum F ⊕ G = (fk, gk)K

k=1 is a BF for Hd1 ⊕ Hd2 with K =
d1 + d2 + 1 and TGT ∗

F = 0.
(5) TG = TG(I − 1

K eet − T ∗
FS−1

F TF ).

Remark 6.8. In case that F = (fk)K
k=1 and G = (gk)K

k=1 are BPFs, (4) of
the previous proposition becomes: F ⊕ G = (fk, gk)K

k=1 is a simplex frame for
Hd1 ⊕ Hd2 .

This concept can be applied to construct BUNTFs of K vectors for a
space of dimension K − d − 1 from BUNTFs of K vectors for a space of
dimension d.

7. Examples of Balanced Unit Norm Tight Frames

The aim of this section is to present various examples of BUNTFs and some of
their properties. Sometimes we identify a frame F for F

d of K elements with
the matrix that represents TF in the standard bases of Fd and F

K .
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7.1. The Case F = R and d = 2
As a consequence of Proposition 3.5 and [20, Lemma 1] we obtain:

Theorem 7.1. The following are equivalent:
(1) ((cos θk, sin θk)t)K

k=1 is a BUNTF for R
2.

(2)
∑K

k=1 eiθk =
∑K

k=1 e2iθk = 0.
(3)

∑K
k=1 eiθk =

∑
1≤k1<k2≤K e2iθk1 e2iθk2 = 0.

By Theorem 7.1, the set of vectors coming from the Kth roots of unity
are BUNTFs for R

2:

Corollary 7.2. If K ≥ 3 and (eiθk)K
k=1 are the Kth roots of unity,

((cos θk, sin θk)t)K
k=1 is a BUNTF for R

2.

In [20, Theorem A] the types of spherical t-designs in R
2 are described.

From this result and Proposition 3.5 we have:

Theorem 7.3. For K = 3, 4, 5, there is one equivalence class of BUNTF for R
2

with K elements. For K ≥ 6, there are infinite equivalence classes of BUNTF
for R

2 with K elements.

We have that for K = 3, 4, 5 the class corresponding to the frame coming
from the Kth roots of unity is the unique equivalence class of BUNTFs for
R

2 with K elements. We can see that for K ≥ 6 there are infinite equivalence
classes as follows. Note first that, by Corollary 7.2, we always have the class
corresponding to the Kth roots of unity. Now write K = 3n + s where s ∈
N0, 0 ≤ s < 3. Then, if s = 0 there are the classes corresponding to the union
of n rotations of the third roots of unity, and there are infinitely many of such
classes. If s = 1, then K = 3n + 1 = 3(n − 1) + 4. So we have the classes
corresponding to the union of the 4th roots of unity and n− 1 rotations of the
third roots of unity. If s = 2, then K = 3(n − 2) + 8 and similar arguments
can be used. Writing e.g. K = 4m+ r where r ∈ N0, 0 ≤ r < 4 and m ∈ N, or
using other decompositions of K, we can see that there exist more equivalence
classes of BUNTFs.

In what follows we consider several examples of tight frames, some of
them well-known, indicating in which cases they turn out to be balanced.

7.2. Balanced Harmonic Frames

Let F be the unitary matrix of order K which entries are F (k, l) =
1√
K

e
2πi(k−1)(l−1)

K , called Fourier matrix. The ENPFs T consisting of a d × K

submatrix of F are a particular case of the so called harmonic frames. To
obtain real ENPFs we must select real rows and complex conjugate pairs of
rows from the Fourier matrix F . If T does not contain the first row of F , then
T is also balanced. More general, unlifted harmonic frames are BENPFs and
B-complements of unlifted harmonic frames are unlifted harmonic frames. See
[34, Chapter 11] for a detailed treatment of harmonic frames.
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7.3. BENTFs from Hadamard Matrices

A Hadamard matrix H has orthogonal rows and entries ±1 [21]. The smallest
examples of Hadamard matrices are:

(1),
(

1 1
1 −1

)
,

⎛

⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟⎟⎠ .

A way for contructing Hadamard matrices is the following: if H is a Hadamard

matrix,
(

H H
H −H

)
is a Hadamard matrix. Hadamard matrices obtained in

this manner are known as Sylvester-Hadamard matrices. If H has order K and
we select a submatrix T of order d × K from H, we can get a BENTF.

7.4. Crosses and Eutactic Stars

The set (±u1, . . . ,±uK), where (u1, . . . , uK) is an orthonormal basis for Hd,
is a BUNTF for Hd. By Proposition 4.1 the set (±πWu1, . . . ,±πWuK), where
W is a subspace of Hd, is a BTF for W. If Hd = H

d, (±u1, . . . ,±uK) is known
as a cross and (±πWu1, . . . ,±πWuK) is known as an eutactic star (see [15]).

7.5. Partition Frames

Let η = (η1, . . . , ηn) ∈ Z
n be a partition of K, i.e., K = η1 + . . . + ηn and

1 ≤ η1 ≤ . . . ≤ ηn. The η-partition frame for H
d with d = K − n, is the

complement of the PF
[

e1√
η1

. . .
e1√
η1

. . .
en√
ηn

. . .
en√
ηn

]
,

of K vectors for Rn. Here each ej√
ηj

is repeated ηj times. An η-partition frame

for H
d has Gram matrix

G =

⎛

⎜⎝
B1

. . .
Bn

⎞

⎟⎠ ,

where Bj is the ηj × ηj orthogonal projection matrix with ηj−1
ηj

as diagonal
elements and −1

ηj
as non diagonal elements. See [34] for more details of partition

frames.
An η-partition frame is balanced and Parseval. If n|K and η1 = . . . = ηn

we obtain an equal norm frame.
A B-complement G of an (η1, . . . , ηn)-partition frame F of K elements

for Hd has Gram matrix GG = (Ci,j) where Ci,j is an ηi × ηj matrix such that
the entries of Ci,j are K−ηi

ηiK
if i = j and − 1

K if i �= j. For example, if n = 1,
F is a simplex frame and G is the zero vector repeated K times. If n = 2, G
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is the BPF of K elements for R
1 consisting of −

√
η2

η1K and
√

η1
η2K (or

√
η2

η1K

and −
√

η1
η2K ) repeated η1 and η2 times, respectively.

7.6. BUNTFs from Spherical Designs

We recall that any spherical (t + 1)-design is a spherical t-design and a real
spherical 2-design is a BUNTF. In [3], several examples of spherical t-design
are presented. They include regular K-gons on S

1 ⊂ R
2, platonic solids in R

3,
regular potytopes and roots systems in H

d, and the set of minimal vectors of
the Leech lattice in R

24.

8. Construction Methods for Balanced Unit Norm Tight Frames

In this section we present explicit and painless constructions of an infinite
variety of BUNTFs.

We begin by showing under which conditions some well-known methods
for constructing frames lead to the obtention of BUNTFs. For properties of
these methods see [34, Chapter 5].

We have the inner product in the orthogonal direct sum Hd1 ⊕Hd2 given
by 〈(f1, g1), (f2, g2)〉 := 〈f1, f2〉+〈g1, g2〉 for each (f1, g1), (f2, g2) ∈ Hd1 ⊕Hd2 .
The following results give ways to obtain a BUNTF combining two or more
BUNTFs.

First we obtain BUNTFs as a disjoint union of BUNTFs:

Proposition 8.1. Let F = (fk)K
k=1 be a sequence in Hd1 and G = (gl)L

l=1 be a
sequence in Hd2 . Then the disjoint union F∪̇G := ((fk, 0)K

k=1, (0, gl)L
l=1) is a

BUNTF for Hd1 ⊕Hd2 if and only F is a BUNTF for Hd1 , G is a BUNTF for
Hd2 and K

d1
= L

d2
.

Proof. Noting that TF∪̇G = TF ⊕ TG and SF∪̇G = SF ⊕ SG , F∪̇G is a BUNTF
for Hd1 ⊕Hd2 if and only F is a BUNTF for Hd1 , G is a BUNTF for Hd2 , and
K+L
d1+d2

= K
d1

= L
d2

. This last condition is equivalent to K
d1

= L
d2

. �

Note that in view of Theorem 4.12, each BUNTF is the disjoint union
of BUNTFs for orthogonal subspaces, given by the vertices of each connected
component of the frame graph. This decomposition is unique.

Now we construct BUNTFs as the inner direct sum of BUNTFs:

Proposition 8.2. Let α, β ∈ F \ {0}. Let F = (fk)K
k=1 be a sequence in Hd1

and G = (gk)K
k=1 be a sequence in Hd2 be UN. Then the inner direct sum

αF ⊕ βG := ((αfk, βgk))K
k=1 is a BUNTF for Hd1 ⊕ Hd2 if and only if F is

a BUNTF for Hd1 , G is a BUNTF for Hd2 , TFT ∗
G = 0, |α|2 = d1

d1+d2
and

|β|2 = d2
d1+d2

.
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Proof. We have TαF⊕βG(c) = (αTF (c), βTG(c)) for all c ∈ FK and

SαF⊕βG(f, g) = (|α|2SF (f) + αβTFT ∗
G(g), αβTGT ∗

F (f) + |β|2SG(g))

for all f ∈ Hd1 , g ∈ Hd2 . Therefore αF ⊕ βG is a BUNTF if and only if F is
a BUNTF for Hd1 , G is a BUNTF for Hd2 , TFT ∗

G = 0 and |α|2 K
d1

= |β|2 K
d2

=
K

d1+d2
. �

See [34, Lemma 5.1] for equivalent conditions to TFT ∗
G = 0. In particular,

this condition implies that K ≥ d1 + d2.
Another way to construct BUNTFs is to take the sum of BUNTFs in the

following sense:

Proposition 8.3. Let α, β ∈ F \ {0}. Let F = (fk)K
k=1 be a UN sequence in

Hd1 and G = (gl)L
l=1 be a UN sequence in Hd2 . Then the sum αF+̂βG :=

((αfk, βgl))
K,L
k,l=1 is a BUNTF for Hd1 ⊕ Hd2 if and only F is a BUNTF for

Hd1 , G is a BUNTF for Hd2 , |α|2 = d1
d1+d2

and |β|2 = d2
d1+d2

.

Proof. For each l = 1, . . . , L, set Hl := (hl,k)K
k=1 where hl,k = gl for each

k = 1, . . . , K. Let E : FL → F
K given by E(c) = (

∑L
l=1 cl, . . . ,

∑L
l=1 cl). The

synthesis operator is given by

TαF+̂βG(d) =
∑

l∈K
(αTF (d(l)), βTHl

(d(l))),

where d ∈ (FK)L, and the frame operator is given by

SαF+̂βG(f, g) = (L|α|2SF (f) + αβTFET ∗
G(g), αβTGE∗T ∗

F (f) + K|β|2SG(g)),

where f ∈ Hd1 and g ∈ Hd2 , respectively. It results that αF+̂βG is a BUNTF
for Hd1 ⊕ Hd2 if and only if F is a BUNTF for Hd1 , G is a BUNTF for Hd2 ,
L|α|2 K

d1
= K|β|2 L

d2
= KL

d1+d2
, or equivalently, |α|2 = d1

d1+d2
and |β|2 = d2

d1+d2
.

�
In the tensor product Hd1 ⊗ Hd2 we have the inner product given by

〈f1 ⊗ g1, f2 ⊗ g2〉 := 〈f1, f2〉〈g1, g2〉 for each f1 ⊗ g1, f2 ⊗ g2 ∈ Hd1 ⊗Hd2 . Here
we build BUNTFs as a tensor product of BUNTFs.

Proposition 8.4. Let F = (fk)K
k=1 be a sequence in Hd1 and G = (gl)L

l=1 be a
sequence in Hd2 . Then the tensor product F ⊗G := (fj ⊗ gk)K,L

k,l=1 is a BUNTF
for Hd1 ⊗ Hd2 if and only F is a TF for Hd1 , G is a TF for Hd2 , F or G is
balanced, and ||fj || ||gk|| = 1 for all k = 1, . . . , K, l = 1, . . . , L.

Proof. We have TF⊗G = TF ⊗TG and SF⊗G = SF ⊗SG . By [34, Corollary 5.1],
F ⊗ G is a UNTF for Hd1 ⊗ Hd2 if and only F is a TF for Hd1 , G is a TF for
Hd2 and ||fj || ||gk|| = 1 for all k = 1, . . . , K, l = 1, . . . , L.

Let (em)d1
m=1 be an orthonormal basis for Hd1 and (en)d2

n=1 be an orthonor-
mal basis for Hd2 . Since 〈TF ⊗TG(e), em⊗en〉 = 〈TF (e), em〉〈TG(e), en〉 for each
m = 1, . . . , d1 and n = 1, . . . , d2, F ⊗ G is balanced if and only if F or G is
balanced. �
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8.1. Other Constructions

For sequences F = (fk)K
k=1,G = (gl)L

l=1 in Hd we consider the union F ∪
G := ((fk)K

k=1, (gl)L
l=1). In this subsection we introduce other techniques for

constructing BUNTFs that combine unions and direct sums. Among them,
there are methods that can be applied to obtain the five platonic solids in R

3.
The next theorem generalizes the method in [31] for obtaining the vertices

of the tetrahedron and of the dodecahedron in R
3 starting from the third roots

of the unity and from the fifth roots of the unity in a plane, respectively.

Theorem 8.5. Let α, β ∈ F \ {0}. Assume that F = (fk)K
k=1 is a BUNTF

for Hd1 , G = (gk)K
k=1 where gk = h with h ∈ Hd2 and ||h|| = 1 for each

k = 1, . . . , K. Let y ∈ Hd2 with ||y|| = 1. Then (αF ⊕βG)∪ (0, y) is a BUNTF
for Hd1 ⊕ Hd2 if and only if d2 = 1, y = −h, K = d1 + 1, |α|2 = 1 − 1

K2 and
|β|2 = 1

K2 .

Proof. The sequence (αF ⊕ βG) ∪ (0, y) is balanced if and only if y = −Kβh.
Since ||h|| = ||y|| = 1, β = 1

K . Consequently, y = −h.
For each f ∈ Hd1 and g ∈ Hd2 ,

S(αF⊕βG)∪(0,y)(f, g) =

(
|α|2 K

d1
f + αβTFT ∗

Gg, αβTGT ∗
Ff + |β|2SG(g) + 〈g, y〉y

)
.

Taking into account that F is balanced, TFT ∗
Gg =

∑K
k=1〈g, gk〉fk =

〈g, h〉∑K
k=1 fk = 0 for each g ∈ Hd2 . So, (αF ⊕ βG) ∪ (0, y) is a TF for

Hd1 ⊕ Hd2 if and only if |α|2 K
d1

= K+1
d1+d2

and (K|β|2 + 1)〈g, h〉h = K+1
d1+d2

g for
each g ∈ Hd2 . The last condition implies that 0 is the only element orthogonal
to h, therefore d2 = 1. Consequently, (αF ⊕ βG) ∪ (0, y) is a TF for Hd1 ⊕Hd2

if and only if |α|2 = d1(K+1)
K(d1+1) and (K|β|2 + 1) = K+1

d1+1 , i.e., |β|2 = K−d1
K(d1+1) .

The two expressions for |β|2 must be the same, i.e., K−d1
K(d1+1) = 1

K2 , and this is
equivalent to K = 1 or K = d1 + 1. The first case cannot happen because F
is balanced. So, K = d1 + 1.

Since F is UN, ||h|| = ||y|| = 1 and |α|2 + |β|2 = 1, we have that
(αF ⊕ βG) ∪ (0, y) is UN. �

The proofs of the following results use arguments similar to the previous
ones, so we omit them.

The vertices of the octahedron in R
3 form a BUNTF that can be obtained

adding orthogonally two antipodal points to the BUNTF consisting of the
4th-roots of unity in a plane (see [31]). The next theorem generalizes this
construction to an arbitrary direct sum of two Hilbert spaces. Let a BUNTF
for Hd1 be immersed in a direct sum Hd1 ⊕ Hd2 , and add to it one unit-norm
vector of Hd1 ⊕ Hd2 and its opposite. We show that the resulting set is a
BUNTF for Hd1 ⊕ Hd2 if and only if Hd2 is 1-dimensional, and the added
vector is orthogonal to the elements of the given frame in Hd1 ⊕ Hd2 .
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Theorem 8.6. Let F = (fk)K
k=1 be a BUNTF for Hd1 , x ∈ Hd1 and y ∈ Hd2 ,

y �= 0. Then ((fk, 0))K
k=1 ∪ (x, y) ∪ (−x,−y) is a BUNTF for Hd1 ⊕Hd2 if and

only if x = 0, d2 = 1, ||y|| = 1 and K = 2d1.

The procedure of the following theorem can be thought as a kind of
symmetric simple lift (see [34, Definition 5.2] for the notion of lift and simple
lift). It also can be seen as a generalization of the procedure used in [31]
for obtaining the vertices of the hexahedron and of the dodecahedron in R

3

starting from the BUNTFs in a plane consisting of the fourth roots of the
unity and of the fifth roots of the unity, respectively.

Theorem 8.7. Let α ∈ F \ {0}. Let F = (fk)K
k=1,G = (gk)K

k=1 be BUNTFs
for Hd and Hk = (βkhl)K

k=1 where βk ∈ F for each k = 1, . . . , K, hl ∈ H1,l,
||hl|| = 1 and dim(H1,l) = 1 for all l = 1, . . . , r. Then (αF ⊕ H1 ⊕ . . . ⊕ Hr) ∪
(αG ⊕ (−H1) ⊕ . . . ⊕ (−Hr)) is a BUNTF for Hd ⊕ H1,1 ⊕ . . . ⊕ H1,r if and
only if r = 1,

∑K
k=1 βkfk =

∑K
k=1 βkgk, |α|2 = d

d+1 and |βk|2 = 1
d+1 for each

k = 1, . . . , K.

Note that one choice for βk in Theorem 8.7 is βk =
√

1
d+1 for each

k = 1, . . . , K.
The next method to construct UNTFs can be seen as a partial simple

lift.

Proposition 8.8. Assume α, β ∈ F \ {0} and Ld1 > K. Let F = (fk)K
k=1,G =

(gl)L
l=1 be a UNTF and a BUNTF for Hd1 , respectively. Let H = (hl)L

l=1 where
hl = h ∈ Hd2 and ||h|| = 1 for each l = 1, . . . , L. Then ((fk, 0))K

k=1∪(αG⊕βH)
is a UNTF for Hd1 ⊕ Hd2 if and only if d2 = 1, |α|2 = d1L−K

(d1+1)L and |β|2 =
K+L

(d1+1)L .

Now we consider a variation of the previous method for obtaining a
BUNTF. It can be seen as a symmetric partial simple lift.

Theorem 8.9. Assume α, β ∈ F \ {0} and K < 2d1L. Let F = (fk)K
k=1, G =

(gl)L
l=1 and G̃ = (g̃l)L

l=1 be BUNTFs for Hd1 . Let H = (hl)L
l=1 where hl =

h ∈ Hd2 and ||h|| = 1 for each l = 1, . . . , L. Then ((fk, 0))K
k=1 ∪ (αG ⊕ βH) ∪

(αG̃ ⊕ (−βH)) is a BUNTF for Hd1 ⊕ Hd2 if and only if TGe = TG̃e, d2 = 1,
|α|2 = 2d1L−K

2(d1+1)L and |β|2 = 2L+K
2(d1+1)L .

The following theorem generalizes [2, Theorem 3], which is about t-
designs in R

3, for the case t = 2.

Theorem 8.10. Assume αm, βm ∈ F \ {0} such that |αm|2 + |βm|2 = 1 for
each m = 1, . . . , M . Let Fm = (fm,k)K

k=1 be BUNTFs for Hd1 for each m =
1, . . . , M . Let G = (gk)K

k=1 where gk = g ∈ Hd2 and ||g|| = 1 for each k =
1, . . . , K. Then

⋃M
m=1(αmFm ⊕ βmG) is a BUNTF for Hd1 ⊕ Hd2 if and only

if d2 = 1,
∑M

m=1 βm = 0 and
∑M

m=1 |βm|2 = |M |
d1+1 .
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Remark 8.11. An example of scalars βm as in Theorem 8.10 is βm =√
|M |

c(d1+1) β̃m where β̃m ∈ F, 1
|M | ≤ |β̃m|2 ≤ d1+1

|M | for each m = 1, . . . , M ,
∑M

m=1 β̃m = 0 and c =
∑M

m=1 |β̃m|2. Another option is to consider any row of
TF where F is a BTF for F

d1+1 with M elements.

Remark 8.12. Observe that we can vary F , G, H, etc., in all the above con-
structions obtaining in this manner an infinite number of non unitary equiva-
lent BUNTFs. We can also combine these methods generating a great variety
of them.

We note that there exist BUNTFs of K points for Hd with K ≥ 2 unless
K ≤ d or K = d + 2 and K is odd. This is a consequence of Proposition 3.5
and results of [26].
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[10] Casazza, P.G., Kovačević, J.: Equal norm tight frames with erasures. Adv. Com-
put. Math. 18(2–4), 387–430 (2003)

[11] Casazza, P.G., Kutyniok, G. (eds.): Finite Frames. Theory and Applications.
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