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Vector Valued Polynomials, Exponential
Polynomials and Vector Valued Harmonic
Analysis
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Abstract. Let G be a topological Abelian semigroup with unit, and let E
be a Banach space. We define, for functions mapping G into E, the classes
of polynomials, generalized polynomials, local polynomials, exponential
polynomials, and some other relevant classes. We establish their connec-
tions with each other and find their representations in terms of the cor-
responding complex valued classes. We also investigate spectral synthesis
and analysis in the class C(G,E) of continuous functions f : G → E. It
is known that if G is a compact Abelian group and E is a Banach space,
then spectral synthesis holds in C(G,E). We give a self-contained proof
of this fact, independent of the theory of almost periodic functions. On
the other hand, we show that if G is an infinite and discrete Abelian
group and E is a Banach space of infinite dimension, then even spectral
analysis fails in C(G,E). We also prove that if G is discrete, has finite
torsion free rank and if E is a Banach space of finite dimension, then
spectral synthesis holds in C(G,E).

Mathematics Subject Classification. Primary 39B52; Secondary 22A20.

Keywords. Banach space valued polynomials, exponential polynomials,
spectral synthesis.

1. Introduction

Let G be a topological Abelian semigroup with unit. For complex valued func-
tions defined on G, the classes of polynomials, generalized polynomials, local
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polynomials, exponential polynomials have been defined and their basic prop-
erties have been established. (See, e.g., [5–8,10–12,14–16] and the references
therein.) Our first aim is to extend these notions to the vector valued case.

Let E be a Banach space, and let C(G,E) denote the set of continuous
functions f : G → E. A function f ∈ C(G,E) is a generalized polynomial, if
there is an n ≥ 0 such that Δh1 . . . Δhn+1f = 0 for every h1, . . . , hn+1 ∈ G,
where Δh is the difference operator. We say that f ∈ C(G,E) is a polynomial,
if it is a generalized polynomial, and the linear span of its translates is of finite
dimension; f is a w-polynomial, if u ◦ f is a polynomial for every u ∈ E∗, and
f is a local polynomial, if it is a polynomial on every finitely generated sub-
semigroup. We show that each of the classes of polynomials, w-polynomials,
generalized polynomials, local polynomials is contained in the next class (The-
orem 8). We also prove that if G is an Abelian group and has a dense subgroup
with finite torsion free rank, then these classes coincide (see Theorem 9).

We introduce the classes of exponential polynomials and w-exponential
polynomials as well, establish their representations and connection with poly-
nomials and w-polynomials.

We also investigate spectral synthesis and analysis in the class C(G,E).
It is known that if G is a compact Abelian group and E is a Banach space, then
spectral synthesis holds in C(G,E). In the appendix we give a self-contained
proof of this fact, independent of the theory of almost periodic functions. As
we show, the situation for locally compact Abelian groups is different. We
prove that if G is an infinite and discrete Abelian group and E is a Banach
space of infinite dimension, then even spectral analysis fails in C(G,E) (see
Theorem 17). If, however, G is discrete, has finite torsion free rank and if E is
a Banach space of finite dimension, then spectral synthesis holds in C(G,E)
(see Theorem 18).

2. Vector Valued Polynomials and Exponential Polynomials

Let G be a topological Abelian semigroup with unit. We denote the semigroup
operation by addition, and denote the unit by 0. Let E be a Banach space over
the complex field C. We denote by EG the set of maps from G into E, and by
C(G,E) the set of continuous functions f : G → E.

Let Tg denote the translation operator on EG defined by Tgf(x) = f(x+
g) for every f ∈ EG and g, x ∈ G. A subset V ⊂ EG is translation invariant,
if Tgf ∈ V whenever f ∈ V and g ∈ G. If f ∈ EG, then Lf denotes the linear
span of {Tgf : g ∈ G}.

The operator Δg is defined by Δg = Tg − T0. That is, we have Δgf(x) =
f(x + g) − f(x) for every f ∈ EG and x ∈ G.

We say that a continuous function f ∈ C(G,E) is a generalized poly-
nomial1, if there is an n ≥ 0 such that Δh1 . . . Δhn+1f = 0 for every

1Our terminology differs from that of [15].
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h1, . . . , hn+1 ∈ G. The smallest n with this property is the degree of f , denoted
by deg f . The degree of the identically zero function is −1.

By Djoković’s theorem [5] (see also [6, Section 6]), a continuous function
f ∈ C(G,E) is a generalized polynomial if and only if f =

∑n
i=1 fi, where fi is

a monomial of degree i for every i = 1, . . . , n, and f0 is constant. By a monomial
of degree i we mean a function of the form A(x, . . . , x), where A(x1, . . . , xi) is
a map from Gi to E which is symmetric, and i-additive; that is, additive in
each variable. It is easy to see that the representation f =

∑n
i=1 fi is unique.

It is clear that the set of generalized polynomials forms a linear subspace
of C(G,E) over C.

Theorem 1. (i) A continuous function f ∈ C(G,E) is a generalized polyno-
mial if and only if u ◦ f is a (complex valued) generalized polynomial for
every u ∈ E∗.

(ii) If f is a generalized polynomial, then deg (u◦f) ≤ deg f for every u ∈ E∗.
(iii) If f is a generalized polynomial, then there is an u ∈ E∗ such that deg (u◦

f) = deg f .

Proof. The “only if” direction of (i) is obvious, and so is (ii). To prove the “if”
statement of (i), let E∗

n denote the set of linear functionals u ∈ E∗ such that
Δh1 . . . Δhn+1(u ◦ f) = 0 for every h1, . . . , hn+1 ∈ G. It is easy to see that E∗

n

is a closed linear subspace of E∗ for every n = 0, 1, . . ..
If u◦f is a generalized polynomial for every u ∈ E∗, then E∗ =

⋃∞
n=0 E∗

n.
Then, by the Baire category theorem, there is an n such that int E∗

n �= ∅, and
thus E∗

n = E∗. Let n be the smallest such n.
We show that Δh1 . . . Δhn+1f = 0 for every h1, . . . , hn+1. Indeed, if

Δh1 . . . Δhn+1f(x) �= 0 for some h1, . . . , hn+1, x ∈ G, then there is an u ∈ E∗

such that

Δh1 . . . Δhn+1(u ◦ f)(x) = u
(
Δh1 . . . Δhn+1f(x)

) �= 0,

which is impossible. This proves both (i) and (iii). �

Remark 2. The continuity of the function f cannot be omitted from the con-
ditions of the theorem. In other words, a function f ∈ EG such that u ◦ f is a
complex valued generalized polynomial, hence continuous for every u ∈ E∗ is
not necessarily continuous itself.

As an example, let E be an infinite dimensional Banach space, and let G
denote the vector space of E endowed with the weak topology of E. Then G is
a topological vector space. Let f denote the identity on G as a map from G to
the Banach space E. Then f is not continuous, as the original topology of E
is strictly stronger than the weak topology. On the other hand, if u ∈ E∗, then
u◦f = u is a continuous additive function, therefore, a generalized polynomial.

We show that if G is a normed linear space, then the continuity of f is a
consequence of the other condition.
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Theorem 3. Let G be a normed linear space, and let E be a Banach space. A
function f ∈ EG is a generalized polynomial if and only if u ◦ f is a (complex
valued) generalized polynomial for every u ∈ E∗.

Proof. By Theorem 1, f is a generalized polynomial w.r.t. the discrete topol-
ogy. Thus we only have to show that f is continuous.

Let f =
∑n

i=0 fi, where fi is a monomial of degree i for 1 ≤ i ≤ n, and f0
is a constant. It is enough to show that fi is continuous for every i = 1, . . . , n.

It is easy to see that f(kx) =
∑n

i=0 ki ·fi(x) for every x ∈ G and for every
positive integer k. These equations for k = 1, . . . , n+1 constitute a linear sys-
tem of equations with unknowns fi(x) (i = 0, . . . , n). Since the determinant of
this system is nonzero (being a Vandermonde determinant), it follows that each
fi(x) is a linear combination of f(x), . . . , f((n+1)x) with rational coefficients.

If u ∈ E∗, then u◦f is a generalized polynomial, hence continuous. Then
each of the functions x 
→ u(f(kx)) (k = 1, . . . , n + 1) is continuous, and thus
u ◦ fi, being a linear combinations of these functions, is also continuous for
every i = 1, . . . , n.

Let Br denote the open ball {x ∈ G : ‖x‖G < r} (recall that G is a
normed linear space by assumption). Let 1 ≤ i ≤ n be fixed. We show that
fi(B1) is weakly bounded in E. Indeed, if u ∈ E∗, then the continuity of
u ◦ fi implies that for a suitable positive integer k, |u(fi(x))| < 1 for every
x ∈ B1/k. Therefore, if x ∈ B1, then x/k ∈ B1/k, |u(fi(x/k))| < 1 and
|u(fi(x))| < ki, showing that u is bounded on fi(B1). This proves that fi(B1)
is weakly bounded in E. Since, in a Banach space, every weakly bounded set
is originally bounded [13, 3.18 Theorem], it follows that ‖y‖E < K for every
y ∈ fi(B1) with a suitable positive integer K.

If ε > 0 is given, then there is an integer m such that m > K/ε. If
x ∈ B1/m, then

‖fi(x)‖E = ‖m−ifi(mx)‖E < K/mi < ε,

proving that fi is continuous at zero. Now, it is known that if a monomial is
continuous at one point, then it is continuous everywhere. See [15, Theorem
3.6]. Note that monomials are “algebraic polynomials” in the terminology of
[15], and that the conditions of [15, Theorem 3.6] are satisfied if G is a normed
linear space and E is a Banach space. Thus fi is continuous on G for every
i = 1, . . . , n, and this is what we wanted to show. �

A function f ∈ C
G is said to be a polynomial, if there are continuous

additive functions a1, . . . , an : G → C and there is a P ∈ C[x1, . . . , xn] such
that f = P (a1, . . . , an). It is well-known that every complex valued polynomial
is a generalized polynomial.

A continuous function m : G → C is called an exponential function, if
m �= 0 and m(x + y) = m(x) · m(y) for every x, y ∈ G.

A function f ∈ C
G is an exponential polynomial, if there are polynomials

p1, . . . , pn : G → C and exponentials m1, . . . , mn such that f =
∑n

i=1 pi · mi.
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It is well-known that a continuous function f ∈ C(G,C) is an exponential
polynomial if and only if dimLf < ∞. (For Abelian semigroups see [12], for
Abelian groups see [14] and [15, Theorem 10.2]. See also [9] for the history of
the theorem and for a simple proof.) In possession of this result the following
definition seems reasonable. We say that a continuous function f ∈ C(G,E)
is an exponential polynomial2, if dimLf < ∞.

Theorem 4. A function f ∈ C(G,E) is an exponential polynomial if and only
if there are finitely many complex valued exponential polynomials f1, . . . , fk ∈
C(G,C) and elements e1, . . . , ek ∈ E such that f = f1 · e1 + . . . + fk · ek.

Proof. The “if” statement is clear: if f1, . . . , fk are exponential polynomials
and f = f1 · e1 + . . . + fk · ek, then Lf1·e1 , . . . , Lfk·ek

are of finite dimension,
and then so is Lf .

To prove the converse, suppose that dimLf < ∞. First we show that the
linear subspace F of E generated by R(f), the range of f , is of finite dimension.
Suppose not. Then there are elements x1, . . . , xn ∈ G such that n > dim Lf ,
and f(x1), . . . , f(xn) are linearly independent over C. Now n > dim Lf implies
that Tx1f, . . . , Txn

f are linearly dependent, and thus
∑n

i=1 ciTxi
f = 0 for some

complex numbers c1, . . . , cn, not all zero. Then
∑n

i=1 cif(x+xi) = 0 for every
x. In particular, putting x = 0 we get

∑n
i=1 cif(xi) = 0, which contradicts the

fact that f(x1), . . . , f(xn) are linearly independent.
This proves that dim F < ∞. Let e1, . . . , ek be a basis of F . Then there

are functions f1, . . . , fk : G → C such that f = f1 ·e1 + . . .+fk ·ek on G. Since
e1, . . . , ek are linearly independent, there are linear functionals u1, . . . , uk ∈ E∗

such that ui(ei) = 1 and ui(ej) = 0 for every 1 ≤ i, j ≤ k, i �= j. Thus
fi = ui ◦ f for every i = 1, . . . , k. Since f is continuous, we can see that so are
f1, . . . , fk. Also, we have dim Lfi

= dim Lui◦f ≤ dim Lf < ∞, and thus fi is
an exponential polynomial for every i = 1, . . . , k. �

The definition of polynomials cannot be generalized to the vector-valued
case, as Banach spaces are not algebras. However, the following observation
makes it clear what a reasonable generalization could be.

Proposition 5. A complex valued function f : G → C is a polynomial if and
only if f is a generalized polynomial, and dim Lf < ∞.

Proof. We noted already that every polynomial is a generalized polynomial.
In fact, one can prove by induction on deg P that if f = P (a1, . . . , an), where
P ∈ C[x1, . . . , xn] and a1, . . . , an : G → C are continuous additive functions,
then f is a generalized polynomial of degree at most deg P . Similarly, dimLf <
∞ can also be proved by induction on deg P . Or, we can argue that if f is
a polynomial, then it is an exponential polynomial, since f = f · 1 and the

2Our terminology differs from that of [3, Definition 1.3, p. 366]. As we can see in Theorem 4,
a function is an exponential polynomial in our sense if and only if it is a finite sum of
exponential polynomials in the sense of [3].
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identically 1 function is an exponential. Thus dimLf < ∞ follows from a
theorem quoted before. This proves the “only if” part of the proposition.

Now suppose that f is a generalized polynomial and dimLf < ∞. The
latter condition implies that f is an exponential polynomial; that is, f =
∑k

i=1 pi·mi, where p1, . . . , pk are polynomials and m1, . . . , mk are exponentials.
We may assume that p1, . . . , pk are nonzero and m1, . . . , mk are distinct.

It is known that the representation of a function f : G → C in the form∑s
i=1 pi · mi, where m1, . . . , ms are distinct exponentials and p1, . . . , ps are

nonzero generalized polynomials is unique (if exists). For Abelian groups this
is proved in [15, Lemma 4.3, p. 41] and in [7, Lemma 6]. It is easy to check that
the proof of [7, Lemma 6] works in Abelian semigroups as well. The uniqueness
follows also from Lemma 15 below.

In our case f ·1 =
∑s

i=1 pi ·mi and thus the uniqueness of the representa-
tion implies s = 1, m1 = 1 and f = p1. Thus f is a polynomial, which proves
the “if” part of the proposition. �

The proposition above motivates the following definition: a function f ∈
C(G,E) is a polynomial, if f is a generalized polynomial, and dimLf < ∞.

Theorem 6. A function f ∈ EG is a polynomial if and only if there are finitely
many complex valued polynomials f1, . . . , fk and elements e1, . . . , ek ∈ E such
that f = f1 · e1 + . . . + fk · ek.

Proof. Suppose that f = f1·e1+. . .+fk·ek, where f1, . . . , fk are complex valued
polynomials and e1, . . . , ek ∈ E. Then f1, . . . , fk are continuous, hence so is f .
Also, f1, . . . , fk are generalized polynomials, hence so are f1 ·e1, . . . , fk ·ek, and
then so is f . Also, Lf1 , . . . , Lfk

are of finite dimension, implying dimLf < ∞.
This proves the “if” statement.

If f is a polynomial, then dimLf < ∞. By Theorem 4, this implies
that f = f1 · e1 + . . . + fk · ek, where f1, . . . , fk are complex valued expo-
nential polynomials, and e1, . . . , ek ∈ E. We may assume that e1, . . . , ek are
linearly independent. Then there are linear functionals u1, . . . , uk ∈ E∗ such
that ui(ei) = 1 and ui(ej) = 0 for every 1 ≤ i, j ≤ k, i �= j. Thus fi = ui ◦ f
for every i = 1, . . . , k. Since f is a generalized polynomial, we can see that so
are f1, . . . , fk. Summing up: f1, . . . , fk are generalized polynomials and expo-
nential polynomials. Therefore, they are polynomials by Proposition 5. �
Theorem 7. A function f ∈ EG is an exponential polynomial if and only if
f =

∑k
i=1 mi · pi, where m1, . . . , mk are (complex valued) exponentials, and

p1, . . . , pk ∈ EG are polynomials.

Proof. If m is an exponential and p ∈ EG, then Tg(m ·p) = m(g) ·m ·Tgp, and
thus

Tg(m · p) ∈ {m · φ : φ ∈ Lp}
for every g ∈ G. If p is a polynomial, then Lp is of finite dimension, and then
so is Lm·p. Thus m · p is an exponential polynomial whenever m is a complex
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valued exponential and p is a polynomial. From this observation the “if” part
of the statement of the theorem is obvious.

To prove the “only if” part, let f be an exponential polynomial. By
Theorem 4, f = f1 · e1 + . . . + fk · ek, where f1, . . . , fk are complex valued
exponential polynomials and e1, . . . , ek ∈ E. Let fi =

∑ni

j=1 pij · mij , where
pij is a complex valued polynomial and mij is an exponential for every j =
1, . . . , ni. Then

f =
k∑

i=1

ni∑

j=1

mij · (pij · ei),

where pij · ei ∈ EG is a polynomial for every i, j. �

3. The Classes of w-Polynomials and w-Exponential
Polynomials

In the complex valued case the continuous additive functions are automatically
polynomials. In the vector valued setting this is not the case, as the following
example shows.

Let E be an infinite dimensional Banach space, and let G be its additive
group with the same topology. Let f : G → E be the identity map on G. Then
f is a continuous additive function, but not a polynomial. Indeed, Lf equals
the set of functions x 
→ cx + e, where c ∈ C and e ∈ E. In particular, Lf

contains the constant functions, and thus dimLf = ∞. Consequently, f is not
a polynomial. On the other hand, it is clear that u ◦ f = u is a (complex
valued) polynomial for every u ∈ E∗. This motivates the following definition.

Let G be a topological Abelian semigroup with unit, and let E be a
Banach space over the complex field C. We say that a continuous function
f ∈ C(G,E) is a w-polynomial, if u ◦ f is a (complex valued) polynomial for
every u ∈ E∗.

We introduce one more variation on the theme of polynomials. A contin-
uous function f ∈ C(G,E) is called a local polynomial, if the restriction of f
to any finitely generated subsemigroup of G is a polynomial.

Theorem 8. Consider the following properties that a continuous function f ∈
C(G,E) may have:

(i) f is a polynomial,
(ii) f is a w-polynomial,
(iii) f is a generalized polynomial,
(iv) f is a local polynomial.
Then we have (i)=⇒(ii)=⇒(iii)=⇒(iv).

Proof. (i)=⇒(ii): If f is a polynomial, then f is a generalized polynomial, and
dim Lf < ∞. It is clear that if u ∈ E∗, then u◦f has the same properties, and
thus u ◦ f is a polynomial by Proposition 5.
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(ii)=⇒(iii): If f is a w-polynomial, then u ◦ f is a polynomial for every u ∈
E∗. Thus u ◦ f is a generalized polynomial for every u ∈ E∗. Therefore, by
Theorem 1, f is a generalized polynomial.
(iii)=⇒(iv): Let f be a generalized polynomial. As we mentioned earlier, this
implies, by Djoković’s theorem [5], that f =

∑n
i=1 fi, where fi is a monomial

of degree i for every i = 1, . . . , n, and f0 is constant. Let fi(x) = Ai(x, . . . , x),
where Ai(x1, . . . , xi) is symmetric and additive in each variable.

Let H be a finitely generated subsemigroup of G, and let h1, . . . , hk be a
generating system of H. It is clear that the restriction f |H is also a generalized
polynomial. We prove that dimLf |H < ∞.

If x, y ∈ H, then f(x + y) =
∑n

i=1 fi(x + y). Since Ai is symmetric
and additive in each variable, we have fi(x + y) = Ai(x + y, . . . , x + y) =
∑i

j=0 gi(x, y), where

gi(x, y) =
(

i

j

)

A(x, . . . , x
︸ ︷︷ ︸

j

y, . . . , y
︸ ︷︷ ︸

i−j

).

Since y is a linear combinations with nonnegative integer coefficients of the
elements h1, . . . , hk, it follows that gi(x, y) is a linear combinations with
nonnegative integer coefficients of the functions Ai(x, . . . , x, hν1 , . . . , hνj−i

),
where ν1, . . . , νj−i ∈ {1, . . . , k}. Thus Tyfi is the linear combination of finitely
many functions that are independent of the choice of y ∈ H. Therefore,
dim Lfi|H < ∞ for every i = 1, . . . , n, and thus dimLf |H < ∞. This proves
that f is a polynomial on H. Since H was an arbitrary finitely generated
subsemigroup of G, it follows that f is a local polynomial on G. �

Note that if E is finite dimensional, then every w-polynomial is a poly-
nomial. Indeed, if f is a w-polynomial and e1, . . . , en is a basis of E, then
f = f1 · e1 + . . . + fn · en, where f1, . . . , fn ∈ C

G. The argument of the proof
of Theorem 6 gives that fi = ui ◦ f with suitable u1, . . . , un ∈ E∗, and thus
f1, . . . , fn are polynomials. Thus f itself is a polynomial by Theorem 6.

If G is a finitely generated semigroup, then every local polynomial is
a polynomial, and thus properties (i)-(iv) are equivalent. We show that for
Abelian groups somewhat more is true. If G is an Abelian group, then we
denote by r0(G) the torsion free rank of G; that is, the cardinality of a maximal
independent system of elements of infinite order.

Theorem 9. Let G be a topological Abelian group, and suppose that there is a
dense subgroup H of G such that r0(H) < ∞. Then properties (i)-(iv) listed
in Theorem 8 are equivalent.

Proof. First we assume that r0(G) < ∞. Then there is a finitely generated
subgroup H of G such that the factor group G/H is torsion. In other words,
for every h ∈ G there is a positive integer k such that kh ∈ H.

It is enough to prove that if f ∈ C(G,E) is a local polynomial, then f is
a polynomial.
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First we show that f is a generalized polynomial. Since f is a local polyno-
mial, the restriction f |H to the finitely generated subgroup H is a polynomial.
In particular, f |H is a generalized polynomial, and thus f |H =

∑n
i=1 fi, where

fi is a monomial of degree i for every i = 1, . . . , n, and f0 is constant.
We show that f is a generalized polynomial of degree n on G. Let

a1, . . . , an+1, x ∈ G be arbitrary; we prove Δa1 . . . Δan+1f(x) = 0. Let H
denote the subgroup of G generated by H and the elements a1, . . . , an+1, x.
Then H is finitely generated. Since f is a local polynomial, it follows that f |H
is a polynomial, hence a generalized polynomial. Thus f |H =

∑m
j=1 gj , where

gi is a monomial of degree j for every j = 1, . . . , m, and g0 is constant. We
may assume that gm is not identically zero on G. We prove m ≤ n.

Since H ⊂ H, we have f |H =
∑m

j=1 gj |H . Now the representation of f |H
as a sum of monomials is unique. If m > n, then necessarily gm|H = 0. Let
gm(x) = B(x, . . . , x), where B is m-additive. If h ∈ H, then kh ∈ H with a
suitable positive integer k. Then

gm(h) = B(h, . . . , h) = k−mB(kh, . . . , kh) = k−mgm(kh) = 0,

as kh ∈ H. Thus gm is identically zero on H, which is a contradiction.
This proves m ≤ n. Then f |H =

∑m
j=1 gj implies that f |H is a gener-

alized polynomial of degree at most n. Since a1, . . . , an+1, x ∈ H, we obtain
Δa1 . . . Δan+1f(x) = 0, and this is what we wanted to show. Thus f is a gener-
alized polynomial on G. Let f |H =

∑n
i=1 fi, where fi is a monomial of degree

i for every i = 1, . . . , n, and f0 is constant.
Now we prove that f is a polynomial. We only have to show that dimLf <

∞.
Clearly, it is enough to show that dimLfi

< ∞ for every i = 1, . . . , n. Let
fi(x) = Ai(x, . . . , x), where Ai is symmetric and i-additive. Let h1, . . . , hN be
a generating system of H. We prove that Lfi

is contained by the linear hull of
the functions

A(x, . . . , x
︸ ︷︷ ︸

i−j

, hν1 , . . . , hνj
), (1)

where 0 ≤ j ≤ i and ν1, . . . , νj ∈ {1, . . . , N}. Since the number of these
functions is finite, this will prove dimLfi

< ∞.
Let h ∈ G be arbitrary. Then Thfi(x) = fi(x + h) = Ai(x +

h, . . . , x + h) is a linear combination with integer coefficients of the functions
A(x, . . . , x

︸ ︷︷ ︸
i−j

, h, . . . , h) (j = 0, . . . , i). Let k be a positive integer with kh ∈ H. If

j is fixed, then

A(x, . . . , x
︸ ︷︷ ︸

i−j

, h, . . . , h) = k−jA(x, . . . , x
︸ ︷︷ ︸

i−j

, kh, . . . , kh). (2)

Now kh, being an element of H, is a linear combination with integer coefficients
of the elements h1, . . . , hN . Since Ai is additive in each variable, it follows from
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(2) that A(x, . . . , x
︸ ︷︷ ︸

i−j

, h, . . . , h) is a linear combination with rational coefficients

of the function listed in (1). This completes the proof of dimLfi
< ∞. We

proved that the statement of the theorem is true if r0(G) < ∞.
Now we assume that G has a dense subgroup H such that r0(H) < ∞.

Suppose that f ∈ C(G,E) is a local polynomial. We have to prove that f is a
polynomial; that is, a generalized polynomial satisfying dimLf < ∞.

Since r0(H) < ∞ and f is a local polynomial on H, it follows that
f |H is a polynomial on H. Then f |H is a generalized polynomial on H; let
n = deg f |H . We show that f is a generalized polynomial of degree n on G.
Let a1, . . . , an+1 ∈ G be arbitrary; we prove Δa1 . . . Δan+1f = 0. We have

Δa1 . . . Δan+1f(x) =
∑

ϑ

(−1)|ϑ|+1f(x + ϑ1a1 + . . . + ϑn+1an+1), (3)

where ϑ = (ϑ1, . . . , ϑn+1) runs through all 0−1 sequences of length n+1, and
|ϑ| =

∑n+1
i=1 ϑi. Let x ∈ G and ε > 0 be fixed. Since f is continuous, there is a

neighbourhood U of zero such that

‖f(x + ϑ1a1 + . . . + ϑn+1an+1) − f(x′ + ϑ1h1 + . . . + ϑn+1hn+1)‖E < ε

for every ϑ, whenever x′ ∈ U + x and hi ∈ U + ai (i = 1, . . . , n + 1). Choos-
ing elements x′ ∈ (U + x) ∩ H and xi ∈ (U + ai) ∩ H (i = 1, . . . , n + 1),
and noting that Δx1 . . . Δxn+1f(x′) = 0 by deg f |H = n, we can see that
‖Δa1 . . . Δan+1f(x)‖E < 2n+1ε. Since this is true for every x ∈ G and ε > 0,
it follows that Δa1 . . . Δan+1f = 0. Thus f is a generalized polynomial.

Since f |H is a polynomial, Lf |H is of finite dimension. Let Tk1f |H
, . . . , TkN

f |H be a basis of Lf |H , and let V denote the linear hull of the func-
tions Tk1f, . . . , TkN

f . If h ∈ H, then Thf |H ∈ Lf |H , and thus there are complex
numbers c1, . . . , cN such that Thf |H =

∑N
i=1 ciTki

f |H ; that is,

f(x + h) =
N∑

i=1

ci · f(x + ki) (4)

for every x ∈ H. Since f is continuous and H is dense in G, it follows that (4)
holds for every x ∈ G. Thus Thf ∈ V for every h ∈ H.

Recall that C(G,E), the set of continuous functions mapping G into
E, endowed with the topology of uniform convergence on compact sets is a
topological vector space. Then V is a closed subspace of C(G,E), as this is
true for every finite dimensional subspace (see [13, Theorem 1.21]).

We show that Lf ⊂ V . Let g ∈ G be arbitrary; we prove Tgf ∈ V . Since
V is closed, it is enough to show that for every neighbourhood W of Tgf there
is a φ ∈ V ∩ W . Let K ⊂ G be compact and ε > 0 be such that φ ∈ W
whenever ‖φ(x) − Tgf(x)‖E < ε for every x ∈ K. Since f is continuous, there
is a neighbourhood Z of g such that ‖f(x + h) − f(x + g)‖E < ε for every
h ∈ Z and x ∈ K. Since H is dense in G, we can choose such a h ∈ H. Then
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we have Thf ∈ V ∩ W , proving Lf ⊂ V . Since V is of finite dimension, so is
Lf . �

Corollary 10. If G = R
p with the Euclidean topology and E is a Banach space,

then properties (i)-(iv) listed in Theorem 8 are equivalent.

Proof. Q
p is a dense subgroup of R

p with r0(Qp) = p, and thus Theorem 9
applies. �

Remark 11. We show that, in general, none of the implications (i)=⇒(ii)
=⇒(iii)=⇒(iv) can be reversed.

We saw already that the identity function defined on a Banach space of
infinite dimension is a w-polynomial but not a polynomial.

We give another example. Let F be the free Abelian group of countable
rank. We represent F as the set of sequences x = (x1, x2, . . .) such that xi is
an integer for every i and xi = 0 if i is large enough. Let F be endowed with
the discrete topology.

Let E be a Banach space of infinite dimension, and let the elements
e1, e2, . . . ∈ E be linearly independent over C. Then the function f(x) =∑∞

i=1 xiei (x ∈ F ) is a w-polynomial, since (u ◦ f)(x) =
∑∞

i=1 u(ei)xi is addi-
tive, hence a polynomial on F for every u ∈ E∗. On the other hand, f is not
a polynomial, as R(f) is of infinite dimension.

Clearly, a complex valued function is a w-polynomial if and only if it is
a polynomial. Now it is known that the function f(x) =

∑∞
i=1 x2

i (x ∈ F ) is
a complex valued generalized polynomial, but not a polynomial, hence not a
w-polynomial. In fact, it is easy to see that f is a generalized polynomial of
degree 2. On the other hand, f is not a polynomial, as dimLf = ∞ (see [16]).

Finally, P (x) =
∑∞

1 xi
i (x ∈ F ) is a complex valued local polynomial,

but not a generalized polynomial (see [7, Proposition 1]).

We say that a continuous function f ∈ C(G,E) is a w-exponential poly-
nomial, if u◦f is a (complex valued) exponential polynomial for every u ∈ E∗.

Lemma 12. If f ∈ C(G,E) is a w-exponential polynomial (in particular, if f is
a w-polynomial), then there exists a positive integer N such that dim Lu◦f ≤ N
for every u ∈ E∗.

Proof. It is easy to see that

Lu◦f = {u ◦ φ : φ ∈ Lf} (5)

for every f ∈ EG and u ∈ E∗. If f ∈ C(G,E) is a w-exponential polynomial
and u ∈ E∗, then u ◦ f is a complex valued exponential polynomial, and thus
dim Lu◦f is finite. For every positive integer n, let E∗

n be the set of linear
functionals u ∈ E∗ such that dim Lu◦f < n. Then we have E∗ =

⋃∞
n=1 E∗

n.
We prove that E∗

n is closed. Clearly, u ∈ E∗
n if and only if, for

every f1, . . . , fn ∈ Lf , the complex valued functions u ◦ f1, . . . , u ◦ fn are
linearly dependent over C. This is true if and only if the determinant
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det |u(fi(xj))|i,j=1,...,n is zero for every x1, . . . , xn (see [1, Lemma 1, p. 229]).
It is easy to see that for every f1, . . . , fn ∈ Lf and x1, . . . , xn ∈ G the set of
linear functionals u ∈ E∗ such that det |u(fi(xj))|i,j=1,...,n = 0 is closed. Thus
E∗

n, the intersection of these closed sets, is also closed.
The Baire category theorem implies that there is an n with int E∗

n �= ∅.
Suppose B(u0, r) ⊂ E∗

n, where B(u0, r) is the ball with center u0 and radius
r.

Let u ∈ E∗ be arbitrary. Then there is a λ ∈ C \ {0} such that u0 + λu ∈
B(u0, r) ⊂ E∗

n. By (5), the linear space {u0 ◦ φ + λ · u ◦ φ : φ ∈ Lf} equals
L(u0+λu)◦f , hence is of dimension < n. Since the linear space {u0 ◦ φ : φ ∈
Lf} = Lu0◦f is also of dimension < n, it follows that the dimension of Lu◦f =
{u ◦ φ : φ ∈ Lf} is less than 2n. �

Remark 13. It is easy to prove that if f : G → C is a complex valued poly-
nomial, then deg f < dim Lf (see [8, Proposition 4]). If f ∈ C(G,E) is a
w-polynomial, then dimLf can be infinite (see Remark 11). However, by the
previous lemma, there is a smallest integer N(f) such that dimLu◦f ≤ N(f)
for every u ∈ E∗.

By Theorem 8, every w-polynomial is a generalized polynomial, and thus
has a degree. We show that deg f < N(f) holds for every w-polynomial f .

If u ∈ E∗, then u◦f is a polynomial, therefore, a generalized polynomial.
Then, by (iii) of Theorem 1, there is an u0 ∈ E∗ such that deg (u0 ◦f) = deg f .
Since u0 ◦ f is a complex valued polynomial, we obtain

deg f = deg (u0 ◦ f) < dim Lu0◦f ≤ N(f).

We also note that N(f) is not bounded from above by any function of
deg f . If, for example, G = R

n and f = x2
1 + . . . + x2

n, then deg f = 2. On
the other hand, Lf is generated by the functions f, xi (i = 1, . . . , n) and the
constants, and thus dimLf = n + 2.

Our next aim is to prove the following description of w-exponential poly-
nomials.

Theorem 14. A function f ∈ C(G,E) is a w-exponential polynomial if and
only if there are finitely many w-polynomials p1, . . . , pn ∈ C(G,E) and complex
valued exponentials m1, . . . , mn ∈ C

G such that f = m1p1 + . . . + mnpn.

An operator D : EG → EG is called a difference operator, if D is the linear
combination with complex coefficients of finitely many translation operators.
Note that Δg = Tg − T0 is also a difference operator.

Lemma 15. For every finite set of distinct exponentials {m1, . . . , mn} and for
every integer s ≥ −n there exists a finite set D of difference operators with the
following property: whenever p1, . . . , pn are complex valued generalized polyno-
mials on G such that

∑n
i=1 deg pi ≤ s and f =

∑n
i=1 pi · mi, then for every

1 ≤ i ≤ n there is a D ∈ D with pi · mi = Df .
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Proof. If n = 1, then D = {T0} works, independently of s. Therefore, we may
assume n > 1.

We prove by induction on s. Note that, by definition, the degree of the
identically zero function is −1. If s = −n, then pi = 0 for every i, and thus
D = {0} works, where 0 denotes the identically zero operator (which maps
every function to the identically zero function).

Suppose that s > −n, and that the statement is true for the smaller val-
ues. Let D be a finite set of difference operators such that whenever q1, . . . , qn

are generalized polynomials with
∑n

i=1 deg qi ≤ s − 1 and f1 =
∑n

i=1 qimi,
then for every i there is a D ∈ D such that Df1 = qimi. We may assume that
0 ∈ D.

From s > −n it follows that max1≤i≤n deg pi ≥ 0. We may assume that
deg p1 ≥ 0. Since m1 �= mn by assumption, we can fix an element g ∈ G such
that m1(g) �= mn(g). We put D0 = Tg − m1(g) · T0. Then

D0(p · m) = Tgp · Tgm − m1(g) · p · m = (m(g) · Tgp − m1(g) · p) · m

for every p ∈ C
G and exponential m. Therefore, we have

D0f = m1(g) · Δgp1 · m1 +
n∑

i=2

((mi(g) · Tgpi − m1(g) · pi) · mi. (6)

Since deg Δgp1 < deg p1 and deg ((mi(g) ·Tgpi −m1(g) ·pi) ≤ deg pi, it follows
from the choice of D that m1(g) · Δgp1 · m1 = D1D0f for some D1 ∈ D.
Similarly, for every i such that pi �= 0 there is a Di ∈ D with mi(g)Δgpi ·mi =
DiD0f . If pi = 0 then we can take Di = 0, and thus there is such a Di in both
cases. By (6) and by the choice of D we have

(mn(g) · Tgpn − m1(g) · pn) · mn = EnD0f

with a suitable En ∈ D. Since

(mn(g) · Tgpn − m1(g) · pn) · mn =

= mn(g) · Δgpn · mn + (mn(g) − m1(g)) · pn · mn

and mn(g) · Δgpn · mn = DnD0f , we obtain

EnD0f = DnD0f + (mn(g) − m1(g)) · pn · mn

and

pn · mn = c · EnD0f − c · DnD0f,

where c = 1/(mn(g)−m1(g)). Therefore, if we add the operators cDD0−cD′D0

(D,D′ ∈ D) to D, then pn · mn = Ef will hold for a suitable E belonging to
the enlarged D. (Note that the element g does not depend on the functions
p1, . . . , pn, only on m1 and mn.) The same argument provides finitely many
operators such that if we add them to D then, for every i = 1, . . . , n, pimi = Ef
will hold for a suitable E belonging to the enlarged D. �
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Proof of Theorem 14. Suppose f = m1p1 + . . . + mnpn, where p1, . . . , pn are
w-polynomials and m1, . . . , mn are complex valued exponentials. If u ∈ E∗,
then u◦f = m1 ·u◦p1 + . . .+mn ·u◦pn. Since pi is a w-polynomial, it follows
that u◦pi is a complex valued polynomial for every i = 1, . . . , n, and thus u◦f
is an exponential polynomial. This is true for every u ∈ E∗, proving that f is
a w-exponential polynomial.

Now suppose that f is a w-exponential polynomial. By Lemma 12, there
is a positive integer K such that dim Lu◦f < K for every u ∈ E∗.

Let P denote the set of all functions p · m such that p : G → C is a
polynomial and m : G → C is an exponential. If u ∈ E∗, then u ◦ f is an
exponential polynomial, and thus it is the sum of finitely many elements of P.
In other words, for every u ∈ E∗ there exists a finite set Pu ⊂ P such that
u ◦ f =

∑
p·m∈Pu

p · m.
Let M denote the set of those exponentials m for which there exist u ∈ E∗

and a nonzero polynomial p such that p · m ∈ Pu. We prove that M contains
less than K distinct exponentials.

Suppose this is not true, and let m1, . . . , mK be distinct exponentials in
M. We may assume that for every u ∈ E∗ and 1 ≤ i ≤ K there is a unique
polynomial pu,i such that pu,i · mi ∈ Pu. Indeed, if Pu does not contain such
a product, then we add 0 · mi to Pu, and put pu,i = 0.

For every 1 ≤ i ≤ K we have mi ∈ M, and thus there is an ui ∈ E∗ such
that pui,i �= 0. We show that there are complex numbers λ1, . . . , λK such that

K∑

i=1

λipui,j �= 0 (7)

for every j = 1, . . . , K. Indeed, for a fixed j, the set of K-tuples (λ1, . . . , λK)
such that

∑K
i=1 λipui,j = 0 is a linear subspace Lj of CK . Since puj ,j �= 0, the

subspace Lj does not contain the vector (0, . . . , 0, 1, 0, . . . , 0) having 1 as the
jth coordinate. Therefore, Lj is a proper subspace of CK . Now C

K is not the
union of finitely many proper subspaces, therefore, we must have (7) for every
j = 1, . . . , K with a suitable (λ1, . . . , λK).

Let u =
∑K

i=1 λiui. Then pu,j =
∑K

i=1 λipui,j �= 0 for every j = 1, . . . , K.
That is, in the representation of u ◦ f as a sum of functions p · m ∈ P, each of
m1, . . . , mK appears with a nonzero polynomial factor.

Now we need the following result: if V is a translation invariant linear
subspace of CG and

∑n
i=1 pimi ∈ V , where pi ∈ C

G is a nonzero generalized
polynomial for every i = 1, . . . , n and m1, . . . , mn are distinct complex valued
exponentials, then mi ∈ V for every i = 1, . . . , n. This is proved, e.g., in [7,
Lemma 6] in the case when G is an Abelian group. One can easily check that
the same proof works in Abelian semigroups.

Since Lu◦f is a translation invariant linear subspace of CG and u ◦ f =∑
pm∈Pu

p·m, it follows that m1, . . . , mK ∈ Lu◦f . Now m1, . . . , mK are linearly
independent over C, since, if

∑K
i=1 cimi = 0, where c1, . . . , cK ∈ C, then the
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unique representation of the zero function implies c1 = c2 = . . . = cK = 0. We
find that dimLu◦f ≥ K, which contradicts the choice of K.

This contradiction proves that M contains less than K exponentials.
Let M = {m1, . . . , mn}, where n < K. Then for every u ∈ E∗ there are
polynomials pu,i (i = 1, . . . , n) such that u ◦ f =

∑n
i=1 pu,i · mi.

Let s(u) = max1≤i≤n deg pu,i, and put Us = {u ∈ E∗ : s(u) ≤ s} for
every positive integer s. By the Baire category theorem we can find an integer
s such that Us is of second category in E∗.

By Lemma 15, there is a finite set D of difference operators such that,
for every u ∈ Us and i = 1, . . . , n, pu,i · mi = Di(u ◦ f) for some Di ∈ D.
Since D is finite, there is an n-tuple (D1, . . . , Dn) such that the set B of linear
functionals u ∈ Us such that

pu,i · mi = Di(u ◦ f) (i = 1, . . . , n) (8)

is also of second category in E∗. We fix such an n-tuple (D1, . . . , Dn).
We show that B is a closed linear subspace of E∗. Suppose u1, u2 ∈ B,

λ1, λ2 ∈ C, and put u = λ1u1 + λ2u2. Since uj ◦ f =
∑n

i=1 puj ,i · mi (j = 1, 2),
we have

u ◦ f =
n∑

i=1

(λ1pu1,i + λ2pu2,i) · mi.

The uniqueness of the representation gives

pu,i = λ1pu1,i + λ2pu2,i

and

Di(u ◦ f) = λ1Di(u1 ◦ f) + λ2Di(u2 ◦ f) =
= λ1pu1,i · mi + λ2pu2,i · mi =
= pu,i · mi.

Thus u ∈ B, proving that B is a linear subspace of E∗. Let u ∈ E∗ be in the
closure of B. Then there is a sequence of linear functionals uν ∈ B such that
‖uν − u‖ → 0. Then

puν ,i · mi = Di(uν ◦ f) → Di(u ◦ f)

as ν → ∞, for every i = 1, . . . , n. Thus puν ,i → qi pointwise, where qi =
Di(u ◦ f)/mi.

Now uν ∈ B ⊂ Us, and thus puν ,i is a generalized polynomial of degree
≤ s. It is easy to check that this property is preserved under pointwise conver-
gence in the discrete topology of G. Therefore, qi is generalized polynomial of
degree ≤ s for every i = 1, . . . , n in the discrete topology of G. Now we have

n∑

i=1

pu,i · mi = u ◦ f = lim
ν→∞ uν ◦ f = lim

ν→∞

n∑

i=1

puν ,i · mi =
n∑

i=1

qi · mi.
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Then the uniqueness of the representation gives qi = pu,i for every i = 1, . . . , n.
Thus pu,i = Di(u ◦ f)/mi, Di(u ◦ f) = pu,i · mi for every i = 1, . . . , n; that is
u ∈ B.

Thus B is a closed subspace of E∗. Since B is of second category, we have
B = E∗. Therefore, (8) holds for every u ∈ E∗.

Let pi = (Dif)/mi (i = 1, . . . , n) and f =
∑n

i=1 pi · mi. Since

u ◦ pi = u ◦ (Dif)/mi = Di(u ◦ f)/mi = pu,i

is a polynomial for every u ∈ E∗, it follows that pi is a w-polynomial for every
i = 1, . . . , n. Now

u ◦ f =
n∑

i=1

(u ◦ pi) · mi =
n∑

i=1

u ◦ Dif =

=
n∑

i=1

Di(u ◦ f) =
n∑

i=1

pu,i · mi =

= u ◦ f

for every u ∈ E∗. Thus f = f , which completes the proof. � .

The following result is an immediate consequence of Theorems 7, 9
and 14.

Corollary 16. Let G be a topological Abelian group, and suppose that there is
a dense subgroup H of G such that r0(H) < ∞. Then a function f ∈ C(G,E)
is a w-exponential polynomial if and only if f is an exponential polynomial.

In particular, if G = R
p with the Euclidean topology and E is a Banach

space, then a function f ∈ C(G,E) is a w-exponential polynomial if and only
if f is an exponential polynomial.

4. Vector Valued Harmonic Analysis and Synthesis on Discrete
Abelian Groups

Let G be a topological Abelian group, and E be a Banach space. We denote
by C(G,E) the set of continuous functions f : G → E. We equip C(G,E) with
the topology of uniform convergence on compact sets. In this topology a set
U ⊂ C(G,E) is open if, for every f ∈ U , there exists a compact set K ⊂ G
and there is an ε > 0 such that φ ∈ U whenever φ ∈ C(G,E) is such that
‖φ(x) − f(x)‖E < ε for every x ∈ K. This topology makes C(G,E) a locally
convex topological vector space over the complex field.

Translation invariant closed linear subspaces of C(G,E) are called vari-
eties. If f ∈ C(G,E), then Vf denotes the smallest variety containing f .
Clearly, Vf equals the closure of Lf . We say that spectral synthesis holds in
C(G,E) if every variety V in C(G,E) is the closed linear hull of the set of
exponential polynomials contained in V .
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It is known that spectral synthesis holds in C(G,E) for every compact
Abelian group G and for every Banach space E. In fact, this result follows from
the approximation theorem of almost periodic functions mapping a group into
a Banach space [2]. More precisely, if G is a compact Abelian group, then (i)
every continuous function f : G → E is almost periodic, (ii) the terms of the
Fourier series of f are constant multiples of characters belonging to Vf , and
(iii) it follows from the approximation theorem that linear combinations of
these characters approximate f uniformly. We note, however, that this special
case can be proved without the machinery of almost periodic functions, and
in the next section we provide a simple self-contained proof.

As it turns out, the situation for locally compact Abelian groups is dif-
ferent. In the rest of this section we concentrate on discrete Abelian groups. In
these groups we have C(G,E) = EG. As we will see shortly, spectral synthesis
does not hold in EG if G is infinite and E is of infinite dimension. Actually,
the situation is even worse.

By a generalized (resp. local) exponential polynomial we mean a func-
tion of the form

∑n
i=1 mi · pi, where mi is an exponential and pi ∈ EG is a

generalized (resp. local) polynomial on G for every i = 1, . . . , n. We say that
generalized (resp. local) spectral synthesis holds in EG if every variety V in EG

is the closed linear hull of the set of generalized (resp. local) exponential poly-
nomials contained in V . Clearly, the condition that spectral synthesis holds in
EG implies that generalized spectral synthesis holds in EG, and this condition,
in turn, implies that local spectral synthesis holds in EG.

Let f =
∑n

i=1 mi · pi, where m1, . . . , mn are distinct exponentials and
p1, . . . , pn are nonzero local polynomials on G. One can prove that mi ·pi ∈ Vf

for every i, moreover, there are nonzero elements e1, . . . , en ∈ E such that
mi · ei ∈ Vf for every i. (See [7, Lemma 7], where the complex valued case is
proved. One can easily check that the proof works in the general case as well.)
This result shows that if local spectral synthesis holds in EG, then spectral
analysis holds in EG; that is, every nonzero variety in EG contains a function
of the form m · e, where m is an exponential and e ∈ E, e �= 0.

Theorem 17. If G is an infinite discrete Abelian group and E is a Banach
space of infinite dimension, then spectral analysis does not hold in EG.

Proof. It is easy to see that if spectral analysis holds in EG, then the same is
true in EH for every subgroup H of G. (For the complex case see [10, Lemma
4]. The proof in the general case is the same.) Therefore, in order to prove the
theorem, it is enough to find a subgroup H of G such that spectral analysis
does not hold in EH .

If G contains an element h of infinite order, then we let H be the cyclic
group generated by h. If G is torsion, then we choose a countably infinite
subset A ⊂ G, and let H be the subgroup generated by A. Then H is countably
infinite, and is either cyclic, or torsion.
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Let g1, g2, . . . be an enumeration of the elements of H. If H is cyclic
generated by the element h, then we choose an enumeration such that g2n = hn

(n = 1, 2, . . .). If H is torsion, then the enumeration can be arbitrary.
Since E is of infinite dimension, it contains a basic sequence (xn) (see [4,

Corollary 3, p. 39]). We may assume that ‖xn‖ = n! for every n = 1, 2, . . ..
We define f(gn) = xn for every n = 1, 2, . . ., and prove that Vf does not

contain any function of the form m · e, where m is an exponential and e ∈ E,
e �= 0.

Suppose this is false, and let m · e ∈ Vf , where m and e are as above.
Since H is countable and m · e ∈ Vf = cl Lf , it follows that there is a sequence
of functions fk ∈ Lf such that fk → m · e pointwise on H. Now each fk is
a linear combination of the functions Tgn

f , and thus there is a sequence of
positive integers s1 < s2 < . . . such that fk is a linear combination of the
functions Tgn

f (n = 1, . . . , sk). Let

fk =
sk∑

n=1

cknTgn
f (k = 1, 2, . . .).

Let e =
∑∞

n=1 αnxn with suitable complex coefficients αn. Since the series
converges in norm, it follows that ‖αnxn‖ → 0, that is, n!|αn| → 0. We have

sk∑

n=1

cknxn =
sk∑

n=1

cknf(gn) = fk(0) → m(0) · e = e =
∞∑

n=1

αnxn

as k → ∞. Since the coefficient functionals are continuous (see [4, p. 32]), it
follows that limk→∞ ckn = αn for every n. Let the indices i and j be given,
and put g = gj − gi, Then

fk(g) =
sk∑

n=1

cknf(g + gn) → m(g) · e =
∞∑

n=1

(m(g)αn)xn

as k → ∞. The elements g + gn (n = 1, . . . , sk) are distinct, and then so are
f(g + gn). If k is large enough, then i < sk, f(g + gi) = f(gj) = xj , and thus
fk(g) is a linear combination of finitely many of the elements xn including xj .
Since the coefficient functionals are continuous, it follows that the coefficient
of xj converges to m(g)αj as k → ∞. That is, we have limk→∞ cki = m(g)αj .
However, as cki → αi, we find

αi = m(g)αj = m(gj − gi)αj = (m(gj)/m(gi))αj

and αim(gi) = αjm(gj). This is true for every i and j, and thus there is a
complex number c such that αim(gi) = c for every i = 1, 2, . . ..

Since e �= 0, we have αn �= 0 for at least one n, and thus c �= 0. Now we
consider the two cases concerning the group structure of H. If H is torsion, then
the value of m(g) is a root of unity for every g ∈ H. Then |αn| = |c/m(gn)| = |c|
for every n. This, however, is impossible by n!|αn| → 0.
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Next suppose that H is cyclic with generator h. Then we have g2n = hn

for every n = 1, 2, . . .. Let m(h) = λ, then m(g2n) = λn and |α2n| =
|c/m(g2n)| = |c| · |λ|−n for every n. This, again, contradicts n!|αn| → 0, com-
pleting the proof. �

Returning to the question of spectral synthesis in discrete Abelian groups,
the previous result shows that spectral synthesis can hold in EG only if G is
finite or E is of finite dimension. If G is finite, then every element f ∈ EG is
an exponential polynomial, as Lf is of finite dimension. Therefore, in this case
spectral synthesis does hold.

If E is of finite dimension, then spectral synthesis in EG is still not
automatic. Indeed, if spectral synthesis holds in EG, then it also holds in C

G.
Now it is known that spectral synthesis holds in C

G if and only if r0(G) (the
torsion free rank of G) is finite (see [11, Theorem 1]). So the only cases left
are when r0(G) is finite and E is of finite dimension. In the next theorem we
show that spectral synthesis does hold in these cases.

We also consider local spectral synthesis and spectral analysis. Note that
spectral analysis holds in C

G if and only if r0(G) is less than continuum (see
[10, Theorem 1]). Also, there exists an uncountable cardinal κ such that local
spectral synthesis holds in C

G if and only if r0(G) < κ (see [7, Theorem 3]).
In particular, local spectral synthesis holds in C

G for every countable discrete
Abelian group.

Theorem 18. Let G be a discrete Abelian group, and let k be a positive integer.
(i) If r0(G) is finite, then spectral synthesis holds in (Ck)G.
(ii) If r0(G) < κ, then local spectral synthesis holds in (Ck)G.

For every set V of maps f : G → C
k we shall denote by V the set of maps

Z
k × G � (t1, . . . , tk, x) 
→ t1f1(x) + . . . + tkfk(x) + g(x), (9)

where (f1, . . . , fk) ∈ V and g : G → C.

Lemma 19. If V is a variety of maps f : G → C
k, then V is a variety on

Z
k × G.

Proof. Suppose that V is a variety. It is clear that V is a translation invariant
linear space. We show that V is closed.

Let ei = (δ1i, . . . , δki, 0) ∈ Z
k × G for every i = 1, . . . , k, where δji is

the Kronecker delta. It is clear that if the function F is defined by (9), then
Δei

F (t1, . . . , tk, x) = fi(x) for every i = 1, . . . , k and (t1, . . . , tk, x) ∈ Z
k × G.

Suppose that h : (Zk × G) → C is in the closure of V . From the previous
observation it follows that Δei

h does not depend on the variables t1, . . . , tk.
That is, there are functions h1, . . . , hk : G → C such that Δei

h(t1, . . . , tk, x) =
hi(x) for every i = 1, . . . , k and (t1, . . . , tk, x) ∈ Z

k × G. Let

s(t1, . . . , tk, x) = t1h1(x) + . . . + tkhk(x)
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for every (t1, . . . , tk, x) ∈ Z
k × G, and put g = h − s. Then Δei

g = 0 for
every i = 1, . . . , k. Thus g = h − s does not depend on the variables t1, . . . , tk.
Therefore, we have

h(t1, . . . , tk, x) = t1h1(x) + . . . + tkhk(x) + g(x)

for every (t1, . . . , tk, x) ∈ Z
k × G. We prove that (h1, . . . , hk) ∈ V . Since V is

a variety, it is enough to show that (h1, . . . , hk) is in the closure of V .
Let the finite set X ⊂ G and the positive number ε be given. Since h is in

the closure of V , there is a function f ∈ V such that it is closer to h than ε/2
at each point (t1, . . . , tk, x), where ti = 0, 1 for every i = 1, . . . , k and x ∈ X.
Let

f(t1, . . . , tk, x) = t1f1(x) + . . . + tkfk(x) + g1(x),

where (f1, . . . , fk) ∈ V . Since Δei
h(0, . . . , 0, x) = hi(x) and Δei

f(0, . . . , 0, x) =
fi(x) for every x ∈ X, it follows that |hi(x) − fi(x)| < ε for every x ∈ X
and i = 1, . . . , k. This proves that (h1, . . . , hk) is in the closure of V . Thus
(h1, . . . , hk) ∈ V and h ∈ V , showing that V is a variety. �

Proof of Theorem 18. (i) Let V be a variety of maps f : G → C
k. By The-

orem 4, a function f : G → C
k is an exponential polynomial if and only if

f = (f1, . . . , fk), where f1, . . . , fk are complex valued exponential polynomi-
als.

We have to show that if r0(G) is finite, then the set of maps

{(p1, . . . , pk) ∈ V : p1, . . . , pk are exponential polynomials}
is dense in V . Let (f1, . . . , fk) ∈ V , and let the finite set X ⊂ G and the
positive number ε be given. If r0(G) is finite, then r0(Zk × G) is also finite.
Then, by [11, Theorem 1], spectral synthesis holds in every variety on Z

k ×G.
By Lemma 19, V is a variety. Since the function f = t1f1(x) + . . . + tkfk(x)
belongs to V , it follows that there is an exponential polynomial p ∈ V such
that p is closer to f than ε/2 at each point (t1, . . . , tk, x), where ti = 0, 1 for
every i = 1, . . . , k and x ∈ X. Let

p(t1, . . . , tk, x) = t1p1(x) + . . . + tkpk(x) + g2(x).

Then (p1, . . . , pk) ∈ V by p ∈ V , and |pi(x) − fi(x)| < ε for every x ∈ X and
i = 1, . . . , k. Since p is an exponential polynomial, so is pi = Δei

p(0, . . . , 0, x)
for every i. This proves that the maps (p1, . . . , pk) ∈ V , where p1, . . . , pk are
exponential polynomials constitute a dense subset of V . This proves (i).
The proof of (ii) is similar to that of (i). If r0(G) < κ, then r0(Zk×G) < κ. Thus
local spectral synthesis holds in the variety V . If f = t1f1(x)+. . .+tkfk(x) ∈ V ,
there is a local exponential polynomial p ∈ V such that p is closer to f than ε/2
at each point (t1, . . . , tk, x), where ti = 0, 1 for every i = 1, . . . , k and x ∈ X.
As we saw above, this implies that |pi(x)− fi(x)| < ε for every x ∈ X and i =
1, . . . , k. Since p is a local exponential polynomial, so is pi = Δei

p(0, . . . , 0, x)
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for every i. This proves that the maps (p1, . . . , pk) ∈ V , where p1, . . . , pk are
local exponential polynomials constitute a dense subset of V . �

Corollary 20. If r0(G) < κ (in particular, if r0(G) is countable), then spectral
analysis holds in (Ck)G.

Proof. Let V ⊂ EG be a nonzero variety, where E = C
k. By (ii) of Theo-

rem 18, local spectral synthesis holds in (Ck)G, and thus there is a nonzero
local exponential polynomial f ∈ V . Let f =

∑n
i=1 mi · pi, where mi is an

exponential and pi ∈ EG is a local polynomial for every i = 1, . . . , n. We may
assume that m1, . . . , mn are distinct and p1, . . . , pn are nonzero. Then, by [7,
Lemma 7], mi ·ei ∈ V for every i = 1, . . . , n with nonzero e1, . . . , en ∈ E = C

k.
In fact, [7] deals with complex valued maps, but the argument of the proof
of [7, Lemma 7] works for vector valued functions as well. This proves that
spectral analysis holds in V . �

Note that if k = 1, then κ can be replaced by 2ω in the statement of
Corollary 20 (see [10]). Since ω1 ≤ κ ≤ 2ω, it makes no difference under the
continuum hypothesis. Still, it would be interesting to see if κ can be replaced
by 2ω in the cases k > 1 as well.
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5. Appendix: A Proof of Spectral Synthesis on Compact
Abelian Groups

Theorem 21. If G is a compact Abelian group and E is a Banach space, then
spectral synthesis holds in C(G,E).

Proof. We denote by M(G) the set of complex valued regular Borel measures
on G with finite total variation ‖μ‖. If f ∈ C(G,E) and μ ∈ M(G), then we
define μ ∗ f(x) as

∫
G

f(x − t) dμ(t). The integral makes sense for every x ∈ G,
as we integrate a continuous function mapping a compact Hausdorff space into
a Banach space (see [13, Theorem 3.27]).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We show that μ∗f ∈ Vf for every f ∈ C(G,E) and μ ∈ M(G). Let ε > 0
be given. By the uniform continuity of f we can find a neighbourhood V of 0
such that ‖f(x)− f(y)‖E < ε/‖μ‖ whenever x− y ∈ V . Let U be a symmetric
neighbourhood of 0 such that U + U ⊂ V .

Since G is compact, there are points xi ∈ G (i = 1, . . . , n) such that
G =

⋃n
i=1(U + xi). Choose a partition {E1, . . . , En} of G into finitely many

Borel sets such that Ei ⊂ U + xi for every i = 1, . . . , n. Deleting the empty
sets from the partition, we may assume that Ei �= ∅ for every i. Choose a point
ti ∈ Ei for every i = 1, . . . , n, and put

z(x) =
∫

G

f(x − t) dμ(t) −
n∑

i=1

μ(Ei)f(x − ti) (x ∈ G). (10)

Then ‖z(x)‖E ≤ ε for every x ∈ G. Indeed, suppose ‖z(x)‖E > ε for some x.
Then there is a u ∈ E∗ such that ‖u‖ ≤ 1 and |u(z(x))| > ε. Now

u(z(x)) =
∫

G

(u ◦ f)(x − t) dμ(t) −
n∑

i=1

μ(Ei) · (u ◦ f)(x − ti) =

=
n∑

i=1

∫

Ei

((u ◦ f)(x − t) − (u ◦ f)(x − ti)) dμ(t).

However, since t− ti ∈ V and ‖u(f(x− t))−u(f(x− ti))‖E < ε/‖μ‖ whenever
t ∈ Ei, we have |u(z(x))| ≤ ε, which is impossible.

Now the function
∑n

i=1 μ(Ei)f(x− ti) is in Lf . By (10) we find that μ∗f
can be uniformly approximated by functions from Lf , and thus μ ∗ f ∈ Vf .

If f ∈ C(G,E) and g ∈ C(G,C) then f ∗ g(x) is defined by
∫

G
f(x −

t)g(t) dt, where dx is the Haar measure. Clearly, f ∗g = μg ∗f , where μg(H) =∫
H

g dt for every Borel H ⊂ G. Thus f ∗ g ∈ Vf .
It is clear that C(G,E) is a Banach space with the norm ‖f‖ =

supx∈G ‖f‖E . If Λ ∈ C(G,E)∗ and f ∈ C(G,E), then we put Λ∗f(x) = Λ(gx),
where gx is the function t 
→ f(x − t) (t ∈ G). Using the uniform continuity
of f it is easy to see that Λ ∗ f ∈ C(G,C). Our next aim is to show that if
Λ ∈ C(G,E)∗, f ∈ C(G,E) and g ∈ C(G,C), then

(Λ ∗ f) ∗ g = Λ ∗ (f ∗ g). (11)

First we assume that the linear span N(f) of R(f) is of finite dimension.
Let e1, . . . , en be a basis of N(f). Then there are functions fi : G → C such
that f =

∑n
i=1 fi · ei. There are linear functionals u1, . . . , uk ∈ E∗ such that

ui(ei) = 1 and ui(ej) = 0 for every 1 ≤ i, j ≤ k, i �= j. Thus fi = ui ◦ f for
every i = 1, . . . , k. Since f is continuous, we can see that so are f1, . . . , fk.

Let Λi(g) = Λ(g · ei) for every g ∈ C(G,C) and i = 1, . . . , n. It is clear
that Λi is a bounded linear functional of C(G,C). By the Riesz representation
theorem, there are measures μ1, . . . , μn such that Λi(g) =

∫
G

g dμi for every
g ∈ C(G,C) and i = 1, . . . , n. Then Λi ∗ g = μi ∗ g for every g ∈ C(G,C) and
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i = 1, . . . , n, and thus

(Λ ∗ f) ∗ g =

(

Λ ∗
n∑

i=1

fi · ei

)

∗ g =

(
n∑

i=1

Λ ∗ (fi · ei)

)

∗ g =

=

(
n∑

i=1

Λi ∗ fi

)

∗ g =

(
n∑

i=1

μi ∗ fi

)

∗ g =

=
n∑

i=1

(μi ∗ fi) ∗ g =
n∑

i=1

μi ∗ (fi ∗ g) =

=
n∑

i=1

Λi ∗ (fi ∗ g) =
n∑

i=1

Λ ∗ ((fi · ei) ∗ g) =

= Λ ∗ (f ∗ g).

If f ∈ C(G,E) is arbitrary, then a standard partition-of-unity argument3

shows that f can be uniformly approximated by functions fn such that the
linear span of R(fn) is of finite dimension for every n. Suppose ‖f−fn‖E < 1/n
(n = 1, 2, . . .). Then ‖f ∗ g − fn ∗ g‖E ≤ ‖g‖1/n on G,

|Λ ∗ (f ∗ g) − Λ ∗ (fn ∗ g)| ≤ ‖Λ‖ · ‖g‖1/n,

|Λ ∗ f − Λ ∗ fn| = |Λ ∗ (f − fn)| ≤ ‖Λ‖/n,

‖(Λ ∗ f) ∗ g − (Λ ∗ fn) ∗ g‖ ≤ ‖Λ‖ · ‖g‖1/n.

Since (Λ ∗ fn) ∗ g = Λ ∗ (fn ∗ g), it follows that the norm of the difference of
the two sides of (11) is at most c/n for every n, where c only depends on Λ
and g. This proves (11).

Let Γ denote the dual of G. If γ ∈ Γ, then the invariance of the Haar
measure gives

(f ∗ γ)(x) =
∫

G

γ(x − t)f(t) dt = eγ · γ(x),

where eγ =
∫

G
γ(−t)f(t) dt. Thus eγ · γ ∈ Vf for every γ ∈ Γ. Each γ ∈ Γ is

an exponential. Thus linear combinations of the elements eγ · γ are E-valued
exponential polynomials by Theorem 4. Therefore, it is enough to show that
f is in the closure of the set N of linear combinations of the elements eγ · γ.

The closure cl N of N is a closed subspace of C(G,E), so if f /∈ cl N ,
then there is a Λ ∈ C(G,E)∗ such that Λ(f) �= 0 and Λ(eγ · γ) = 0 for every
γ ∈ Γ. Let M(g) = Λ(ĝ), where ĝ(x) = g(−x). Then (M ∗ g)(0) = Λ(g) for

3Let ε > 0 be given. Let V be a neighbourhood of 0 such that ‖f(x)− f(y)‖E < ε whenever
x − y ∈ V . Let U be another neighbourhood of 0 such that cl U ⊂ V , and let φ : G → R

be a continuous function such that φ > 0 on U , 0 ≤ φ ≤ 1 on V and φ = 0 on G \ V . Let
xi ∈ G (i = 1, . . . , n) be such that G =

⋃n
i=1(U + xi), and put Φ(x) =

∑n
i=1 φ(x − xi).

Then Φ is a positive continuous function on G. Put fε = Φ−1 · ∑n
i=1 φ(x − xi) · f(xi).

Then fε ∈ C(G, E), and the linear span of R(fε) is of finite dimension. Now we have
f(x)−fε(x) = Φ−1

∑n
i=1 φ(x−xi)·(f(x)−f(xi)) for every x. If x /∈ V +xi, then φ(x−xi) = 0.

If x ∈ V +xi, then 0 ≤ φ(x−xi) ≤ 1 and ‖f(x)−f(xi)‖E < ε, and thus ‖f(x)−fε(x)‖E < ε.
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every g ∈ C(G,E). Therefore, we have M ∗ f �= 0 and M ∗ (eγ · γ) = 0 for
every γ ∈ Γ. Then

(M ∗ f) ∗ γ = M ∗ (f ∗ γ) = M ∗ (eγ · γ) = 0

for every γ ∈ Γ. Since M∗f ∈ C(G,C) and the set of trigonometric polynomials
is dense in C(G,C), it follows that M ∗ f = 0, a contradiction. �
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[5] Djoković, D.Ž.: A representation theorem for (X1 − 1)(X2 − 1) . . . (Xn − 1) and
its applications. Ann. Polon. Math. 22, 189–198 (1969)

[6] Laczkovich, M.: Polynomial mappings on Abelian groups. Aequationes Math.
68, 177–199 (2004)

[7] Laczkovich, M.: Local spectral synthesis on Abelian groups. Acta Math. Hungar.
142, 313–329 (2014)

[8] Laczkovich, M.: A characterization of generalized exponential polynomials in
terms of decomposable functions. Acta Math. Hungar. 158(2), 338–351 (2019)

[9] Laczkovich, M.: The Levi-Civita equation in function classes. Aequationes Math.
94(4), 689–701 (2020)
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