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Abstract. Given a convex body in the plane, we define the isoptic curve
of angle α, for an arbitrary but fixed angle α, as the curve from which
K is always seen under an angle α In this article we prove an inequality
between the perimeter of any convex body in the plane and its isotopic
curve. Moreover, we also prove some characterizations of the Euclidean
disc by means of the constancy of some elements of the isoptic curve.
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1. Introduction

Given a convex body K in the plane, i.e., a compact, convex set with non-
empty interior, we are interested in a special curve associated to K known
as isoptic curve (see, for instance, [2] and p. 271 in [8]). For a fixed number
α ∈ (0, π), the isoptic of angle α or α-isoptic, denoted by Kα, is defined as the
set of points in the plane from which K is seen under the constant angle α.
We are interested in the geometric relations between a given convex body and
its isoptic curves, for instance: how are the perimeters of K and Kα related?
What can be said about the areas?

In this work we denote the area of K by A(K) and its perimeter by L(γ),
where γ is a curve that parametrizes ∂K. Also, γα will denote a curve that
parametrizes ∂Kα.

The following isoperimetric type inequality was proved in [5]:
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Figure 1. Parameters of the isoptic curve

Theorem GGJ Let K be a convex body in the plane and let α ∈ (0, π). Then

A(Kα) ≥ 1
(
sin α

2

)2 · A(K),

with equality if and only if K is a Euclidean disc.
In this paper we prove the following statement for the case of perimeters.

Theorem 1. Let K ⊂ R
2 be a strictly convex body and let α ∈ (0, π) be a fixed

angle. Then we have
1

sin α
2

· L(γ) ≤ L(γα) <
1

(sin α
2 )2

· L(γ),

with equality in the left side if and only if K is the constant angle caustic for
the curve Kα, with respect to the angle π

2 − α
2 .

Suppose a support line of K intersects Kα at the point γα(t) (as shown in
Fig. 1). The other support line of K through γα(t) intersects ∂K at the point
γ(t + π − α). Denote as a(t) = |γα(t) − γ(t)| and b(t) = |γα(t) − γ(t + π − α)|.

Using this notation we state the following results, which are also proved
in this paper.

Theorem 2. Let K be a strictly convex body in the plane and let α ∈ (0, π) be
a fixed angle. Suppose that α

π is a rational number and for every t ∈ [0, 2π] it
holds that a(t) = b(t). Then K is a Euclidean disc.

Theorem 3. Let K be a strictly convex body in the plane and let α ∈ (0, π) be
a fixed angle. Suppose that α

π is a rational number and for every t ∈ [0, 2π] it
holds that a(t)+b(t) = λ, for a positive fixed number λ. Then K is a Euclidean
disc.

Moreover, we give examples of curves different to the Euclidean disc which
have the properties mentioned in Theorems 2 and 3 for some suitable angles
α.
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2. Auxiliary Results

For every t ∈ [0, 2π] denote by �(t) the support line of K with outward normal
vector u(t) = (cos t, sin t), and let p(t) denote the distance with the sign from
the origin O to �(t). Using the support function, ∂K can be parametrized by
(see, for instance, [10])

γ(t) = p(t)u(t) + p′(t)u′(t), for t ∈ [0, 2π]. (1)

The support function of a compact convex set is a periodic function,
with period 2π, and is also absolutely continuous, hence we can consider its
expansion in terms of the Fourier series (see [6]), i.e.,

p(t) = a0 +
∞∑

n=1

(an cos nt + bn sinnt) .

Moreover, the first and second derivatives of p are expressed as

p′(t) = −
∞∑

n=1

(nan sinnt − nbn cos nt) ,

p′′(t) = −
∞∑

n=1

n2 (an cos nt + bn sinnt) .

The perimeter of K can be computed in terms of p(t) by Cauchy’s formula
as

L(γ) =
∫ 2π

0

p(t)dt. (2)

Hence we have that the perimeter of K is 2πa0.
With respect to the elements of the isoptic curves we have (see, for in-

stance, [2]):

a(t) =
1

sinα
[p(t + π − α) + p(t) cos α − p′(t) sin α] , (3)

b(t) =
1

sinα
[p(t + π − α) cos α + p′(t + π − α) sin α + p(t)] . (4)

Using the expression for a(t) it is simple to show that the parameteriza-
tion of Kα is

γα(t) = p(t)u(t) +
[
p(t) cot α +

1
sin α

p(t + π − α)
]

u′(t). (5)

Since we are going to talk about caustics of convex bodies, we need to
introduce some notions of mathematical billiards (see, for instance, [9] and
Section 17.2 and p. 423 in [8]). A mathematical billiard consists of a domain,
say in the plane (a billiard table), and a point-mass (a billiard ball) that moves
inside the domain freely. This means that the point moves along a straight
line with a constant speed until it hits the boundary. The reflection on the
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Figure 2. Reflective property

boundary is elastic and subject to a familiar law: the angle of incidence equals
the angle of reflection.

A caustic is a curve inside a plane billiard table such that if a segment of
a billiard trajectory is tangent to this curve, then so is each reflected segment.

To every convex curve we can associate a curve with similar properties
of the ellipse. Such a curve can be obtained by the so called Gardener’s con-
struction which consists to wrap a closed non-stretchable string around γ, pull
it tight at a point and move this point around γ to obtain a curve Γ. Then
the billiard inside Γ has γ as its caustic and the length of this string meets the
following.

Lemma 1. Let γ be a strictly convex, differentiable and closed curve and let
z(t) be a point that moves along a differentiable curve Γ in the exterior of γ.
Suppose the tangent lines to γ from the point z(t) touch γ at the points y(t)
and x(t), as shown in Fig. 2. Let f(t) = |x(t) − z(t)| + |y(t) − z(t)| + ̂x(t)y(t)
be the perimeter of the convex hull of {z(t)} ∪ γ. Then

f ′(t) = |z′(t)|(cos ϕ − cos ψ), (6)

where ϕ is the angle between the vectors z′(t) and y′(t), and ψ is the angle
between z′(t) and x′(t).

Proof. This result is well known. For a proof, the interested reader may consult
[9]. �

3. Proof of Theorem 1

For the proof of the main result in this section we will need the following
lemma from elementary geometry. Its proof is straightforward.

Lemma 2. Let �xyz be a triangle such that |x − y| + |x − z| = λ, for a fixed
value λ, and such that the angle �yxz = α, for a fixed value α. Then

λ

2
sin

α

2
≤ |y − z| < λ,

and the minimum is reached when |x − y| = |x − z|.
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Proof of Theorem 1. Denote the length of the chord [γ(t + π − α), γ(t)] by
q(t) for every t ∈ [0, 2π] (see Fig. 1). The perimeter of the isoptic curve Kα,
parameterized by γα, is calculated by:

L(γα) =
∫ 2π

0

|γ′
α(t)|dt.

It was proved in [2] by W. Cieślak, A. Miernowski, and W. Mozgawa that

|γ′
α(t)| =

q(t)
sin α

, hence

L(γα) =
1

sin α

∫ 2π

0

q(t)dt.

Then, we can prove the theorem if we find the appropriate lower and upper
bounds for

∫ 2π

0
q(t)dt.

We will first prove the right side of the inequality. In order to do this
set c(t) = a(t) + b(t). By Lemma 2 we know that for every t it holds that
q(t) < c(t), hence

L(γα) <
1

sinα

∫ 2π

0

c(t)dt,

=
1

sin2 α

∫ 2π

0

[p(t) + p(t + π + α)](1 + cos α)dt

+
1

sinα

∫ 2π

0

[p′(t + π + α) − p′(t)]dt,

=
1 + cos α

sin2 α

∫ 2π

0

[p(t) + p(t + π + α)]dt,

=
1

2 sin2 α
2

∫ 2π

0

[p(t) + p(t + π + α)]dt,

=
1

(sin α
2 )2

· L(γ).

Now we will prove the left side of the inequality. By Lemma 2 we know
that q(t) ≥ c(t) sin

α

2
, for every t, hence

L(γα) =
1

sinα

∫ 2π

0

q(t)dt,

≥ 1
sinα

∫ 2π

0

c(t) sin
α

2
dt,

=
1

2 cos α
2

∫ 2π

0

c(t)dt,

=
(

1
2 cos α

2

) (
1 + cos α

sin α

)
(2L(γ)),

=
1

sin α
2

· L(γ).
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Figure 3. Constant angle caustic

Now, for the equality in the left side it is need that q(t) = c(t) sin α
2 for every t.

By Lemma 2 we know that a(t) = b(t) for every t if and only if q(t) = c(t) sin α
2 .

By a known result on isoptic curves we have that the angle between the line �
and the segment [γα(t), γ(t)] is equal to the angle between � and the segment
[γα(t), γ(t+π−α)]. In other words, with respect to Fig. 2 we have that ϕ = ψ if
and only if a(t) = b(t). By Lemma 1 we have that a(t) = b(t), for any t, if and
only if the perimeter of the convex hull of K ∪ {γα(t)} has a constant value λ.
This last condition means that Kα is obtained by the Gardener’s construction
applied to K with a string of length λ. It follows that Kα is the boundary of
a convex set (see [9]) that has K as a caustic of constant angle (see [7]). �

Remark 1. As far as we know, the fact that |z(t) − x(t)| = |z(t) − y(t)| if and
only if γ is a caustic of constant angle for the billiard table Γ (also proved in
[1]), is not very known (see Fig. 3).

4. Proof of Theorem 2

Proof. Since a(t) = b(t), from equations (3) and (4), after some simplifications,
we obtain the differential equation

[p(t + π − α) − p(t)] tan
α

2
= p′(t) + p′(t + π − α).

By the substitution of the Fourier series representation of p and p′ into the
above equation we have

tan
α

2

∞∑

n=1

[an cos n(t + π − α) − an cos nt + bn sin n(t + π − α) − bn sinnt]

=
∞∑

n=1

n[−an sin nt − an sinn(t + π − α) + bn cos nt + bn cos n(t + π − α)].
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Using the trigonometric identities for cosine and sine of sums of angles
and comparing the coefficients of cos nt and sin nt we obtain the following
system of equations written in matrix structure as

M ·
[

an

bn

]
=

[
0
0

]
,

where M is the following 2 × 2 matrix:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(cos n(π − α)−1) tan
α

2
+ n sin n(π − α)

sin n(π − α) tan
α

2
− n(1 + cos n(π − α))

n(1 + cos n(π − α))

− sinn(π − α) tan
α

2

(cos n(π − α) − 1) tan
α

2
+ n sin n(π − α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since

det M = [cos n(π − α) tan
α

2
− tan

α

2
+ n sin n(π − α)]2

+[sin n(π − α) tan
α

2
− n − n cos n(π − α)]2,

we see that det M = 0 if and only if

tan
α

2
(1 − cos n(π − α)) = n sin n(π − α).

This last condition reduces to

tan
α

2
= n cot n

(
π − α

2

)
.

If we consider β = π−α
2 , we see that det M = 0 if and only if

tan nβ = n tan β.

For n = 1 the matrix M is the zero matrix, which implies that a1 and b1
can be arbitrarily chosen. However, by Cyr’s Theorem (see [4]) we know that
for any n > 1 this condition is never satisfied if β

π is a rational number. Since
α
π is rational if and only if β

π is rational, we conclude that p is of the form
p(t) = a0 + a1 sin t + b1 cos t, with a0, a1 and b1 real constants. Therefore, K
is a Euclidean disc. �

Now we give an example of a convex body K, which is not a Euclidean
disc, with the property that a(t) = b(t) for every t ∈ [0, 2π] and for two different
angles α. The problem of isoptic curves, with the property here established, is
also solved in [3]. A convex body K and its two corresponding isoptic curves
are shown in Fig. 4.

Example 1. We solve the equation n tan β = tan nβ, with n = 7, and we get

two solutions β1 = arctan
(√

7+
√
7

5−√
7

)
and β2 = arctan

(√
7−√

7
5+

√
7

)
. This leads

to two angles: αi = π − 2βi, with i = 1, 2. Note that for these α’s, the matrix
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Figure 4. A convex body K with two α-isoptic such that
a(t) = b(t)

M is the zero matrix, so we can choose a7 and b7 arbitrarily. We consider the
following support function for the convex body K:

p(t) = a0 + a1 cos t + b1 sin t + a7 cos 7t + b7 sin 7t,

where a0 = 100 is chosen to ensure that K is a convex body and a1 = b1 =
a7 = b7 = 1.

5. Proof of Theorem 3

Before proving Theorem 3 we shall confirm a set of useful lemmas.

Lemma 3. Suppose θ ∈ (0, π)\{π
2 }. If there exists a natural number n > 1 such

that

tan θ = n tan nθ,

then
sin(n − 1)θ
sin(n + 1)θ

= −n − 1
n + 1

.

Proof. It is well known that for any complex number z ∈ C\{(k+ 1
2 )π : k ∈ Z}

one has

tan z = i
e−iz − eiz

eiz + e−iz
.

For the number θ we know that | tan θ| < ∞, and by the condition of the
lemma we also have that | tan nθ| < ∞. Hence the condition of the lemma can
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be rewritten as

i
e−iθ − eiθ

eiθ + e−iθ
= n

(
i
e−inθ − einθ

einθ + e−inθ

)
.

From this equality we obtain

(n + 1)(ei(n−1)θ − e−i(n−1)θ) = −(n − 1)(ei(n+1)θ − e−i(n+1)θ).

It follows that
ei(n−1)θ − e−i(n−1)θ

2i
ei(n+1)θ − e−i(n+1)θ

2i

= − (n − 1)
(n + 1)

,

i.e.,
sin(n − 1)θ
sin(n + 1)θ

= − (n − 1)
(n + 1)

.

�
The following lemma is due to V. Cyr, and it was proved in [4].

Lemma 4. If θ ∈ (0, π)\{π
2 } is such that θ

π is a rational number, and k and m
are integer numbers such that sin mθ 	= 0, then

sin kθ

sin mθ
is either -1, 0, 1 or irrational.

Using the two above lemmas we can prove the following.

Lemma 5. If θ ∈ (0, π)\{π
2 } is such that θ

π is a rational number, then there is
no integer number n > 1 such that

tan θ = n tan nθ.

Proof. Suppose θ
π is a rational number and there is an integer number n > 1

such that tan θ = n tan nθ. By Lemma 3 we have that
sin(n − 1)θ
sin(n + 1)θ

= − (n − 1)
(n + 1)

.

Since n > 1, we have that

− (n − 1)
(n + 1)

	= −1, 0, 1,

and so by Lemma 4
sin(n − 1)θ
sin(n + 1)θ

must be an irrational number. However, − (n−1)
(n+1) cannot be an irrational num-

ber. This contradiction shows that there is no integer number n > 1 such that
tan θ = n tan nθ if θ

π is rational. �
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Lemma 6. Let α be a rational number, modulus π, in the interval (0, π), i.e.,
α
π ∈ Q, and let p : R → R be a differentiable periodic function, with period 2π,
that satisfies the differential equation

cot
α

2
(p′(t) + p′(t + π − α)) = p′′(t) − p′′(t + π − α). (7)

Then p is of the form p(t) = c + a sin t + b cos t, where a, b and c are real
constants.

Proof. Substituting the Fourier series representation of p and p′ into (7) gives

cot
α

2

∞∑

n=1

[−an sinn(t + π − α) − an sin nt + bn cos n(t + π − α) + bn cos nt]

=
∞∑

n=1

n[an cos n(t + π − α) + bn sinn(t + π − α) − an cos nt − bn sin nt].

(8)

Using the trigonometric identities for cosine and sine of sums of angles
and comparing the coefficients of cos nt and sin nt, we obtain the following
system of equations written in matrix structure as

M ·
[

an

bn

]
=

[
0
0

]
,

where M is the following 2 × 2 matrix:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n(1 − cosn(π − α))

− cot
α

2
sinn(π − α)

cot
α

2
(1 + cos n(π − α))

− n sin n(π − α)

n sin n(π − α)

− (1 + cos n(π − α)) cot
α

2

n(1 − cos n(π − α))

− cot
α

2
sinn(π − α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since

det M = [n − cot
α

2
sinn(π − α) − n cos n(π − α)]2

+[cot
α

2
(1 + cos n(π − α)) − n sin n(π − α)]2,

we see that det M = 0 if and only if

n(1 − cos n(π − α)) = cot
α

2
sin n(π − α).

This last condition reduces to

n tan n

(
π − α

2

)
= cot

α

2
.

If we consider β = π−α
2 , we see that det M = 0 if and only if

n tan nβ = tan β.



Vol. 75 (2020) Isoperimetric Type Inequality Page 11 of 12 134

Figure 5. A curve with a(t) + b(t) constant

For n = 1 this condition is always satisfied. However, by Lemma 5 we
know that for any n > 1 this condition is never satisfied if β

π is a rational
number. Since α

π is rational if and only if β
π is rational, we conclude that p is

of the form p(t) = a0 +a1 sin t+b1 cos t, with a0, a1 and b1 real constants. �

Proof of Theorem 3. Since a(t)+b(t) is constant, we have that a′(t)+b′(t) = 0.
From deriving equations (3) and (4) we obtain the differential equation

[p′(t) + p′′(t + π − α)] cot
α

2
= p′′(t) − p′′(t + π − α).

Now we apply Lemma 6 and obtain that

p(t) = c + a cos t + b sin t.

In other words, p is the support function of a Euclidean disc. �

Example 2. We consider the case n = 5. Solving the equation n tan nβ = tan β

we find that β = arctan
√

5
3 . For this angle the support function must be of

the form

p(t) = a0 + a1 cos t + b1 sin t + a5 cos 5t + b5 sin 5t,

where a0 must be chosen to ensure that K is a convex body. The obtained
convex body K and its corresponding isoptic is shown in Fig. 5, for the support
function

p(t) = 53 + cos t + sin t + cos 5t + sin 5t.
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