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Abstract. A proportionally modular affine semigroup is the set of nonneg-
ative integer solutions of a modular Diophantine inequality fizi + -+
frnTn mod b < g121 + - + gnTn, where g1,...,9n, fi,..., fn € Z, and
b € N. In this work, a geometrical characterization of these semigroups
is given. On the basis of this geometrical approach, some algorithms are
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proportionally modular affine semigroup.
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1. Introduction

An affine semigroup S is a commutative subsemigroup of N"; that is, S is
a subset of N containing the origin and such that x +y € S for all z,y €
S. Semigroups satisfying the condition that N™\S is a finite set are called
generalized numerical semigroups or N™-semigroups [4,7]. If n = 1, they are
called numerical semigroups. Denote by a mod b the remainder between 0 and
b — 1 of the Euclidean division of a by b for every a,b € N with b # 0.
Proportionally modular numerical semigroups were introduced by Ros-
ales et al. [10]. These numerical semigroups are the nonnegative integer solu-
tions of the Diophantine modular inequality ax mod b < cz, where a, ¢ € Z and
b € N. They have been investigated from multiple points of view. For example,
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their relationships to the numerical semigroups generated by intervals and to
Bézout sequences have been found, and some different ways to determine if
a numerical semigroup is a proportionally modular numerical semigroup have
been given. A comprehensive compilation of these numerical semigroups is
presented in [9].

A natural generalization of proportionally modular numerical semigroups
to higher dimensions is given in [8]: a proportionally modular affine semigroup
is the set of nonnegative integer solutions of a modular Diophantine inequality
fixi+ -+ foxn, mod b < g1+ - -+ gnxy, where g1, ..., gn, f1,. .-, fn € Z and
b € N. In that paper, the authors determined some algorithms to obtain the
minimal generating set of a semigroup from its modular Diophantine inequal-
ity, and studied some properties related to its associated ring.

The main goal of this work is to give algorithmic methods for checking
if a semigroup is a proportionally modular affine semigroup. To obtain such
algorithms, we provide a geometrical characterization of these semigroups.
In particular, we prove that an affine semigroup is a proportionally modular
semigroup if and only if it is the union of the natural points belonging to some
translations of the polyhedron delimited by two hyperplanes (Theorem 1).

Based on Theorem 1, Algorithms 2 and 3 check if an N™-semigroup is a
proportionally modular semigroup. The first algorithm tests if S is a propor-
tionally modular semigroup when S includes no elements of the canonical basis
of R™. For this case, we prove that the proportionally modular semigroups are
the semigroups obtained from a special kind of polytopes. In a way, this is
equivalent to what happens for proportionally modular numerical semigroups.
The second algorithm can be applied when some element of the canonical basis
belongs to S.

In any case, both algorithms solve the problem by finding real solutions
to systems of polynomial inequalities constructed from some technical results
(namely, Corollary 2 and Theorem 2). These inequalities are the explicit con-
ditions that have to be satisfied by the elements in S and in N"\S so that a
semigroup S C N” is a proportionally modular semigroup. In fact, this work
presents some algorithms to determine if a finite subset of N™ satisfies some
specific geometrical configurations and arrangements. Several references con-
cerning the solution of systems of polynomial inequalities can be found in [2].

For proportionally modular numerical semigroups, we introduce the con-
cepts of minimal and maximal intervals defining them. These intervals have an
important role in the algorithms mentioned above. Furthermore, we provide
an algorithm for computing the sets of these minimal and maximal intervals.

The results of this work are illustrated with several examples. With this
aim in mind, we have used the library PropModSemig.m [3] developed by the
authors in Mathematica [12].

The remainder of this paper is organized as follows. Section 2 provides
some basic definitions and results related to proportionally modular numerical
semigroups, including algorithmic methods for computing the sets of minimal
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and maximal intervals defining them. Section 3 gives several definitions and
some notation related to affine semigroups. Furthermore, most of the inequal-
ities used in the main algorithms later in the paper are defined in this section.
Section 4 presents the geometrical characterization of proportionally modular
affine semigroups. The algorithms for checking if a semigroup is a propor-
tionally modular affine semigroup are introduced in Sects. 5 and 7. Section 6
studies the two-dimensional case to provide a better understanding of the case
2 solved in Sect. 7.

2. Initial Results on Proportionally Modular Numerical
Semigroups

In this section, we introduce some results and definitions about numerical
semigroups that are useful for understanding this work.

Let R, @, and N be the sets of real numbers, rational numbers, and non-
negative integers, respectively. Denote by R> the set of nonnegative elements
of R, by Rs the set R>\{0}, and by N* the set N\{0}. Denote by [n] the set
{1,...,n} for any n € N.

A numerical semigroup S is called a half-line semigroup if there exists
m € N such that S\{0} = NN [m,o0). Given an interval I C R>, denote
by .#(I) the numerical semigroup |J;cy I N N. Half-line semigroups can be
characterized by a property of the intervals defining them. We say that a
numerical semigroup S is a proper numerical semigroup whenever S # {0}
and S # N.

Lemma 1. Let S be a proper numerical semigroup. Then, S is a half-line
semigroup if and only if there exists an interval [p,q] such that p > 1, and
S =S(p,q']) for all ¢ > q.

Proof. Assume that S is a half-line semigroup, so there exists an integer m > 1
such that S is minimally generated by {m,...,2m — 1}. Then, the interval
[m, 2m — 1] satisfies the lemma.

If S =.7(p,q]) and S = L([p,q']) for all ¢’ > g, then the set N\S is
{1,...,m —1}. So, S is a proper half-line semigroup. O

We say that an interval [p, g] with p > 1 is a half-line interval if Z([p, q]) =
Z(p,q']) for all ¢’ > q.

In [9], it is proved that proportionally modular numerical semigroups
are numerical semigroups generated by a closed interval with lower endpoint
greater than 1; that is, for any proportionally modular numerical semigroup 7'
given by the equation ax mod b < cx, there exists an interval [d, ] such that
d>1and T = .7([d,e]). In this work, we assume that the lower endpoint
of every interval defining a numerical semigroup is greater than 1. Note that
if 0 < a <cora=0,then T is the proper numerical semigroup N, and for
¢ <0, T = {0}. The relationship between proportionally modular numerical
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semigroups and numerical semigroups generated by intervals is expressed in
the following lemmas.

Lemma 2. (Lemma 5.91n [9]) If0 < ¢ < a < b, then the proportionally modular
numerical semigroup defined by ax mod b < cx is . ([d,e]) with d = b/a and
e="b/(a—c).

Lemma 3. (Lemma 5.12 in [9]) Let a1, aa, by, and be be positive integers
such that by /a1 < ba/as. Then, the semigroup .7 ([b1/a1,b2/as2]) is the propor-
tionally modular numerical semigroup defined by a;box mod (by1be) < (arby —
agbl)x.

Note that for a closed interval [d, e], the intersection j[d, e]N(j+1)[d, €] is
empty for every nonnegative integer j < |d/(e — d)], or, equivalently, j[d,e] N
(j + 1)[d, €] is not empty iff j € [[d/(e — d)],00) N N. Denote min{j € N |
(G +Dld, e] N j[d,e] # 0} by ¢([d, e]); that is, ¢([d, e]) = [d/(e — d)].

In fact, there exist only a few proportionally modular numerical semi-
groups compared with the number of numerical semigroups. Table 1 compares
the two sets up to genus 44. This table has been computed in a cluster of
computers [11] using our modified version of [5] based on [6].

To achieve the main goal of this work, we need to improve our knowledge
of the proportionally modular numerical semigroups. In particular, we have to
introduce the minimal and maximal intervals defining them.

Given an open interval (p,¢) C R>, the numerical semigroup . ((p, ¢)) is
called an open modular numerical semigroup. For a given numerical semigroup,
EH(S) C N\S is the set of elements in N\,S such that S U {x} is a semigroup.

In [10], a characterization of the numerical semigroups defined from closed
intervals is given.

Proposition 1. (Proposition 23 in [10]) Let S # N be a numerical semigroup
minimally generated by {ni,...,ni}. Then, S = Z([p,q]) with g > p > 1 if
and only if the following conditions hold:

1. For all i € [t], there exists k; € [n; — 1] such that n;/k; € [p,q].
2. For all x € EH(S) and kg € [x — 1], x/ky ¢ [p, q.

Remark 1. The previous proposition means that for each possible closed inter-
val [p,q] such that p > 1 and S = ¥(|p,q]), there must exist a sequence
p<z1/y1 <--- <x;/y; < q and two integers h,r € N such that

1 {zn, ..., Therf = {01, ... e}

Ynti € [wpyi — 1) for i € {0,...,7};

Th-1/Yn-1 # Th/Yn;

Thetr/Yntr F Thtrt1/Yntr+1;

and z/k; ¢ [p,q] Yo € EH(S) and Vk, € [x — 1].

Note that if S is a proportionally modular numerical semigroup, there
exists a finite set of intervals [zp/yn, Thir/Yntr] satisfying these conditions.

Ol L
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Following this idea, an algorithm to check if a numerical semigroup is propor-
tionally modular is given in [10, Algorithm 24].

We now introduce the concepts of minimal and maximal intervals defining
proportionally modular numerical semigroups.

Definition 1. Given a proportionally modular numerical semigroup .S, a closed
interval [p,q] is a minimal (closed) interval defining S if [p,q] is a minimal
element with respect to inclusion in {[p,q] C (1,00) | S = L(|p,q])}

Note that for any proper proportionally modular numerical semigroup S,
the set of minimal intervals defining S is finite. We denote this set by Lg.

Lemma 4. Given p,q € Rs with #([p,q]) a proper numerical semigroup, there
exists a unique mazimal open interval (with respect to inclusion) (p,q) such

that [p,q] C (p,q) and Z((p, 7)) = 7 ([p,q))-

Proof. Let ig be the minimal integer satisfying iq < (i 4+ 1)p, X = N\.Z([p, q])
and p=p—min{(ip —s)/i| s € X N((i —1)g,ip), i =1,... 40}

If it is assumed that [p, ¢] is a non-half-line interval, then the lemma holds
for § = g+ min{(s—iq)/i| s € XN(ig,(i+1)p), i =1,...,ip — 1}. Otherwise,
¢ = oo must be considered. O

Remark 2. Given a proper proportionally modular numerical semigroup S,
Lg denotes the finite set of open intervals U[ﬁa]eis{(ﬁ’ q)}, where (p, q) is the
unique interval obtained from the proof of Lemma 4.

Algorithm 1 computes the sets of minimal and maximal intervals defin-
ing a proportionally modular numerical semigroup. This algorithm is based
on Algorithm 24 in [10]. Note that the two algorithms are not equivalent. For
example, if one applies Algorithm 24 in [10] to the proportionally modular
numerical semigroup minimally generated by {2, 3}, then the obtained closed
intervals determining this semigroup are [3/2,2], [2, 3], and [3/2, 3], but, triv-
ially, the last one is not a minimal interval.

Ezample 1. Let S be the numerical semigroup minimally generated by {10,
11, 12, 13, 27}. The set EH(S) is {28,29}. So, Algorithm 1 determines that
S is a proportionally modular numerical semigroup defined by the minimal

intervals Lg = {[%’ E] [10, %]} and the corresponding maximal intervals
Ls = {(%’ 32) (%7 14)}; that is,
S=Ji[Z, Q] nN=Ji[10,Z]nN={]i (3. 2)nN=|Ji (%, 14)

€N €N ieN ioN

In fact, S is the numerical semigroup obtained from the inequality 11z mod
110 < 3z.
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Algorithm 1: Test if a semigroup is a proportionally modular numerical
semigroup. In that case, compute the sets of minimal and maximal
intervals defining it.

Input: Ag, the minimal generating set of a proper numerical
semigroup S.

Output: If S is proportionally modular, the sets Lg and ZS;

otherwise the empty set.

begin

Compute EH(S);

A—{(a,ks) | a € Ag UEH(S)\{1}), k4 € [a — 1]};

A « Sort A with respect to (a,k) < (a/, k") if and only if

a/k <d' [k, ora/k=d/k and a < d;

L — {((xh’yh)a ($h+T’yh+T)) |

(xha yh)7 (xh+17 yh+1)v sy (xh+7”7 yh-l-?“) € A7 {th, ce 7xh+7"} =
{na, oo Tho1/Yn—1 7 Th/Yns Thar/Yhtr 7 Thors1/Yhtr41
if L = () then

L return ()

Ly — minc {lo/k,a' /K] | ((a,k), (', })) € L)
Lg — {Eﬁ, q) | []Z,Z]] € Ls} (Remark 2);

return Lg and Lg;

3. Fixing Notation for Affine Semigroups

Let {e1,...,e,} C N™ be the canonical basis of R™. Define (e;,,...,e;, )r as
the R-vector space generated by {e;,,...,e;, }.

For a subset A C Q", denote by ConvexHull(A) the convex hull of the
set A, that is, the smallest convex subset of Q™ containing A, and by VSet(A)
the vertex set of ConvexHull(A). A polyhedron is a region defined by the
intersection of finitely many closed half-spaces, and a polytope is the convex
hull of a finite number of points, or, equivalently, it is a bounded polyhedron
(see [1] for details). From these definitions, it is easy to prove that for checking
if a finite set of points are in the same region defined by a hyperplane, it is
enough to test if the vertices of its convex hull hold that property.

For {ai,...,ar} C [n] and x € N", define ¢y, a1 (7) = (Tay, -5 Tay,),
that is, the projection of x on its {ay,...,axr} coordinates. Fix A C Q", with
Tar,man}(A) = {T{ay,...ary () | © € A}. Also, denote by o4, .. 4,3 (A) the set
{mar,ary (@) | € Aand z; = 0, Vi € [n]\{ay,...,ar}}.

For fixed f(x1,...,2n) = fiz1 + -+ foxy and g(x1, ..., 2,) = g121 +
oot gpxy with g1,.. ., gn, f1,- -+, fn € Z, let S C N™ be the semigroup defined
by the inequality f(z) mod b < g(z), where z = (21, ...,z,). We assume that
fi = fimod b for all i € [n], so these coefficients are nonnegative integers. It
is easy to prove that if g; > 0 for all ¢ € [n], then N"\S is a finite set. Note
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that for this semigroup and for every i € [n], the set SN (e;)r is isomorphic to
the proportionally modular numerical semigroup given by the set of natural
solutions of f;x; mod b < g;z;.

Denote by G; the hyperplane with linear equation g(x) = ib, and by
G the closed half-space defined by g(z) > ib (G; is the open half-space
g(z) < ib). Analogously, F; is the hyperplane f(z) = ib (respectively D; =
f(z) — g(x) =ib), F;" is f(x) > ib (respectively D] = f(z) — g(x) < ib), and
F is f(x) < b (vespectively D = f(z) — g(x) > ib).

In [1], it is proved that given a polytope P C RZ, the monoid | J;. iPNN"
is an affine semigroup if and only if PN7NQZ # ) for all 7 that are extremal
rays of the rational cone generated by P. Equivalently to the definition of .7 (T)
for a closed real interval I, #(P) defines the affine semigroup (J, oy iP NN™.

For a set of closed intervals L = {[p1,q1],.-.,[pt,qt]}, denote by Py, the
polytope ConvexHull(U;c{pi€s,qiei}), and denote ¢(L) = max{¢([p;,qi]) |
i € [t]}. So, ConvexHull(iPL U (i+ 1)Pr) =iPy U (i + 1)Py for every integer
i > ¢(L), and N\ |,y iPr C ConvexHull({0} U ¢(L)Pr). Moreover, the
polytopes iP, can be determined by hyperplanes and half-spaces:

— Hjy;yp, is the hyperplane containing the set of points {ipieq, ..., ipies}, its
equation is hy;r(x) = 0, and Hf; ;, is the closed half-space delimited by
Hy;1, not containing the origin,

— Hy;, is the hyperplane containing {igies,...,iqe;}, its equation is
hoir(x) = 0, and H,,; is the closed half-space delimited by Ha;;, con-
taining the origin.

So, the convex set iPy, is R N H;, N Hy;; . Note that some expressions for
hiir(z) = 0 and hg;r,(x) = 0 can be easily constructed by using linear algebra.
Consider

huir(z) :==p1---pt (z -y l‘j/pj) and  hoir () :=q1- - q (2 -> fﬂj/%‘) :

jelt jelt
(1)

Furthermore, HIEL is defined by hy;r(xz) < 0, and Hy;; by hoir(xz) > 0. We
also consider the open half-spaces H;;; defined by hy;r(x) > 0, and H;; ;, by
hair(x) < 0.

Given any P € N", k1(P) denotes the maximum integer ¢ such that
h1i(P) < 0. In the case h11(P) > 0, ki, (P) = 0. Also, define by 61, (P) the
function such that 6y, (P) = 1 if there exists i € Nwith P € iPy,and . (P) =0
otherwise. Note that 87, (P) can be determined in the following way: compute
the sets 7p NPy = AB and {k € N | ||P||/||B|| < k < ||P||/||A||}, where 7p is
the ray containing P, and || X|| is the Euclidean norm of X, that is, || X||? =
(@1, )P = 5o, a2 if {k € N[ [[P[|/||B|| < k < [|P||/||Al]} = 0, then
0 (P) is 0, and 1 otherwise.
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Assuming n > t, let w1 e, + poe; and —vq ;e + vo €5, where ¢ € {t +
1,...,n} and pi 4, pog, V10,2 € Q are some vectors, and 71;1(z) = 0 and
Toir,(x) = 0 are equations of the hyperplanes defined by these vectors and the
sets of points {igie1,...,igie:} and {ipre1,...,ipier}, respectively. For every
i € 7, consider

n

L (T) = que Qep2grc fon | - Zﬂ+ Mli,ng )
el q; j=tt1 qtfh2,j
(2)
. X5 = V1,5
Tzz'L(I) =P1cc PtV Ve | U — ZJ* K X
jemPI S P2

4. A Geometrical Characterization of Proportionally Modular
Affine Semigroups

Let S be the proportionally modular semigroup given by the modular inequal-
ity f(z) mod b < g(x), where = (z1,...,2Zpn), g1y --s9ns f1,--- fn € Z, and
b € N*. Assume that f; = f; mod b for all i € [n], so these coefficients are
nonnegative integers.

As in previous sections, we denote by F; the hyperplane with linear
equation f(x) = ib (respectively D; = f(z) — g(x) = ib), and by F;" the
closed half-space defined by f(x) > ib (respectively D; = f(z) — g(x) < ib).
With these hyperplanes fixed, P; denotes the polyhedron F;r N D; with
i € Z. Note that since b > 0, and f(e;) > 0 for all j € [n], on set-
ting a negative integer i, every P € P; N N" satisfies P € F;” N Dy . So,
Uien(E;" N D7) NN = Usez(FF N D; ) NN". Also, for all i € N, the points P
in F;* N D} satisfy g(P) > 0.

Lemma 5. P € S if and only if there exists i € N such that P € P; N N".

Proof. For any P € N, there exist two nonnegative integers ¢ and r such that
f(P) = ib+r with r € [0,b). Assume that P € S, so f(P) modb < g(P).
Furthermore, 0 < f(P) mod b =r = f(P) —ib < g(P), and then P belongs to
P, NN".

Consider now any P € P, N N" with i € N, so 0 < f(P) —ib < g(P).
Since f(P)mod b = f(P) —ibmod b < b, if g(P) > b, then, trivially, P € S.
Suppose that g(P) < b. In that case, 0 < f(P) —ib < g(P) < b, and again
f(P)mod b= f(P)—ibmodb< g(P),and P € S. O

We now have the necessary tools to introduce a geometrical characteri-
zation of proportionally modular semigroups in the next result.

Theorem 1. S C N” is a proportionally modular affine semigroup if and only
if there exist two linear functions with integer coefficients f(x) and d(z) with
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fiy--oyfn > 0, an integer b > 0, and two families of half-spaces {F;" }ien
and {D; }ien, where F;¥ = f(x) > ib and D; = d(z) < ib, such that S =
Uien(F;f N D) NN™.

Proof. Given a proportionally modular semigroup S, it is the set of nonneg-
ative integer solutions of an inequality f(z) mod b < g(x), where f(z) and
g(z) are linear functions with integer coefficients, and b € N*. From Lemma 5,
taking the half-spaces F;" = f(z) > ib and D; = (f — g)(z) < ib the result
holds.

Conversely, if S = Ujen(E;" N D;) N N® with F;t = f(z) > ib and
D; =d(z) < ib, where f(x) and d(z) are linear functions and b € N*, again,
by Lemma 5, S is the proportionally modular semigroup given by the inequality
f(z) mod b < (f — d)(x). O

From previous results, the set of gaps of a proportionally modular semi-
group can be described geometrically too.

Corollary 1. Let S C N™ be a proportionally modular affine semigroup. Then,
(N"\S)N G = Uien-(F, N DS NGF) NN,

Proof. Note that for any P € F, N Df | N G{, 0 < g(P) < b. Moreover,
(F7NDf \NGF)N(F; ND}  NGY) = 0 for every nonnegative integer i # j. In
the other case, if we suppose i < j and P € (F; ND;" NG )N(F; ND; NGy ),
then the point P satisfies ib > f(P), f(P) — g(P) > (j — 1)b, and g(P) > 0.
Then, 0 > (i —j + 1)b > g(P) > 0, but this is not possible.

Assume P € F[ N D;‘_l N GS‘ for some ¢ € N*, and that there exists a
nonnegative integer j < i —1 such that P € Fj+. Since f(P)—g(P) > (i—1)b,
if jb > f(P)—g(P), j >i—1.So, P ¢ Dy . Analogously, if P € F;"ND; with
g(P) < b, and we suppose that there exists an integer j > i such that P € Fr,
then P does not belong to D]tl (P e D;l implies ib > f(P)—g(P) > (j—1)b,
that is, i > 7 — 1). So, Ujen-(F;” N D, NG NUien(F;" N D7 NGy ) =0
and N* NGy NGy = Uien-(F, ND; NG UUien(Fif N D NGy ).

Since N* NG NG, = Usen-(F; NDS NG UUien(F;" N Dy NGy),
by Theorem 1, the corollary holds. 0

The characterizations given in this section are illustrated by some exam-
ples in the following sections. In particular, Figs. 1 and 2 show two examples
in the two-dimensional case. In these figures, the red lines correspond to the
hyperplanes D; and the green ones to the hyperplanes Fj.

5. Testing N"-Semigroups for Being Proportionally Modular
Affine Semigroups: Case 1
In this section, we assume that the semigroup S C N" satisfies the conditions

that for every i € [n], e; ¢ S and S; is a proportionally modular numerical
semigroup.
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FIGURE 1. N2-semigroup given by 11z + 15y mod 110 < 3z + 6y
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FIGURE 2. N2-semigroup given by 11z 4+ 6y mod 110 < 3z + 15y

Proposition 2. S is a proportionally modular N™-semigroup with b > f; > g; >
0 for alli € [n] if and only if there exists a set L = {[p1,q1],- - -, [Pn, qn]} where
Si = L ([pi, q]) for alli € [n], and S = ;o iPL NN™.

Proof. Assume that S is a proportionally modular N"-semigroup with f; >
gi > 0 for all i € [n]. Consider P, the polytope ConvexHull(U;cn{pi€i, gici})
C R™, where ¢; = b/(f;—gi) > pi =b/f; > 1. Then, S; = #([p;, ¢;]). Note that
P is the set (F;F N D7) NRE with F;" = f(z) > ib, and D] = (f — g)z < ib,
and iP, is equal to (F;" N D; ) NRZ. So, the proposition holds by Theorem 1.

Now, we assume that . ([p1,q1)), - - ., ([Pn,qn]) are proper proportion-
ally modular numerical semigroups. By Lemma 3, for each ¢ € [n], there exist
three nonnegative integers b;, a;, and ¢; with b; > a; > ¢; > 0, such that
< ([pi, qi]) s the set of nonnegative integers of the inequality a;x mod b; < ¢;x.
Let b = lem({b1,...,b,}) and consider the inequalities (b/b;)a;z; mod b <
(b/b;)ciz;. Let S be the proportionally modular N”-semigroup defined by the
inequality Y"1, (b/b;)a;x; mod b < Y7 (b/b;)c;x;. It is an easy exercise for
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the reader to prove that |J;ciPr N N" is the proportionally modular N"-
semigroup defined by the inequality Y ., (b/b;)a;z; mod b < >0 (b/bi)c;x;,
and that b > (b/b;)a; > (b/b;)c; for all i € [n]. O

From this proposition, we obtain a procedure to check if an N"”-semigroup
S is a proportionally modular semigroup. For that to be the case, the first nec-
essary condition that S must satisfy is that .S; must be a proper proportionally
modular numerical semigroup for all ¢ € [n]. If this initial condition is satisfied,
we have to determine whether there exist n intervals L = {[p1, q1], - - -, [Pn, qn]}
with g; > p; > 1 such that S; = ([pi, ¢:]) and S = J,cnPr NN". Let Ag
be the minimal generating set of S. For any interval [p;, ¢;], [pi, ¢:] and (pi, @)
denote the intervals defined in Definition 1 and Remark 2, respectively.

Lemma 6. Let S be an N"-semigroup with e; ¢ S for all i € [n].
Then, S is a proportionally modular semigroup if and only if there exist

([51751]7 ceey [ﬁna&n]) S le X oo X LST,, and a set L = {[p17Q1]7 sy [men]}
such that S; = 7 ([ps, ¢:]) for all i € [n] satisfying

L. [Fﬁlazjl} C [plaql] c (]/7\17@) fOT’ all i € [n];

2. N"\S C ConvexHull({0} U ¢(L)PL);

3. for every x € N"\S and for every i € [¢(L)], = ¢ iPL;

4. for every s € Ag such that 0;(s) = 0, kz(s) # 0, and s/m € Pr for
some m € [k (s)].

Proof. If S is a proportionally modular N"-semigroup with e; ¢ S for
all i € [n], then, by Proposition 2, S = U;en(iPr N N"*), where L =
{lp1, @1l - - -, [Pns an]}, is such that S; = % ([pi, ¢]). So, the lemma holds.
Assume that Py is a polytope satisfying the hypotheses of the lemma
and let S’ be the N"-semigroup S’ = (J,cy Pz N N". Trivially, S’ N (e;)r is
isomorphic to . ([p;, ¢;]) for all i € [n]. By conditions 2 and 3, N\ S C N™"\$’
and then S’ C S. By conditions 2 and 4, we have that S C S’ (note that if
07 (s) = 1 for some s € Ag, then there exists i € N with s € iP; C iPr). So,
5 € UjenPr NN". O

To obtain an algorithm to check if an N"-semigroup is a proportionally
modular semigroup, for a set of closed intervals L = {[p1,q1],-- ., [Pn, qn]} With
Si = L ([ps, qi]) for every i € [n], we establish a disjoint partition of the region
Ty, := ConvexHull({0} U ¢(L)PL) N N™:

Hir ={x e N" |2 € H;;,} and H;p = Hy;, ﬂH;r(Fl)L NN"
for any i € {2,...,¢(L)},
Sir, = Ht;, N H,y;; NN for any i € [¢(L))].
Note that Ty, = {O} U Uie[qﬁ(L)](HiL (] SiL) and S;;, =P, N N".

For any ¢ belonging to [¢(L)], denote by B, the set (N"\S) N H;z. So,
a necessary condition for S to be a proportionally modular N™-semigroup for
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some L = {[p1, 1], - .-, [Pns qn]} 18 N"\S' C Ujeg(1)Bir C U,y B, - Other-
wise, S # J;en 1P NN

Corollary 2. Let S be an N™-semigroup with e; ¢ S for all i € [n]. Then,
S is a proportionally modular semigroup if and only if for some L =
{P1,q1ls- -+ [Dn, @n)} with ([p1,q1),-- -, [Pnsqn]) € Lsy X -+ x Lg,, N"\S C
Uie[¢(i)]HiZ and there exists L = {[p1,q1],--,[Pn,qn]} with p1,...,pn,
q1,---,qn € Q satisfying the following inequalities:
1. For alli € [n] such that [p;, ;] is a half-line interval, p; < p; < p; < @ <
qi; otherwise, p; < p; <p; < q; < q; < G-
2. For all x € VSet((N"\S) N H,;), huir(z) > 0, and for all i €
{2,...,0(L)} and x € VSet((N"\S)NH., ), hiir(z) > 0 and hoi—1yr () <

3. For every s € Ag such that 07 (s) = 0, kz(s) # 0, and for some m €
(k7 (s)], h1ir(s/m) <0 and ho;r(s/m) > 0.

Proof. The condition N™\S C Uie[¢>(i)]HiE is equivalent to condition 2 in
Lemma 6. Furthermore, for every integer ¢, the sets of inequalities appearing
in the second condition are satisfied by the rational points belonging to H;,,
while any point that satisfies the inequalities in the third condition belongs to
1P, for some integer . Then, the second and third conditions of the corollary
are equivalent to conditions 3 and 4 of Lemma 6, respectively. 0

Algorithm 2 presents a method for checking the conditions of the previous
corollary. Note that some steps in this algorithm can be computed in a parallel
way. Given a minimal interval [p,q], we denote by rp; ;5 the inequalities p <
p < p<q<qif [p,g] is a half-line interval, and p < p < p < g < q < q
otherwise.

Ezxample 2. Consider the set of circles in Fig. 1 and let S be the N?-semigroup
such that N2?\S is this set, and its minimal generating set is

{(0,8),(0,9), (0,10), (0, 11), (0,12), (0, 15), (1,7), (1,8), (1,9), (1, 10),
(1,11),(1,14),(2,6),(2,7),(2,8),(2,9),(2,10), (3,6), (3,7), (3,8), (3,9),
(4,5), (4,6),(4,7),(4,8),(5,4), (5,5), (5,6), (5,7), (5, 11), (6, 3), (6, 4),
(6,5),(6,6),(7,3),(7,4),(7,5), (7,6),(8,2),(8,3), (8,4), (8,5), (9, 1), (9, 2),
(9,3), (9,4), (10,0), (10, 1), (10, 2), (10, 3), (11,0), (11, 1), (11,2), (12,0),

(12,1),(13,0),(23,4), (24, 3), (25,2),(26,1), (27,0) }.

Thus, S7 is minimally generated by {10,11,12,13,27}, and Sy is minimally

generated by {8,9,10,11,12,15}. Using Algorithm 1, we find that both
S1 and S, are proportionally modular numerical semigroups with Lg, =
{12.190,100, 2]}, Ls, = {(44,2).(2,14)}, Ls, = {[22, 11,122,121}, and
Ls, = {(3,2),(7,13)}, respectlvely Algorithm 2 determines that S is a
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Algorithm 2: Checking if an N™-semigroup S with e; ¢ S, Vi € [n], is
a proportionally modular semigroup.
Input: The minimal generating set Ag and the set of gaps of an
N™-semigroup S.
Output: If S is proportionally modular with e; ¢ S and such that S;
is a proportionally modular numerical semigroup for all
i € [n], a polytope P such that S = J,;c iP N N"; otherwise
the empty set.

begin
if e; € S or S; is not a proportionally modular numerical
semigroup for some i € [n] then

| return ()

L — {[p1,q1),---,[Pn,qn]} set of variables;
A« Lg, x -+ x Lg. (Algorithm 1);
while A # 0 do
L — First(A);
A={s1,....,s:} — {s€As|0;(s) =0}
forall the i € [k] do
L Compute 7 (s;);
if [Tiep rz(sj) #0 and N"\S C Uielo(iyH;z then
E — {h11p(x) > 0|2z € VSet((N"\S) N H,7)};
E—FEU {{th(I) > 0, h2(i—1)L($) < 0} | 1€
{2,...,¢(L)} and z € VSet((N"\S) N H,7)}
Q — [rg(s1)] x - x [ (sp)];
while Q # () do
(mq,...,my) « First(Q);
F— {{h11r(si/mi) < 0,ha1(si/m;) = 0} | i € [k]};
T « Solve (Ui {r5.,31}) UEUF for
{p1, Py a1y}
if (p1,. .. Pn,q1s---,qn) € TNR?" then
L return P = ConvexHull( Usen] {pici, qiei})

Q— N{(my,....,mp)};

i Ao A\{L};

return (;

proportionally modular N2-semigroup when L = ([10, 271, [42,12]) by com-
puting pi1,q1,p2,q2 € Q such that % < p1r <10 < 277 < ¢ < 14,
7T <py < % < 12 < g9 < 13, and satisfying the other inequalities in Corol-

lary 2. Moreover, S is given by the inequality 11z + 15y mod 110 < 3x + 6y.
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In Fig. 1, the blue line is g(z) = b, the green lines are f(x) = kb, and the red
lines are f(x) — g(z) = (k — 1)b for k € N. The above results were obtained
using our software [3]:

In[1]:= mgs = {{0, 3}, {0, 4}, {1, 1}, {2, 1}, {4, 0},
{5, 0}, {5, 2}, {6, 0}, {7, 0}};

In[2]:= gaps = {{0, 1, 0}, {0, 2, 0}, {0, 2, 1}, {0, 5, 0},
{1, o, o}, {1, 2, o}, {1, 3, o}, {1, 6, 0}, {2, 0, O},
{2, 0, 1}, {2, 3, 0}, {3, 0, 0}, {3, 1, 0}, {3, 4, 0},
{4, 1, 0}};

In[3]:= IsNnProportionallyModularSemigroup[mgs, gaps]

Out [3]= {{163835/16384, 0}, {28367/2048, 0}, {0, 931/128},
{0, 1553/128%}}

Note that p; = 163835/16384, q; = 28367/2048, p, = 931/128, and
g2 = 1553/128.

6. Some properties of proportionally modular N2-semigroups

To obtain an algorithm to check if an N™-semigroup is a proportionally modular
semigroup when some e; belongs to it, we study the two-dimensional case
in depth. Let S C N? be the proportionally modular semigroup given by
fixy + foromod b < g1z + goxo. Again, we assume f; = fy mod b, fo =
fo mod b, and g1, g2 > 0 which implies that S # {0} and S # NZ.

Without loss of generality, we assume, for example, that if f; > ¢g; but
g2 > fa, then ey belongs to S, and for all x € N2\S, x — ey ¢ S. Note that
if one particularizes Theorem 1 and Corollary 1 to the two-dimensional case,
then the sets F;_ N D" | NG{ are triangles with parallel edges, and their bases
are the intervals given by F,” N D", N (e1)g.

For any integer k € (0, f1/g1), we denote by Ay the point

b
——————(kgo — fo. 1 — kg1) ={g121 + goxa=b}N{fiz1 + foxs = kb} € Q2.
f192 — foqn >

The triangle T}, is the convex hull of the vertex set

(o) (Gmiro)
o ()

This situation is illustrated in Fig. 2; the blue line is g(x) = b, the green lines
are f(x) = kb, and the red lines are f(x) — g(z) = (kK — 1)b for k € N.

and
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So, a proportionally modular semigroup S with f; > g1 and go > fo can
be characterized by a finite set of triangles satisfying some conditions.

Lemma 7. Let S # N? be a proportionally modular N?-semigroup fiz, -+
faza mod b < g171 + gax2, such that 1 € Ss. For every a € N2, a € S if

and only if « ¢ Uk€[Lf1/91J]T’€'

Proof. By Corollary 1, if S is a proportionally modular semigroup, then
(NAS)NG{ = Uiemyoy(F; ND;- NGE)NN", and F;” NGy = (kb/ f1,0) Ay
and D | NGF = ((k—1)b/(f1 — g1),0)Ay. These are just the edges of the
triangle Tk. O

Note that the triangles T; can also be determined by the points (p,0)
and (g,0) and the two vectors (ui,p2) and (—vi,v9), with py,vqn € [0,1),
po,ve € (0,1], and py + po =1 +v9 = 1.

Remark 3. Given a triangle with vertex set T = {(0,0), (p,0), (71,72)} C Q2%
such that 0 < 41 < p, and one other point (¢,0) € Q% with ¢ > p, a
proportionally modular N2-semigroup can be constructed 7by using the fol-
lowing method. Define the line containing {(p,0), (y1,72)} by the equation

Yox1 + (p — y1)x2 = py2 and consider the line (¢ — p)yex1 + (pg — 11(q —
p))xa = pgy2. Let 71 and ry be the minimum nonnegative integers such

that {riy2,71(p — 71), 7102, 72(q — P)v2,2(Pg — 11 (q — P)), r2pqy2} C N, and
b = lem({r1py2, 2pqy2}). The semigroup given by the inequality
b b — b — b — —
UL r1(p — 1) 2 mod b < ro(q — p)y2 o 4 2 (pqg —v1(q —p)) 2
rpy2 T1ip7Y2 ropqy2 T2pq7y2

then satisfies Lemma 7 for T; = T.

Ezample 8. Consider the N2-semigroup S shown in Fig. 2, that is, the nonnega-
tive integer solutions of the modular inequality 11246y mod 110 < 3z+15y. In
this example, the vertex set of the triangle Ty = T is {(0,0), (10,0), (232, 339)}.
The vertex sets of T and Tj are { (22, 0), (20, 0), (22, 330)} and {(22, 0), (30, 0),

490 147
(1430, 2201} respectively. Also, the vectors (ui1, pt2) and (—v1,v2) determining
the triangles T; are (11,3, p12,3) = (1%, 17) and (—v1,3,v2,3) = (1%, 17), respec-

tively.

7. Testing N"-Semigroups for Being Proportionally Modular
Affine Semigroups: Case 2

In this section, N™-semigroups containing some e; are considered. We assume
that S is an N™-semigroup, that the semigroup S; # N is a proportionally
modular numerical semigroup for every i € [t], and that S; = N for all i €
{t +1,...,n}. To simplify our proofs, we consider that every set of closed

intervals L = {[p1,q1], .- ., [pt, @]} satisfies ¢(L) = &([pt, g4])-
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Since S is a semigroup, for every x € N™\S and i € {t + 1,...,n},
x —e; ¢ 5. We also consider the vectors py ;e; + paie; and —uvy e + v e,
where py3, 1, € [0,1), pos,v25 € (0,1], and py; + po; = v1; + 12 = 1 for
i€{t+1,...,n}. We denote by S¢ and S* the sets o (S) = SN (e1,...,e)r
and {(o1,...,0n) € S| 27, o # 0}, respectively. Note that S is an
Nt-semigroup and S = (5S¢ x {0}~ t+1) U Sv.

In Sect. 5, we defined several objects for a given set L including n closed
intervals, but here L has only ¢ elements (note that n > t¢). In order to simplify
the notation, we consider those objects defined over the Nf-semigroup S.

If S is a proportionally modular N"-semigroup defined by the inequality
f(x) mod b < g(x), then the above conditions mean that b > f; > ¢g; > 0 for
alli € [t], and g; > f; and g; > O for all ¢ € {t+1,...,n}. By Lemma 7
and Remark 3, for fixed ¢ € [t] and j € {¢t + 1,...,n}, the semigroup S N
(ei,ej)r is equivalent to an N2-semigroup determined by a triangle Ty;. So,
by Theorem 1 and Corollary 1, the hyperplanes defining S are determined by
the points piey,...,pier, q1e1,...,qer (suppose S; = Z([ps,qi]) for i € [t])
and the edges of the triangles Ty (;41),..., T¢n; that is, the hyperplanes are
fixed by their intersections with the planes (e;,e;)r for any j € {t+1,...,n}.
Moreover, the hyperplane F; is given by the points ipieq,...,ip;e; and the
vectors —vy je;+vs je; and D; by the points igieq, ..., iq:e; and py jeqs+puz je;,
with j € {t +1,...,n}. Note that these data are enough to determine a
hyperplane in N™.

To generalize the two-dimensional case studied in Sect. 6, for any 4 in
[¢(L)], denote by P;r, the set {(a1,..., a4, Bet1,---,0n) € RL | @ € H;r} and
define

P, ={acS"|a—e; €P;\S for some j € [t]},
P,p ={a e S"|a+e; €P;r\S for some j € [t]},
P, ={ac S“\(F; UP,.) | a—e; € Pir\S for some j € {t+1,...,n}}.

Note that op(Psr) is equal to H;z any i € [¢#(L)]. So, three necessary
conditions for S to be a proportionally modular N"-semigroup given by
L= {[p1,q1], - [pt, ¢} are N"\S C Ujerg(2)Pir C Uil P, for all natural
vectors o € P;r\S, o« —e; ¢ S for every j € {t +1,...,n}, and (o, 5) € S for
all (o, 8) € (UienPr N Nt) x Nn—t,

For three dimensions, Fig. 3 shows the geometrical arrangement of the
case solved in this section.

Theorem 2. Let S be an N"™-semigroup such that S; is a proper proportionally
modular numerical semigroup for alli € [t] and S; =N for alli € {t+1,...,n}.
Then, S 1is a proportionally modular semigroup if and only if for some

(mlvzlvl]v cey [Fﬁta E]Vt]) € LSl X X LSt7 there exist L = {[ph Q1]a ceey [Pt»(It}};
with p1,...,pe,q1,--.,q¢ € Q, and M1e415 U241y« - o5 H1,ny U205 V1,641, V2,641,
oy Vi, Vo € Q satisfying the following conditions:
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1. N”\S C Uie[d)(i)]PiZ'

2. For alli € [t] such that [p;, q;] is a half-line interval, p; < p; < p; < G; <
qi; otherwise, D; < pi < Pi < G < qi < G-

3. For all x € VSet((N'\S?) N H,;), hii(z) > 0, and for all i €

{2,...,6(L)} and z € VSet((N'\ST)NH, ), huir () > 0 and ho 1)1 (z) <

4. For every s € Ag N (S x {0}*~"1) such that 07 (s) =0, k;(s) # 0, and
for some m € [k7(5)], hiir(op(s)/m) <0 and hoir (o (s)/m) > 0.
5. pisv1i € [0,1), paisve, € (0,1], and pa; + pioi = v1,; + v, = 1 for
everyi € {t+1,...,n}.
6. For all i € [¢(L)], and for every a € VSet({z € P,z N (N™\S) |
S 1% #0)), BeP, y€P;, and § € Py
(a) T1(i— 1)L( ) <0 and TQiL(a) > 05
(b) T1—1)r(v) = 0;
(¢) 72 (B) < 0;
(d) T1(i-1)L(8) =0 and/or 72;1.(5) < 0.

Proof. We assume that S is a proportionally modular N™-semigroup such
that S; = ([pi,qi]) for all ¢ € [t] and S; = N for all ¢ € {t +1,...,n}.
By Corollary 2, conditions 2-4 hold. Also, since N*\S¢ = Uielo(r) oy (Pir),
N"\S C UiclpryPir C Uies) Pz

By Theorem 1 and Corollary 1, there exist two families of half-spaces
{F}ien and {D; }ien, where F;™ = f(z) > ib and D; = d(z) < ib, such that
S =Uien(F;" N D;)NN™ and (N"\S) N G = Ujen- (F NnDf, N G*) NN~
Let Ty; be the triangle (F;” N DF NG§) N (e, ei)r, with i € {t +1,...,n}.
As in Remark 3, for each triangle T;;, we fix the vectors —u ;e; + 15 ;e; and
piier + pogie; satistying py g, 01 € [0,1), pi, v € (0,1], and py; + poi =
114+ va,; = 1. So, F; is the hyperplane containing the points {pie1,...,pre.}
and the vectors {_Vly(tJrl)et + Vo, (t41)€t+15 - - - —V1,n€t + V2,n€n}a and DIL' con-
tains {Q16‘1, feay qtet} and {U17(t+1)et+U27(t+l)et+17 ‘e ,u17net—|—u27nen}. Then,
F; is equal to the hyperplane defined by 79;7.(z) = 0 and D; = 7y;1(x) = 0.
Furthermore, since qi,...,q, fot4+1,---M2,n, P1s---,Pt, and Voiiq,..., 02,
belong to R, the closed half-space F; is defined by 72z (z) < 0, and the
open half-space F,” by 79;(x) > 0. Analogously, D; = 7y;.(x) > 0, and
Df = mr(z) < 0. Again, by Theorem 1 and Corollary 1, conditions 6a—d
hold.

Conversely, let S” be the N"-semigroup U;en(F;™ N D;) NN", where F;
is the closed half-space defined by 70,1 (z) < 0, and D; = m;.(z) > 0. By
Theorem 1, S’ is a proportionally modular semigroup. Conditions 1-4 imply
S = g'd, Slnce N™\S* C N™\S" by conditions 1 and 6a, S C S™.

Suppose o € S*. If a belongs to (U;enP; NN') x N"~* then o € S™.

Otherwise, a € P ; for some i € [6(L)). If a € F;E uP,; U F:i» then o €
(Ff,ND; ) )U(F;tND;") (by conditions 6b—d). In the case that o € Piz\(FjiU
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FIGURE 3. N3-semigroup given by 292 + 11y + 6z mod 33 <
6x + 3y + 152

P,; UP;;) and since a € P, op(a) ¢ S%. So, there exists 3 € P,z N (N™\S*)
with o4 (8) = op() such that +e; € S* and mgq1,. (@ —B—e;) >0, for
some j € {t+1,...,n}; that is, o« = (a — B—¢;) + B +e;, with f+¢; € S* but
B ¢ S*. Equivalently, 71;_1y2(3) < 0 and 72;1(3) > 0, but 7(;_1)(B+e;) > 0
and/or 791 (B +e;) < 0. If Ty_1yo(B + e;) > 0, it is easy to prove that
Ti(i—1yz(@) > 0. In a similar way, if 72;7.(8 + ¢;) < 0, then 791 (a) < 0. We
can conclude that « € (F;*, N D;_,)U(F; - nD;)C¥S. O

Algorithm 3 presents a computational method to check if an N”-
semigroup is a proportionally modular semigroup by testing the conditions
given in the above theorem. Note that some steps in this algorithm can be
computed in a parallel way.

Ezample 4. Let S be the N3-semigroup whose gap set is the set of black points
in Fig. 3, that is,
{(0,1,0),(0,2,0),(0,2,1),(0,5,0),(1,0,0),(1,2,0),(1,3,0),(1,6,0),
(2,0,0),(2,0,1),(2,3,0),(3,0,0), (3,1,0), (3,4,0), (4,1,0)}
So, the N2-semigroup S N (e1, €2)gr is minimally generated by
{(0,3),(0,4),(1,1),(2,1),(4,0), (5,0), (5,2), (6,0), (7,0)}.

By Algorithm 3, the semigroup S is a proportionally modular affine semigroup

where the intervals [%, %] and [%, %] determine S; and Ss, respectively,

— 39 89 _1 _3
and 1,3 = 755, 12,3 = 15g: V1,3 = 7, and va 3 = 3.
The above results were obtained using our software [3]:

In[1]:= mgs = {{0, 3}, {0, 4}, {1, 1}, {2, 1}, {4, 0},
{5, o}, {5, 2}, {6, 0}, {7, 03};
In[2]:= gaps = {{0, 1, 0}, {0, 2, 0}, {0, 2, 1}, {0, 5, 0},

{1, o, o}, {1, 2, o}, {1, 3, o}, {1, 6, 0}, {2, 0, O},
{2, o0, 1}, {2, 3, 0}, {3, 0, 0o}, {3, 1, 0}, {3, 4, 0},
{4, 1, 0}3};
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Algorithm 3: Checking if an N™-semigroup S with e; ¢ S, Vi € [t],
e; € 5,Vi e {t+1,...,n}, and Sy,...,S; proportionally modular
numerical semigroups, is a proportionally modular semigroup.
Input: An N"-semigroup S with e; ¢ S, Vi € [t], but e; € S, Vi€ {t+1,...,n}, given
by its set of gaps, and A g4 the minimal generating set of S,
Output: If S is a proportionally modular semigroup, the values of
(P15 Pt q1y - -5 Gty M1, (t41) s M2t 415 V16415 V2,t4+15 - - -5 H1,n5 H2,n5 V1, n, van)
determining the hyperplanes Fl+ and Dg ; otherwise the empty set.

begin

L —{lp1,a1l,-- -, [pe, @el}s

M — Usegeq1,.n}i1 > 01,0 20,1 >v1 20, 12> p2; >0, 1>v2,; >
0, p1,s + 2, =1, v15 +ve; =1}

A — Zsl X oo X Zst (Algorithm 1);

while A # () do

L «— First(A);

{s1,...,8k} «— {s|s€Aga and 03(s) = 0};

if Hje[k] f@i(s]') # 0 and N™"\S C Uie[¢(z)]Pii then

E «— {h11r(z) > 0|z € VSet(N*\S*) N H, ;)};

E — EU{{h1;r(z) > 0, hoii_1)r(z) <0} | i € {2,...,6(L)} and = €
VSet((N*\S%) N H,;)};

E— BU{{ru_-1nr(e) <0,72r(a) >0} | i€ [¢p(L)] and o €
vset(P,z N{z e N"\S | X7, z; #0D}

F e {r;(B) <0|i€[¢(L)] and B € ??—Z};

Fe— FU{r_1c(y) >0]i€[p(L)] and v € P:h

I Xie[(b([:)]yéeﬁz‘i {T16—1)L(8) > 0,72:1(8) < 0};

Q— [rp(s1)] x - X [kp(sK)];

while Q # 0 do

(m1,...,my) «— First(Q);

F' — FU{{hi1(si/mi) <0, h21(si/m;) > 0} | i € [K]};
I Ty

while T # () do

F* « First(T);
T «— Solve (Uie[t] {T[ﬁi,gi]}UN[UEUF/UF*) for
{Ph oDty Qs Gty U141, H2,t415 V1t V2,6415 - - -5 Hl,ns H2,n,
V1,n7V2,n} 3
if
(P1s-+ 3Pty q15 -+, Gt K141, H2,t+1, V1, t4+1,V2,¢415 - -+ s H1,n5 H2,n,
Vi, Vo) € T NRHEHH=D then
return
(Pl-, ey Pty Qs e 5 Gty K141 B2,6 41, V1,t4+1, V2,641 - - -5 K10y
M2.n;’/1,nay2,n)
I — T\{F"};

Q — N{(m1,...,mp)};

A — A\{L};

return 0;
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In[3]:= IsNnProportionallyModularSemigroup[mgs, gaps]

Out[3]= {829/256, 21/16, 113/16, 1589/1024, 39/128,
89/128, 1/4, 3/4}
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