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Abstract. A proportionally modular affine semigroup is the set of nonneg-
ative integer solutions of a modular Diophantine inequality f1x1 + · · · +
fnxn mod b ≤ g1x1 + · · · + gnxn, where g1, . . . , gn, f1, . . . , fn ∈ Z, and
b ∈ N. In this work, a geometrical characterization of these semigroups
is given. On the basis of this geometrical approach, some algorithms are
provided to check if a semigroup S in N

n, with N
n\S a finite set, is a

proportionally modular affine semigroup.
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1. Introduction

An affine semigroup S is a commutative subsemigroup of N
n; that is, S is

a subset of N
n containing the origin and such that x + y ∈ S for all x, y ∈

S. Semigroups satisfying the condition that N
n\S is a finite set are called

generalized numerical semigroups or N
n-semigroups [4,7]. If n = 1, they are

called numerical semigroups. Denote by a mod b the remainder between 0 and
b − 1 of the Euclidean division of a by b for every a, b ∈ N with b �= 0.

Proportionally modular numerical semigroups were introduced by Ros-
ales et al. [10]. These numerical semigroups are the nonnegative integer solu-
tions of the Diophantine modular inequality ax mod b ≤ cx, where a, c ∈ Z and
b ∈ N. They have been investigated from multiple points of view. For example,
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their relationships to the numerical semigroups generated by intervals and to
Bézout sequences have been found, and some different ways to determine if
a numerical semigroup is a proportionally modular numerical semigroup have
been given. A comprehensive compilation of these numerical semigroups is
presented in [9].

A natural generalization of proportionally modular numerical semigroups
to higher dimensions is given in [8]: a proportionally modular affine semigroup
is the set of nonnegative integer solutions of a modular Diophantine inequality
f1x1+· · ·+fnxn mod b ≤ g1x1+· · ·+gnxn, where g1, . . . , gn, f1, . . . , fn ∈ Z and
b ∈ N. In that paper, the authors determined some algorithms to obtain the
minimal generating set of a semigroup from its modular Diophantine inequal-
ity, and studied some properties related to its associated ring.

The main goal of this work is to give algorithmic methods for checking
if a semigroup is a proportionally modular affine semigroup. To obtain such
algorithms, we provide a geometrical characterization of these semigroups.
In particular, we prove that an affine semigroup is a proportionally modular
semigroup if and only if it is the union of the natural points belonging to some
translations of the polyhedron delimited by two hyperplanes (Theorem 1).

Based on Theorem 1, Algorithms 2 and 3 check if an N
n-semigroup is a

proportionally modular semigroup. The first algorithm tests if S is a propor-
tionally modular semigroup when S includes no elements of the canonical basis
of Rn. For this case, we prove that the proportionally modular semigroups are
the semigroups obtained from a special kind of polytopes. In a way, this is
equivalent to what happens for proportionally modular numerical semigroups.
The second algorithm can be applied when some element of the canonical basis
belongs to S.

In any case, both algorithms solve the problem by finding real solutions
to systems of polynomial inequalities constructed from some technical results
(namely, Corollary 2 and Theorem 2). These inequalities are the explicit con-
ditions that have to be satisfied by the elements in S and in N

n\S so that a
semigroup S ⊂ N

n is a proportionally modular semigroup. In fact, this work
presents some algorithms to determine if a finite subset of Nn satisfies some
specific geometrical configurations and arrangements. Several references con-
cerning the solution of systems of polynomial inequalities can be found in [2].

For proportionally modular numerical semigroups, we introduce the con-
cepts of minimal and maximal intervals defining them. These intervals have an
important role in the algorithms mentioned above. Furthermore, we provide
an algorithm for computing the sets of these minimal and maximal intervals.

The results of this work are illustrated with several examples. With this
aim in mind, we have used the library PropModSemig.m [3] developed by the
authors in Mathematica [12].

The remainder of this paper is organized as follows. Section 2 provides
some basic definitions and results related to proportionally modular numerical
semigroups, including algorithmic methods for computing the sets of minimal
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and maximal intervals defining them. Section 3 gives several definitions and
some notation related to affine semigroups. Furthermore, most of the inequal-
ities used in the main algorithms later in the paper are defined in this section.
Section 4 presents the geometrical characterization of proportionally modular
affine semigroups. The algorithms for checking if a semigroup is a propor-
tionally modular affine semigroup are introduced in Sects. 5 and 7. Section 6
studies the two-dimensional case to provide a better understanding of the case
2 solved in Sect. 7.

2. Initial Results on Proportionally Modular Numerical
Semigroups

In this section, we introduce some results and definitions about numerical
semigroups that are useful for understanding this work.

Let R, Q, and N be the sets of real numbers, rational numbers, and non-
negative integers, respectively. Denote by R≥ the set of nonnegative elements
of R, by R> the set R≥\{0}, and by N

∗ the set N\{0}. Denote by [n] the set
{1, . . . , n} for any n ∈ N.

A numerical semigroup S is called a half-line semigroup if there exists
m ∈ N such that S\{0} = N ∩ [m,∞). Given an interval I ⊂ R≥, denote
by S (I) the numerical semigroup

⋃
i∈N

iI ∩ N. Half-line semigroups can be
characterized by a property of the intervals defining them. We say that a
numerical semigroup S is a proper numerical semigroup whenever S �= {0}
and S �= N.

Lemma 1. Let S be a proper numerical semigroup. Then, S is a half-line
semigroup if and only if there exists an interval [p, q] such that p > 1, and
S = S ([p, q′]) for all q′ ≥ q.

Proof. Assume that S is a half-line semigroup, so there exists an integer m > 1
such that S is minimally generated by {m, . . . , 2m − 1}. Then, the interval
[m, 2m − 1] satisfies the lemma.

If S = S ([p, q]) and S = S ([p, q′]) for all q′ ≥ q, then the set N\S is
{1, . . . , m − 1}. So, S is a proper half-line semigroup. �

We say that an interval [p, q] with p > 1 is a half-line interval if S ([p, q]) =
S ([p, q′]) for all q′ ≥ q.

In [9], it is proved that proportionally modular numerical semigroups
are numerical semigroups generated by a closed interval with lower endpoint
greater than 1; that is, for any proportionally modular numerical semigroup T
given by the equation ax mod b ≤ cx, there exists an interval [d, e] such that
d > 1 and T = S ([d, e]). In this work, we assume that the lower endpoint
of every interval defining a numerical semigroup is greater than 1. Note that
if 0 < a ≤ c or a = 0, then T is the proper numerical semigroup N, and for
c ≤ 0, T = {0}. The relationship between proportionally modular numerical
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semigroups and numerical semigroups generated by intervals is expressed in
the following lemmas.

Lemma 2. (Lemma 5.9 in [9]) If 0 < c < a < b, then the proportionally modular
numerical semigroup defined by ax mod b ≤ cx is S ([d, e]) with d = b/a and
e = b/(a − c).

Lemma 3. (Lemma 5.12 in [9]) Let a1, a2, b1, and b2 be positive integers
such that b1/a1 < b2/a2. Then, the semigroup S ([b1/a1, b2/a2]) is the propor-
tionally modular numerical semigroup defined by a1b2x mod (b1b2) ≤ (a1b2 −
a2b1)x.

Note that for a closed interval [d, e], the intersection j[d, e]∩(j+1)[d, e] is
empty for every nonnegative integer j < 	d/(e − d)
, or, equivalently, j[d, e] ∩
(j + 1)[d, e] is not empty iff j ∈ [�d/(e − d)�,∞) ∩ N. Denote min{j ∈ N |
(j + 1)[d, e] ∩ j[d, e] �= ∅} by φ([d, e]); that is, φ([d, e]) = �d/(e − d)�.

In fact, there exist only a few proportionally modular numerical semi-
groups compared with the number of numerical semigroups. Table 1 compares
the two sets up to genus 44. This table has been computed in a cluster of
computers [11] using our modified version of [5] based on [6].

To achieve the main goal of this work, we need to improve our knowledge
of the proportionally modular numerical semigroups. In particular, we have to
introduce the minimal and maximal intervals defining them.

Given an open interval (p, q) ⊂ R≥, the numerical semigroup S ((p, q)) is
called an open modular numerical semigroup. For a given numerical semigroup,
EH(S) ⊂ N\S is the set of elements in N\S such that S ∪ {x} is a semigroup.

In [10], a characterization of the numerical semigroups defined from closed
intervals is given.

Proposition 1. (Proposition 23 in [10]) Let S �= N be a numerical semigroup
minimally generated by {n1, . . . , nt}. Then, S = S ([p, q]) with q > p > 1 if
and only if the following conditions hold:

1. For all i ∈ [t], there exists ki ∈ [ni − 1] such that ni/ki ∈ [p, q].
2. For all x ∈ EH(S) and kx ∈ [x − 1], x/kx /∈ [p, q].

Remark 1. The previous proposition means that for each possible closed inter-
val [p, q] such that p > 1 and S = S ([p, q]), there must exist a sequence
p ≤ x1/y1 ≤ · · · ≤ xl/yl ≤ q and two integers h, r ∈ N such that

1. {xh, . . . , xh+r} = {n1, . . . , nt};
2. yh+i ∈ [xh+i − 1] for i ∈ {0, . . . , r};
3. xh−1/yh−1 �= xh/yh;
4. xh+r/yh+r �= xh+r+1/yh+r+1;
5. and x/kx /∈ [p, q] ∀x ∈ EH(S) and ∀kx ∈ [x − 1].

Note that if S is a proportionally modular numerical semigroup, there
exists a finite set of intervals [xh/yh, xh+r/yh+r] satisfying these conditions.
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Following this idea, an algorithm to check if a numerical semigroup is propor-
tionally modular is given in [10, Algorithm 24].

We now introduce the concepts of minimal and maximal intervals defining
proportionally modular numerical semigroups.

Definition 1. Given a proportionally modular numerical semigroup S, a closed
interval [p̃, q̃] is a minimal (closed) interval defining S if [p̃, q̃] is a minimal
element with respect to inclusion in {[p, q] ⊂ (1,∞) | S = S ([p, q])}.

Note that for any proper proportionally modular numerical semigroup S,
the set of minimal intervals defining S is finite. We denote this set by L̃S .

Lemma 4. Given p, q ∈ R> with S ([p, q]) a proper numerical semigroup, there
exists a unique maximal open interval (with respect to inclusion) (p̂, q̂) such
that [p, q] ⊂ (p̂, q̂) and S ((p̂, q̂)) = S ([p, q]).

Proof. Let i0 be the minimal integer satisfying iq ≤ (i + 1)p, X = N\S ([p, q])
and p̂ = p − min{(ip − s)/i | s ∈ X ∩ ((i − 1)q, ip), i = 1, . . . , i0}.

If it is assumed that [p, q] is a non-half-line interval, then the lemma holds
for q̂ = q +min{(s− iq)/i | s ∈ X ∩ (iq, (i+1)p), i = 1, . . . , i0 − 1}. Otherwise,
q̂ = ∞ must be considered. �

Remark 2. Given a proper proportionally modular numerical semigroup S,
L̂S denotes the finite set of open intervals ∪[p̃,q̃]∈L̃S

{(p̂, q̂)}, where (p̂, q̂) is the
unique interval obtained from the proof of Lemma 4.

Algorithm 1 computes the sets of minimal and maximal intervals defin-
ing a proportionally modular numerical semigroup. This algorithm is based
on Algorithm 24 in [10]. Note that the two algorithms are not equivalent. For
example, if one applies Algorithm 24 in [10] to the proportionally modular
numerical semigroup minimally generated by {2, 3}, then the obtained closed
intervals determining this semigroup are [3/2, 2], [2, 3], and [3/2, 3], but, triv-
ially, the last one is not a minimal interval.

Example 1. Let S be the numerical semigroup minimally generated by {10,
11, 12, 13, 27}. The set EH(S) is {28, 29}. So, Algorithm 1 determines that
S is a proportionally modular numerical semigroup defined by the minimal
intervals L̃S = {[2725 , 10

9 ], [10, 27
2 ]} and the corresponding maximal intervals

L̂S = {( 14
13 , 29

26 ), ( 29
3 , 14)}; that is,

S =
⋃

i∈N

i
[
27
25 , 10

9

] ∩ N=
⋃

i∈N

i
[
10, 27

2

] ∩ N=
⋃

i∈N

i
(

14
13 , 29

26

) ∩ N=
⋃

i∈N

i
(

29
3 , 14

) ∩ N.

In fact, S is the numerical semigroup obtained from the inequality 11x mod
110 ≤ 3x.
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Algorithm 1: Test if a semigroup is a proportionally modular numerical
semigroup. In that case, compute the sets of minimal and maximal
intervals defining it.

Input: ΛS , the minimal generating set of a proper numerical
semigroup S.

Output: If S is proportionally modular, the sets L̃S and L̂S ;
otherwise the empty set.

begin
Compute EH(S);
A ← {(a, ka) | a ∈ ΛS ∪ (EH(S)\{1}), ka ∈ [a − 1]};
A ← Sort A with respect to (a, k) � (a′, k′) if and only if
a/k < a′/k′, or a/k = a′/k′ and a < a′;
L ← {(

(xh, yh), (xh+r, yh+r)
) |

(xh, yh), (xh+1, yh+1), . . . , (xh+r, yh+r) ∈ A, {xh, . . . , xh+r} =
{n1, . . . , nt}, xh−1/yh−1 �= xh/yh, xh+r/yh+r �= xh+r+1/yh+r+1};
if L = ∅ then

return ∅
L̃S ← min⊆{[a/k, a′/k′] | (

(a, k), (a′, k′)
) ∈ L};

L̂S ← {(p̂, q̂) | [p̃, q̃] ∈ L̃S} (Remark 2);
return L̃S and L̂S ;

3. Fixing Notation for Affine Semigroups

Let {e1, . . . , en} ⊂ N
n be the canonical basis of Rn. Define 〈ei0 , . . . , eit

〉R as
the R-vector space generated by {ei0 , . . . , eit

}.
For a subset A ⊆ Q

n, denote by ConvexHull(A) the convex hull of the
set A, that is, the smallest convex subset of Qn containing A, and by VSet(A)
the vertex set of ConvexHull(A). A polyhedron is a region defined by the
intersection of finitely many closed half-spaces, and a polytope is the convex
hull of a finite number of points, or, equivalently, it is a bounded polyhedron
(see [1] for details). From these definitions, it is easy to prove that for checking
if a finite set of points are in the same region defined by a hyperplane, it is
enough to test if the vertices of its convex hull hold that property.

For {a1, . . . , ak} ⊂ [n] and x ∈ N
n, define π{a1,...,ak}(x) = (xa1 , . . . , xak

),
that is, the projection of x on its {a1, . . . , ak} coordinates. Fix A ⊂ Q

n, with
π{a1,...,ak}(A) = {π{a1,...,ak}(x) | x ∈ A}. Also, denote by σ{a1,...,ak}(A) the set
{π{a1,...,ak}(x) | x ∈ A and xi = 0, ∀i ∈ [n]\{a1, . . . , ak}}.

For fixed f(x1, . . . , xn) = f1x1 + · · · + fnxn and g(x1, . . . , xn) = g1x1 +
· · ·+gnxn with g1, . . . , gn, f1, . . . , fn ∈ Z, let S ⊂ N

n be the semigroup defined
by the inequality f(x) mod b ≤ g(x), where x = (x1, . . . , xn). We assume that
fi = fi mod b for all i ∈ [n], so these coefficients are nonnegative integers. It
is easy to prove that if gi > 0 for all i ∈ [n], then N

n\S is a finite set. Note
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that for this semigroup and for every i ∈ [n], the set S ∩ 〈ei〉R is isomorphic to
the proportionally modular numerical semigroup given by the set of natural
solutions of fixi mod b ≤ gixi.

Denote by Gi the hyperplane with linear equation g(x) = ib, and by
G+

i the closed half-space defined by g(x) ≥ ib (G−
i is the open half-space

g(x) < ib). Analogously, Fi is the hyperplane f(x) = ib (respectively Di ≡
f(x) − g(x) = ib), F+

i is f(x) ≥ ib (respectively D−
i ≡ f(x) − g(x) ≤ ib), and

F−
i is f(x) < ib (respectively D+

i ≡ f(x) − g(x) > ib).
In [1], it is proved that given a polytope P ⊂ R

n
≥, the monoid

⋃
i∈N

iP∩Nn

is an affine semigroup if and only if P∩ τ ∩Q
n
≥ �= ∅ for all τ that are extremal

rays of the rational cone generated by P. Equivalently to the definition of S (I)
for a closed real interval I, S (P) defines the affine semigroup

⋃
i∈N

iP ∩ N
n.

For a set of closed intervals L = {[p1, q1], . . . , [pt, qt]}, denote by PL the
polytope ConvexHull(∪i∈[t]{piei, qiei}), and denote φ(L) = max{φ([pi, qi]) |
i ∈ [t]}. So, ConvexHull(iPL ∪ (i + 1)PL) = iPL ∪ (i + 1)PL for every integer
i ≥ φ(L), and N

t\ ⋃
i∈N

iPL ⊂ ConvexHull({0} ∪ φ(L)PL). Moreover, the
polytopes iPL can be determined by hyperplanes and half-spaces:

– H1iL is the hyperplane containing the set of points {ip1e1, . . . , iptet}, its
equation is h1iL(x) = 0, and H+

1iL is the closed half-space delimited by
H1iL not containing the origin,

– H2iL is the hyperplane containing {iq1e1, . . . , iqtet}, its equation is
h2iL(x) = 0, and H−

2iL is the closed half-space delimited by H2iL con-
taining the origin.

So, the convex set iPL is R
t
≥ ∩ H+

1iL ∩ H−
2iL. Note that some expressions for

h1iL(x) = 0 and h2iL(x) = 0 can be easily constructed by using linear algebra.
Consider

h1iL(x) := p1 · · · pt
⎛

⎝i −
∑

j∈[t]

xj/pj

⎞

⎠ and h2iL(x) := q1 · · · qt
⎛

⎝i −
∑

j∈[t]

xj/qj

⎞

⎠ .

(1)

Furthermore, H+
1iL is defined by h1iL(x) ≤ 0, and H−

2iL by h2iL(x) ≥ 0. We
also consider the open half-spaces H−

1iL defined by h1iL(x) > 0, and H+
2iL by

h2iL(x) < 0.
Given any P ∈ N

n, κL(P ) denotes the maximum integer i such that
h1iL(P ) < 0. In the case h11L(P ) ≥ 0, κL(P ) = 0. Also, define by θL(P ) the
function such that θL(P ) = 1 if there exists i ∈ N with P ∈ iPL, and θL(P ) = 0
otherwise. Note that θL(P ) can be determined in the following way: compute
the sets τP ∩PL = AB and {k ∈ N | ||P ||/||B|| ≤ k ≤ ||P ||/||A||}, where τP is
the ray containing P , and ||X|| is the Euclidean norm of X, that is, ||X||2 =
||(x1, . . . , xt)||2 =

∑t
j=1 x2

j ; if {k ∈ N | ||P ||/||B|| ≤ k ≤ ||P ||/||A||} = ∅, then
θL(P ) is 0, and 1 otherwise.
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Assuming n > t, let μ1,iet + μ2,iei and −ν1,iet + ν2,iei, where i ∈ {t +
1, . . . , n} and μ1,i, μ2,i, ν1,i, ν2,i ∈ Q are some vectors, and τ1iL(x) = 0 and
τ2iL(x) = 0 are equations of the hyperplanes defined by these vectors and the
sets of points {iq1e1, . . . , iqtet} and {ip1e1, . . . , iptet}, respectively. For every
i ∈ Z, consider

τ1iL(x) := q1 · · · qtμ2,t+1 · · · μ2,n

⎛

⎝i −
∑

j∈[t]

xj

qj
+

n∑

j=t+1

μ1,j

qtμ2,j
xj

⎞

⎠ ,

τ2iL(x) := p1 · · · ptν2,t+1 · · · ν2,n

⎛

⎝i −
∑

j∈[t]

xj

pj
−

n∑

j=t+1

ν1,j

ptν2,j
xj

⎞

⎠ .

(2)

4. A Geometrical Characterization of Proportionally Modular
Affine Semigroups

Let S be the proportionally modular semigroup given by the modular inequal-
ity f(x) mod b ≤ g(x), where x = (x1, . . . , xn), g1, . . . , gn, f1, . . . , fn ∈ Z, and
b ∈ N

∗. Assume that fi = fi mod b for all i ∈ [n], so these coefficients are
nonnegative integers.

As in previous sections, we denote by Fi the hyperplane with linear
equation f(x) = ib (respectively Di ≡ f(x) − g(x) = ib), and by F+

i the
closed half-space defined by f(x) ≥ ib (respectively D−

i ≡ f(x) − g(x) ≤ ib).
With these hyperplanes fixed, Pi denotes the polyhedron F+

i ∩ D−
i with

i ∈ Z. Note that since b > 0, and f(ej) ≥ 0 for all j ∈ [n], on set-
ting a negative integer i, every P ∈ Pi ∩ N

n satisfies P ∈ F+
0 ∩ D−

0 . So,
∪i∈N(F+

i ∩ D−
i ) ∩N

n = ∪i∈Z(F+
i ∩ D−

i ) ∩N
n. Also, for all i ∈ N, the points P

in F+
i ∩ D−

i satisfy g(P ) ≥ 0.

Lemma 5. P ∈ S if and only if there exists i ∈ N such that P ∈ Pi ∩ N
n.

Proof. For any P ∈ N
n, there exist two nonnegative integers i and r such that

f(P ) = ib + r with r ∈ [0, b). Assume that P ∈ S, so f(P ) mod b ≤ g(P ).
Furthermore, 0 ≤ f(P ) mod b = r = f(P ) − ib ≤ g(P ), and then P belongs to
Pi ∩ N

n.
Consider now any P ∈ Pi ∩ N

n, with i ∈ N, so 0 ≤ f(P ) − ib ≤ g(P ).
Since f(P ) mod b = f(P ) − ib mod b ≤ b, if g(P ) ≥ b, then, trivially, P ∈ S.
Suppose that g(P ) < b. In that case, 0 ≤ f(P ) − ib ≤ g(P ) < b, and again
f(P ) mod b = f(P ) − ib mod b ≤ g(P ), and P ∈ S. �

We now have the necessary tools to introduce a geometrical characteri-
zation of proportionally modular semigroups in the next result.

Theorem 1. S ⊂ N
n is a proportionally modular affine semigroup if and only

if there exist two linear functions with integer coefficients f(x) and d(x) with
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f1, . . . , fn ≥ 0, an integer b > 0, and two families of half-spaces {F+
i }i∈N

and {D−
i }i∈N, where F+

i ≡ f(x) ≥ ib and D−
i ≡ d(x) ≤ ib, such that S =

∪i∈N(F+
i ∩ D−

i ) ∩ N
n.

Proof. Given a proportionally modular semigroup S, it is the set of nonneg-
ative integer solutions of an inequality f(x) mod b ≤ g(x), where f(x) and
g(x) are linear functions with integer coefficients, and b ∈ N

∗. From Lemma 5,
taking the half-spaces F+

i ≡ f(x) ≥ ib and D−
i ≡ (f − g)(x) ≤ ib the result

holds.
Conversely, if S = ∪i∈N(F+

i ∩ D−
i ) ∩ N

n with F+
i ≡ f(x) ≥ ib and

D−
i ≡ d(x) ≤ ib, where f(x) and d(x) are linear functions and b ∈ N

∗, again,
by Lemma 5, S is the proportionally modular semigroup given by the inequality
f(x) mod b ≤ (f − d)(x). �

From previous results, the set of gaps of a proportionally modular semi-
group can be described geometrically too.
Corollary 1. Let S ⊂ N

n be a proportionally modular affine semigroup. Then,
(Nn\S) ∩ G+

0 = ∪i∈N∗(F−
i ∩ D+

i−1 ∩ G+
0 ) ∩ N

n.

Proof. Note that for any P ∈ F−
i ∩ D+

i−1 ∩ G+
0 , 0 ≤ g(P ) < b. Moreover,

(F−
i ∩D+

i−1∩G+
0 )∩(F−

j ∩D+
j−1∩G+

0 ) = ∅ for every nonnegative integer i �= j. In
the other case, if we suppose i < j and P ∈ (F−

i ∩D+
i−1∩G+

0 )∩(F−
j ∩D+

j−1∩G+
0 ),

then the point P satisfies ib > f(P ), f(P ) − g(P ) > (j − 1)b, and g(P ) ≥ 0.
Then, 0 ≥ (i − j + 1)b > g(P ) ≥ 0, but this is not possible.

Assume P ∈ F−
i ∩ D+

i−1 ∩ G+
0 for some i ∈ N

∗, and that there exists a
nonnegative integer j ≤ i− 1 such that P ∈ F+

j . Since f(P )− g(P ) > (i− 1)b,
if jb ≥ f(P )−g(P ), j > i−1. So, P /∈ D−

j . Analogously, if P ∈ F+
i ∩D−

i with
g(P ) < b, and we suppose that there exists an integer j ≥ i such that P ∈ F−

j ,
then P does not belong to D+

j−1 (P ∈ D+
j−1 implies ib ≥ f(P )−g(P ) > (j−1)b,

that is, i > j − 1). So, ∪i∈N∗(F−
i ∩ D+

i−1 ∩ G+
0 )

⋂ ∪i∈N(F+
i ∩ D−

i ∩ G−
b ) = ∅

and N
n ∩ G+

0 ∩ G−
b = ∪i∈N∗(F−

i ∩ D+
i−1 ∩ G+

0 )
⋃ ∪i∈N(F+

i ∩ D−
i ∩ G−

b ).
Since N

n ∩ G+
0 ∩ G−

b = ∪i∈N∗(F−
i ∩ D+

i−1 ∩ G+
0 )

⋃ ∪i∈N(F+
i ∩ D−

i ∩ G−
b ),

by Theorem 1, the corollary holds. �
The characterizations given in this section are illustrated by some exam-

ples in the following sections. In particular, Figs. 1 and 2 show two examples
in the two-dimensional case. In these figures, the red lines correspond to the
hyperplanes Di and the green ones to the hyperplanes Fi.

5. Testing N
n -Semigroups for Being Proportionally Modular

Affine Semigroups: Case 1

In this section, we assume that the semigroup S ⊂ N
n satisfies the conditions

that for every i ∈ [n], ei /∈ S and Si is a proportionally modular numerical
semigroup.
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Figure 1. N
2-semigroup given by 11x + 15y mod 110 ≤ 3x + 6y

5 10 15 20 25 30 35
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8

Figure 2. N
2-semigroup given by 11x + 6y mod 110 ≤ 3x + 15y

Proposition 2. S is a proportionally modular N
n-semigroup with b > fi > gi >

0 for all i ∈ [n] if and only if there exists a set L = {[p1, q1], . . . , [pn, qn]} where
Si = S ([pi, qi]) for all i ∈ [n], and S =

⋃
i∈N

iPL ∩ N
n.

Proof. Assume that S is a proportionally modular N
n-semigroup with fi >

gi > 0 for all i ∈ [n]. Consider PL, the polytope ConvexHull(∪i∈[n]{piei, qiei})
⊂ R

n, where qi = b/(fi−gi) > pi = b/fi > 1. Then, Si = S ([pi, qi]). Note that
PL is the set (F+

1 ∩ D−
1 ) ∩R

n
≥ with F+

i ≡ f(x) ≥ ib, and D−
i ≡ (f − g)x ≤ ib,

and iPL is equal to (F+
i ∩D−

i )∩R
n
≥. So, the proposition holds by Theorem 1.

Now, we assume that S ([p1, q1]), . . . ,S ([pn, qn]) are proper proportion-
ally modular numerical semigroups. By Lemma 3, for each i ∈ [n], there exist
three nonnegative integers bi, ai, and ci with bi > ai > ci > 0, such that
S ([pi, qi]) is the set of nonnegative integers of the inequality aix mod bi ≤ cix.
Let b = lcm({b1, . . . , bn}) and consider the inequalities (b/bi)aixi mod b ≤
(b/bi)cixi. Let S be the proportionally modular N

n-semigroup defined by the
inequality

∑n
i=1(b/bi)aixi mod b ≤ ∑n

i=1(b/bi)cixi. It is an easy exercise for
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the reader to prove that
⋃

i∈N
iPL ∩ N

n is the proportionally modular N
n-

semigroup defined by the inequality
∑n

i=1(b/bi)aixi mod b ≤ ∑n
i=1(b/bi)cixi,

and that b > (b/bi)ai > (b/bi)ci for all i ∈ [n]. �

From this proposition, we obtain a procedure to check if an N
n-semigroup

S is a proportionally modular semigroup. For that to be the case, the first nec-
essary condition that S must satisfy is that Si must be a proper proportionally
modular numerical semigroup for all i ∈ [n]. If this initial condition is satisfied,
we have to determine whether there exist n intervals L = {[p1, q1], . . . , [pn, qn]}
with qi > pi > 1 such that Si = S ([pi, qi]) and S =

⋃
i∈N

iPL ∩ N
n. Let ΛS

be the minimal generating set of S. For any interval [pi, qi], [p̃i, q̃i] and (p̂i, q̂i)
denote the intervals defined in Definition 1 and Remark 2, respectively.

Lemma 6. Let S be an N
n-semigroup with ei /∈ S for all i ∈ [n].

Then, S is a proportionally modular semigroup if and only if there exist
([p̃1, q̃1], . . . , [p̃n, q̃n]) ∈ L̃S1 × · · · × L̃Sn

and a set L = {[p1, q1], . . . , [pn, qn]}
such that Si = S ([pi, qi]) for all i ∈ [n] satisfying

1. [p̃i, q̃i] ⊆ [pi, qi] ⊂ (p̂i, q̂i) for all i ∈ [n];
2. N

n\S ⊂ ConvexHull({0} ∪ φ(L)PL);
3. for every x ∈ N

n\S and for every i ∈ [φ(L)], x /∈ iPL;
4. for every s ∈ ΛS such that θL̃(s) = 0, κL̂(s) �= 0, and s/m ∈ PL for

some m ∈ [κL̂(s)].

Proof. If S is a proportionally modular N
n-semigroup with ei /∈ S for

all i ∈ [n], then, by Proposition 2, S = ∪i∈N(iPL ∩ N
n), where L =

{[p1, q1], . . . , [pn, qn]}, is such that Si = S ([pi, qi]). So, the lemma holds.
Assume that PL is a polytope satisfying the hypotheses of the lemma

and let S′ be the N
n-semigroup S′ =

⋃
i∈N

iPL ∩ N
n. Trivially, S′ ∩ 〈ei〉R is

isomorphic to S ([pi, qi]) for all i ∈ [n]. By conditions 2 and 3, Nn\S ⊂ N
n\S′

and then S′ ⊂ S. By conditions 2 and 4, we have that S ⊂ S′ (note that if
θL̃(s) = 1 for some s ∈ ΛS , then there exists i ∈ N with s ∈ iPL̃ ⊂ iPL). So,
s ∈ ⋃

i∈N
iPL ∩ N

n. �

To obtain an algorithm to check if an N
n-semigroup is a proportionally

modular semigroup, for a set of closed intervals L = {[p1, q1], . . . , [pn, qn]} with
Si = S ([pi, qi]) for every i ∈ [n], we establish a disjoint partition of the region
TL := ConvexHull({0} ∪ φ(L)PL) ∩ N

n:

H1L = {x ∈ N
n | x ∈ H−

11L} and HiL = H−
1iL ∩ H+

2(i−1)L ∩ N
n

for any i ∈ {2, . . . , φ(L)},

SiL = H+
1iL ∩ H−

2iL ∩ N
n for any i ∈ [φ(L)].

Note that TL = {0} ∪ ⋃
i∈[φ(L)](HiL � SiL) and SiL = iPL ∩ N

n.
For any i belonging to [φ(L)], denote by BiL the set (Nn\S) ∩ HiL. So,

a necessary condition for S to be a proportionally modular N
n-semigroup for
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some L = {[p1, q1], . . . , [pn, qn]} is N
n\S ⊂ ∪i∈φ(L)BiL ⊂ ∪i∈φ(L̃)BiL̃. Other-

wise, S �= ⋃
i∈N

iPL ∩ N
n.

Corollary 2. Let S be an N
n-semigroup with ei /∈ S for all i ∈ [n]. Then,

S is a proportionally modular semigroup if and only if for some L̃ =
{[p̃1, q̃1], . . . , [p̃n, q̃n]} with ([p̃1, q̃1], . . . , [p̃n, q̃n]) ∈ L̃S1 × · · · × L̃Sn

, N
n\S ⊂

∪i∈[φ(L̃)]HiL̃ and there exists L = {[p1, q1], . . . , [pn, qn]} with p1, . . . , pn,
q1, . . . , qn ∈ Q satisfying the following inequalities:

1. For all i ∈ [n] such that [p̃i, q̃i] is a half-line interval, p̂i < pi ≤ p̃i < q̃i ≤
qi; otherwise, p̂i < pi ≤ p̃i < q̃i ≤ qi < q̂i.

2. For all x ∈ VSet((Nn\S) ∩ H1L̃), h11L(x) > 0, and for all i ∈
{2, . . . , φ(L̃)} and x ∈ VSet((Nn\S)∩HiL̃), h1iL(x) > 0 and h2(i−1)L(x) <
0.

3. For every s ∈ ΛS such that θL̃(s) = 0, κL̂(s) �= 0, and for some m ∈
[κL̂(s)], h1iL(s/m) ≤ 0 and h2iL(s/m) ≥ 0.

Proof. The condition N
n\S ⊂ ∪i∈[φ(L̃)]HiL̃ is equivalent to condition 2 in

Lemma 6. Furthermore, for every integer i, the sets of inequalities appearing
in the second condition are satisfied by the rational points belonging to HiL,
while any point that satisfies the inequalities in the third condition belongs to
iPL for some integer i. Then, the second and third conditions of the corollary
are equivalent to conditions 3 and 4 of Lemma 6, respectively. �

Algorithm 2 presents a method for checking the conditions of the previous
corollary. Note that some steps in this algorithm can be computed in a parallel
way. Given a minimal interval [p̃, q̃], we denote by r[p̃,q̃] the inequalities p̂ <
p ≤ p̃ < q̃ ≤ q if [p, q] is a half-line interval, and p̂ < p ≤ p̃ < q̃ ≤ q < q̂
otherwise.

Example 2. Consider the set of circles in Fig. 1 and let S be the N
2-semigroup

such that N
2\S is this set, and its minimal generating set is

{(0, 8), (0, 9), (0, 10), (0, 11), (0, 12), (0, 15), (1, 7), (1, 8), (1, 9), (1, 10),
(1, 11), (1, 14), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 6), (3, 7), (3, 8), (3, 9),
(4, 5), (4, 6), (4, 7), (4, 8), (5, 4), (5, 5), (5, 6), (5, 7), (5, 11), (6, 3), (6, 4),
(6, 5), (6, 6), (7, 3), (7, 4), (7, 5), (7, 6), (8, 2), (8, 3), (8, 4), (8, 5), (9, 1), (9, 2),
(9, 3), (9, 4), (10, 0), (10, 1), (10, 2), (10, 3), (11, 0), (11, 1), (11, 2), (12, 0),
(12, 1), (13, 0), (23, 4), (24, 3), (25, 2), (26, 1), (27, 0)}.

Thus, S1 is minimally generated by {10, 11, 12, 13, 27}, and S2 is minimally
generated by {8, 9, 10, 11, 12, 15}. Using Algorithm 1, we find that both
S1 and S2 are proportionally modular numerical semigroups with L̃S1 =
{[2725 , 10

9 ], [10, 27
2 ]}, L̂S1 = {( 14

13 , 29
26 ), ( 29

3 , 14)}, L̃S2 = {[1211 , 15
13 ], [152 , 12]}, and

L̂S2 = {( 13
12 , 7

6 ), (7, 13)}, respectively. Algorithm 2 determines that S is a
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Algorithm 2: Checking if an N
n-semigroup S with ei /∈ S, ∀i ∈ [n], is

a proportionally modular semigroup.
Input: The minimal generating set ΛS and the set of gaps of an

N
n-semigroup S.

Output: If S is proportionally modular with ei /∈ S and such that Si

is a proportionally modular numerical semigroup for all
i ∈ [n], a polytope P such that S =

⋃
i∈N

iP ∩ N
n; otherwise

the empty set.
begin

if ei ∈ S or Si is not a proportionally modular numerical
semigroup for some i ∈ [n] then

return ∅
L ← {[p1, q1], . . . , [pn, qn]} set of variables;
Δ ← L̃S1 × · · · × L̃Sn

(Algorithm 1);
while Δ �= ∅ do

L̃ ← First(Δ);
Λ = {s1, . . . , sk} ← {s ∈ ΛS | θL̃(s) = 0};
forall the i ∈ [k] do

Compute κL̂(si);

if
∏

j∈[k] κL̂(sj) �= 0 and N
n\S ⊂ ∪i∈[φ(L̃)]HiL̃ then

E ← {h11L(x) > 0 | x ∈ VSet((Nn\S) ∩ H1L̃)};
E ← E ∪ {{h1iL(x) > 0, h2(i−1)L(x) < 0} | i ∈
{2, . . . , φ(L̃)} and x ∈ VSet((Nn\S) ∩ HiL̃)};
Ω ← [κL̂(s1)] × · · · × [κL̂(sk)];
while Ω �= ∅ do

(m1, . . . ,mk) ← First(Ω);
F ← {{h11L(si/mi) ≤ 0, h21L(si/mi) ≥ 0} | i ∈ [k]};
T ← Solve

( ∪i∈[n] {r[p̃i,q̃i]}
) ⋃

E
⋃

F for
{p1, . . . , pn, q1, . . . , qn} ;
if (p1, . . . , pn, q1, . . . , qn) ∈ T ∩ R

2n then
return P = ConvexHull

( ∪i∈[n] {piei, qiei}
)

Ω ← Ω\{(m1, . . . ,mk)};

Δ ← Δ\{L̃};

return ∅;

proportionally modular N
2-semigroup when L̃ = ([10, 27

2 ], [152 , 12]) by com-
puting p1, q1, p2, q2 ∈ Q such that 29

3 < p1 ≤ 10 < 27
2 ≤ q1 < 14,

7 < p2 ≤ 15
2 < 12 ≤ q2 < 13, and satisfying the other inequalities in Corol-

lary 2. Moreover, S is given by the inequality 11x + 15y mod 110 ≤ 3x + 6y.
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In Fig. 1, the blue line is g(x) = b, the green lines are f(x) = kb, and the red
lines are f(x) − g(x) = (k − 1)b for k ∈ N. The above results were obtained
using our software [3]:

In[1]:= mgs = {{0, 3}, {0, 4}, {1, 1}, {2, 1}, {4, 0},
{5, 0}, {5, 2}, {6, 0}, {7, 0}};

In[2]:= gaps = {{0, 1, 0}, {0, 2, 0}, {0, 2, 1}, {0, 5, 0},
{1, 0, 0}, {1, 2, 0}, {1, 3, 0}, {1, 6, 0}, {2, 0, 0},
{2, 0, 1}, {2, 3, 0}, {3, 0, 0}, {3, 1, 0}, {3, 4, 0},
{4, 1, 0}};

In[3]:= IsNnProportionallyModularSemigroup[mgs, gaps]

Out[3]= {{163835/16384, 0}, {28367/2048, 0}, {0, 931/128},
{0, 1553/128}}

Note that p1 = 163 835/16384, q1 = 28 367/2048, p2 = 931/128, and
q2 = 1553/128.

6. Some properties of proportionally modular N
2-semigroups

To obtain an algorithm to check if an N
n-semigroup is a proportionally modular

semigroup when some ei belongs to it, we study the two-dimensional case
in depth. Let S ⊂ N

2 be the proportionally modular semigroup given by
f1x1 + f2x2 mod b ≤ g1x1 + g2x2. Again, we assume f1 = f1 mod b, f2 =
f2 mod b, and g1, g2 > 0 which implies that S �= {0} and S �= N

2.
Without loss of generality, we assume, for example, that if f1 > g1 but

g2 ≥ f2, then e2 belongs to S, and for all x ∈ N
2\S, x − e2 /∈ S. Note that

if one particularizes Theorem 1 and Corollary 1 to the two-dimensional case,
then the sets F−

i ∩D+
i−1 ∩G+

0 are triangles with parallel edges, and their bases
are the intervals given by F−

i ∩ D+
i−1 ∩ 〈e1〉R.

For any integer k ∈ (0, f1/g1), we denote by Ak the point
b

f1g2 − f2g1
(kg2 − f2, f1 − kg1)={g1x1 + g2x2 =b}∩{f1x1 + f2x2 = kb}∈Q

2
≥.

The triangle Tk is the convex hull of the vertex set
{(

kb

f1
, 0

)

,

(
(k − 1)b
f1 − g1

, 0
)

, Ak

}

,

and

T̈k = Tk\
{(

(k − 1)b
f1 − g1

, 0
)

Ak,

(
kb

f1
, 0

)

Ak

}

.

This situation is illustrated in Fig. 2; the blue line is g(x) = b, the green lines
are f(x) = kb, and the red lines are f(x) − g(x) = (k − 1)b for k ∈ N.
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So, a proportionally modular semigroup S with f1 > g1 and g2 ≥ f2 can
be characterized by a finite set of triangles satisfying some conditions.

Lemma 7. Let S �= N
2 be a proportionally modular N

2-semigroup f1x1 +
f2x2 mod b ≤ g1x1 + g2x2, such that 1 ∈ S2. For every α ∈ N

2, α ∈ S if
and only if α /∈ ∪k∈[�f1/g1�]T̈k.

Proof. By Corollary 1, if S is a proportionally modular semigroup, then
(N2\S) ∩ G+

0 = ∪i∈N\{0}(F−
i ∩ D+

i−1 ∩ G+
0 ) ∩N

n, and F−
i ∩ G+

0 = (kb/f1, 0)Ak

and D+
i−1 ∩ G+

0 = ((k − 1)b/(f1 − g1), 0)Ak. These are just the edges of the
triangle Tk. �

Note that the triangles Ti can also be determined by the points (p, 0)
and (q, 0) and the two vectors (μ1, μ2) and (−ν1, ν2), with μ1, ν1 ∈ [0, 1),
μ2, ν2 ∈ (0, 1], and μ1 + μ2 = ν1 + ν2 = 1.

Remark 3. Given a triangle with vertex set T = {(0, 0), (p, 0), (γ1, γ2)} ⊂ Q
2
≥

such that 0 ≤ γ1 ≤ p, and one other point (q, 0) ∈ Q
2
≥ with q > p, a

proportionally modular N
2-semigroup can be constructed by using the fol-

lowing method. Define the line containing {(p, 0), (γ1, γ2)} by the equation
γ2x1 + (p − γ1)x2 = pγ2 and consider the line (q − p)γ2x1 + (pq − γ1(q −
p))x2 = pqγ2. Let r1 and r2 be the minimum nonnegative integers such
that {r1γ2, r1(p − γ1), r1pγ2, r2(q − p)γ2, r2(pq − γ1(q − p)), r2pqγ2} ⊂ N, and
b = lcm({r1pγ2, r2pqγ2}). The semigroup given by the inequality
br1γ2

r1pγ2
x1 +

br1(p − γ1)
r1pγ2

x2 mod b ≤ br2(q − p)γ2

r2pqγ2
x1 +

br2 (pq − γ1(q − p))
r2pqγ2

x2

(3)
then satisfies Lemma 7 for T1 = T.

Example 3. Consider the N2-semigroup S shown in Fig. 2, that is, the nonnega-
tive integer solutions of the modular inequality 11x+6y mod 110 ≤ 3x+15y. In
this example, the vertex set of the triangle T1 = T is {(0, 0), (10, 0), (300

49 , 880
174 )}.

The vertex sets of T2 and T3 are {( 55
4 , 0), (20, 0), (880

49 , 550
147 )} and {(55

2 , 0), (30, 0),
(1430

49 , 220
147 )}, respectively. Also, the vectors (μ1, μ2) and (−ν1, ν2) determining

the triangles Ti are (μ1,3, μ2,3) = ( 9
17 , 8

17 ) and (−ν1,3, ν2,3) = (− 6
17 , 11

17 ), respec-
tively.

7. Testing N
n -Semigroups for Being Proportionally Modular

Affine Semigroups: Case 2

In this section, Nn-semigroups containing some ei are considered. We assume
that S is an N

n-semigroup, that the semigroup Si �= N is a proportionally
modular numerical semigroup for every i ∈ [t], and that Si = N for all i ∈
{t + 1, . . . , n}. To simplify our proofs, we consider that every set of closed
intervals L = {[p1, q1], . . . , [pt, qt]} satisfies φ(L) = φ([pt, qt]).
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Since S is a semigroup, for every x ∈ N
n\S and i ∈ {t + 1, . . . , n},

x − ei /∈ S. We also consider the vectors μ1,iet + μ2,iei and −ν1,iet + ν2,iei,
where μ1,i, ν1,i ∈ [0, 1), μ2,i, ν2,i ∈ (0, 1], and μ1,i + μ2,i = ν1,i + ν2,i = 1 for
i ∈ {t + 1, . . . , n}. We denote by Sd and Su the sets σ[t](S) ≡ S ∩ 〈e1, . . . , et〉R
and {(α1, . . . , αn) ∈ S | ∑n

i=t+1 αi �= 0}, respectively. Note that Sd is an
N

t-semigroup and S = (Sd × {0}n−t+1) ∪ Su.
In Sect. 5, we defined several objects for a given set L including n closed

intervals, but here L has only t elements (note that n > t). In order to simplify
the notation, we consider those objects defined over the N

t-semigroup Sd.
If S is a proportionally modular N

n-semigroup defined by the inequality
f(x) mod b ≤ g(x), then the above conditions mean that b > fi > gi > 0 for
all i ∈ [t], and gi ≥ fi and gi > 0 for all i ∈ {t + 1, . . . , n}. By Lemma 7
and Remark 3, for fixed i ∈ [t] and j ∈ {t + 1, . . . , n}, the semigroup S ∩
〈ei, ej〉R is equivalent to an N

2-semigroup determined by a triangle Tij . So,
by Theorem 1 and Corollary 1, the hyperplanes defining S are determined by
the points p1e1, . . . , ptet, q1e1, . . . , qtet (suppose Si = S ([pi, qi]) for i ∈ [t])
and the edges of the triangles Tt (t+1), . . . ,Tt n; that is, the hyperplanes are
fixed by their intersections with the planes 〈et, ej〉R for any j ∈ {t + 1, . . . , n}.
Moreover, the hyperplane Fi is given by the points ip1e1, . . . , iptet and the
vectors −ν1,jet+ν2,jej and Di by the points iq1e1, . . . , iqtet and μ1,jet+μ2,jej ,
with j ∈ {t + 1, . . . , n}. Note that these data are enough to determine a
hyperplane in N

n.
To generalize the two-dimensional case studied in Sect. 6, for any i in

[φ(L)], denote by PiL the set {(α1, . . . , αt, βt+1, . . . , βn) ∈ R
n
≥ | α ∈ HiL} and

define

P
+

iL = {α ∈ Su | α − ej ∈ PiL\S for some j ∈ [t]},

P
−
iL = {α ∈ Su | α + ej ∈ PiL\S for some j ∈ [t]},

P
∗
iL = {α ∈ Su\(P

+

iL ∪ P
−
iL) | α − ej ∈ PiL\S for some j ∈ {t + 1, . . . , n}}.

Note that σ[t](PiL) is equal to HiL any i ∈ [φ(L)]. So, three necessary
conditions for S to be a proportionally modular N

n-semigroup given by
L = {[p1, q1], . . . [pt, qt]} are Nn\S ⊂ ∪i∈[φ(L)]PiL ⊂ ∪i∈[φ(L)]PiL̃ for all natural
vectors α ∈ PiL\S, α − ej /∈ S for every j ∈ {t + 1, . . . , n}, and (α, β) ∈ S for
all (α, β) ∈ (∪i∈NPL ∩ N

t) × N
n−t.

For three dimensions, Fig. 3 shows the geometrical arrangement of the
case solved in this section.

Theorem 2. Let S be an N
n-semigroup such that Si is a proper proportionally

modular numerical semigroup for all i ∈ [t] and Si = N for all i ∈ {t+1, . . . , n}.
Then, S is a proportionally modular semigroup if and only if for some
([p̃1, q̃1], . . . , [p̃t, q̃t]) ∈ L̃S1 × · · · × L̃St

, there exist L = {[p1, q1], . . . , [pt, qt]},
with p1, . . . , pt, q1, . . . , qt ∈ Q, and μ1,t+1, μ2,t+1, . . . , μ1,n, μ2,n, ν1,t+1, ν2,t+1,
. . . , ν1,n, ν2,n ∈ Q satisfying the following conditions:
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1. N
n\S ⊂ ∪i∈[φ(L̃)]PiL̃.

2. For all i ∈ [t] such that [p̃i, q̃i] is a half-line interval, p̂i < pi ≤ p̃i < q̃i ≤
qi; otherwise, p̂i < pi ≤ p̃i < q̃i ≤ qi < q̂i.

3. For all x ∈ VSet((Nt\Sd) ∩ H1L̃), h11L(x) > 0, and for all i ∈
{2, . . . , φ(L̃)} and x ∈ VSet((Nt\Sd)∩HiL̃), h1iL(x) > 0 and h2(i−1)L(x) <
0.

4. For every s ∈ ΛS ∩ (Sd × {0}n−t+1) such that θL̃(s) = 0, κL̂(s) �= 0, and
for some m ∈ [κL̂(s)], h1iL(σ[t](s)/m) ≤ 0 and h2iL(σ[t](s)/m) ≥ 0.

5. μ1,i, ν1,i ∈ [0, 1), μ2,i, ν2,i ∈ (0, 1], and μ1,i + μ2,i = ν1,i + ν2,i = 1 for
every i ∈ {t + 1, . . . , n}.

6. For all i ∈ [φ(L̃)], and for every α ∈ VSet({x ∈ PiL̃ ∩ (Nn\S) |
∑n

j=t+1 xj �= 0}), β ∈ P
+

iL̃, γ ∈ P
−
iL̃, and δ ∈ P

∗
iL̃:

(a) τ1(i−1)L(α) < 0 and τ2iL(α) > 0;
(b) τ1(i−1)L(γ) ≥ 0;
(c) τ2iL(β) ≤ 0;
(d) τ1(i−1)L(δ) ≥ 0 and/or τ2iL(δ) ≤ 0.

Proof. We assume that S is a proportionally modular N
n-semigroup such

that Si = S ([pi, qi]) for all i ∈ [t] and Si = N for all i ∈ {t + 1, . . . , n}.
By Corollary 2, conditions 2–4 hold. Also, since N

t\Sd = ∪i∈[φ(L)]σ[t](PiL),
N

n\S ⊂ ∪i∈[φ(L)]PiL ⊂ ∪i∈[φ(L)]PiL̃.
By Theorem 1 and Corollary 1, there exist two families of half-spaces

{F+
i }i∈N and {D−

i }i∈N, where F+
i ≡ f(x) ≥ ib and D−

i ≡ d(x) ≤ ib, such that
S = ∪i∈N(F+

i ∩ D−
i ) ∩ N

n and (Nn\S) ∩ G+
0 = ∪i∈N∗(F−

i ∩ D+
i−1 ∩ G+

0 ) ∩ N
n.

Let Tt i be the triangle (F−
1 ∩ D+

0 ∩ G+
0 ) ∩ 〈et, ei〉R, with i ∈ {t + 1, . . . , n}.

As in Remark 3, for each triangle Tt i, we fix the vectors −ν1,iet + ν2,iei and
μ1,iet + μ2,iei satisfying μ1,i, ν1,i ∈ [0, 1), μ2,i, ν2,i ∈ (0, 1], and μ1,i + μ2,i =
ν1,i + ν2,i = 1. So, Fi is the hyperplane containing the points {p1e1, . . . , ptet}
and the vectors {−ν1,(t+1)et + ν2,(t+1)et+1, . . . ,−ν1,net + ν2,nen}, and Di con-
tains {q1e1, . . . , qtet} and {μ1,(t+1)et+μ2,(t+1)et+1, . . . , μ1,net+μ2,nen}. Then,
Fi is equal to the hyperplane defined by τ2iL(x) = 0 and Di ≡ τ1iL(x) = 0.
Furthermore, since q1, . . . , qt, μ2,t+1, . . . μ2,n, p1, . . . , pt, and ν2,t+1, . . . , ν2,n

belong to R>, the closed half-space F+
i is defined by τ2iL(x) ≤ 0, and the

open half-space F−
i by τ2iL(x) > 0. Analogously, D−

i ≡ τ1iL(x) ≥ 0, and
D+

i ≡ τ1iL(x) < 0. Again, by Theorem 1 and Corollary 1, conditions 6a–d
hold.

Conversely, let S′ be the N
n-semigroup ∪i∈N(F+

i ∩ D−
i ) ∩ N

n, where F+
i

is the closed half-space defined by τ2iL(x) ≤ 0, and D−
i ≡ τ1iL(x) ≥ 0. By

Theorem 1, S′ is a proportionally modular semigroup. Conditions 1–4 imply
Sd = S′d. Since N

n\Su ⊂ N
n\S′u by conditions 1 and 6a, S′u ⊂ Su.

Suppose α ∈ Su. If α belongs to (∪i∈NPL̃ ∩ N
t) × N

n−t, then α ∈ S′u.
Otherwise, α ∈ PiL̃ for some i ∈ [φ(L̃)]. If α ∈ P

+

iL̃ ∪ P
−
iL̃ ∪ P

∗
iL̃, then α ∈

(F+
i−1∩D−

i−1)∪(F+
i ∩D−

i ) (by conditions 6b–d). In the case that α ∈ PiL̃\(P
+

iL̃∪
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X

Y

Z

Figure 3. N
3-semigroup given by 29x + 11y + 6z mod 33 ≤

6x + 3y + 15z

P
−
iL̃ ∪P

∗
iL̃) and since α ∈ PiL̃, σ[t](α) /∈ Sd. So, there exists β ∈ PiL̃ ∩ (Nn\Su)

with σ[t](β) = σ[t](α) such that β +ej ∈ Su and π{t+1,...,n}(α−β −ej) ≥ 0, for
some j ∈ {t+1, . . . , n}; that is, α = (α−β −ej)+β +ej , with β +ej ∈ Su but
β /∈ Su. Equivalently, τ1(i−1)L(β) < 0 and τ2iL(β) > 0, but τ1(i−1)L(β+ej) ≥ 0
and/or τ2iL(β + ej) ≤ 0. If τ1(i−1)L(β + ej) ≥ 0, it is easy to prove that
τ1(i−1)L(α) ≥ 0. In a similar way, if τ2iL(β + ej) ≤ 0, then τ2iL(α) ≤ 0. We
can conclude that α ∈ (F+

i−1 ∩ D−
i−1) ∪ (F+

i ∩ D−
i ) ⊂ S′. �

Algorithm 3 presents a computational method to check if an N
n-

semigroup is a proportionally modular semigroup by testing the conditions
given in the above theorem. Note that some steps in this algorithm can be
computed in a parallel way.

Example 4. Let S be the N
3-semigroup whose gap set is the set of black points

in Fig. 3, that is,

{(0, 1, 0), (0, 2, 0), (0, 2, 1), (0, 5, 0), (1, 0, 0), (1, 2, 0), (1, 3, 0), (1, 6, 0),
(2, 0, 0), (2, 0, 1), (2, 3, 0), (3, 0, 0), (3, 1, 0), (3, 4, 0), (4, 1, 0)}

So, the N
2-semigroup S ∩ 〈e1, e2〉R is minimally generated by

{(0, 3), (0, 4), (1, 1), (2, 1), (4, 0), (5, 0), (5, 2), (6, 0), (7, 0)}.

By Algorithm 3, the semigroup S is a proportionally modular affine semigroup
where the intervals [829256 , 113

16 ] and [2116 , 1589
1024 ] determine S1 and S2, respectively,

and μ1,3 = 39
128 , μ2,3 = 89

128 , ν1,3 = 1
4 , and ν2,3 = 3

4 .
The above results were obtained using our software [3]:

In[1]:= mgs = {{0, 3}, {0, 4}, {1, 1}, {2, 1}, {4, 0},
{5, 0}, {5, 2}, {6, 0}, {7, 0}};

In[2]:= gaps = {{0, 1, 0}, {0, 2, 0}, {0, 2, 1}, {0, 5, 0},
{1, 0, 0}, {1, 2, 0}, {1, 3, 0}, {1, 6, 0}, {2, 0, 0},
{2, 0, 1}, {2, 3, 0}, {3, 0, 0}, {3, 1, 0}, {3, 4, 0},
{4, 1, 0}};
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Algorithm 3: Checking if an N
n-semigroup S with ei /∈ S, ∀i ∈ [t],

ei ∈ S, ∀i ∈ {t + 1, . . . , n}, and S1, . . . , St proportionally modular
numerical semigroups, is a proportionally modular semigroup.

Input: An N
n-semigroup S with ei /∈ S, ∀i ∈ [t], but ei ∈ S, ∀i ∈ {t + 1, . . . , n}, given

by its set of gaps, and Λ
Sd the minimal generating set of Sd.

Output: If S is a proportionally modular semigroup, the values of

(p1, . . . , pt, q1, . . . , qt, μ1,(t+1), μ2,t+1, ν1,t+1, ν2,t+1, . . . , μ1,n, μ2,n, ν1,n, ν2,n)

determining the hyperplanes F+
1 and D−

0 ; otherwise the empty set.

begin

L ← {[p1, q1], . . . , [pt, qt]};

M ← ∪i∈{t+1,...,n}{1 > μ1,i ≥ 0, 1 > ν1,i ≥ 0, 1 ≥ μ2,i > 0, 1 ≥ ν2,i >

0, μ1,i + μ2,i = 1, ν1,i + ν2,i = 1};

Δ ← L̃S1 × · · · × L̃St (Algorithm 1);

while Δ �= ∅ do

L̃ ← First(Δ);

{s1, . . . , sk} ← {s | s ∈ Λ
Sd and θL̃(s) = 0};

if
∏

j∈[k] κL̂(sj) �= 0 and N
n\S ⊂ ∪i∈[φ(L̃)]PiL̃ then

E ← {h11L(x) > 0 | x ∈ VSet((Nt\Sd) ∩ H1L̃)};

E ← E ∪ {{h1iL(x) > 0, h2(i−1)L(x) < 0} | i ∈ {2, . . . , φ(L̃)} and x ∈
VSet((Nt\Sd) ∩ HiL̃)};

E ← E ∪ {{τ1(i−1)L(α) < 0, τ2iL(α) > 0} | i ∈ [φ(L̃)] and α ∈
VSet(PiL̃ ∩ {x ∈ N

n\S | ∑n
j=t+1 xj �= 0})};

F ← {τ2iL(β) ≤ 0 | i ∈ [φ(L̃)] and β ∈ P
+
iL̃

};

F ← F ∪ {τ1(i−1)L(γ) ≥ 0 | i ∈ [φ(L̃)] and γ ∈ P
−
iL̃

};

Γ ← i∈[φ(L̃)], δ∈P∗
iL̃

{τ1(i−1)L(δ) ≥ 0, τ2iL(δ) ≤ 0};

Ω ← [κL̂(s1)] × · · · × [κL̂(sk)];

while Ω �= ∅ do

(m1, . . . , mk) ← First(Ω);

F ′ ← F ∪ {{h11L(si/mi) ≤ 0, h21L(si/mi) ≥ 0} | i ∈ [k]};

Γ′ ← Γ;

while Γ′ �= ∅ do

F ∗ ← First(Γ′);
T ← Solve

( ∪i∈[t] {r[p̃i,q̃i]}
⋃

M
⋃

E
⋃

F ′ ⋃
F ∗)

for

{p1, . . . , pt, q1, . . . , qt, μ1,t+1, μ2,t+1, ν1,t+1, ν2,t+1, . . . , μ1,n, μ2,n,

ν1,n, ν2,n} ;

if

(p1, . . . , pt, q1, . . . , qt, μ1,t+1, μ2,t+1, ν1,t+1, ν2,t+1, . . . , μ1,n, μ2,n,

ν1,n, ν2,n) ∈ T ∩ R
2t+4(n−t) then

return

(p1, . . . , pt, q1, . . . , qt, μ1,t+1, μ2,t+1, ν1,t+1, ν2,t+1, . . . , μ1,n,

μ2,n, ν1,n, ν2,n)

Γ′ ← Γ′\{F ∗};

Ω ← Ω\{(m1, . . . , mk)};

Δ ← Δ\{L̃};

return ∅;
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In[3]:= IsNnProportionallyModularSemigroup[mgs, gaps]

Out[3]= {829/256, 21/16, 113/16, 1589/1024, 39/128,
89/128, 1/4, 3/4}
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