
Results Math (2020) 75:97
c© 2020 The Author(s)
1422-6383/20/030001-22
published online June 4, 2020
https://doi.org/10.1007/s00025-020-01218-z Results in Mathematics

On ˜J -tangent Affine Hyperspheres
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Abstract. In this paper we study ˜J-tangent affine hyperspheres, where
˜J is the canonical para-complex structure on R

2n+2. The main purpose

of this paper is to give a classification of ˜J-tangent affine hyperspheres
of an arbitrary dimension with an involutive distribution D. In particu-
lar, we classify all such hyperspheres in the 3-dimensional case. We also

show that there is a direct relation between ˜J-tangent affine hyperspheres
and Calabi products. As an application we obtain certain classification re-
sults. In particular, we show that, with one exception, all odd dimensional
proper flat affine hyperspheres are, after a suitable affine transformation,
˜J-tangent. Some examples of ˜J-tangent affine hyperspheres are also given.
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1. Introduction

Para-complex and paracontact geometry plays an important role in mathemat-
ical physics. On the other hand affine differential geometry and in particular
affine hyperspheres have been extensively studied over past decades. Some re-
lations between para-complex and affine differential geometry can be found in
[1–3].

In [4] the author studied J-tangent affine hypersurfaces and gave a lo-
cal classification of J-tangent affine hyperspheres with an involutive contact
distribution.

In this paper we study real affine hyperspheres f : M2n+1 → R
2n+2 ∼=

˜C
n+1 of the para-complex space ˜C

n+1 with a ˜J-tangent transversal vector
field C and an induced almost paracontact structure (ϕ, ξ, η). First we show
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that when C is centro-affine (not necessarily Blaschke) then f can be locally
expressed in the form:

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z, (1.1)

where g is some smooth immersion defined on an open subset of R2n. Basing
on the above result we provide a local classification of all ˜J-tangent affine
hyperspheres with an involutive distribution D. We also show that there are
no improper ˜J-tangent affine hyperspheres. In particular, using results from
[1], we find all 3-dimensional ˜J-tangent affine hyperspheres with the involutive
distribution D. We also give an example of a ˜J-tangent affine hypersphere with
non-involutive distribution D.

In Sect. 2 we briefly recall the basic formulas of affine differential geome-
try, we recall the notion of an affine hypersphere and some basic results from
para-complex geometry. We also recall the notion of a para-complex affine
hypersphere (for details we refer to [1]).

In Sect. 3 we recall the definitions of an almost paracontact structure
introduced for the first time in [5]. We also recall some elementary results for
induced almost paracontact structures that will be used later in this paper.

Sections 4 and 5 contain the main results of this paper. In the Sect. 4
we introduce the notion of a ˜J-tangent affine hypersphere and prove classifica-
tion results. In particular, we show that ˜J-tangent affine hyperspheres must be
proper and there is a strict relation between ˜J-tangent affine hyperspheres with
the involutive distribution D and proper para-complex affine hyperspheres.
Finally we show that ˜J-tangent affine hyperspheres can be constructed using
lower dimensional proper affine hyperspheres. As an application, we classify
all 3-dimensional proper ˜J-tangent affine hyperspheres with the involutive dis-
tribution D.

In the Sect. 5 we show some applications of the results obtained in Sect. 4.
We show that ˜J-tangent affine hyperspheres can be classified in terms of Calabi
products. Among other we show that (with one exception) all odd dimensional
proper flat affine hyperspheres are ˜J-tangent affine hyperspheres with the invo-
lutive distribution D. Moreover, we show that the above mentioned exceptional
affine hypersphere is J-tangent, where J is the standard complex structure on
R

2n+2.

2. Preliminaries

We briefly recall the basic formulas of affine differential geometry. For more
details, we refer to [6].

Let f : M → R
n+1 be an orientable connected differentiable n-dimensional

hypersurface immersed in the affine space R
n+1 equipped with its usual flat

connection D. Then for any transversal vector field C we have

DX f∗Y = f∗(∇XY ) + h(X,Y )C (2.1)
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and
DX C = −f∗(SX) + τ(X)C, (2.2)

where X,Y are vector fields tangent to M . It is known that ∇ is a torsion-free
connection, h is a symmetric bilinear form on M , called the second fundamental
form, S is a tensor of type (1, 1), called the shape operator, and τ is a 1-form,
called the transversal connection form. Recall that the formula (2.1) is known
as the formula of Gauss and the formula (2.2) is known as the formula of
Weingarten.

For a hypersurface immersion f : M → R
n+1 a transversal vector field C

is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0). For
an affine hypersurface f : M → R

n+1 with the transversal vector field C we
consider the following volume element on M :

Θ(X1, . . . , Xn) := det[f∗X1, . . . , f∗Xn, C]

for all X1, . . . , Xn ∈ X (M). We call Θ the induced volume element on M . Im-
mersion f : M → R

n+1 is said to be a centro-affine hypersurface if the position
vector x (from origin o) for each point x ∈ M is transversal to the tangent
plane of M at x. In this case S = I and τ = 0. If h is nondegenerate (that is
h defines a semi-Riemannian metric on M), we say that the hypersurface or
the hypersurface immersion is nondegenerate. In this paper we assume that f
is always nondegenerate. We have the following

Theorem 2.1 [6, Fundamental equations]. For an arbitrary transversal vector
field C the induced connection ∇, the second fundamental form h, the shape
operator S and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY, (2.3)

(∇Xh)(Y,Z) + τ(X)h(Y,Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z), (2.4)

(∇XS)(Y ) − τ(X)SY = (∇Y S)(X) − τ(Y )SX, (2.5)

h(X,SY ) − h(SX, Y ) = 2dτ(X,Y ). (2.6)

The Eqs. (2.3), (2.4), (2.5) and (2.6) are called the equations of Gauss,
Codazzi for h, Codazzi for S and Ricci, respectively.

When f is nondegenerate, there exists a canonical transversal vector field
C called the affine normal field (or the Blaschke field). The affine normal field
is uniquely determined up to sign by the following conditions:
(1) the metric volume form ωh of h is ∇-parallel,
(2) ωh coincides with the induced volume form Θ.

Recall that ωh is defined by

ωh(X1, . . . , Xn) = |det[h(Xi,Xj)]|1/2,

where {X1, . . . , Xn} is any positively oriented basis relative to the induced
volume form Θ. The affine immersion f with a Blaschke field C is called a
Blaschke hypersurface. In this case fundamental equations can be rewritten as
follows
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Theorem 2.2 [6, Fundamental equations]. For a Blaschke hypersurface f , we
have the following fundamental equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY,

(∇Xh)(Y,Z) = (∇Y h)(X,Z),

(∇XS)(Y ) = (∇Y S)(X),

h(X,SY ) = h(SX, Y ).

A Blaschke hypersurface is called an affine hypersphere if S = λI, where
λ = const . If λ = 0 f is called an improper affine hypersphere, if λ �= 0 a
hypersurface f is called a proper affine hypersphere.

Now, we will recall a notion of para-complex affine hypersurfaces, for
details we refer to [1]. More information on para-complex geometry one may
found for example in [7,8].

Let g : M2n → R
2n+2 be an immersion and let ˜J be the standard para-

complex structure on R
2n+2. That is

˜J(x1, . . . , xn+1, y1, . . . , yn+1) := (y1, . . . , yn+1, x1, . . . , xn+1).

We always identify (R2n+2, ˜J) with ˜C
n+1.

Assume now that g∗(TM) is ˜J-invariant and ˜J |g∗(TxM) is a para-complex
structure on g∗(TxM) for every x ∈ M . Then ˜J induces an almost para-
complex structure on M , which we will also denote by ˜J . Moreover, since
(R2n+2, ˜J) is para-complex then (M, ˜J) is para-complex as well. By assumption
we have that dg ◦ ˜J = ˜J ◦ dg that is g : M2n → R

2n+2 ∼= ˜C
n+1 is a para-

holomorphic immersion. Since para-complex dimension of M is n, immersion
g is called a para-holomorphic hypersurface.

Let g : M2n → R
2n+2 be an affine hypersurface of codimension 2 with a

transversal bundle N . If g is para-holomorphic then it is called affine para-
holomorphic hypersurface. If additionally the transversal bundle N is ˜J-invariant
then g is called a para-complex affine hypersurface.

Let g : M2n → R
2n+2 be a para-holomorphic hypersurface. We say that

g is para-complex centro-affine hypersurface if {g, ˜Jg} is a transversal bundle
for g.

Theorem 2.3 [1]. Let g : M2n → R
2n+2 be a para-holomorphic hypersurface.

Then for every x ∈ M there exists a neighborhood U of x and a transversal
vector field ζ : U → R

2n+2 such that {ζ, ˜Jζ} is a transversal bundle for g|U .
That is g|U considered with {ζ, ˜Jζ} is a para-complex affine hypersurface.

Now let g : M2n → R
2n+2 be a para-holomorphic hypersurface and let

ζ : U → R
2n+2 be a local transversal vector field on U ⊂ M such that {ζ, ˜Jζ}

is a transversal bundle to g. For all tangent vector fields X,Y ∈ X (U) we can
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decompose DXY and DXζ into tangent and transversal part. Namely, we have

DX g∗Y = g∗(∇XY ) + h1(X,Y )ζ + h2(X,Y ) ˜Jζ (formula of Gauss),

DX ζ = −g∗(SX) + τ1(X)ζ + τ2(X) ˜Jζ (formula of Weingarten),

where ∇ is a torsion free affine connection on U , h1 and h2 are symmetric
bilinear forms on U , S is a (1, 1)-tensor field on U and τ1 and τ2 are 1-forms
on U . We have the following relations between h1 and h2.

Lemma 2.4 [1,3].

h1(X, ˜JY ) = h1( ˜JX, Y ) = h2(X,Y ), (2.7)

h2(X, ˜JY ) = h1(X,Y ). (2.8)

On U we define the volume form θζ by the formula

θζ(X1, . . . , X2n) := det(g∗X1, . . . , g∗X2n, ζ, ˜Jζ)

for tangent vectors Xi, i = 1, . . . , 2n. Let us consider the function Hζ on U
defined by

Hζ := det[h1(Xi,Xj)]i,j=1...2n,

where X1, . . . , X2n is a local basis on TU such that θζ(X1, . . . , X2n) = 1. This
definition is independent of the choice of basis. We say that a hypersurface
is nondegenerate if h1 (and in consequence h2) is nondegenerate. When g is
nondegenerate there exist transversal vector fields ζ satisfying the following
two conditions:

|Hζ | = 1,

τ1 = 0.

Such vector fields are called affine normal vector fields. In [1] we showed that
on every para-holomorphic hypersurface we may find (at least locally) an affine
normal vector field.

A nondegenerate para-complex hypersurface is said to be a proper para-
complex affine hypersphere if there exists an affine normal vector field ζ such
that S = αI, where α ∈ R \ {0} and τ2 = 0. If there exists an affine normal
vector field ζ such that S = 0 and τ2 = 0 we say about an improper para-
complex affine hypersphere. Note that the above definition is very analogous
to the definition of complex affine hypersphere introduced by Dillen et al. [9].

3. Almost Paracontact Structures

Let dim M = 2n + 1 and f : M → R
2n+2 be a nondegenerate (relative to the

second fundamental form) affine hypersurface. We always assume that R
2n+2

is endowed with the standard para-complex structure ˜J

˜J(x1, . . . , xn+1, y1, . . . , yn+1) = (y1, . . . , yn+1, x1, . . . , xn+1).
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Let C be a transversal vector field on M . We say that C is ˜J-tangent if
˜JCx ∈ f∗(TxM) for every x ∈ M . We also define a distribution D on M as
the biggest ˜J-invariant distribution on M , that is

Dx = f−1
∗ (f∗(TxM) ∩ ˜J(f∗(TxM)))

for every x ∈ M . We have that dimDx ≥ 2n. If for some x the dim Dx =
2n + 1 then Dx = TxM and it is not possible to find a ˜J-tangent transversal
vector field in a neighbourhood of x. Since we only study hypersurfaces with
a ˜J-tangent transversal vector field, then we always have dimD = 2n. The
distribution D is smooth as an intersection of two smooth distributions and
because dim D is constant. A vector field X is called a D-field if Xx ∈ Dx for
every x ∈ M . We use the notation X ∈ D for vectors as well as for D-fields.
We say that the distribution D is nondegenerate if h is nondegenerate on D.

A (2n+1)-dimensional manifold M is said to have an almost paracontact
structure if there exist on M a tensor field ϕ of type (1,1), a vector field ξ and
a 1-form η which satisfy

ϕ2(X) = X − η(X)ξ, (3.1)

η(ξ) = 1 (3.2)

for every X ∈ TM and the tensor field ϕ induces an almost para-complex
structure on the distribution D = ker η. That is the eigendistributions D+,D−

corresponding to the eigenvalues 1,−1 of ϕ have equal dimension n.

Let f : M → R
2n+2 be a nondegenerate affine hypersurface with a ˜J-

tangent transversal vector field C. Then we can define a vector field ξ, a 1-form
η and a tensor field ϕ of type (1,1) as follows:

ξ := ˜JC; (3.3)

η|D = 0 and η(ξ) = 1; (3.4)

ϕ|D = ˜J |D and ϕ(ξ) = 0. (3.5)

It is easy to see that (ϕ, ξ, η) is an almost paracontact structure on M . This
structure is called the induced almost paracontact structure. For an induced
almost paracontact structure we have the following theorem

Theorem 3.1 [10]. Let f : M → R
2n+2 be an affine hypersurface with a ˜J-

tangent transversal vector field C. If (ϕ, ξ, η) is an induced almost paracontact
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structure on M then the following equations hold:

η(∇XY ) = h(X,ϕY ) + X(η(Y )) + η(Y )τ(X), (3.6)

ϕ(∇XY ) = ∇XϕY − η(Y )SX − h(X,Y )ξ, (3.7)

η([X,Y ]) = h(X,ϕY ) − h(Y, ϕX) + X(η(Y )) − Y (η(X)) (3.8)

+ η(Y )τ(X) − η(X)τ(Y ),

ϕ([X,Y ]) = ∇XϕY − ∇Y ϕX + η(X)SY − η(Y )SX, (3.9)

η(∇Xξ) = τ(X), (3.10)

η(SX) = −h(X, ξ) (3.11)

for every X,Y ∈ X (M).

4. ˜J -Tangent Affine Hyperspheres

An affine hypersphere with a transversal ˜J-tangent Blaschke field we call a
˜J-tangent affine hypersphere. We start this section with the following useful
lemma related to differential equations

Lemma 4.1. Let F : I → R
2n be a smooth function on an interval I. If F

satisfies the differential equation

F ′(z) = − ˜JF (z), (4.1)

then F is of the form

F (z) = ˜Jv cosh z − v sinh z, (4.2)

where v ∈ R
2n.

Proof. It is not difficult to check that functions of the form (4.2) satisfy the dif-
ferential equation (4.1). On the other hand, since (4.1) is a first-order ordinary
differential equation, the Picard-Lindelöf theorem implies that any solution of
(4.1) must be of the form (4.2). �

Using the above lemma, we can prove the following theorem.

Theorem 4.2. Let f : M → R
2n+2 be a centro-affine hypersurface with a ˜J-

tangent centro-affine vector field. Then f can be locally expressed in the form

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z (4.3)

for all (x1, . . . , x2n, z) ∈ U × I, where U ⊂ R
2n is an open subset, I ⊂ R is an

open interval and g : U → R
2n+2 is an immersion.

Proof. Denote C := −f . Since f is a centro-affine hypersurface with a ˜J-
tangent transversal vector field then we have ˜JC = − ˜Jf ∈ f∗(TM). Therefore,
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for every x ∈ M , there exists a neighborhood V of x and a map ψ(x1, . . . , x2n, z)
on V such that

f∗
∂

∂z
= ˜JC.

That is f can be locally expressed in the form f(x1, . . . , x2n, z), where fz =
− ˜Jf . Now using Lemma 4.1 we obtain the thesis. �

When the distribution D is involutive we have

Theorem 4.3. Let f : M → R
2n+2 be an affine hypersurface with a centro-

affine ˜J-tangent vector field C = −−→
of . If the distribution D is involutive then

for every x ∈ M there exists a para-complex centro-affine immersion g : V →
R

2n+2 defined on an open subset V ⊂ R
2n such that f can be expressed in the

neighborhood of x in the form

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z. (4.4)

Moreover, if g : V → R
2n+2 is a para-complex centro-affine immersion then

f given by the formula (4.4) is an affine hypersurface with a centro-affine ˜J-
tangent vector field and an involutive distribution D.

Proof. Let (ϕ, ξ, η) be an induced almost paracontact structure on M in-
duced by C. The Frobenius theorem implies that for every x ∈ M there exist
an open neighborhood U ⊂ M of x and linearly independent vector fields
X1, . . . , X2n,X2n+1 = ξ ∈ X (U) such that [Xi,Xj ] = 0 for i, j = 1, . . . , 2n+1.
For every i = 1, . . . , 2n we have Xi = Di+αiξ where Di ∈ D and αi ∈ C∞(U).
Thus we have

0 = [Xi, ξ] = [Di, ξ] − ξ(αi)ξ.

Now (3.8) and (3.11) imply that [Di, ξ] and ξ(αi) = 0. We also have

0 = [Xi,Xj ] = [Di,Dj ] − Dj(αi)ξ + Di(αj)ξ

for i = 1, . . . , 2n. Since D is involutive the above equality implies that [Di,Dj ]
= 0 for i, j = 1, . . . , 2n. Of course the vector fields D1, . . . , D2n, ξ are linearly
independent, so there exists a map ψ(x1, . . . , x2n, z) on U such that

∂

∂z
= ξ,

∂

∂xi
= Di, i = 1, . . . , 2n.

Now applying Lemma 4.1 we find that f can be locally expressed in the form

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z,

where g : V → R
2n+2 is an immersion defined on an open subset V ⊂ R

2n.
Moreover, since ∂

∂xi
∈ D we have that

fxi
= ˜Jgxi

cosh z − gxi
sinh z ∈ f∗(D).

Since f∗(D) is ˜J-invariant we also have
˜Jfxi

= gxi
cosh z − ˜Jgxi

sinh z ∈ f∗(D).
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The above implies that gxi
∈ f∗(D) for i = 1, . . . , 2n. Since {gxi

} are linearly
independent, they form a basis of f∗(D) (note that dim f∗(D) = 2n) i. e.

f∗(D) = span{gx1 , . . . , gx2n}.

Since f∗(D) is ˜J-invariant we also have that
˜Jgxi

∈ f∗(D) = span{gx1 , . . . , gx2n}.

That is, ˜Jgxi
=

∑

αigxi
, where αi ∈ C∞(U). Since g does not depend on

variable z, the functions αi also do not, thus αi ∈ C∞(V ).
In this way we have shown that for g : V → R

2n+2 the tangent space
TV is ˜J-invariant (we can transfer ˜J from g∗(TV ) to TV ). Since ˜J |f∗(D) is
para-complex and f∗(D) = spanC∞(U){gx1 , . . . , gx2n}, ˜J is a para-complex
structure on TV . Finally g is para-holomorphic. Since f is an immersion,
{gx1 , . . . , gx2n , ˜Jg} are linearly independent. Moreover, because f is centro-
affine, we also have that g is linearly independent with {gx1 , . . . , gx2n , ˜Jg}. That
is {g, ˜Jg} is a ˜J-invariant transversal bundle for g∗(TV ) and, in consequence,
g is a para-complex affine immersion.

In order to prove the second part of the theorem, note that since g is
a centro-affine para-complex affine immersion, then {fx1 , . . . , fx2n , fz, f} are
linearly independent. It means that f is an immersion and is centro-affine.
Moreover, f is ˜J-tangent since ˜J(−−→

of) = −g cosh z + ˜Jg sinh z = fz. In par-
ticular, g is para-holomorphic. That is, we have ˜Jgxi

=
∑2n

j=1 αijgxj
for i =

1, . . . , 2n. Now, by straightforward computations we get
∑2n

j=1 αijfxj
= ˜Jfxi

for i = 1, . . . , 2n. That is, ˜Jfxi
∈ span{fx1 , . . . , fx2n}. In this way we have

shown that span{fx1 , . . . , fx2n} is ˜J-invariant and since its dimension is 2n it
must be equal to f∗(D). Now it is easy to see that D = { ∂

∂x1
, . . . , ∂

∂x2n
} is

involutive as generated by the canonical vector fields. �

For ˜J-tangent affine hyperspheres we have the following classification
theorems:

Theorem 4.4. There are no improper ˜J-tangent affine hyperspheres.

Proof. By (3.11) we have η(SX) = −h(X, ξ) for all X ∈ X (M). Since S = 0
we have h(X, ξ) = 0 for every X ∈ X (M), which contradicts nondegeneracy
of h. �
Theorem 4.5. Let f : M → R

2n+2 be a ˜J-tangent affine hypersphere with an
involutive distribution D. Then f can be locally expressed in the form:

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z, (4.5)

where g is a proper para-complex affine hypersphere. Moreover, the converse
is also true in the sense that if g is a proper para-complex affine hypersphere
then f given by the formula (4.5) is a ˜J-tangent affine hypersphere with an
involutive distribution D.
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Proof. (⇒) First note that due to Theorem 4.4 f must be a proper affine
hypersphere. Let C be a ˜J-tangent affine normal field. There exists λ ∈ R\{0}
such that C = −λf . Since C is ˜J-tangent and transversal the same is 1

λC =
−f . That is, f satisfies assumptions of Theorem 4.3. By Theorem 4.3 there
exists a para-complex centro-affine immersion g : V → R

2n+2 defined on an
open subset V ⊂ R

2n and there exists an open interval I such that f can be
locally expressed in the form

f(x1, . . . , x2n, z) = ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z (4.6)

for (x1, . . . , x2n) ∈ V and z ∈ I.

Let ζ := −|λ| 2n+3
2n+4 g. Bundle {ζ, ˜Jζ} is transversal to g, because g is para-

complex centro-affine. Let ∇, h1, h2, S, τ1, τ2 be induced objects on V by ζ.
Using the Weingarten formula for g and ζ we get

D∂xi
ζ = −g∗(S∂xi

) + τ1(∂xi
)ζ + τ2(∂xi

)Jζ.

On the other hand, by straightforward computations we have

D∂xi
ζ = ∂xi

(ζ) = −|λ| 2n+3
2n+4 g∗(∂xi

).

Thus, we obtain

S = |λ| 2n+3
2n+4 I, τ1 = 0, τ2 = 0. (4.7)

Now, it is enough to show that ζ is an affine normal vector field that is |Hζ | = 1.
Since g is para-holomorphic, without loss of generality, we may assume that

∂xn+i
= ˜J∂xi

for i = 1, . . . , n. Let h be the second fundamental form for f .
Using similar methods like in the proof of Theorem 4.1 from [4] one may

compute

−λh(∂xi
, ∂xj

) = −|λ| 2n+3
2n+4 h1(∂xi

, ∂xj
), h(∂z, ∂z) = − 1

λ

and

h(∂z, ∂xi
) = h(∂xi

, ∂z) = 0

for i, j = 1, . . . , 2n. Let us denote

a := θζ(∂x1 , . . . , ∂xn
, ˜J∂x1 , . . . ,

˜J∂xn
).

Then we have
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det h := det

⎡

⎢

⎢

⎢

⎢

⎢

⎣

h(∂x1 , ∂x1) h(∂x1 , ∂x2) · · · h(∂x1 , ∂x2n) 0
h(∂x2 , ∂x1) h(∂x2 , ∂x2) · · · h(∂x2 , ∂x2n) 0

...
...

. . .
...

...
h(∂x2n , ∂x1) h(∂x2n , ∂x2) · · · h(∂x2n , ∂x2n) 0

0 0 · · · 0 − 1
λ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= − 1
λ

det[h(∂xi
, ∂xj

)] = − 1
λ

· (
1
λ

· |λ| 2n+3
2n+4 )2n det[h1(∂xi

, ∂xj
)]

= − 1
λ

· |λ|− 2n
2n+4 a2Hζ

and

(ωh)2 = |det h| = |λ|−2n−2
n+2 a2|Hζ |. (4.8)

Again by similar computation like in [4] we get

ωh = −λ · (|λ|− 2n+3
n+2 ) · (−1)n+1θζ(∂x1 , . . . , ∂x2n) = (−1)n+2 · λ · (|λ|− 2n+3

n+2 )a.

Using the above formula in (4.8) we easily obtain

|Hζ | = a−2|λ| 2n+2
n+2 · λ2 · |λ|− 4n+6

n+2 a2 = 1.

(⇐) Let g : U → R
2n+2 be a proper para-complex affine hypersphere.

Since g is a proper para-complex affine hypersphere there exists α �= 0 such
that ζ = −αg is an affine normal vector field. Without loss of generality we
may assume that α > 0. Since both, g and ˜Jg are transversal, we see that
{gx1 , . . . , gx2n , g, ˜Jg} forms the basis of R2n+2. The above implies that

f : U × I 
 (x1, . . . , x2n, z) �→ f(x1, . . . , x2n, z) ∈ R
2n+2

given by the formula:

f(x1, . . . , x2n, z) := ˜Jg(x1, . . . , x2n) cosh z − g(x1, . . . , x2n) sinh z

is an immersion and C := −α
2n+4
2n+3 · f is a transversal vector field. The field C

is ˜J-tangent because ˜JC = α
2n+4
2n+3 fz. Since C is equiaffine and S = α

2n+4
2n+3 I it

is enough to show that ωh = θ for some positively oriented (relative to θ) basis
on U × I. Let ∂x1 , . . . , ∂x2n , ∂z be a local coordinate system on U × I. Since g

is para-holomorphic we may assume that ∂xn+i
= ˜J∂xi

for i = 1, . . . , n.
Then we have

θ(∂x1 , . . . , ∂x2n , ∂z) = −α− 2n+2
2n+3 · (−1)n+1θζ(∂x1 , . . . , ∂x2n).

That is

θζ(∂x1 , . . . , ∂x2n) = (−1)nα
2n+2
2n+3 · θ(∂x1 , . . . , ∂x2n , ∂z). (4.9)
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In a similar way as in the proof of the first implication we compute

det h = −α− 2n+4
2n+3 ·

( α

α
2n+4
2n+3

)2n

det h1

= −α− 2n+4
2n+3 · α− 2n

2n+3 det h1

= −α
−4n−4
2n+3 det h1.

The above implies that

(ωh)2 = |det h| = α
−4n−4
2n+3 |det h1|.

Since

|det h1| = |Hζ |[θζ(∂x1 , . . . , ∂x2n)]2,

we obtain

(ωh)2 = α
−4n−4
2n+3 |Hζ |[θζ(∂x1 , . . . , ∂x2n)]2.

Finally, using the fact that |Hζ | = 1 and (4.9), we get

ωh = |θ(∂x1 , . . . , ∂x2n , ∂z)|.
The proof is completed. �

Immediately from the proof of the above theorem we get

Corollary 4.6. If f is a ˜J-tangent affine hypersphere with the shape operator
S = λ id and g is a para-complex affine hypersphere (related to f) with the
shape operator ˜S = α id then λ and α are related by the following formula:

|λ| = |α| 2n+4
2n+3 .

Now, we shall recall a classification theorem for para-complex affine hy-
perspheres.

Theorem 4.7 [1]. Let g : M → R
2n+2 be a para-complex affine hypersphere with

a transversal bundle {ζ, ˜Jζ}. Then g can be locally expressed in the form

g = f1 × f2 + ˜J ◦ (f1 × (−f2)), (4.10)

where U1 ⊂ R
n, U2 ⊂ R

n are open subsets and

f1 : U1 → R
n+1, f2 : U2 → R

n+1

are (real) affine hyperspheres.
Moreover, if g is proper (respectively improper) then both f1 and f2 are

proper (respectively improper) as well. The converse is also true, in the sense,
that for every two proper (respectively improper) n-dimensional affine hyper-
spheres f1 and f2 the formula (4.10) defines a proper (respectively improper)
para-complex affine hypersphere.

The following theorem allows us to construct ˜J-tangent affine hyper-
spheres using standard proper affine hyperspheres. Namely we have
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Theorem 4.8. Let f : M → R
2n+2 be a ˜J-tangent affine hypersphere with an

involutive distribution D. Then f can be locally expressed in the form:

f(x1, . . . , xn, y1, . . . , yn, z)

=
(

˜J ◦ (f1 × f2) + f1 × (−f2)
)

(x1, . . . , xn, y1, . . . , yn) cosh z

−
(

(f1 × f2) + ˜J ◦ (f1 × (−f2))
)

(x1, . . . , xn, y1, . . . , yn) sinh z, (4.11)

where f1 and f2 are proper n-dimensional affine hyperspheres. Moreover, the
converse is also true in the sense that if f1 and f2 are proper n-dimensional
affine hyperspheres then f given by the above formula is a proper ˜J-tangent
affine hypersphere with an involutive distribution D.

Proof. The proof is an immediate consequence of Theorems 4.5 and 4.7. �
Since the only 1-dimensional proper affine spheres are the ellipse and

hyperbola we can obtain the complete local classification of 3-dimensional ˜J-
tangent affine hyperspheres with an involutive distribution D. Namely we have

Theorem 4.9. Let f : M3 → R
4 be a ˜J-tangent affine hypersphere with an

involutive distribution D. Then up to ˜J-invariant affine transformation f is
locally equivalent to one of the following hypersurfaces:

f1(x, y, z) =

⎛

⎜

⎜

⎝

cos x + cos y
sin x + sin y
cos x − cos y
sin x − sin y

⎞

⎟

⎟

⎠

cosh z −

⎛

⎜

⎜

⎝

cos x − cos y
sin x − sin y
cos x + cos y
sin x + sin y

⎞

⎟

⎟

⎠

sinh z, (4.12)

f2(x, y, z) =

⎛

⎜

⎜

⎝

cosh x + cosh y
sinhx + sinh y
cosh x − cosh y
sinhx − sinh y

⎞

⎟

⎟

⎠

cosh z −

⎛

⎜

⎜

⎝

cosh x − cosh y
sinhx − sinh y
cosh x + cosh y
sinhx + sinh y

⎞

⎟

⎟

⎠

sinh z, (4.13)

f3(x, y, z) =

⎛

⎜

⎜

⎝

cos x + cosh y
sin x + sinh y
cos x − cosh y
sin x − sinh y

⎞

⎟

⎟

⎠

cosh z −

⎛

⎜

⎜

⎝

cos x − cosh y
sin x − sinh y
cos x + cosh y
sin x + sinh y

⎞

⎟

⎟

⎠

sinh z, (4.14)

f4(x, y, z) =

⎛

⎜

⎜

⎝

cosh x + cos y
sinhx + sin y
cosh x − cos y
sinhx − sin y

⎞

⎟

⎟

⎠

cosh z −

⎛

⎜

⎜

⎝

cosh x − cos y
sinhx − sin y
cosh x + cos y
sinhx + sin y

⎞

⎟

⎟

⎠

sinh z. (4.15)

Proof. By Theorem 4.8 f can be locally obtained from 1-dimensional proper
affine spheres f1 and f2. Since the only 1-dimensional proper affine spheres
are the ellipse and hyperbola then fi is affinely equivalent to either γ1(t) =
(cos t, sin t) or γ2(t) = (cosh t, sinh t). Now one may find affine transformations
P,Q of R2 such that

f1 = P ◦ γi0 and f2 = Q ◦ γj0 (4.16)
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for some i0, j0 ∈ {1, 2}. Applying (4.16) to (4.11) we get

f(x, y, z) = A ◦
[

(

˜J ◦ (γi0 × γj0) + γi0 × (−γj0)
)

(x, y) cosh z

−
(

(γi0 × γj0) + ˜J ◦ (γi0 × (−γj0))
)

(x, y) sinh z

]

= A ◦
[

(

γi0(x) + γj0(y)
γi0(x) − γj0(y)

)

cosh z −
(

γi0(x) − γj0(y)
γi0(x) + γj0(y)

)

sinh z

]

where

A =
[

1
2 (P + Q) 1

2 (P − Q)
1
2 (P − Q) 1

2 (P + Q)

]

.

Hence f is (up to ˜J-invariant affine transformation A) equivalent to

f0(x, y, z) =
(

γi0(x) + γj0(y)
γi0(x) − γj0(y)

)

cosh z −
(

γi0(x) − γj0(y)
γi0(x) + γj0(y)

)

sinh z.

Now taking different combinations of i0, j0 we easily obtain (4.12)–(4.15). �

Remark 4.10. Note that (4.14) and (4.15) are affinely equivalent but the affine
transformation mapping (4.14) onto (4.15) is not ˜J-invariant.

Remark 4.11. It is worth to mention that hypersurfaces from Theorem 4.9
are flat and have parallel cubic form. Actually they are the only proper 3-
dimensional affine hyperspheres with this property (see [11,12] for details).

To conclude this section, we give an example of a ˜J-tangent affine hyper-
sphere with a non-involutive distribution D.

Example 4.12. Let f be defined as follows:

f : R3 
 (x, y, z) �→

⎛

⎜

⎜

⎝

xy + 1
x + 1

2y
xy

x − 1
2y

⎞

⎟

⎟

⎠

cosh z −

⎛

⎜

⎜

⎝

xy
x − 1

2y
xy + 1
x + 1

2y

⎞

⎟

⎟

⎠

sinh z ∈ R
4.

It is not difficult to check that f is an immersion and the vector field C : R3 

(x, y, z) �→ −f(x, y, z) ∈ R

4 is transversal to f∗(R3).
In the canonical basis { ∂

∂x , ∂
∂y , ∂

∂z } the second fundamental form h is
expressed as follows

h =

⎡

⎣

0 −1 0
−1 0 2x
0 2x −1

⎤

⎦ .

The above implies that f is nondegenerate. By straightforward computations
we obtain that C is the affine normal field. Since ˜JC = −fz ∈ f∗(TM) it
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follows that f is a ˜J-tangent affine hypersphere. Moreover, we have that ˜Jfx =
fx, so ∂

∂x ∈ D+. We also have

˜J(2x2fx + fy + 2xfz) = −(2x2fx + fy + 2xfz),

so the vector field W := 2x2 ∂
∂x + ∂

∂y + 2x ∂
∂z belongs to D−. Now, we compute

that

h
( ∂

∂x
,W

)

= 2x2h
( ∂

∂x
,

∂

∂x

)

+ h
( ∂

∂x
,

∂

∂y

)

+ 2xh
( ∂

∂x
,

∂

∂z

)

= −1.

Using the formula (3.8) and the above we get

η
([ ∂

∂x
,W

])

= h
( ∂

∂x
, ϕW

)

− h
(

W,ϕ
∂

∂x

)

= −2h
( ∂

∂x
,W

)

= 2.

Since ker η = D, the above implies that [ ∂
∂x ,W ] /∈ D and in consequence the

distribution D is not involutive.

5. Some Applications

In this section we show some applications of results obtained in the previ-
ous section. In particular, we show that ˜J-tangent affine hyperspheres can be
classified in terms, of so called, Calabi products.

Recall that [13] the Calabi product of two proper affine hyperspheres

ψ1 : M1 → R
n1+1 and ψ2 : M2 → R

n2+1

is an affine immersion

ψ : M1 × M2 × R → R
n1+n2+2

defined by the formula

ψ(x, y, z) := (c1e

√

n2+1
n1+1az

ψ1(x), c2e
−

√

n1+1
n2+1az

ψ2(y))

where c1, c2 and a are nonzero constants.
Let f1 and f2 and f be the affine hyperspheres from Theorem 4.8 with

the affine normal fields C1 = −αf1, C2 = −βf2 and C = −λf , respectively
(α, β, λ > 0). Let us denote by CP (f1, f2) the Calabi product of f1 and f2

with c1 = 2, c2 = 1 and a = −1. That is we have

CP (f1, f2)(x, y, z) := (2e−zf1(x), ezf2(y))

where x = (x1, . . . , xn) and y = (y1, . . . , yn). We shall always consider
CP (f1, f2) with a transversal vector field CCP := −λ · CP (f1, f2).

For the affine hypersphere fi (i = 1, 2) we shall denote by ∇i, hi, Si,Θi the
Blaschke connection, the Blaschke metric, the shape operator and the induced
volume form, respectively. Similarly for the affine hypersurface CP (f1, f2) we
denote the induced affine objects by ∇CP , hCP , SCP and ΘCP .
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Using similar methods like in [14] one may obtain that the affine metric
hCP of CP (f1, f2) is given by the product metric

hCP =
1
2

α

λ
h1 ⊗ 1

2
β

λ
h2 ⊗ (− 1

λ
)dz2 (5.1)

and the connection ∇CP can be expressed in terms of ∇1, ∇2 and h1, h2 as
follows:

∇CP
∂xi

∂xj
= ∇1∂xi

∂xj
+

1
2
αh1(∂xi

, ∂xj
)∂z (5.2)

∇CP
∂yi

∂yj
= ∇2∂yi

∂yj
− 1

2
βh2(∂yi

, ∂yj
)∂z (5.3)

∇CP
∂xi

∂yj
= ∇CP

∂yj
∂xi

= 0 (5.4)

∇CP
∂xi

∂z = ∇CP
∂z

∂xi
= −∂xi

(5.5)

∇CP
∂yi

∂z = ∇CP
∂z

∂yi
= ∂yi

(5.6)

∇CP
∂z

∂z = 0. (5.7)

By straightforward computations we obtain

ωhCP
=

√

αnβn

22nλ2n+1
ωh1 ⊗ ωh2 (5.8)

and

ΘCP = (−2)n+2 · λ

αβ
Θ1 ⊗ Θ2. (5.9)

Let us define a (2n + 2) × (2n + 2) matrix A by the formula

A :=
[

1
2In+1 In+1
1
2In+1 −In+1

]

where by In we denote an identity matrix of dimension n × n. It is easy to see
that det A = (−1)n+1 that is A is an equiaffine transformation of R2n+2. By
straightforward calculation one may check that

f = A ◦ CP (f1, f2) (5.10)

that is we have the following

Corollary 5.1. Let f1, f2 and f be like in Theorem 4.8 then f is up to equiaffine
transformation the Calabi product of f1 and f2.

Since A is an equiaffine transforamtion then both f and CP (f1, f2) are
affine hyperspheres. In particular, using (5.8) and (5.9) we obtain

Corollary 5.2. Let f1, f2 and f be like in Theorem 4.8 and let C1 = −αf1,
C2 = −βf2 and C = −λf be their affine normals. Then α, β and λ are related
by the formula:

λ =

[

(αβ)n+2

24n+4

]
1

2n+3

.
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Calabi products have many interesting properties. In particular, they
preserve parallel cubic form (see [14]). Moreover the affine metric of Calabi
product is flat if and only if both components have a flat affine metric.

Now using (5.10) and results from [12,15,16] one can obtain some classi-
fication results for ˜J-tangent affine hyperspheres with the parallel cubic form.
For example, when dimM = 5, we have the following

Corollary 5.3. Let f : M → R
6 be a ˜J-tangent affine hypersphere with an invo-

lutive distribution D and a parallel cubic form. Then f is locally affine equiv-
alent to Calabi product CP (f1, f2) where fi (i = 1, 2) is one of the following
surfaces:

x2 + y2 + z2 = 1 (5.11)

x2 + y2 − z2 = 1 (5.12)

x2 + y2 − z2 = −1 (5.13)

xyz = 1 (5.14)

(x2 + y2)z = 1 (5.15)

As it was already mentioned in previous section (see Remark 4.11) all 3-
dimensional ˜J-tangent affine hyperspheres with involutive distribution D are
flat. Of course this is not the case in higher dimensions. In particular, since
the only 2-dimensional proper flat affine spheres are (5.14) and (5.15) (see
[17]), taking Calabi products, we get the following classification result in 5-
dimensional case:

Corollary 5.4. If f : M → R
6 is a flat ˜J-tangent affine hypersphere with invo-

lutive distribution D then f is locally affine equivalent to one of the following
hypersufaces:

x1x2x3x4x5x6 = 1 (5.16)

(x2
1 + x2

2)(x
2
3 + x2

4)x5x6 = 1 (5.17)

(x2
1 + x2

2)x3x4x5x6 = 1 (5.18)

Note, that contrary to 3-dimensional case, not all 5-dimensional flat
proper affine hyperspheres are (after suitable affine transformation) ˜J-tangent
affine hyperspheres with the involutive distribution D. Indeed, it is well known
that (x2

1 + x2
2)(x

2
3 + x2

4)(x
2
5 + x2

6) = 1 is a proper flat affine hypersphere but
it is not affinely equivalent to any of (5.16)–(5.18). Actually we will show (see
proof of Prop. 5.7) that this hypersphere cannot be transformed into ˜J-tangent
affine hypersphere.

Recall that we have the following general classification result [18].

Theorem 5.5 [18]. Let M be an affine hypersphere in R
n+1 with constant sec-

tional curvature c and with nonzero Pick invariant J . Then c = 0 and M is
equivalent to

(x2
1 ± x2

2)(x
2
3 ± x2

4) · · · (x2
2m−1 ± x2

2m) = 1, (5.19)
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if n = 2m − 1 or with

(x2
1 ± x2

2)(x
2
3 ± x2

4) · · · (x2
2m−1 ± x2

2m)x2m+1 = 1, (5.20)

if n = 2m.

Before we proceed with classification result for flat ˜J-tangent affine hy-
perspheres we shall show the following lemma

Lemma 5.6. Let f : M → R
2n+2 be an affine hypersphere with the Blaschke

field C : M → R
2n+2. f is affine equivalent to ˜J-tangent affine hypersphere if

and only if there exists an affine transformation B : R2n+2 → R
2n+2 such that

B ◦ C is tangent to f and B ∼ ˜J (i.e. matrices for B and ˜J are similar)

Proof. If f is affine equivalent to ˜J-tangent affine hypersphere then there exists
an affine transformation A : R2n+2 → R

2n+2 such that A ◦ f considered with
the transversal vector field A ◦ C is ˜J-tangent. That is if X1, . . . , X2n+1 is a
basis of vector fields on M then

0 = det[A ◦ f∗X1, . . . , A ◦ f∗X2n+1, ˜J ◦ A ◦ C]

= det Adet[f∗X1, . . . , f∗X2n+1, A
−1 ◦ ˜J ◦ A ◦ C].

Now it is enough to take B := A−1 ◦ ˜J ◦ A. On the other hand, when B ∼ ˜J ,
there exists an invertible matrix P such that B := P−1 ◦ ˜J ◦ P . Now taking
A := P we prove the converse. �

Now we obtain

Proposition 5.7. Let f : M → R
2n+2 be a flat ˜J-tangent affine hypersphere

then distribution D is involutive and f is affine equivalent to either

(x2
1 ± x2

2)(x
2
3 ± x2

4) · · · (x2
2n+1 ± x2

2n+2) = 1, (5.21)

if n is odd or

(x2
1 ± x2

2)(x
2
3 ± x2

4) · · · (x2
2n−1 ± x2

2n)x2n+1x2n+2 = 1, (5.22)

if n is even.

Proof. Since proper flat affine hyperspheres have nonzero Pick invariant, by
Theorem 5.5, they are affine equivalent to (5.19) or (5.20). In particular, 2n+1
dimensional flat affine hyperspheres are equivalent to

(x2
1 ± x2

2)(x
2
3 ± x2

4) · · · (x2
2n+1 ± x2

2n+2) = 1. (5.23)

We shall show that all the above affine hyperspheres (with one exception)
are, after suitable affine transformation, ˜J-tangent. If n is odd (5.23) can be
obtained as the Calabi product of two flat n-dimensional affine hyperspheres

(x2
1 ± x2

2) · · · (x2
n ± x2

n+1) = 1

and

(x2
n+2 ± x2

n+3) · · · (x2
2n+1 ± x2

2n+2) = 1



Vol. 75 (2020) On ˜J-tangent Affine Hyperspheres Page 19 of 22 97

and as such is affine equivalent to ˜J-tangent affine hypersphere with invo-
lutive distribution D. If n is even and at least one of “±” in (5.23) is “−”, with-
out loss of generality we may assume that (5.23) contains (x2

2n+1−x2
2n+2) term.

Now applying affine transformation changing (x2
2n+1 −x2

2n+2) into x2n+1x2n+2

we can transform (5.23) into (5.22). Since (5.22) is the Calabi product of two
flat n-dimensional affine hyperspheres of form (5.20) it is affine equivalent to
˜J-tangent affine hypersphere with involutive distribution D.

Now it remained to show that for n even

(x2
1 + x2

2)(x
2
3 + x2

4) · · · (x2
2n+1 + x2

2n+2) = 1 (5.24)

cannot be transformed by affine transformation into ˜J-tangent affine hyper-
sphere. First note that (5.24) can be parameterized as follows:

f(v1, . . . , vn+1, u1, . . . , un) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

eu1 cos v1

eu1 sin v1

· · ·
eun cos vn

eun sin vn

e−u1−···−un cos vn+1

e−u1−···−un sin vn+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where vi, ui ∈ R. Assume that f is affine equivalent to ˜J-tangent affine hy-
persphere, then by Lemma 5.6 there exists a matrix B = [bij ] ∈ GL(2n + 2),
B ∼ ˜J such that B ◦ f is tangent to f . That is

W := det[fv1 , . . . , fvn+1 , fu1 , . . . , fun
, B ◦ f ] = 0.

By straightforward (but quite long) computations one may obtain

W =
( − 1

)
(n+1)(n+2)

2
(

n
∑

k=1

n
∑

s=1

e−uk+usAk,s

+e−(u1+···+un)
n

∑

k=1

e−ukAk,n+1

+eu1+···+un

n
∑

k=1

eukAn+1,k + An+1,n+1

)

, (5.25)

where

Ai,j := (cos vi cos vjb2i−1,2j−1 + cos vi sin vjb2i−1,2j

+ sin vi cos vjb2i,2j−1 + sin vi sin vjb2i,2j)

for i, j = 1, . . . , n + 1. Since W = 0 the above implies that Ak,s = 0 for k, s =
1, . . . , n, k �= s and Ak,n+1 = An+1,k = 0 for k = 1, . . . , n. In consequence we
obtain

b2k−1,2s−1 = b2k−1,2s = b2k,2s−1 = b2k,2s = 0
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for k, s = 1, . . . , n, k �= s and

b2k−1,2n+1 = b2k−1,2n+2 = b2k,2n+1 = b2k,2n+2

= b2n+1,2k−1 = b2n+2,2k−1 = b2n+1,2k = b2n+2,2k = 0

for k = 1, . . . , n. Moreover, from (5.25) we also have that
∑n+1

k=1 Ak,k = 0 that
is

n+1
∑

k=1

(

cos2 vkb2k−1,2k−1 + sin vk cos vk(b2k−1,2k + b2k,2k−1) + sin2 vkb2k,2k

)

=
n+1
∑

k=1

cos2 vk(b2k−1,2k−1 − b2k,2k) +
n+1
∑

k=1

sin vk cos vk(b2k−1,2k + b2k,2k−1)

+
n+1
∑

k=1

b2k,2k = 0.

The above implies that b2k−1,2k−1 = b2k,2k, b2k−1,2k = −b2k,2k−1 for k =
1, . . . , n+1 and

∑n+1
k=1 b2k,2k = 0. Summarising, the matrix B can be expressed

as a block diagonal matrix

B =

⎡

⎢

⎢

⎢

⎣

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bn+1

⎤

⎥

⎥

⎥

⎦

where Bk =
[

b2k,2k b2k−1,2k

−b2k−1,2k b2k,2k

]

for k = 1, . . . , n + 1. Note that detBk > 0

and in consequence detB = det B1 · . . . · det Bn+1 > 0. On the other hand,
since B ∼ ˜J , we have det B = det ˜J = (−1)n+1 = −1 < 0, since n is even,
what contradicts our assumption. �

Let J be the standard complex structure on R
2n+2 ≡ ˜C

n+1. Although
(5.24) cannot be transformed into ˜J-tangent affine hypersphere one may show
that it is affine equivalent to J-tangent affine hypersphere (more details on J-
tangent affine hyperspheres can be found in [4]). Actually we have the following
general result

Proposition 5.8. For every n ≥ 0 the hypersurface

(x2
1 + x2

2)(x
2
3 + x2

4) · · · (x2
2n+1 + x2

2n+2) = 1 (5.26)

is (after suitable affine transformation) J-tangent affine hypersphere.

Proof. Applying P : R2n+2 
 (x1, . . . , x2n+2) �→ (x1, xn+2, . . . , xn+1, x2n+2) ∈
R

2n+2 to (5.26) we obtain

(x2
1 + x2

n+2)(x
2
2 + x2

n+3) · · · (x2
n+1 + x2

2n+2) = 1. (5.27)
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Let us denote by G the gradient of (5.27). That is

G :=
[

2x1

x2
1 + x2

n+2

, . . . ,
2xn+1

x2
n+1 + x2

2n+2

,
2xn+2

x2
1 + x2

n+2

, . . .
2x2n+2

x2
n+1 + x2

2n+2

]T

.

Since J(x1, . . . , x2n+2) = [−xn+2, . . . ,−x2n+2, x1, . . . , xn+1]T we see that G is
orthogonal to J(x1, . . . , x2n+2) thus (5.27) is a J-tangent affine hypersphere.
�

Remark 5.9. The above results show that every proper (2n + 1)-dimensional
flat affine hypersphere is (after suitable affine transformation) either ˜J-tangent
or J-tangent. Moreover, when n is odd (5.26) is both ˜J-tangent and J-tangent.
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[3] Lawn, M.A., Schäfer, L.: Decompositions of para-complex vector bundles and
para-complex affine immersions. Results Math. 48, 246–274 (2005)

[4] Szancer, Z.: J-tangent affine hyperspheres with an involutive contact distribu-
tion. Publ. Math. Debrecen 89(4), 399–413 (2016)

[5] Kaneyuki, S., Williams, F.L.: Almost paracontact and parahodge structures on
manifolds. Nagoya Math. J. 99, 173–187 (1985)

[6] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University
Press, Cambridge (1994)

[7] Al-Aqeel, A., Bejancu, A.: On the geometry of paracomplex submanifolds.
Demonstr. Math. 34(4), 919–932 (2001)

[8] Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on para-complex geometry.
Rocky Mt. J. Math. 26(1), 83–115 (1996)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


97 Page 22 of 22 Z. Szancer Results Math

[9] Dillen, F., Vrancken, L., Verstraelen, L.: Complex affine differential geometry.
Atti Acc. Peloritana dei Pericolanti LXV I, 232–260 (1988)

[10] Szancer, Z.: ˜J-tangent affine hypersurfaces with an induced almost paracontact
structure. arXiv:1710.10488

[11] Dillen, F., Vrancken, L.: 3-Dimensional affine hypersurfaces in R
4 with parallel

cubic form. Nagoya Math. J. 124, 41–53 (1991)

[12] Hu, Z., Li, C.: The classification of 3-dimensional Lorentzian affine hypersurfaces
with parallel cubic form. Differ. Geom. Appl. 29, 361–373 (2011)

[13] Hu, Z., Li, C., Li, H., Vrancken, L.: Lorentzian affine hypersurfaces with parallel
cubic form. Results Math. 59(3), 577–620 (2011)

[14] Dillen, F., Vrancken, L.: Calabi-type compositions of affine spheres. Differ.
Geom. Appl. 4(4), 303–328 (1994)

[15] Hu, Z., Li, C., Vrancken, L.: Locally strongly convex affine hypersurfaces with
parallel cubic form. J. Differ. l Geom. 87(2), 239–308 (2011)

[16] Magid, M.A., Nomizu, K.: On affine surfaces whose cubic forms are parallel
relative to the affine metric. Proc. Jpn. Acad. Ser. A Math. Sci. 65(7), 215–218
(1989)

[17] Magid, M.A., Ryan, P.: Flat affine spheres. Geometriae Dedicata 33, 277–288
(1990)

[18] Vrancken, L.: The Magid–Ryan conjecture for equiaffine hyperspheres with con-
stant sectional curvature. J. Differ. Geom. 54, 99–138 (2000)

Zuzanna Szancer
Department of Applied Mathematics
University of Agriculture in Krakow
253c Balicka St.
30-198 Kraków
Poland
e-mail: Zuzanna.Szancer@urk.edu.pl

Received: September 17, 2019.

Accepted: May 6, 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1710.10488

	On widetildeJ-tangent Affine Hyperspheres
	Abstract
	1. Introduction
	2. Preliminaries
	3. Almost Paracontact Structures
	4. widetildeJ-Tangent Affine Hyperspheres
	5. Some Applications
	References




