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Abstract. In this paper we consider the stability problem of a general
class of differential equations in the sense of Hyers–Ulam and Hyers–
Ulam–Rassias with the aid of a fixed point technique. We extend and
improve the literature by dropping some assumptions of some well known
and commonly cited results in this topic. Some illustrative examples are
also given to visualize the improvement.
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1. Introduction

The study of data dependence in the theory of differential equations grows
by means of different concepts such as monotonity, continuity and differen-
tiability of solutions with respect to parameters; asymptotic behavior and G-
convergences of solutions; Liapunov stability and structural stability of solu-
tions; analiticity and regularity of solutions, etc.. We refer to monographs
[3,11,12,30,31] for those concepts of data dependence. In this paper we study
the data dependence of differential equations on a relatively new concept, called
Ulam Stability, which has been of an increasing interest in the last decades.

On a talk given at Wisconsin University in 1940, S. M. Ulam posed the
following problem: “Under what conditions does there exists an homomor-
phism near an approximately homomorphism of a complete metric group?”
More precisely: Given a metric group (G, ·, d), a number ε > 0 and a mapping
f : G → G satisfying the inequality
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d (f(xy), f(x)f(y)) < ε

for all x, y ∈ G, does there exist a homomorphism g of G and a constant K,
depending only on G, such that

d (f(x), g(x)) ≤ Kε

for all x ∈ G? In the presence of affirmative answer, the equation g(xy) =
g(x)g(y) of the homomorphism is called stable, see [29] for details. One year
later, Hyers [13] gave an answer to this problem for linear functional equations
on Banach spaces: Let E1, E2 be real Banach spaces and ε > 0. Then, for each
mapping f : E1 → E2 satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ ε

for all x, y ∈ E1, there exists a unique additive mapping g : E1 → E2 such
that

‖f(x) − g(x)‖ ≤ ε

holds for all x ∈ E1. After Hyers’ answer, a new concept of stability for
functional equations established, called today Hyers–Ulam stability, and many
papers devoted to this topic (see for example [6,7,10,21]). In 1978, Rassias [24]
provided a remarkable generalization, which known as Hyers–Ulam–Rassias
stability today, by considering the constant ε as a variable in Ulam’s problem
(see for example [2,5,14,16,22,25]).

Stability problem of differential equations in the sense of Hyers–Ulam
was initiated by the papers of Obloza [19,20]. Later Alsina and Ger [1] proved
that, with assuming I is an open interval of reals, every differentiable mapping
y : I → R satisfying |y′(x) − y(x)| ≤ ε for all x ∈ I and for a given ε > 0,
there exists a solution y0 of the differential equation y′(x) = y(x) such that
|y(x) − y0(x)| ≤ 3ε for all x ∈ I. This result was later extended by Takahasi,
Miura and Miyajima [27] to the equation y′(x) = λy(x) in Banach spaces, and
[17,18] to higher order linear differential equations with constant coefficients.
After these inspiring works, a large number of papers devoted to this subject
have been published (see for example [8,23,26] and references therein).

Recently Jung [15] proved Hyers–Ulam stability as well as Hyers–Ulam–
Rassias stability of the equation

y′ = f(x, y) (1)

which extends the above mentioned results to nonlinear case. Later Bojor [4]
modified Jung’s [15] technique for the linear equation

y′(x) + f(x)y(x) = g(x)

and proved a stability result with some different assumptions. Jung’s [15] tech-
nique has been modified also for functional equations in the form

y′(x) = F (x, y(x), y(x − τ))

by Tunç and Biçer [28].
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In this paper, we will extend and improve these result by proving the
stability results for differential equations with less assumptions. Examples to
visualize improvement will be given.

2. Preliminaries

Let I be an open interval. For every ε ≥ 0 and y ∈ C1(I) satisfying

|y′(x) − f (t, y(x))| ≤ ε,

if there esists a solution y0 of the Eq. (1) such that

|y(x) − y0(x)| ≤ Kε,

where K is a constant which does not depend on ε and y, then the differential
equation (1) is said to be stable in the sense of Hyers–Ulam. If the above state-
ment remains true after replacing the constants ε and K with the functions
ϕ,Φ : I → [0,∞) respectively, where these functions does not depend on y and
y0, then the differential equation (1) is said to be stable in the sense of Hyers–
Ulam–Rassias. This definiton may be applied to different classes of differential
equations, we refer to Jung [15] and references cited therein for more detailed
definitions of Hyers–Ulam stability and Hyers–Ulam–Rassias stability.

We now introduce the concept of generalized metric which will be
employed in proofs of our main results. For a nonempty set X, a function
d : X × X → [0,∞] is called a generalized metric on X if and only if satisfies
M1 d(x, y) = 0 if and only if x = y,
M2 d(x, y) = d(y, x) for all x, y ∈ X,
M3 d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

It should be remarked that the only difference of the generalized metric
from the usual metric is that the range of the former is permitted to be an
unbounded interval.

We will use the following fixed point result as main tool in our proofs,
we refer to [9] for the proof of this result.

Theorem 1. Let (X, d) is a generalized complete metric space. Assume that
T : X → X is a strictly contractive operator with the Lipschitz constant L < 1.
If there is a nonnegative integer k such that d

(
T k+1x, T kx

)
< ∞ for some

x ∈ X, then the following are true:
(a) The sequence {Tnx} converges to a fixed point x∗ of T ,
(b) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X : d

(
T kx, y

)
< ∞}

,

(c) If y ∈ X∗, then

d (y, x∗) ≤ 1
1 − L

d (Ty, y) .
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3. Main Results

Throughout this section we define I := [x0, x0 + r] for given real numbers x0

and r with r > 0. Further, we define the set X of all continuous functions on
I by

X := {f : I → R | f is continuous} = C (I,R) . (2)

Lemma 1. Define the function d : X × X → [0,∞] with

d (f, g) := inf
{

C ∈ [0,∞] : |f(x) − g(x)| e−M(x−x0) ≤ CΦ(x), x ∈ I
}

(3)

where M > 0 is a given constant and Φ : I → (0,∞) is a given continuous
function. Then (X, d) is a generalized complete metric space.

Proof. First we will show that d is a generalized metric on X. Conditions M1
and M2 clearly hold, we will show that M3 also holds. Assume that d(f, g) >
d(f, h) + d(h, g) for some f, g, h ∈ X, then there would exist an x1 ∈ I such
that

|f(x1) − g(x1)| e−M(x1−x0) > [d(f, h) + d(h, g)] Φ(x1)
= d(f, h)Φ(x1) + d(h, g)Φ(x1)

≥ |f(x1) − h(x1)| e−M(x1−x0)

+ |h(x1) − g(x1)| e−M(x1−x0)

which is a contradiction.
We will now show that (X, d) is complete, let {hn} be a Cauchy sequence

on (X, d). Then, for any ε > 0, there exists an integer N(ε) > 0 such that
d (hm, hn) ≤ ε for all m,n ≥ N(ε). In other words, for any ε > 0, there exists
an integer N(ε) > 0 such that

|hm(x) − hn(x)| e−M(x−x0) ≤ εΦ(x) (4)

for all m,n ≥ N(ε) and all x ∈ I. This means that {hn(x)} is a Cauchy
sequence in R for any fixed x. Since R is complete, {hn(x)} converges for all
x ∈ I and we can define the function h : I → R by

h(x) := lim
n→∞ hn(x).

Now letting m → ∞ in (4) we obtain, for any ε > 0, there exists an integer
N(ε) > 0 such that

|h(x) − hn(x)| e−M(x−x0) ≤ εΦ(x) (5)

for all n ≥ N(ε) and all x ∈ I. That is, for any ε > 0, there exists an integer
N(ε) > 0 such that d (h, hn) ≤ ε for all n > N(ε). Furthermore, since Φ is
bounded on I, we conclude from (5) that {hn(x)} converges uniformly to h
and so that h ∈ X. The proof is now complete. �

We are now ready to study stability of differential equation (1) in the
sense of Hyers–Ulam.
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Theorem 2. Assume that f : I×R → R is a continuous function which satisfies
a Lipschitz condition

|f(x, y1) − f(x, y2)| ≤ L |y1 − y2|
for all x ∈ I and all y1, y2 ∈ R, where L > 0 is a Lipschitz constant. If a
continuously differentiable function y : I → R satisfies

|y′(x) − f (x, y(x))| ≤ ε (6)

for all x ∈ I and some ε ≥ 0, then there exists a unique solution y0 of (1)
satisfying

|y(x) − y0(x)| ≤ (1 + L) rε

for all x ∈ I.

Proof. We consider the set X defined by (2) and introduce a function d :
X × X → [0,∞] with

d (f, g) := inf
{

C ∈ [0,∞] : |f(x) − g(x)| e−(L+1)(x−x0) ≤ C, x ∈ I
}

.

Note that (X, d) is a generalized complete metric space in view of Lemma 1.
Now let us define the operator T : X → X by

(Ty) (x) := y(x0) +
∫ x

x0

f (s, y(s)) ds, x ∈ I

for any y ∈ X. It is obvious that any fixed point of T solves the differential
equation (1).

It is obvious from Fundamental Theorem of Calculus that Ty ∈ X and
thus we infer that

|(Tg0) (x) − g0(x)| e−(L+1)(x−x0) < ∞
for arbitrary g0 ∈ X and all x ∈ I, which means d (Tg0, g0) < ∞ for all g0 ∈ X.
Similarly

|g0(x) − g(x)| e−(L+1)(x−x0) < ∞
for all g ∈ X and all x ∈ I, which means d (g0, g) < ∞ for all g ∈ X, i.e.

{g ∈ X : d (g0, g) < ∞} = X.

We will now show that T is strictly contractive on X. For any g1, g2 ∈ X
we have

|(Tg1) (x) − (Tg2) (x)| =
∣
∣
∣
∣

∫ x

x0

[f (s, g1(s)) − f (s, g2(s))] ds

∣
∣
∣
∣

≤
∫ x

x0

|f (s, g1(s)) − f (s, g2(s))| ds

≤ L

∫ x

x0

|g1(s) − g2(s)| ds
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= L

∫ x

x0

|g1(s) − g2(s)| · e−(L+1)(s−x0) · e(L+1)(s−x0) ds

≤ Ld (g1, g2)
∫ x

x0

e(L+1)(s−x0) ds

≤ L

L + 1
d (g1, g2) e(L+1)(x−x0)

for all x ∈ I. Thus, for any g1, g2 ∈ X and for all x ∈ I, we have

|(Tg1) (x) − (Tg2) (x)| · e−(L+1)(x−x0) ≤ L

L + 1
d (g1, g2) .

Hence, for all g1, g2 ∈ X we have

d (Tg1, T g2) ≤ L

L + 1
d (g1, g2)

which means that T is stricly contractive on X. Now we have shown that all
the conditions of Theorem 1 are satisfied with k = 1 and X∗ = X.

On the other hand, it follows from (6) that

−ε ≤ y′(x) − f (x, y(x)) ≤ ε

for all x ∈ I. Integrating this inequality from x0 to x, we obtain

|y(x) − (Ty) (x)| ≤ ε (x − x0)

for all x ∈ I. Now multiplying this inequality with e−(L+1)(x−x0) we obtain

|(Ty) (x) − y(x)| e−(L+1)(x−x0) ≤ ε (x − x0) e−(L+1)(x−x0)

for all x ∈ I, which means

d (Ty, y) ≤ ε (x − x0) e−(L+1)(x−x0) ≤ εre−(L+1)(x−x0)

for each x ∈ I.
Therefore, according to Theorem 1, there exists a unique solution y0 :

I → R of differential equation (1) satisfying

d (y, y0) ≤ 1
1 − L/(L + 1)

d (Ty, y) ≤ (L + 1) εre−(L+1)(x−x0)

for each x ∈ I. It follows from definition of d(y, y0) that

|y(x) − y0(x)| e−(L+1)(x−x0) ≤ (L + 1) εre−(L+1)(x−x0)

and thus we obtain

|y(x) − y0(x)| ≤ (1 + L) rε

for all x ∈ I. The proof is now complete. �

Remark 1. Notice that we do not assume Lr < 1 in Theorem 2, while it is
required in Theorem 4.1 of Jung’s paper [15].
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Now we will give a result on Hyers–Ulam–Rassias stability of the differen-
tial equation (1) based on the same technique with Theorem 2. Interestingly we
will see that this estimate is much better and can be extended to unbounded
intervals.

Theorem 3. Assume that f : I×R → R is a continuous function which satisfies
the Lipschitz condition

|f(x, y1) − f(x, y2)| ≤ L |y1 − y2|
for all x ∈ I and all y1, y2 ∈ R. If a continuously differentiable function
y : I → R satisfies

|y′(x) − f (x, y(x))| ≤ ϕ(x) (7)

for all x ∈ I, where ϕ : I → (0,∞) is a nondecreasing continuous function
satisfying

∣
∣
∣
∣

∫ x

x0

ϕ(s) ds

∣
∣
∣
∣ ≤ Kϕ(x) (8)

for each x ∈ I, then there exists a unique solution y0 of the differential equation
(1) satisfying

|y(x) − y0(x)| ≤ K (1 + L) ϕ(x)

for all x ∈ I.

Proof. We consider the set X defined by (2) and introduce a function d :
X × X → [0,∞] with

d (f, g) := inf
{

C ∈ [0,∞] : |f(x) − g(x)| e−(L+1)(x−x0) ≤ Cϕ(x), x ∈ I
}

.

Note that (X, d) is again a generalized complete metric space in view of Lemma
1. Now let us define the operator T : X → X by

(Ty) (x) := y(x0) +
∫ x

x0

f (s, y(s)) ds, x ∈ I

for any y ∈ X. Note that fixed points of T solve the differential equation (1).
Also, as in proof of Theorem 2, it can be shown that T (Tg0, g0) < ∞ for all
g0 ∈ X and {g ∈ X : d (g0, g) < ∞} = X.

We will show now that T is a strictly contractive operator on X. With
integrating by parts

∫ x

x0

ϕ(s)e(L+1)(s−x0) ds ≤ 1
L + 1

ϕ(x)e(L+1)(x−x0)

− 1
L + 1

∫ x

x0

ϕ′(s)e(L+1)(s−x0) ds

and using the monotonoity of ϕ, we obtain
∫ x

x0

ϕ(s)e(L+1)(s−x0) ds ≤ 1
L + 1

ϕ(x)e(L+1)(x−x0)
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for all x ∈ I. Now, for any g1, g2 ∈ X, let Cg1,g2 ∈ [0,∞] be an arbitrary
constant with d (g1, g2) ≤ Cg1,g2 , that is

|g1(x) − g2(x)| e−(L+1)(x−x0) ≤ Cg1,g2ϕ(x)

for all x ∈ I. It then follows, for any g1, g2 ∈ X,

|(Tg1) (x) − (Tg2) (x)| =
∣
∣
∣
∣

∫ x

x0

[f (s, g1(s)) − f (s, g2(s))] ds

∣
∣
∣
∣

≤
∫ x

x0

|f (s, g1(s)) − f (s, g2(s))| ds

≤ L

∫ x

x0

|g1(s) − g2(s)| ds

= L

∫ x

x0

|g1(s) − g2(s)| · e−(L+1)(s−x0) · e(L+1)(s−x0) ds

≤ LCg1,g2

∫ x

x0

ϕ(s)e(L+1)(s−x0) ds

≤ L

L + 1
Cg1,g2ϕ(x)e(L+1)(x−x0)

for all x ∈ I. Thus, for any g1, g2 ∈ X and for all x ∈ I, we have

|(Tg1) (x) − (Tg2) (x)| · e−(L+1)(x−x0) ≤ L

L + 1
Cg1,g2 ϕ(x).

Hence, for all g1, g2 ∈ X we have

d (Tg1, T g2) ≤ L

L + 1
d (g1, g2)

and we note that L/ (L + 1) < 1. Now it is shown that T is stricly contractive
on X and that all the conditions of Theorem 1 are satisfied with k = 1,
X∗ = X.

On the other hand, it follows form (7) that

−ϕ(x) ≤ y′(x) − f (x, y(x)) ≤ ϕ(x)

for all x ∈ I. Integrating this inequality from x0 to x and using the inequality
(8), we obtain

|y(x) − (Ty) (x)| ≤ Kϕ(x)

for all x ∈ I. Multiplying this inequality with e−(L+1)(x−x0) we obtain

|y(x) − (Ty) (x)| e−(L+1)(x−x0) ≤ Kϕ(x)e−(L+1)(x−x0)

which means that

d (Ty, y) ≤ Kϕ(x)e−(L+1)(x−x0)

for all x ∈ I.
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Therefore, according to Theorem 1, there exists a unique solution y0 :
I → R of differential equation (1) satisfying

d (y, y0) ≤ 1
1 − L/(L + 1)

d (Ty, y) ≤ K (1 + L) ϕ(x)e−(L+1)(x−x0)

for all x ∈ I. It follows from definition of d (y, y0) that

|y(x) − y0(x)| e−(L+1)(x−x0) ≤ K (1 + L) ϕ(x)e−(L+1)(x−x0)

and thus we obtain

|y(x) − y0(x)| ≤ K (1 + L) ϕ(x)

for all x ∈ I, which completes the proof. �

Remark 2. Notice that we do not assume KL < 1 in Theorem 3, which it is a
required condition in Theorem 3.1 and 3.2 of Jung’s paper [15].

Remark 3. By employing the same method with Jung [15], It can be easily
shown that Theorem 3 remains valid if we replace the interval I with an
unbounded interval. We refer to Theorem 3.2 of Jung [15] for proof.

4. Examples

Example 1. Consider the differential equation

y′(x) + λy(x) = q(x) (9)

on the interval I := [0, 4/λ], where λ > 0 is any constant and q is any continu-
ous function on I. In this case we have f(x, y) = q(x)−λy(x) and it obviously
satisfies Lipschitz condition with the Lipschitz constant L = λ since

|f(x, y1) − f(x, y2)| = λ |y1(x) − y2(x)| .
Therefore, in view of Theorem 2, Eq. (9) is stable in the sense of Hyers–Ulam
on I.

It should be remarked that Theorem 4.1 of Jung [15] does not work in
this problem since

I := [c − r, c + r] =
[
0,

4
λ

]
⇒ c = r =

2
λ

in their setting and thus

Lr = λ · 2
λ

= 2 > 1.

Thus Lr < 1 condition of Jung’s work does not hold in this problem.
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Example 2. Consider the differential equation (9) of Example 1 on the interval
I := [0, r] for any given real number r > 0. We have shown, in Example 1, that
the function f satisfies the condition (7) with the Lipschitz constant L = λ. If
we define the function ϕ : I → R with ϕ(x) := e(λ−1)x, (λ > 1), we have

∣
∣
∣
∣

∫ x

x0

ϕ(s) ds

∣
∣
∣
∣ =

∫ x

0

e(λ−1)s ds =
1

λ − 1

(
e(λ−1)x − 1

)

≤ 1
λ − 1

e(λ−1)x =
1

λ − 1
ϕ(x)

and the condition (8) hold with K = 1/(λ − 1). Therefore, according to Theo-
rem 3, differential equation (9) is stable in the sense of Hyers–Ulam–Rassias.

We remark that Theorem 3.1 of Jung [15] does not work in this problem
since

KL = λ

(
λ

λ − 1

)
= 1 +

λ

λ − 1
> 1.

Remark 4. Bojor [4] considered the stability problem of the linear equation

y′(x) + f(x)y(x) = g(x)

and proved the stability of this equation without a restriction on Lipschitz
constant but replacing the condition (8) with a more restrictive condition

∫ x

x0

|f(s)| ϕ(s) ds ≤ Pϕ(x), P ∈ (0, 1) .

In Example 2, for the Eq. (9) with ϕ(x) := e(λ−1)x and λ > 1, we showed that
∫ x

x0

|f(s)| ϕ(s) ds = λ

∫ x

x0

ϕ(s) ds ≤ λ

λ − 1
ϕ(x)

in any interval [0, r]. It is apparent that Bojor’s [4] result does not apply to
this problem since

P =
λ

λ − 1
> 1

in this case.

Remark 5. Tunç and Biçer [28] proved a stability result for the functional
equation

y′(x) = F (x, y(x), y(x − τ))

by modifying the technique of Jung [15]. If we cancel the delay, i.e. if we choose
τ = 0, we obtain the Eq. (1) which is considered in this paper. In this case
the results Theorem 1 and Theorem 2 of Tunç and Biçer [28] still assume the
condition Lr < 1, hence their results also do not apply to our example given
above.
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